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Abstract Polynomials, trigonometric polynomials, and
rational functions are widely used for the discrete ap-
proximation of functions or simulation models. Often,
it is known beforehand that the underlying unknown
function has certain properties, e.g., nonnegative or
increasing on a certain region. However, the approxi-
mation may not inherit these properties automatically.
We present some methodology (using semidefinite pro-
gramming and results from real algebraic geometry) for
least-norm approximation by polynomials, trigonomet-
ric polynomials, and rational functions that preserve
nonnegativity.

Keywords (Trigonometric) polynomials -

Rational functions - Semidefinite programming -
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1 Introduction

In the field of approximation theory, polynomials,
trigonometric polynomials, and rational functions are
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widely used; see e.g., Cuyt and Lenin (2002), Cuyt
et al. (2000), Fassbender (1997), Forsberg and Nilsson
(2005), Jansson et al. (2003), and Yeun et al. (2005).
For books on approximation theory, we refer to Powell
(1981) and Watson (1980). In the field of computer
simulations (both deterministic and stochastic), they
are used to approximate the input/output behavior of a
computer simulation. The approximation is also called
a metamodel, response surface model, compact model,
surrogate model, emulator, or regression model. The
approximation can be used to gain more insight into
the relationship between the inputs and the outputs of
the computer simulation. It can also be used for op-
timization. It can be used for sequential optimization,
in which the approximation is optimized only locally,
but it can also be used globally. In the latter case,
instead of the computer simulation, the approximation
is optimized globally.

We are interested in approximating a function y :
R? — R, which is only known up to an error in a finite
set of points X!,...,¥" € R%. We denote the known
output values by y(x!), ..., y(¥"). In practice, it is often
known beforehand that the function y(X) has certain
properties. Thus, it may be known, e.g., that the func-
tion is nonnegative, increasing, or convex. However, it
could happen that the approximation does not inherit
these properties. This could happen due to having too
few function evaluations or due to overfitting. It could
even be the case that the data does not have the prop-
erties due to errors in the data.

Therefore, in this paper, we construct (trigonomet-
ric) polynomial and rational approximations that pre-
serve nonnegativity. For polynomials, we also discuss
how to construct increasing polynomial approxima-
tions using the same methodology as for nonnegative
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approximations. We illustrate the methodology with
some examples.

In the field of splines, there is some literature on
shape preserving approximations; see e.g., Kuijt (1998)
and Kuijt and van Damme (2001). In Kuijt and van
Damme (2001), a linear approach to shape preserving
spline approximation is discussed. Linear constraints
are given for shape-preserving univariate B-splines
and bivariate tensor-product B-splines. However, these
constraints are only sufficient and, in general, not nec-
essary. In Floater (2005), approximation of univariate
functions by Bernstein polynomials is considered. One
of the properties of Bernstein approximation is that
derivatives of the Bernstein approximation converge to
corresponding derivatives of the function that is to be
approximated. This means that a Bernstein approxima-
tion with a sufficient number of datapoints preserves
nonnegativity, monotonicity, and convexity. Bernstein
polynomials can be extended to the multivariate case
for the 0-1 hypercube, or the unit simplex, but do
not preserve convexity in the multivariate case. The
drawbacks of using Bernstein polynomials are that
the Bernstein approximation converges very slowly to
the underlying function and that one is limited to
equidistant sampling points; i.e., one cannot apply it
to given data sets in general. In the field of statistical
inference, much work has been done in the estimation
of univariate functions restricted by monotonicity; see
e.g., Barlow et al. (1972) and Robertson et al. (1988).
However, these methods cannot be used for least-norm
approximation because they are nonparametric.

This paper is organized as follows. In Section 2,
we will discuss least-norm approximation by nonneg-
ative and increasing polynomials. Subsequently, in
Section 3, we show that we can use the same method-
ology for least-norm approximation by nonnegative
univariate trigonometric polynomials. In Section 4, we
discuss least-norm approximation by nonnegative ratio-
nal functions. In Section 5, we show how to exploit the
structure of the problem to speed up the computation
of the solution. Finally, in Section 6, we summarize
our results and discuss possible directions for further
research.

