
RESEARCH PAPER

Metamodeling by symbolic regression and Pareto
simulated annealing

Erwin Stinstra & Gijs Rennen & Geert Teeuwen

Received: 3 March 2006 /Revised: 30 January 2007 /Accepted: 19 March 2007 / Published online: 3 May 2007
Springer-Verlag 2007

Abstract The subject of this paper is a new approach to
symbolic regression. Other publications on symbolic
regression use genetic programming. This paper describes
an alternative method based on Pareto simulated annealing.
Our method is based on linear regression for the estimation
of constants. Interval arithmetic is applied to ensure the
consistency of a model. To prevent overfitting, we merit a
model not only on predictions in the data points, but also on
the complexity of a model. For the complexity, we
introduce a new measure. We compare our new method
with the Kriging metamodel and against a symbolic
regression metamodel based on genetic programming. We
conclude that Pareto-simulated-annealing-based symbolic
regression is very competitive compared to the other
metamodel approaches.

Keywords Approximation .Metamodeling
Pareto simulated annealing . Symbolic regression

1 Introduction

In many scientific areas, it is important to relate output of a
system to its input. Getting insight into the sensitivities of
outputs with respect to inputs or finding the best input
values with respect to the outputs may require a large

number of system evaluations. On many occasions, the
number of evaluations that can be used to do this is limited.
Therefore, metamodels (also called approximating models,
compact models or response-surface models) are used to
approximate the behavior of the system.

A typical example of such a process can be found in
virtual prototyping tools, like finite element analysis (FEA)
software. These tools are used to predict physical properties
of a product. Such simulations are often very time-
consuming. A simulation run that takes hours is no
exception, so the amount of experiments may be very
limited. Parameters that are input to the simulation software
are referred to as design parameters. Parameters that
quantify the simulated physical behavior are called
response parameters. In simulation-based optimization,
values for the design parameters are searched, such that the
response parameters are in some sense optimal. See, e.g.,
Barthelemy and Haftka (1993), Alexandrov et al. (1998),
Jones et al. (1998), and Simpson et al. (2004).

In literature, many types of metamodels are used. The
most obvious choice is the first or second degree
polynomial model (see Montgomery 1984). More compli-
cated model structures include rational functions (see Cuyt
and Verdonk 1992), Kriging models (see Sacks et al. 1989),
support vector regression machines (see Vapnik et al.
1997), neural network structures like RBFs (see Powell
1987), and symbolic regression (see Koza 1992). Compar-
ative studies on metamodel types can be found in Jin et al.
(2001, 2003).

Symbolic regression searches for the best metamodel by
systematically altering operators in a set of explicit
formulas. These formulas are represented using a tree
structure. The best tree structure is found using a
combinatoric optimization technique, An important advan-
tage of symbolic regression is its flexibility. A metamodel

Struct Multidisc Optim (2008) 35:315–326
DOI 10.1007/s00158-007-0132-4

E. Stinstra (*) :G. Teeuwen
Center for Quantitative Methods,
P.O. Box 414, 5600 AK,
Eindhoven, The Netherlands
e-mail: stinstra@cqm.nl

G. Rennen
Tilburg University,
P.O. Box 90153, 5000 LE,
Tilburg, The Netherlands

that is found by symbolic regression is not restricted to a
certain class of functions. Symbolic regression models can
be used for extrapolation since they capture the underlying
physics, which is an advantage in comparison to, e.g.,
Kriging models. Further, symbolic regression models are
usually more interpretable, which makes it easier to extract
new knowledge from symbolic regression models. To the
best of our knowledge, symbolic regression models are
always used in combination with genetic programming [e.g.,
see Koza (1992), and for an example in engineering, see
Gambling et al. (2001)]. This paper introduces a symbolic
regression approach that is not based on genetic program-
ming, but on simulated annealing (see Aarts and Korst
1989). This optimization technique usually requires less
iterations than genetic algorithms to converge to an optimal
solution. The algorithm is extended with a number of new
concepts. Complexity control is used to ensure interpretabil-
ity of the resulting model. Pareto simulated annealing is used
to find not only one best model, but a range of models on a
best fit/complexity trade-off curve (see also Smits and
Kotanchek 2004). The best-fit metamodel may not be the
metamodel that eventually will be chosen, since it may be
less intuitive than metamodels that have a worse fit. Further,
linear regression (see Montgomery 1984) is used to fit
coefficients in the formulas. Finding the best coefficient
values is often recognized as a difficult problem in symbolic
regression. A binary tree data structure is used for fast
neighborhood exploration. The resulting approximating
model is compared to Kriging models and to genetic-
programming-based symbolic regression on a number of
typical cases from simulation based optimization.

The remainder of this paper is organized as follows: In
Section 2, we describe the basic approach. Section 3
describes a number of extensions to the basic algorithm.
In Section 4, we test our approach on several cases and
compare the results to other metamodel types. In Section 5,
we draw conclusions.

2 Symbolic regression approach

Symbolic regression is a technique for finding the best
model in a very large class of candidates. The candidates
are explicit symbolic formulas. In this section, we first
describe the set of all possible approximating models. After
that, we describe how to find the best approximating model.
The approach assumes that all simulation data are already
generated.

