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Abstract Optimization problems concerning complex
structures with many design variables may entail an
unacceptable computational cost. This problem can be
reduced considerably with a multilevel approach: A
structure consisting of several components is optimized
as a whole (global) as well as on the component level.
In this paper, an optimization method is discussed with
applications in the assessment of the impact of new
design considerations in the development of a structure.
A strategy based on fully stressed design is applied for
optimization problems in linear statics. A global model
is used to calculate the interactions (e.g., loads) for
each of the components. These components are then
optimized using the prescribed interactions, followed
by a new global calculation to update the interactions.
Mixed discrete and continuous design variables as well
as different design configurations are possible. An ap-
plication of this strategy is presented in the form of the
full optimization of a vertical tail plane center box of
a generic large passenger aircraft. In linear dynamics,
the parametrization of the component interactions is
problematic due to the frequency dependence. Hence,
a modified method is presented in which the speed
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of component mode synthesis is used to avoid this
parametrization. This method is applied to a simple test
case that originates from noise control.
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1 Introduction

During the development of many technical products,
an automated scheme to evaluate the possible advan-
tages and disadvantages of new design considerations
is highly desired. This wish has lead to the development
of a flexible optimization scheme.

A fully stressed design (FSD)-based strategy allows
the optimization of up to hundreds of design variables
and very complex separable structures (Haftka and
Girdal 1992; Berke 1992; Sobieszczanski and Loendorf
1972). This is achieved by separating the structure
optimization problem into a large number of sub-
problems known as component optimization problems.
The scheme consists of a structure evaluation, where
the interactions between the components (e.g., com-
ponent loads) are calculated and component optimiza-
tions where the components are optimized separately
while taking into account the interactions. The iterative
process of structure evaluation and component opti-
mization is continued until convergence.

Please note that the term FSD refers to the historical
background of the method. In the application, both
buckling and strength constraints are present. Hence,
the component is not necessarily fully stressed, but op-
timized up to a point where constraints prevent further
improvement. The FSD scheme is inherently suited for
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parallel computing, and it is efficient in cases where
a change in one component has a small influence on
the optimum of the other components. An important
disadvantage of this scheme is the fact that it will
not result in an optimal solution unless certain strict
conditions are met. For information on convergence
and optimality in the current test cases, the reader is
referred to Sections 3.4 and 4.4.

In the component optimization strategy, the objec-
tive and constraint functions are approximated based
on finite element (FE) results using neural networks
(NNs). The optimum in this approximate optimization
problem is identified with a genetic algorithm (GA).

This paper is built up as follows. In Section 2, the
component optimization strategy is described, and in
Section 3, an application concerning an aircraft vertical
tail plane (VTP) is discussed. In Section 4, component
mode synthesis (CMS) is introduced into the optimiza-
tion strategy to make it suitable for problems in lin-
ear dynamics. A benchmark problem derived from the
placement of sensors and actuators in active structural
acoustic control (ASAC) is used as an example. Finally,
conclusions are given in Section 5.

2 Component optimization strategy
2.1 Neural networks

The artificial neural network (ANN) structure is in-
spired by the working principle of the brain. The neu-
rons considered in ANNs are simple abstractions of
biological neurons, and they are used to predict the
relations between the particular input-target data set.
As can be deduced from Hornik (1989), a two layer
NN having sigmoid transfer functions with sufficient
number of neurons in the hidden layer and a linear
transfer function in the output layer can be trained to
approximate any function (see Fig. 1). This ability to
approximate functions to any desired degree of accu-
racy makes NN an attractive tool for use in a response
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surface analysis. A mathematical description of a two
layer NNs can be given as,

X=Ax+b (1)
X= f(X) 2
N,lel

where x e RV*! 'y e R represent the input—target
vectors, N;, N}, and N} denote the number of input
vector elements, hidden layer neurons, and output vec-
tor elements, respectively. The function f used in the
hidden layer stands for the set of nonlinear (sigmoid)
transfer functions and allows the network to learn non-
linear and linear relationships between the input-target
pairs. The linear output layer lets the network produce
the values outside the sigmoid functions range. A €
RN>Ni B e RVi*Ni b € RNix! and ¢ € RVi*! denotes
the network parameters. The weights A, B have an
effect on the slope of the network response, and the
bias terms b, ¢ shift the entire network response on the
coordinate axis (Demuth and Hagan 1996).