2 Approximation by polynomials
We are interested in approximating a function y : R?

R by a polynomial p : R? — R of degree d, given input
data X!,...,X" € R? and corresponding output data
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yl...,y"eR (ie. y' = y(X)). In this study, p(¥X) is
defined in terms of a given basis of m + 1 monomials:

m
PR =) a;p;),
j=0
where «; is the coefficient of the jth monomial p;(X).

2.1 General least norm approximation
by polynomials

Define pg=[pGh), ... ,p(?c")]T and y=[y(&"),...,
y(?c”)]T. The coefficients «; are determined by solving
the following least-norm optimization problem:

min | g — V1. (1)

It is well known from statistics that the solution for the
¢, norm in (1) is given by

a=(DTD)y"'DTy,

where @ = [, ..., a,]", and

po(xh) pi (&) -+ pm(Xh)
. Po(X?) pi(X?) -+ pm(X?)
D = . . .
Po(X") pi(X") -+ pp(X")

If we use the ¢; norm or the €., norm, problem (1)
can be reformulated as a linear program. Note that
by solving (1), we cannot guarantee that p(X) will be
nonnegative even if the data y are nonnegative.

2.2 Approximation by nonnegative polynomials

If we know that the function y(X) is nonnegative on a
certain region U, we would like p(X) to be nonnegative
on U as well. We could force this by solving the follow-
ing mathematical program:

min || pg — y||
o

. - (2)
s.t. p(X) >0 Vx e U.

Note that using the ¢,-norm, (2) is a nonlinear optimiza-
tion problem with infinitely many constraints that can
be rewritten as

min ¢
a,t

st. e =yl <t

p(E) >0 Viel,
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and gives an semi-infinite linear program (LP) with an
additional second-order cone constraint. By using the
¢; norm or the ¢,, norm, we obtain a linear program.
In case we use the £; norm, the mathematical program
becomes

[ ST i1
m
sty api®) =0 ViU
CN . 3
Zajpj(ffl)—fify(i") Vi=1,...,n
=0
m A ‘
=Y ajpiE) — i < —y(E) Vi=1.....n.
=0

In case we use the £, norm, the mathematical program
becomes

€ :=min ¢
ot m
s.t. Zajpj(z)zo VX el
j=0
m
Zajpj(}i)—zgy(;?i) Vi=1,...,n
j=0
m
=Y ajpi(¥) —t < —yE)Vi=1,....n.
j=0

(4)

In the rest of this paper, we will only treat the £, norm.
This kind of approximation is also called Chebyshev
approximation. The methods that we will present in this
paper can also be used in the £¢; and the ¢, case.

We will show that we can obtain an upper bound
of the solution of optimization problem (4) by using
semidefinite programming and obtain the exact solu-
tion in the univariate case. Before we proceed, we
first give two theorems. The following theorem gives
a characterization of nonnegative polynomials that can
be written as sums of squares (SoS) of polynomials.

Theorem 1 (Hilbert (1888)) Any polynomial in q vari-
ables with degree d, which is nonnegative on R, can be
decomposed as a sum of squares of polynomials (SoS)
forqg=1,0ord=2o0r(q=2andd =4).

See Reznick (2000) for a historical discussion and
related results. The next theorem gives a useful way to
represent SoS polynomials in terms of positive semidef-
inite matrices.

Theorem 2 Let X € RY, and let p(X), a polynomial of
degree d = 2k, be SoS. Then there exists a matrix P >0
such that p(X) = e’ (%) PE(X), where é(X) is a vector
consisting of all monomials of degree d < k.

Proof See, e.g., Nesterov (2000). O

2.2.1 Univariate nonnegative polynomials

We consider the approximation of a univariate non-
negative function y(x) by a nonnegative polynomial
for the cases Y = R and U = [ag, bo]. In case U = R,
Theorem 1 shows that we can write the polynomial
as an SoS. Then, using Theorem 2, we can write this
nonnegative polynomial as p(x) = &7 (x) P&(x). For the
£+ norm, optimization problem (4) can be rewritten as
the semidefinite program (SDP)

min ¢

t,P

st ST Pe) —t < y(x))  Vi=1,....n )
— el Pe(x'y —t < —y(x)Vi=1,....,n
P>0.

