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Abstract The paper describes the first exact results in opti-
mal design of three-phase elastic structures. Two isotropic
materials, the “strong” and the “weak” one, are laid out
with void in a given two-dimensional domain so that the
compliance plus weight of a structure is minimized. As in
the classical two-phase problem, the optimal layout of three
phases is also determined on two levels: macro- and micro-
scopic. On the macrolevel, the design domain is divided
into several subdomains. Some are filled with pure phases,
and others with their mixtures (composites). The main aim
of the paper is to discuss the non-uniqueness of the opti-
mal macroscopic multiphase distribution. This phenomenon
does not occur in the two-phase problem, and in the three-
phase design it arises only when the moduli of material
isotropy of “strong” and “weak” phases are in certain
relation.
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1 Introduction

Multiphase elastic structures designed for minimal com-
pliance are made from composites with microgeometries
of maximal stiffness. In the classical problem of rwo-
phase optimal design analyzed in the framework of two-
dimensional elasticity, rank-1 or rank-2 laminates are the
examples of optimal mixtures. In the latter, the “strong”
material envelopes the “weak” one; concentration of the
“strong” phase in a rank-2 laminate grows with the inten-
sity of the average stress (also referred to as homogenized,
or effective stress); and the anisotropy of a microstruc-
ture follows the anisotropy of the effective stress tensor,
see Lurie and Cherkaev (1984), Gibiansky and Cherkaev
(1997), Bendsge and Kikuchi (1988) and Cherkaev (2000).
Another type of optimal two-phase layout corresponds to
the confocal ellipse construction, see Grabovsky and Kohn
(1995). However, it is worth pointing out here that rank-
2 laminates are uniquely optimal in 2D elasticity when
the sign of the determinant of the homogenized stress ten-
sor is negative, see Allaire and Aubry (1999). The same
phenomena are observed in the limiting case of topology
optimization, when the “weak” material degenerates to void,
see Vigdergauz (1994), Allaire (2002) and Bendsge and
Sigmund (2003).

Optimal multiphase composites are much less investi-
gated; notice the pioneering contributions of Gibiansky and
Sigmund (2000) and Sigmund (2000), see also Albin et al.
(2007), Cherkaev and Zhang (2011) and Cherkaev and
Dzierzanowski (2013) for continuation and extensions.

In the present paper we discuss the first exact generaliza-
tion of both the two-material and material-void problems.
More precisely, our concern is to minimize the compliance
of a two-dimensional linearly elastic structure made from
three phases - two isotropic materials and a void. The focus
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and main aim of the discussion is to elaborate in detail the
case when optimal macroscopic distribution of materials in
a multiphase structure is not unique. This feature is spe-
cial as it does not occur in two-phase problems of optimal
design.

Subsequent considerations regarding the optimality
of multiphase microstructures are focused on high-rank
orthogonal laminates. However, other choices are also pos-
sible; e.g. the three-phase wheel assemblages studied in
Cherkaev (2012) are proven to be optimal if the homoge-
nized stress tensor is isotropic.

Closely related to the problem of optimal structural
design are the works on bounding the properties of multi-
material mixtures, see e.g. Milton (1990) and Nesi (1995).
For extensive exposition of this topic and list of references
we refer the reader to the monograph by Milton (2002).

2 The problem
2.1 Notation

For simplicity we assume that “strong” and “weak” elas-
tic materials are isotropic with Poisson coefficients equal to
zero. It follows that bulk and shear moduli of each material
are equal. However, the results can be easily generalized to
arbitrary well-ordered phases, that is to the case when both
the bulk and shear modulus of one phase is greater than the
corresponding modulus of the other.

Let C; and C,, C1 < C3, denote material compliances
(inverses of Young’s moduli); the compliance of void is
infinite. Define

C, ifx e,
Cx)={C, ifxeQ, (1)
+o0 if x € Q3,

where 1, Q2 and Q3 = Qyiq are disjoint subdomains in a
bounded domain €2 occupied by phase 1 (strong material),
phase 2 (weak material) and phase 3 (void) respectively.

Equilibrium conditions and constitutive equations of lin-
earized elasticity are

V.-t=01in Q, rn:fonBQf,'L':rT 2)

2Ct =Vu + VuT, u =ugpon 082, 3)

where 7 is a 2 x 2 tensor stress field, # is a vector displace-
ment field, f denotes traction on the boundary component
082, uy stands for a trace of displacement field on 92, and
n is a normal to the boundary.

Stress energy accumulated in i-th material, i = 1,2, is
given by

2Wi(t) =C; Tr (rz) , 4
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and for void (phase 3) it is assumed that

0 if T =0,
+o00 otherwise.