This NN architecture is known as a feed forward net-
work, and the parameters of the network can be found
using a backpropagation algorithm as follows. Based on
a set of known input-target pairs, the obtained network
output is compared to the target value. Then, the net-
work parameters (weight and bias terms) are adjusted
to minimize the error between output and target values
in the sense of least squares. The errors propagate
backwards from the output nodes to the inner nodes. In
this study, the NN with one hidden layer is considered.
Levenberg Marquart and conjugate gradient methods
are the most popular methods which are used for the
estimation of network parameters (Menhaj and Hagan
1994). The Levenberg Marquardt method is utilized in
the applications.

During the network training, it is possible to drive
the error on the training set to a very small value, but
this does not necessarily mean that input-target pairs
that are not part of the training set are also predicted
well. This effect is known as overfitting. In the results
given in Sections 3 and 4.3, the number of hidden layers
are limited to prevent overfitting. On the other hand,
generalization methods such as early stopping (Chen
and Hagan 1999) and Bayesian regularization (Mackay
1992a,b) are more advanced tools to avoid this prob-
lem. A comparison of these strategies in the current
setting requires further research.

Two layer networks are capable of approximating
any reasonable nonlinear function if sufficient neurons
are provided in the hidden layer. In some situations,
the backpropagation algorithm does not present the
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correct weights and biases for the optimum solution.
The main reason is that the nonlinear transfer functions
in the hidden layer introduce many local minima to
the error function and as the numerical techniques
used to minimize the error function are gradient based
methods, depending on the initial conditions, network
solution can be trapped in one of the local minima.
This can be prevented by reinitializing the network and
retrain it several times until satisfactory convergence is
obtained.

2.2 Genetic algorithms

The GA is a method for solving parameter optimization
problems in the global sense by imitating the principles
of natural evolution. The GA generates a population of
points in each iteration and the best point of the pop-
ulation approaches an optimal solution which increases
the possibility of finding the global optimum. During
its process, the GA does not require any derivative
information of the objective function.

There are many ways to handle constraints in GAs
(Coello 2002). In this study, an augmented death
penalty strategy is used for the constraints, which can
be briefly summarized as follows. If the produced point
does not violate any constraint, then it is used in the cur-
rent generation. If it violates the constraints, the point
is not taken into account, and the operation is repeated
with redefined crossover and mutation functions until
a feasible point is found. If no feasible results can be
found, then the obtained results for a point is sorted
based on predefined criteria, and the most appropriate
point is selected.

The logic behind the GA enables handling general
classes of optimization problems that are not well suited
for gradient based optimization algorithms. The GA
can process optimization problems that have discontin-
uous, nondifferentiable, stochastic, or highly nonlinear
objective functions. All these nice features come with
a cost; the GA requires more function evaluations
than the gradient-based algorithms. Furthermore, GAs
only estimate the exact optimum; however, gradient-
based methods find it exactly. For specific optimization
problems, with a good initial guess close to the global
optimum, a gradient-based method will likely be much
faster and more accurate than GAs.

2.3 Combined strategy

Design optimization starts with the modeling of the
problem and then optimizing it. Modeling consists
of selection of design variables, formulation of the
objective function, and decision of the constraints.

Optimization consists of selection of any suitably cho-
sen optimization algorithm and optimizing the ob-
jective function under defined constraints using the
algorithm.

Engineering optimization usually involves the eval-
uation of numerical (FE) models. Many popular algo-
rithms require the derivatives of the objective and the
constraint functions as well as the function value itself.
The derivatives are calculated using either finite differ-
ence, analytical, semi-analytical or automated deriva-
tive methods (Kirsch et al. 2005; Uri 2004). As discussed
in the previous section, some of the disadvantages of
gradient-based methods are avoided using GAs. How-
ever, the direct application of a GA is unacceptable due
to its computational cost.

As an alternative to direct optimization methods,
approximate optimization methods are used (see for
example Jin et al. 2001; Ong et al. 2004). In these
methods, the first step is to make the decision of the
design of experiments (DOE) set, which holds the
information of different design configurations. The next
step is to run FE calculations for each of the DOE
set elements and to obtain a training set containing
different design configurations and corresponding FE
model responses. The following step is to fit a response
surface through the obtained training set, which is done
using NN in this study. Finally, an optimization is per-
formed on the NN model using GAs. As the NN model
approximates the FE model in a fast and accurate way,
the required time drawback of GAs is compensated
using NNs.