In practice, however, we are only interested in the
polynomial to be nonnegative on a bounded interval,
ie. U = [ag, bo]. Without loss of generality, we may
consider the interval &/ = [—1, 1], as we can scale and
translate general intervals [ag, bo] to [—1, 1].

To construct nonnegative approximation, we use the
following theorem:

Theorem 3 A polynomial p(x) is nonnegative on
[—1, 1] if and only if it can be written as

px) = f(x) + (1 —xHg(x), (6)

where f(x) and g(x) are SoS of degree at most 2d and
2d — 2, respectively.

Proof See, e.g., Powers and Reznick (2000). O
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Using this, we obtain the following SDP:

min
LP,Q

s.t. &7 () Pey () + (1 — ())e] () QT () — 1 < y(x')

Vi=1,...,n

— el () Pe (x) — (1 — ()Mel () 0l () —t < —y(xX) Vi=1,....n

P>0
0 >0,

™)

where €;(x) and é,(x) are defined in a similar way as
é(x); i.e., €;(x) is a vector consisting of all monomials
of degree up to d, and ¢, (x) is a vector consisting of all
monomials of degree up to d — 1. Note that (7) is an
exact reformulation of (4) with &/ = [—1, 1].

2.2.2 Multivariate nonnegative polynomials

If we are interested in approximating a function on
R4, then we can use Hilbert’s theorem in combination
with Theorem 2, use semidefinite programming, and
solve a multivariate version of (5). In this way, we
obtain an exact solution of (4) for g =1, d =2, or
(9 =2 and d = 4). In the other cases, by assuming the
nonnegative polynomial approximation to be SoS and
using Theorem 2, we will merely get an upper bound of
the optimal solution of (4).

However, in practice, we are primarily interested in
nonnegative polynomials on compact regions, instead
of R?. The following theorem describes a property of a
polynomial that is positive on a compact semi-algebraic
set.

Theorem 4 (Putinar) Assume that the semi-algebraic
set F={XeRIg,(X)>0,£=1,...,m}, where g,
g2, ...,8n are polynomials, is compact and that
there exists a polynomial u(x) of the form u(X) =
uo(X) + >_pL, ue(X)ge(X), where ug, uy, ..., wy are Sos,
and for which the set {X € R9|u(X) > 0} is compact.
Then, every polynomial p(X) positive on F has a
decomposition

P& = po(®) + Y pe(D)ge (%), (8)
(=1
where pg, pi1, ..., P are SoS.

Proof See Putinar (1993). For a more elementary
proof, see Schweighofer (2004). o

If U={XecRgyX)>0,£=1,...,m} is compact
and if we know a ball B(0, R) such that &/ C B(0, R),
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then the condition in Theorem 4 holds. Indeed,
U=UNBO,R)={XcRT:g X >0, =1,..., m,
g1 (X)=R>=Y"7 x>0}, and there exists a u(¥)=
uo()_é) + Z:Zh:—]l ug(.%)gg()_é), where Uop, Uy, ..., Uy aATC
SoS, for which the set {X¥ € R7|u(X)>0} is compact.
Take uo()_é) = I/tl()_é) =...= Ll,;,()_é) =0 and Ll,;,+1(5é) =1
to obtain B(0, R) = {X¥ € RY|u(X) > 0}.