Wa(t) = { 5)

Remark 1In the sequel we identify a stress tensor T with its
eigenvalues and write T = (t1, T77).

2.2 The optimization problem

Consider the optimization problem: among all divisions of
Q into disjoint subdomains €2;, i = 1, 2, 3, whose areas |2; |
are restricted by |2;| < V;, choose the one that minimizes
structural compliance. Here V; denotes the maximal amount
of the i-th phase that can be used to compose an optimal
structure. This problem can be formulated in a variational
form

I:inf{/ F(t)dx | T as in (2)} (6)
Q
where

0 if T =0,
Fr) = {min{@l(r), ®,(t)} otherwise. )
with
Si(r)=2Wi(t)+y, i=12, (®)

denoting the energy well of i-th material. Here, y; stand for
the Lagrange multipliers related to the restrictions on |€2;|
set above. They can be understood as “costs” of materials;
in the sequel we assume y, = « y; with o € (0, 1) denoting
the quotient of material costs.

The integrand F is not a convex function of T, hence
the variational problem (6) has no classical solution in the
sense that an optimal division of €2 into three disjoint sub-
domains occupied by pure phases does not exist in general.
The original optimization problem requires relaxation by
allowing arbitrary microstructural mixtures of pure phases
(limits of classical solutions) in optimal design. Effective
constitutive properties of thus obtained composite materi-
als are determined by the homogenization theory, see e.g.
Cherkaev (2000) and Allaire (2002).

Technically, relaxation results in replacing F with its
quasiconvex envelope QF, see Dacorogna (2008). Due to
the local character of homogenization, formulae for Q F(t)
and the properties of related optimal microstructures can
be determined independently at each point of the design
domain 2. The original optimization problem (6) is conse-
quently replaced by

(o)) :min{/ QF(t)dx
Q

T as in (2)} ©)]
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Fig. 1 a Division of the composite region R(a4) into three subre-
gions of optimality; b Contour plot of m5™®*, mJ™® = 1 at the points
(£&, ££&) where all subregions of optimality meet; ¢ Cartoons of opti-
mal microstructures in respective subregions. All geometries represent
laminates of a rank; the mixing of phases is hierarchical in scales.
Black stripes denote phase 1, dashed — phase 2 and white — phase 3
(void)
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Fig. 2 Boundaries of the composite region R(«) (top right quarter) for
decreasing o; al and a2 ap < @ < ag; b o < ap; ca = 0. In each
figure, the dashed area represents the domain where pure material 2 is
optimal. The composite region is divided into subregions in which the
optimality of high-rank laminates is conjectured, (see Section 3.3 for
the explanation of symbols R(1,2), R(2,3) and R(1,2 3))
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with

QF(7) =

= min {2 W*(z,my, ma, m3) + yrmy + ayymy
‘Ofm,-fl,i=1,2,3,m1+m2+m3=1} (10)

where m 1, my, m3 respectively denote macroscopic volume
fractions of the strong, weak, and void phases making up
the composite and W* stands for the stress energy density
accumulated in this mixture. It is worth pointing out that
QF(t) < F(7) for any t satisfying (2), and QI = I.

3 Study of the quasiconvex envelope

In the problem considered here, Q F is supported by the
energy wells ®, &, corresponding to strong and weak
materials and a well of the void energy, see (5). Macroscopic
volume fractions of phases in the locally optimal composite
are still denoted by m;, i = 1, 2, 3. The optimal values of m;
depend on the quotient of material costs «, and eigenvalues
of the homogenized stress .

In the following analysis, we fix the cost y; of the strong
material and study the shape of the quasiconvex envelope in
dependence on the ratio @ = y»/y1.

Let R() be the set of stresses for which the energy accu-
mulated in a composite plus its “cost” has lower value than
for any of the pure materials: R(w) = {t : QF (1) < F (1)}
for given «. If T € R(w) then the minimal stress energy
is accumulated in a composite material and m; < 1,i =
1, 2, 3. Conversely, if T ¢ R(a) then QF () = F(t) and
the energy is minimized on pure i-th phase that is m; =
1,i € {1, 2, 3}. In this sense we refer to R(«) as the com-
posite region whose topology depends on the quotient of
material costs.

Below we briefly discuss the changes in the topology of
R(«) with regard to «. In particular, we elaborate on the
special case when « takes such a value for which m; are
non-unique for all T € R(«), see Section 3.2 below.