Depending on the accuracy of the NN model, the
approximate optimum may not be satisfactory com-
pared with the FE result. In this case, it is possible
to supply the training set with the FE result, train
the NN again, compare the network response with the
FE response, and iterate this process until a desired
result is obtained. This approach constitutes the basis of
the component optimization strategy in this study (see
Fig. 2).

The presented optimization strategy is especially
suited for structures that can be separated into com-
ponents, where the interactions between them (e.g.,
boundary forces) can be parameterized. The variables
that define a component can be separated into three
groups (see Fig. 3). Design variables are variables that
are optimized. Fixed parameters (e.g., the required
length or width) are the parameters of the component
that are not optimized. Interactions (e.g., the applied
loads) represent the parameters of the components that
depend on the design variables of other components.
On the global level, only the interactions are iteratively
updated.
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Fig. 2 Component optimization strategy

If the physical meaning of the design variables of
two components are the same, they are said to have
the same design configuration. In this case, they share
the same NN model to enhance the efficiency of the
optimization. If the design configurations are different,
then separate NN models are used. During the com-
ponent optimization process, the optimizer may choose
between different design configurations.

There also exist cases where the differences between
component optimization problems cannot be parame-
terized in a brief way. This is true in certain optimiza-
tion problems in dynamics for instance. A NN-based
optimization strategy that is efficient for this type of
problem is discussed in Section 4.1.

In literature, optimization strategies that rely on
response surfaces or meta-models have received
considerable attention over the past few years
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(Simpson et al. 2001). In our implementation, the
use of feed-forward NNs are not considered superior
to the more conventional approximation techniques
for small-scale problems (Wind 2005). Results on
large-scale problems on the other hand are considered
competitive (see Section 3). Hence, it is concluded that
the optimization strategy derives its power from the
accumulation of a large number of FE results in the
NNs. The use of other response-surface techniques as
well as better NN training strategies requires further
study.

Advanced multilevel schemes have also received
considerable attention in literature (Yates et al. 1994).
The current scheme has been chosen for its simplicity
and its comparatively wide range of applications.

3 An application: the vertical tail plane
3.1 Problem

The center box of an aircraft VIP provides stiffness
and strength to the VTP structure. Hence, the design
problem consists of a weight minimization of the struc-
ture subject to strength and buckling constraints. The
structure is modeled as a conjunction of a large number
of spar, skin, and rib panels that serve as components in
the optimization strategy (see Fig. 4).

The components are modeled as rectangular pan-
els with design variables such as the panel thickness,
stiffener, and hole locations. These design variables are
chosen in such a way that the panels are symmetric

Fig. 4 Schematic representation of an aircraft VTP with skin,
spar, and rib panels
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(see Fig. 5a). In the optimization of the spars, approx-
imately 20 design configurations, which are distinct in
the number of transverse stiffeners, longitudinal stiff-
eners, and holes, are taken into account (see Fig. 5b).
The fixed parameters of this optimization are the panel
length and width. The interactions, which are updated
iteratively, consist of in-plane boundary forces that
represent bending and shear (see Fig. 5c and d).

The constraints are applied on the component level.
The buckling constraint is derived from a FE model
of the simply supported, stiffened panel. Although
these constraints include panel and stiffener buckling,
buckling modes that span several components are not
taken into account. The strength constraint is based on
a maximal principal strain in the panel.

The VTP structure has a height of approximately
16 m and consists of 36 spar, 18 rib, and 36 skin panels.
Access holes are required in all spar panels except
the six lower ones. The geometry and loads are based
on the Airbus A380 VTP, but differences exist in the
material models and allowable values. More detailed

information on the problem and implementation are
given in Ruijter et al. (2003), Ruijter and Spallino
(2003), and Entzinger (2004).

3.2 Implementation

The general component optimization strategy has
been presented in Sections 1 and 2.3, but a number
of problem-dependent matters are discussed in this
section.

On the global level, all components are assembled in
a large FE model with a very coarse mesh. Although
this model does not predict the local buckling load and
stress accurately, the boundary forces on all compo-
nents are predicted well. These forces are derived and
used in the component optimization.