Now, we can obtain an upper bound for the solution
of (4) by solving SDP:

= _min ¢
1, Py, Py
sty & (F) P (g () —t<y(®)  Vi=1,....n
=0
=Y @) P (g () —t<—yF) Vi=1,....n
=0
Pr>0 €=0,...,m+l,
©)

where gy =1 and g;11(x) = R* = 3L, x7. Note that
&€ > & and that, in general, we do not have £ = €&, as
we do not know beforehand which degree the polyno-

mials po, p1, ..., pme1 that satisfy (8) have. Before we

Table 1 Dataset of Example 1

Number X1 X2 y

1 0 0 1

2 0.5 0.5 0

3 1 0 0.11
4 0 0.9 0

5 1 1 0.1
6 0 0.5 0

7 0.4 0 0.2
8 1 0.5 0

9 0.6 1 0.15
10 0.25 1 0

11 0.478 0.654 0.3
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Fig. 1 Optimal polynomial
of Example 1 without
nonnegativity-constraint

solve (9), we have to choose a fixed degree for these
polynomials. However, the degree of the polynomials
Po, P1, ---» P that satisfy (8) may be greater than

Fig. 2 Nonnegative
polynomial of Example 1 with
nonnegativity-constraint
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Theorem 3 gives upper bounds for the degrees of f(X)
and g(X); so for this case, we can solve (4) exactly.
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Table 2 Dataset of Example 2 (thermal expansion of copper)

Number Temperature(Kelvin) Coefficient of Thermal
Expansion

1 24.41 0.591

2 54.98 4.703

3 70.53 7.03

4 127.08 12.478

5 271.97 16.549

6 429.66 17.848

7 625.55 19.111

Example I We consider a two-dimensional example.
Given the data in Table 1, we are interested in finding
a nonnegative polynomial of degree d =3 on [0, 1]
for which the maximal error at the data points is mini-
mized. First, we exclude the nonnegativity constraint;
i.e., we solve (1) for the £.-norm. This yields a poly-
nomial on [0, 1]* that takes negative values. It turns
out that £ =0.025 in (4) and the optimal polynomial
is given by p(xy, x) = 0.9747 — 2.3155x; — 7.1503x, +
0.8921x2 + 5.1606x1x, + 15.2446x5 + 0.5334 x] —
2.9790x3x; — 0.8033x;x3 — 9.4827x3 and shown in
Fig. 1. Now, we include the nonnegativity constraint by
solving semidefinite optimization problem (9); i.e., we
take R = /2, g1(x1,x) =1 —x1, g@(x1,x) =1—x,,
g3(x1, x2) = x1, ga(x1,x0) =Xz, €] (X1, %) =[1x X ]

for €=0,...,4, and és5(x;,x;) =1. To solve the
semidefinite optimization problem, we use SeDuMi; see
Sturm (1999). This gives £ = 0.108. The corresponding
optimal polynomial is p(x;, x3) = 0.8917 — 2.5084x, —
3.6072x, + 3.2103x3 + 4.2274x1x, + 5.4395x] —
1.4647x3 —1.9329x2x, — 1.5377xx2—2.7181x3, as shown
in Fig. 2. Note that the polynomial has real roots as
expected.

2.3 Approximation by increasing polynomials

We can easily extend the methodology developed in
Section 2.2 to increasing polynomials by introducing
nonnegativity constraints for the (partial) derivatives.

Suppose we know that the function y(X) is increasing
on a certain region I/ and with respect to coordinates x;
withi e I C {1,..., n}. Then, instead of (4), we need to
solve the following mathematical program:

min f
ot
a X -
s.t. P) >0 Viel Vxel
Bxi
m
Y ap @) —t<y@)  VYi=l...n

j=1

_Zajpj(}i)_tg—y(}i) Vi=1,...,n. (10)
=1

Fig. 3 Example of increasing 25 -
and non-increasing —— polynomial approximation
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Since a partial derivative of a polynomial is also a
polynomial, we can use similar techniques as in Section
2.2 to solve optimization problem (10).