3.1 Large quotient of material costs

Consider the case when the quotient of material costs is
greater than a certain threshold, « > a4 (see Section 3.2
for details), and material 2 is not used in optimal design at
all, i.e.

my = 0. (11)

As in the topology optimization problem, see Cherkaev
(2000) and Allaire (2002), the quasiconvex envelope is
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supported by the energy well ®; and W3(0) = 0. For
T = (11, 1) We thus have QF = QF3,

OF13(7) =
_J2CG G (ul+ D) —lmmwmll  ifreR@), (12)
“laEE )+ otherwise,
with
4!
R(e) = {7 : |ul + |mul < &o}, §0=\/C1. (13)

For T € R(x) optimal composites made from phase 1
(strong material) and phase 3 (void) can take a form of rank-
2 orthogonal laminates L(13, 1) with macroscopic volume
fractions given by

|t1| + 7o
m] = 9
&o

From (11) and (14) it follows that m;, m, and ms3 are
uniquely determined for all T € R(w) if « is large enough.
Components of (! and 7 satisfy pointwise relations

m3=1—m1. (14)

1 1 . 3 3 .
i+ =& ine, P=1P=0inq; 15

3.2 Special quotient of material costs

Weak material (phase 2) enters the optimal design when its
cost is equal to the cost of optimal isotropic mixture of the
strong material (phase 1) and void (phase 3). In this special
case, the quotient o« = o4,

2C

= . 16
Ci+C (16)

A

Indeed, one may check that if @ = o4 then the energy well
@, touches Q Fi3, i.e.

2Wa(T) +aayr = QF13(7), (17)

fort=&.i=1,...,4 where

BICih, n-Go, a®

and

g= g (19)
Ci+CG

Note that &, &, define pure spherical stress and &5, &4 are
pure deviators.

For « = a4, the amount of material 2 is not uniquely
defined because it can be arbitrarily interchanged with the
mixture of phases 1 and 3. Geometrically, the paraboloidal
well ®, touches the quasiconvex envelope Q F3. If the cost
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of phase 2 is only slightly lower than the cost of the phase 1-
phase 3 mixture, one wants to use the maximal amount
of material 2 whenever it is possible. Therefore, optimal
fraction of the weak material (phase 2) jumps from zero to
some finite value for o = a4.

From the above it follows that if « = a4 then formula
(12) remains valid but now Q F3 is additionally supported
by ®;. Hence, optimal macroscopic volume fractions can-
not be uniquely determined for any T € R(xy4), still defined
by (13). The optimality of rank-2 laminates L(13, 1) charac-
terized by (14) is retained but one can as well use a fraction
of material 2 to compile other optimal mixtures accumulat-
ing the same amount of stress energy for the same overall
cost. Moreover, if the average stress T is represented by
whichever tensor from (18) then the cost of L (13, 1) is equal
to the cost of pure phase 2 that is yy m; = y», which is
equivalent to m| = or4.

Composite region R(cy) splits into four subregions of
optimality

Ri={z:|ul > &, |tul > &, |u| + |znl < éo},
Rot = {7z :|ul > &, |tul <&, |ul + |tul < o},
Roo = {7 :|ul <&, |tul > &, [ul + |tul < o},
Rs = {7 :|ul <&, |l <§&}.

(20)

-

-

-

Fig. 3 Optimal design of a cantilever; a Design domain and load-
ing; b (two-phase design) Optimal distribution of material 1; ¢ — e
(three-phase design, low quotient of material costs @ = a4) Optimal
microstructure regions; updated material 1 distribution; material 2 dis-

®

: > "Jd{
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In these regions, optimal macroscopic volume fraction of
material 2 varies, my € (0, m3*), and

& — |tt| — |l if 7 eR
§o — 2§ ’
& — |l — Izl |zul if 7 € Ro
max __ & — & — |l 3 -
M) Gl =l Al @D
5}_?_|TI|—§ & -
|71] |7l ¢ R
%_2 1 7 € R3

describes the maximal amount of the weak elastic phase that
one can use to form the optimal high-rank, orthogonal lami-
nate. The division of R(c4) and the contour plot of m3'** are
shown in Fig. 1a and b respectively. Optimal macroscopic
fractions of phases 1 and 3 corresponding to (21) are given

by

Izl + Izl 5 pymax §

o 2g (22)
m3 =1—my —my™.