The objective function in the component optimiza-
tion is panel weight. This function is not approximated
by the NN but calculated analytically for each solution
generated in the GA. Furthermore, when a feasible

Cc

Fig.5 Design variables, design configurations, fixed parameters, and interactions for the VTP problem. a Design variables, b alternative

design configurations, ¢ fixed parameters, d interactions
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design has been found, a new design cannot be an im-
provement on the component level unless it is lighter.
Hence, the requirement that each new design must be
lighter than the best feasible solution found for that
component is implemented as an explicit constraint in
the GA. This selection rule combined with a rule that
enforces the evaluation of different design configura-
tions prevents stagnation of the optimization process.
Finally, separate NNs are used for skin, spar, and rib
panels because they have different load-cases and de-
sign configurations. This means that each NN can be
identified uniquely by a design configuration number
and a panel type.

3.3 Results

The proposed strategy has been implemented and ap-
plied to the VTP problem. Twenty MS Windows ma-
chines with a clock speed of 2.6 GHz have been used.
Convergence has been achieved after 3 structure itera-
tions using a fixed number of 35 component iterations.
With an average FE solving time of approximately
1 min per panel, the optimizations completed in 8-9 h.
This runtime is merely an indication because runtimes
depend strongly on the mesh sizes as well as the number
and speed of the machines available. Nevertheless, it
is concluded that overnight optimization of a complete
structure is possible provided that enough computers
are available.

The resulting design configurations of the spar
optimization are given in Fig. 6. In the results of
the rear spar, it can be seen clearly that large and
heavily loaded panels have more stiffeners than small
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Fig. 6 Resulting design configurations of a global-local optimiza-
tion. a Front spar, b rear spar
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and mildly loaded panels. Although the effects are
less dramatic, similar trends can be observed for the
front spar.

3.4 Discussion

The optimization strategy has provided good results in
a short amount of time. However, it is stressed that
there are no guarantees that the global-local strategy
will provide optimal or even useful results for general
structures and other load cases. On the other hand,
the technique leads to an exact optimum for statically
determinate trusses subject to only stress and minimum
gage constraints if the areas of a cross-section are the
design variables. For such trusses, the FSD optimality
criterion can be stated as follows:

For the optimum design, each member of the structure
that is not at its minimum gage is fully stressed under
at least one of the design load conditions (Haftka and
Giirdal 1992).

This statement has been adapted to serve as an in-
tuitive optimality criterion for the VTP problem, which
can be stated as follows:

For the optimum design, each component cannot be
made lighter without violating any constraints.

This criterion is not exact. During the optimization
of this statically indeterminate structure, components
are optimized under local objective functions and local
constraints. The deterioration of the other components
is not taken into account. Hence, a combination of
designs that are each optimal from a component point
of view are not necessarily an optimum from a global
perspective. The results of the FSD-based strategy
are therefore treated with due suspicion and care in
this case.

4 Optimization in structural dynamics
4.1 Optimization strategy

In the dynamic case, the boundary forces of a com-
ponent are frequency dependent, and they may also
depend strongly on the design variables of the compo-
nent itself. Therefore, instead of the boundary forces,
the rest of the structure is kept constant during the
component optimization. Furthermore, the definition
of a ‘fully stressed’ or ‘optimal’ component is difficult
in some fields of dynamics such as noise vibration
and harshness because the objective functions tend to
depend on the behavior of the entire structure over a
wide frequency range. Hence, each component is op-
timized to minimize a global objective function. Some
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comments on the optimality of the results of this strat-
egy are given in Section 4.4 and references therein.

To make the above decisions possible, the dynamic
behavior of the entire structure must be available on
the component level. A simple but inefficient way to do
this is to use global FE models during the component
optimization. In this strategy, the design variables of
one component change from one FE analysis to the
next, but the design variables of the rest of the structure
remains the same during component optimization. As
the interactions are not parameterized, the NNs can
only be trained with the FE results of a single compo-
nent and a single structure iteration.

A more efficient strategy can be obtained by using
CMS (see, e.g., Craig 1981). CMS consists of two steps:

Model reduction Based on a FE model of a compo-
nent or a remaining structure, a system of equations
that approximates the dynamical behavior predicted by
the FE model with a very small number of degrees of
freedom is generated.

Synthesis Several reduced models are combined, and
the dynamical behavior of the structure as a whole is

calculated. It is convenient to calculate the component
objective and constraint functions as well in this step.