Example 2 In this example, we consider the data
of the coefficient of thermal expansion of copper.
This data is taken from Croarkin and Tobias (2005).
The coefficient of thermal expansion of copper is an
increasing function of the temperature of copper. In
this example, we only use a selection of the data, which
is given in Table 2. A scatterplot of this selection of
the data is given in Fig. 3. First, we apply Chebyshev
approximation with a polynomial of degree d =15
without requiring the approximation to be increasing.
We get £ = 0.1486 and obtain the polynomial p(x) =
—3.3051 + 0.1545x+0.2490 - 10~#x? — 0.2920 - 1075x>+
0.8014 - 1078x* — 0.6227 - 10~ x>, This is the solid line
in Fig. 3. Note that the approximation is not increasing
everywhere. We observe an oscillating behavior that is
one of the well-known drawbacks of using polynomials
for approximations. A method that reduces oscillating
behavior is ridge regression; see, e.g., Montgomery
and Peck (1992). Ridge regression, however, cannot
guarantee monotonicity. If we use our method, i.e.,
if we require the approximation to be increasing, we
get £ =0.2847. We obtain the polynomial p(x) =
—4.2922 4 0.2054x — 0.7234 - 1073x? + 0.1063 - 107 x*—
0.4369 - 10~2x*—0.1578 - 10~!2x>, which is shown by
the dashed line in Fig. 3. Indeed, the approximation is
increasing in the input variable.

£ :=min ¢
1a,p

d
s.t.oag+ Y (o sin(kx’) + By cos(kx’)) — 1 < y(x')
k=1

d

—ay — Z(oak sin(kx’) + Bi cos(kx')) —t < —y(xi)

k=1

3 Approximation by trigonometric polynomials

We are interested in approximating a function y : R
R by a univariate nonnegative trigonometric polyno-
mial given input data x', ..., x" € R and corresponding
output data y', ..., y" € R. We can again write a non-
negative trigonometric polynomial as a sum of squares
in a similar way as done with polynomials.

A trigonometric polynomial of degree d has the form

d

px) =ao+ Y _ (e sin(kx) + By cos(kx)) . (11)
k=1

where «, a; and By are the coefficients.

3.1 General least norm approximation
by trigonometric polynomials

Approximation by trigonometric polynomials is sim-
ilar to the approximation by ordinary polynomials.

We again define p; ;= [px'),..., p(xn)]T and y =

[y(xh, ..., y(x”)]T, and are interested in finding & and
,5 that solve

min || p; 5 — Y,

a,B -

where | - || is some norm. In Fassbender (1997), effi-

cient numerical methods for least-square approxima-
tion by trigonometric polynomials are developed. For
the £, norm, we obtain the following linear program:

Vi=1,...,n

Vi=1,....n. (12)

We can easily adapt the methods that we will present to
the cases of the £; norm and the ¢, norm.

3.2 Approximation by nonnegative trigonometric
polynomials

The following theorem states that nonnegative uni-
variate trigonometric polynomials can be expressed in
terms of a positive definite matrix.

Theorem 5 If p(x) is a nonnegative trigonometric poly-
nomial of degree d, then there exists a decomposition

p(®) = &T(x) 0é(x), where Q > 0. If d = 2k + 1 is odd,
then

§(x)=[cos (g) , sin ()—26) ...

sin (kx + %C)]T,

X
.,cos(kx—i—z),
otherwise d = 2k, and
é(x) = [1, cos(x), sin(x), . .., cos(kx), sin(kx)]",
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Table 3 Oil shale dataset (Example 3)

Number Time (min) Concentration(%)
1 5 0.0
2 7 0.0
3 10 0.7
4 15 7.2
5 20 11.5
6 25 15.8
7 30 20.9
8 40 26.6

Proof A sketch of a proof is given in Lofberg and
Parrilo (2004). O

We can use this theorem to construct nonnegative
trigonometric polynomial approximations by solving
the SDP:

£ :=min t
L0

st. &) 0e(r) —t < y(x))  VYi=1,....n
() 0E(x) —t < —y(xX') Vi=1,....n
0> 0. (13)

Note that (11) is a periodic function with period
27w. However, the data is in general nonperiodic.

Fig. 4 Example of 30 -

Nevertheless, we can still approximate a nonperiodic
function on a compact interval by a trigonometric func-
tion by scaling and translating the data to [0, 7].

Example 3 We consider data on the pyrolysis of oil
shale taken from Bates and Watts (1988). This data,
obtained by Hubbard and Robinson (1950) represents
the relative concentration of oil versus time during
pyrolysis of oil shale. We used a selection of the data
as given in Table 3. This data concerns the relative
concentration of oil versus time at a temperature of
673 K. A scatterplot of the data is given in Fig. 4.