Examples of optimal microstructures are shown in
Fig. 1(c1)—(c3). In these high-rank laminates, 7" and 7®
(stress in phases 1 and 3) satisfy (15) and 7@ (stress in
phase 2) is given by one of the tensors in (18). Geomet-
ric parameters of optimal laminates are different in each

(® (h)

tribution; f — h (three-phase design, high quotient of material costs
a = ay4) Optimal microstructure regions; updated material 1 distri-
bution; material 2 distribution. Black color in ¢ and f denotes pure
material 1 zone, others correspond to Fig. la
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subregion of R(x4). They are found by the technique used
previously in Albin et al. (2007), Cherkaev and Zhang
(2011) and Cherkaev and Dzierzanowski (2013). Roughly
speaking, two types of equations are involved in the calcu-
lations: (i) formulae for average stress in two neighboring
phases, and (ii) continuity of normal stress component on
the interface between these phases.

3.3 Low quotient of material costs

Let us briefly outline the change in the topology of R(«)
when o < o4, and the well ®, penetrates through the
QO F13. The exact formulae for the quasiconvex envelope and
details regarding geometry of optimal high-rank laminates
are not reported here as they are subject to intensive ongoing
research. Instead, we announce the qualitative results.

For ap < o < a4, ap = C1/C,, the isolated zones
appear around the points (18). Pure phase 2 is optimal in
these zones and they expand as o decreases, see Fig. 2al-
a2. The composite region R(«) is divided into subregions
with different optimal microstructures. We conjecture that
rank-1 or rank-2 laminates of phases 1 and 2 are optimal in
R(1,2) and hierarchical mixtures of higher rank made of all
three phases are optimal in R(4,2 3). This hypothesis is based

Fig. 4 Optimal design of a bridge; a Design domain and loading; b
(two-phase design) Optimal distribution of material 1; ¢ — e (three-
phase design, low quotient of material costs « = «4) Optimal
microstructure regions; updated material 1 distribution; material 2 dis-
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on the results presented in Cherkaev and Dzierzanowski
(2013).

When the quotient of material costs further lowers, o <
o, the zones of optimality of pure material 2 merge and the
composite region splits into two disconnected subdomains,
see Fig. 2b. In these subdomains, optimal composites are
rank-2 laminates: L(12, 1) in subregion Ry 2) and L (23, 2)
in subregion R, 3). Three-material composites are not opti-
mal foro < ap.

Finally, when « = 0, phase 3 (void) disappears from
optimal design. In this case, rank-2 laminates L(12, 1) are
optimal in the composite region, see Fig. 2c. They can
degenerate into rank-1 laminates for certain values of ty, 771

4 Results

Using the results in Section 3.2 we computed two stan-
dard examples of optimal design: a cantilever and a
bridge. First, the topology optimization problem (9) was
solved for a given design domain 2 using the code by
Dzierzanowski (2012). In this way, the distribution of mate-
rial 1 in Q was found. Next, we determined the eigenval-
ues of the stress tensor at each x € . Using this we

-~ -
(e)

v ~
(8) (h)

tribution; f — h (three-phase design, high quotient of material costs
a = ay4) Optimal microstructure regions; updated material 1 distri-
bution; material 2 distribution. Black color in ¢ and f denotes pure
material 1 zone, others correspond to Fig. la
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computed the maximal amount of material 2 that can be
used to replace a microstructure equivalent to the optimal
L(13,1).

Optimal microstructures according to regions in Fig. la
and the dependence of the results on the quotient « are
denoted in Figs. 3 and 4.

5 Comments and conclusions

1. The strong material 1 tends to be placed close to the
supports and the loading, while the weak phase 2 tends
to concentrate in the regions where the stress tensor is
closer to isotropic. At the free boundary, the normal
stress is zero and therefore phase 2 is not present.

2. Phases 1 and 2 tend to be mixed. As in the material-
void design, the regions of pure material 1 alternate
with the composite zones forming “ribs”. This provides
the structural anisotropy and additional stiffness in the
direction of maximal stress.

3. We observe the “almost void” regions in the designs
of the bridge and cantilever. However, the optimal-
ity conditions do not explain the sharp increase
of the stress and the stiffness at some curves.
We do not have a satisfactory explanation of this
phenomenon.

4. Comparing two- and three-phase designs, we observe
a larger variety of the microstructures in the lat-
ter. For example, a second interior arc from material
2 is formed in the optimal bridge. We expect that
this variety will be even more visible in the gen-
eral situation, for lower quotient of material costs,
a<og.

5. The three-phase optimal layout is not unique when o =
o 4. For certain values of the average stress, one has the
option to replace a L(13, 1) microstructure with pure
material 2, or to include material 2 into the composition.
This is often preferable because the structures where
material 2 replaces some part of void are more stable
and therefore have a better response to the variations in
loading.
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