In this strategy, the initialization of the component
optimization consists of generating a set of reduced
component models using the DOE set. Based on the
initial parameters of the other components, a reduced
model of the rest of the structure (the remaining struc-
ture) is generated (see Fig. 7). A component iteration
now consists of four steps. First, the synthesis process
is applied to combine each of the reduced component
models with the reduced model of the remaining struc-
ture. Second, the NN is trained using input—target pairs
consisting of the design variables of the considered
component and the results of the synthesis process, re-
spectively. Third, the GA is used to identify the optimal
result of the NN model. Fourth, a model is evaluated
based on these optimal design variables. This model
evaluation consists of creating the reduced component
model and synthesizing it with the existing reduced
model of the remaining structure. If the maximum
number of component iterations has not been reached
yet, then the result of the model evaluation is added to
the NN data set, and a new component iteration begins.

As the design variables of the other components
change after the first structure iterations, the set of

|
* Initialization
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Str. model reduction Comp. model reduction

Red. Str. Model

synthesis

__'__—

Train NN

| '

NN

| I

[ Comp. model reduction

| GA

)

Physical Model

Component optimizer

Fig. 7 Optimization of a component with CMS: first structure iteration
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input-target pairs is no longer relevant. In the above
strategy, the known input-target pairs are therefore
discarded, and the second structure iteration must be
started by generating new reduced models. This final
problem is solved as follows. Instead of maintaining a
data set of FE results, a library of reduced component
models is maintained. These component models are
used to generate up-to-date information in each com-
ponent optimization.

Therefore, the proposed optimization strategy is ini-
tialized in the same way as in Fig. 7, except that all the
reduced component models are saved. The component
optimization is performed similarly, and the reduced
component models are also saved for later use (see
Fig. 8). After the maximum number of component
iterations has been reached, the optimal component
design variables and configurations are passed to the
global level. Here, a convergence check is performed,
and the new optimal parameters of all components are
distributed to all other components. Next, a structure
evaluation is performed for each component. Based on
the optimal parameters of the other components, a new

Global Level

remaining structure is generated and stored for use in
the component optimization. It is combined with all of
the reduced models that have been stored for this com-
ponent using the synthesis process. A new NN is trained
based on the results of the synthesis process, and a
new component optimization begins. As the global-
local iteration continues, the size of the library of stored
component models increases such that the accuracy of
the NN increases as well. After a large number of com-
ponent optimizations have been performed, the NNs
are very accurate at the beginning of the component
optimization.

It is crucial to discuss a few details. First of all,
in many applications, the remaining structure will be
so large that the computational cost involved in gen-
erating a FE model and performing model reduction
will be unacceptable. However, the reduced models of
the other components can be generated separately and
then combined to become remaining structure model.
Before the first structure iteration, these models must
be generated explicitly. In later structure iterations,
the component designs used in the remaining structure

* Structure evaluation
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synthesis

synthesis

max it.?
| yes Y no

Stored Red. Struc. Model

New Red. Comp. Model
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| FE
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Physical Model

Component optimizer

Fig. 8 Optimization of a component with CMS: second and later iterations
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were optimal in the previous component optimization.
As reduced models of these components are already
stored, these models do not need to be generated again.
Additionally, it can be efficient to perform another
model reduction on the assembly of reduced models.
Second, although the NNs cannot be shared between
components, the reduced models can sometimes be
shared depending on the application. This sharing leads
to a larger data set and to more accurate NNs. Finally,
itis noted that the use of different design configurations
is possible with this technique, although it is not used in
the current test problem.

4.2 Test problem

A small benchmark problem is introduced to test
the global-local strategy. This problem is based on
the placements of actuators and sensors in ASAC.
In ASAC, sensors and actuators are connected to a
plate-like noise source such that shape and amplitude
of flexure can be controlled to minimize sound ra-
diation. Simple design rules for placing the sensor—
actuator pairs exist, but these have a number of distinct
drawbacks (Oude Nijhuis 2003). Hence, a numerical
optimizer is applied to select the sensor and actuator
locations.