Obviously, the concentration of oil is nonnegative.
However, if we approximate the concentration as a
function of time by a trigonometric polynomial of de-
gree 2, we get £ = 0.7348 in (12), and we obtain the
trigonometric polynomial

p(x) =12.6303 + 12.1492 sin(—1.7054 + 0.0898x)
— 8.0262 cos(—1.7054 + 0.0898x)
+ 6.3258 cos®(—1.7054 + 0.0898x)
— 0.2234 sin(—1.7054 + 0.0898x)
x cos(—1.7054 4 0.0898x).

This trigonometric polynomial is plotted in Fig. 4
with a solid line. This trigonometric polynomial takes

nonnegative and general
trigonometric approximation

—— trigonometric approximation

— —_nonnegative trigonometric approximation

% %data points

Concentration(%)
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negative values. However, if we use the new methodol-
ogy to obtain a nonnegative trigonometric polynomial,
we obtain the trigonometric polynomial

p(x) =7.0570 — 9.6844 cos(—1.7054 + 0.0898x)

+ 11.2141 sin(—1.7054 + 0.0898x)

+ 13.5710 cos?(—1.7054 + 0.0898x)

+ 1.0457 sin(—1.7054 4 0.0898x)

x cos(—1.7054 4- 0.0898x)

+ 6.3186 sin*(—1.7054 + 0.0898x),
which is represented by the dashed line in Fig. 4. In this
case, £ = 0.8187. O

We cannot extend this methodology to construct
increasing trigonometric polynomial approximations in
a similar way as done for polynomials because trigono-
metric polynomials are periodic functions.

4 Approximation by rational functions
Given input data X!,...,¥" € RY and corresponding

output data y',...,y" € R, we are interested in ap-
proximating a function y:R?+— R. In this section,

min ¢
ta,B

st api(E) = yE) Y fear®) <t Beqi )

=0 k=0 k=0

=D aipE) +y(E) Y BrarE) < 1) g )

j=0 k=0 k=0

we consider approximation by rational functions. We
first show how to approximate a function y(X) by
a rational function without preserving characteris-
tics. A rational function is a quotient of two poly-
nomials p(X) = Z:"zl a;p;(X) and g(X) = Y ;L Brqr(X);
Z’{‘n:o“jpj(;f)
Yilo Bear@)
ber of monomials of the polynomials p(¥) and g(%),
respectively.

ie., r(X) = Here, m and m are the num-

4.1 General least-norm approximation by rational
functions

Analogous to pg, we define 7; ; = [r(X"), ..., r(xm]T.
We are interested in solving

min |75 5 — ¥,
o

where || - || is some norm. In the following, we will
discuss the methodology for the £, norm, as done in
Powell (1981), Chapter 10, and then extend this with a
method to prevent the denominator from being zero. A
similar methodology can be used for the ¢, norm and
the £, norm.

For the £, norm, we obtain the following optimiza-
tion problem by multiplying each term by the denomi-
nator of r(x):

(14)

Note that (14) is a nonlinear optimization problem.
However, we can solve this problem efficiently by using
binary search. We choose an upper bound for ¢, say
f, and a lower bound ¢ = 0, and consider the interval

Y aipi(E) = yE) Y Bk (E) <1y Brar(®) i
j: k=0

Jj=0 k=0

[t,f]. Then, we define = % and check whether the

constraints in (14) are met for this value of #; i.e., we
check whether there exist @ and 8, for which

1,...,n

(15)

=Y apiE) + yE) Y Bge®) < 1Y BaxE)  i=1,....n.
k=0

=0 k=0

This is a linear feasibility problem. If the answer is ’yes,’

. [+t .
then our new interval becomes [¢, %], and otherwise,

our new interval becomes [’er—[ t]. We repeat this until

the interval is sufficiently small.
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Instead of just checking the constraints (15), we can
also introduce a new variable ¢ and solve the linear
program

min ¢
£,a.8
sty aipi(E) = y(E) Y Brgu®) <1 Z BraxG) +e  i=1,....n
j=0 k=0 k=0
—Za]p;(x)+y(X)Zﬁqu(x) <t2ﬂqu<x>+e i=1,....n
=0 k=0 k=0
i
> Brar(@) =1, (16)
k=0
where 7 € RY is a constant. Let gopt be the optimal  corresponding ”(i" is the optimal approximation, and

¢ in (16). The last constraint is added to prevent
the optimization problem from belng unbounded if
gopt < 0. A common choice is g“ =0. Now, we can
distinguish three cases. If gqp < 0, then { is greater
than the least maximum error, and we can tighten
the bounds of our interval to [¢, 7]. In fact, by using
the value of &,,, we can even tighten the interval to

2 £ opt .
t,f— ot ], where g," are the optimal
I:_ maxi:l....,n{z;:‘:u ﬁkpl’] (X I)} ﬂk p

Bk in optimization problem (16). If op; = 0, then the

finally, if eop > O, then our upper bound f is too small,
and we can tighten our interval to [£, 7].

Note that g(¥) = 2’1?:0 Brqx(X) possibly becomes
zero, which is not desirable if we want to avoid poles.
We can easily prevent g(X) from becoming zero on
a predefined compact set U = {X¥ € R7|g,(¥) > 0,Vl =
1,...,m}, where g, are polynomials, by again using
Theorem 2 and Theorem 4. Then, we obtain the fol-
lowing semidefinite optimization problem:

min &
ea, P, Pd
m+1
st Za,p]oc)— Y@ ~ ) (ZEZ( )Pz’ée(?c‘)ge(?)w) <e i=1,....n

+

j=0 =0
>0

1

el (&) PYey(D)gu(@) = 1,

H QEJ

Iy
o

—Za,p,(x)Jr y(x) —1) (Z T(¥) Ple )gz(?c")+6) <e

where § > 0 is a small number, which prevents the
denominator ¢(x) from becoming too small.

4.2 Approximation by nonnegative rational functions

To construct nonnegative rational approximations, we
need a characterization of nonnegative rational func-
tions. The following theorem gives a characterization
of nonnegative rational functions on open connected
sets or the (partial) closure of such a set. Note that two
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polynomials, p(¥) and g(X), are called relatively prime
if they have no common factors.

Theorem 6 Let p(X) and q(X) be relatively prime poly-
nomials on RY and let U C RY be an open connected set
or the (partial) closure of such a set. Then, the following
two statements are equivalent:

1. p(X)/q(X) >0V X € U such that q(X) # 0;
2. p(X) and q(X) are both nonnegative, or both nonpos-
itive on U;



Discrete least-norm approximation by nonnegative functions

337

Proof See Jibetean and de Klerk (2006). |

Therefore, to enforce a rational approximation to be
nonnegative on a set U that meets the conditions of
Theorem 6 without loss of generality, we may assume

min &

that both the numerator p(¥) and the denominator g(x)
are nonnegative. Note that requiring g(X) to be positive
also prevents the rational function from having poles.

Using this characterization, the optimization prob-
lem becomes as follows:

m m m
sty api(E) =y Y Brar(®) <1 Brar(¥) + e i=1,....n
=0 k=0 k=0
= " apiE) + yE) Y prarE) < 1Y BraF) + e i=1...n
=0 k=0 k=0
m
D aipi® =0 Viel
j=0
)
D Brak(®) = viel
k=0
I
> Brak(@) =1, (17
k=0
where § > 0is a small number and Z’ € R? is a constant.
Now, we use Theorem 2 in combination with
Theorem 4 to model optimization problem (17) as an
SDP:
min ¢
e Py B
sty e (¥ Ple,()ge(X) — (y(&) + 1) (Z &l (¥) P{e,(X)ge(x) +8) <e i=1...n
£=0 =0
= Y e @) Plé(¥)ge(X) + (y(E) — D) (Z &l (¥) Pé,(¥)g(x) + a) <e i=1,....n
£=0 =0
Pl=0 €=0,....m+1
P!=0 €=0,....m+1
it
Y el @) Ple©)ge@) = 1. (18)
=0

In the multivariate case, (18) is just an approximation of
(17), as we do not know the degree of the monomials of
é¢(X). However, in the univariate case (18) is an exact
reformulation of (17) because, in the univariate case,
Theorem 3 specifies the degree d of the polynomials

f(X) and g(xX), we know the degree of the monomials
of é;(X) in (18).