As a test problem, we use a structure consisting of
three rectangular aluminium plates separated by trans-
verse stiffeners (see Fig. 9a). The disturbance is gen-
erated by a rectangular patch of piézoelectric material
placed on the middle plate. On the other two plates, a
sensor—actuator pair is placed to reduce the noise. The

actuators are pi€zoelectric patches, and the sensors are
accelerometers placed on the center of each actuator.
The plate is placed in an infinite baffle—an acoustically
hard surface that does not vibrate—which means the
Rayleigh integral can be used for acoustical calcula-
tions. The reader is referred to Wind (2005, 2006) for
more detailed information on the test problem.

The optimization problem consists of finding loca-
tions for the sensor—actuator pairs that minimize radi-
ated sound power under a broadband disturbance in
a frequency range that includes the first nine eigen-
frequencies of the plate. In the global-local setting,
there are two component optimization problems. Each
consists of optimizing one plate, while keeping the rest
of the structure constant (see Fig. 9b).

Finally, it is emphasized that this test problem is used
to test the optimization strategy. From that point of
view, a difference in radiated sound power of 1 dB can
be a significant difference, although it may be negligible
compared to modeling and discretization errors.

4.3 Results

The optimizations are performed on a single MS Win-
dows machine with a clock speed of 1.67 GHz. Using a
fixed number of 25 component iterations, the runtime
has been in the order of magnitude of a few hours.
The design variables used for FE are selected with a
simple rule. In the first iteration, the GA result is used
for FE analysis. If the error between the NN and FE
result is larger, then a certain preset value then the
NN is retrained and the GA is used again to estimate

component 2

disturbance

component 1

simple support
baffle

a

b

Fig. 9 The test problem: global design and global-local structure. a Global design of the test problem, b global-local problem. Solid

line component, dashed remaining structure
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the optimum in the next iteration. If the difference is
smaller, then a random design is supplied to the next
FE analysis. Several more advanced algorithms have
been tested on a benchmark problem, but this algo-
rithm demonstrated the best behavior in preventing the
stagnation of the optimization process.

The result of an optimization with a broadband ex-
citation in a frequency range of 50-320 Hz is given in
Fig. 10a where the reference result and the optimization
result of the global-local strategy are indicated by white
and black boxes, respectively. The reference result has
been obtained by applying the component optimization
strategy on the global level. It can be seen that the
resulting locations are different. As the structure is
approximately symmetrical, the objective function has
two minima with a very small difference in cost. The
global-local strategy has outperformed the reference,
but the margin is negligible, even for the purpose of
testing the strategy. In Fig. 10a, the radiated sound
power achieved in the optimization of component 1 is
given as a function of the structure iteration number.
It has remained constant from the second iteration
onward, but the design variables switched more or
less randomly between the final result and its mirror
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b

Fig. 10 Optimization results of the ASAC structure. a Results of
broadband optimization, b results of harmonic optimization
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image until structure iteration 12. After this iteration,
no significant changes are observed.

A second optimization is performed with a harmonic
excitation of 50 Hz. Again, a reference result is super-
imposed on the global-local optimization result, but
results are almost indistinguishable in this case. The
convergence of global-local iteration is more gradual in
this case, and the optimal result is obtained at approx-
imately structure iteration 15. It is important to note
that the units considered for sound power in Fig. 10 are
different.

Several other optimization runs have been per-
formed. In the harmonic case, the optimization can ex-
hibit limit cycling behavior or converge to the optimal
result depending on the initial design. In cases where
the excitation is broadband, the convergence behavior
is more robust: Each optimization has converged to a
point that is at least a local minimum from the global
point of view.

4.4 Discussion

In the test problem, the components are optimized
according to one global objective function, and all con-
straints are bounds. For this specific case, a theoretical
study indicates that a converged result is at least a
local minimum in the global scale, but convergence
cannot be proven for practical cases (Wind 2005). No
guarantees of optimality can be given if the constraints
of one component depend on design variables of the
other components.

5 Conclusions

A multilevel optimization strategy has been devel-
oped for the design optimization of complex structures.
Based on the current research, the following conclu-
sions can be drawn.

— The current strategy allows overnight optimization
of the VTP center box of a commercial aircraft.

— Promising results have been obtained for a small
benchmark problem in linear dynamics.

— The objective functions and constraints must be
chosen with some care because the multilevel strat-
egy can converge to strongly suboptimal solutions
unless certain strict conditions are met.

— A comparison between the NN-based approximate
model and other response surface methodologies
as well as different selection algorithms requires
further study.
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