Example 4 In this example, we use the same data on
the pyrolysis of oil shale as used in Example 3. Note

@ Springer
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Fig. 5 Example of 30 -

nonnegative and general
rational approximation

—— rational approximation
— —_nonnegative rational approximation
% %data points

Concentration(%)

again that the concentration of oil should be nonnega-
tive. However, if we approximate the concentration as a
function of time by a rational function by quadratic nu-
merator and quadratic denominator, we get £ = 0.5962
and obtain the rational function

r(x)=—17.84

116.2622153—35.2141549x+2.544537885x>
X
—3.691739529—7.67285004x —0.319303558x2"

which is plotted in Fig. 5. Obviously, the rational func-
tion is not nonnegative. However, if we force the ratio-
nal function to be nonnegative, we obtain the function
r(x) =4.883

—101.53754138429.62932361x—2.161508979x>
X
—38.59790305—1.26652437x—0.224221696x2

which is represented by the dashed line in Fig. 5. Now,
&€ = 0.7178. The increase in £ is only due to forcing the
nonnegativity, as this is a univariate example.

We cannot easily extend the methodology for least-
norm approximation by increasing rational functions
because the coefficients of polynomials in the numer-
ator and ctg:)nominator of the derivative of a rational

px

function o are not linear in the coefficients of p(¥)

and ¢(¥) anymore.

@ Springer
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Time(min)

5 Exploiting structure during computation

Semidefinite programming solvers usually require the
problem to be cast in the form:

“min {trace(CX) + ¢ x |
X>0,7>0

trace(AJ?)-i—Zlf)? b: (i=1,...,ml,

- -

where é ;11, ..., A, are data matrices and b,¢,
ai, ..., a, are data vectors.

The approximation problems we have considered
may all be formulated as SDPs in this form and, with
the special property that the matrices A; are rank one
matrices. For example, in problem (7), we have A; =
e(x)eé(x’)T — a rank-one matrix.

This structure can be exploited by interior point
algorithms to speed up the computation. In particular,
the solver DSDP (see Benson et al. (2000)) has been
designed to do this.

Thus, it is possible to solve problem (7) within
minutes for up to a thousand data points and with an
approximating polynomial of degree up to a hundred.
A similar computation was performed for up to 200
data points in a few seconds by de Klerk et al. (2006).
For the other univariate approximation problems we
have considered, we can solve instances of similar sizes
in the order of minutes.
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For the multivariate approximation problems, e.g.,
(9), the size of the monomial vector &,(X') is given by
(qufZ*l), where 2d, is the degree of the function p,
(see Section 2.2.2) and ¢ is the dimension (number of
variables).

If ¢ and the d, values are such that (‘“’Zﬁ‘l) is at most
a hundred and the number of data points at most n =

100, then efficient computation is still possible.

6 Conclusions and further research

We have presented a least-norm approximation meth-
od to approximate functions by nonnegative and
increasing polynomials, nonnegative trigonometric
polynomials, and nonnegative rational functions. This
methodology uses semidefinite programming and re-
sults from the field of real algebraic geometry. We
have given several artificial and real-life examples that
demonstrate that our methodology indeed results in
nonnegative or increasing approximations. We also
studied how to exploit the structure of the problem to
make the problem computationally easier. As a result
of this, we can deal with relatively large problems.

For further research, we are interested in studying
least-norm approximation by polynomials to approxi-
mate convex functions. In the univariate case, we can
easily use the same methodology as presented in this
paper because a polynomial is convex if and only if
its second derivative is nonnegative. In the multivari-
ate quadratic case, the problem of approximating a
function by a convex quadratic polynomial is already
studied by den Hertog et al. (2002).
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