2.1 Model structure

The set of functions in which we search for the best
metamodel consists of all functions that can be described as
a linear combination of transformation functions. Each
transformation function defines a transformation of the
original parameters into a transformed parameter, using
operators like addition, subtraction, multiplication, division,
exponents, sines, and cosines. Thus, an approximating
model can be written as:

f x1; . . . ; xnð Þ ¼
X
i

aigi x1; . . . ; xnð Þ; ð1Þ

where xi is the ith input parameter and ai is the multiplier of
transformation function gi(x). Suppose for example, we
have a problem with three inputs, x1, x2, and x3, with the
following approximating model:

f x1; x2; x3ð Þ ¼ 0:341þ 1:231 sin x1 þ x2
x3

� �
� 2:114

� exp x3ð Þ: ð2Þ
Once we know the transformation functions, the coef-

ficients ai can be calculated using linear regression. The
problem of finding suitable transformation functions gi,
which lead to a model that fits the data well and is not too
complex, remains.

Each transformation function can be represented by a
binary tree, consisting of nodes that represent (binary or
unary) operators, input parameters, or constants. The
operators that we can select for a transformation tree areTable 1 The operators that are used in the transformation functions

Operator Formula Operator Formula

Sum R+L RootB
ffiffiffi
R

p

DiffA L−R LogA log(L)
DiffB R−L LogB log(R)
Mult L ·R ExpA eL

DivA L/R ExpB eR

DivB R/L SinA sin(L)
PowerA LR SinB sin(R)
PowerB RL Left L
RootA

ffiffiffi
L

p
Right R

L refers to the value of the left subtree, and R refers to the value of the
right subtree.

sina

sum …

x1

diva

x2 x3

left

5.2

Fig. 1 Example of the transformation function sin x1 þ x2
x3

� �

316 Struct Multidisc Optim (2008) 35:315–326

listed in Table 1. A root node can only be a constant or an
input parameter; other nodes can only be operators.

The second transformation function of example (2) is
depicted in Fig. 1.

To make reference to a node in the parse tree easier, we
assign an index to each node. The assignment is done from
left to right as depicted in Fig. 2. This numbering has the
great advantage that we can distinguish between function
and terminal nodes just by looking at the index. All
function nodes have an odd numbered index and all
terminal nodes an even numbered index. Since terminal
nodes have a distinct application in our algorithm (they can
only contain variables or constants), this speeds up the
algorithm.

2.2 Finding the best transformation functions

In this section, we describe how to find good transforma-
tion functions that compile the metamodel. First, we
describe the basic algorithm. Then, we zoom into details
on data representation, the quality aspects of the model that
we want to optimize, and how they are calculated. The
simulated-annealing-based algorithm is formulated in algo-
rithm 1. For a general description of simulated annealing,
see also Aarts and Korst (1989).

Algorithm 1. The Symbolic Regression algorithm based
on Simulated Annealing

In the following, we describe each of these steps:

Step 0 Initialization
The transformation function i is initialized as depicted in

Fig. 3. The abbreviations “r.o.” and “r.v.” mean random
operator and random variable, respectively.

The number of transformation trees and their depth are
user-defined and fixed during the algorithm. Not all trees
need to have the same depth.
Step 1 Adapting the annealing temperature

We describe the changing of the annealing temperature
in Step 7.
Step 2 Selecting a transformation function

A random transformation function is selected for change.
Step 3 Changing a transformation function

A transformation function is changed by randomly
selecting a position in the function tree by drawing a
random integer between 0 and 2Tþ1�1, where T is equal to
the tree depth. If the selected integer is odd, its contents are
set to a randomly chosen operator. If the selected integer is
even, its contents are set to a random input parameter or a
constant. In case a constant is set, the value of this constant
is chosen randomly. An example of such a change is the
following. Suppose that at some point during the algorithm
a transformation function has the form depicted in Fig. 1.
This tree evaluates to

f x1; x2; x3ð Þ ¼ sin x1 þ x2
x3

� �
: ð3Þ

After changing the node containing the operator DIVA to
ROOTA, the transformation function will become

f x1; x2; x3ð Þ ¼ sin x1 þ ffiffiffiffiffi
x2

pð Þ: ð4Þ
Step 4 Integrity checking

Since the transformation functions are changed random-
ly, it is possible that a proposed transformation cannot be

7

3 …

0

5

4 6

1

2

Fig. 2 The data structure of the model tree

0: Initialize: select a good initial set of transformation functions
 Repeat
1: Adapt annealing temperature
2: Select a transformation function
3: Change the selected transformation function
4: Check the integrity of the model
 If the integrity-check is OK then
5: Calculate the coefficients of the model
6: Evaluate the quality of the approximating model
7: Accept the change if the model is better, or accept with probability based on

annealing temperature when the model is worse
 If the model is changed
8: Simplify the selected transformation function
 Endif
 Endif
9: Until stopping criterion is reached

Struct Multidisc Optim (2008) 35:315–326 317

evaluated in one or more points of the domain for which the
model is used. Examples are singularities caused by
division by zero and square roots of a negative number.
Usually, this is not the desired behavior. It is therefore
necessary that we restrict the algorithm to those transfor-
mation functions that can be evaluated on the entire
domain. The validity on a domain can be calculated using
interval arithmetic (see Keijzer 2003).

The basic idea is the following: Given the domain of the
input parameters, we can easily calculate a (sometimes
conservative) domain for each node in the function tree.
Using these node domains, we can easily compute whether
or not a function is valid on the domain; for example, a

partly negative domain in combination with a square root
leads to an invalid function.

The interval arithmetic rules are denoted in Table 2. The
columns lower bound and upper bound describe the
formulas needed to calculate the domain of the function
represented by a (sub) tree based on the domain of the left
and the right subtree. The “invalid if” column describes
when a (sub) tree is considered to be possibly invalid.

As mentioned, this approach may be quite conservative:
Valid functions exist that are rejected on the basis of the
above rules. For example, consider Fig. 4. Suppose that
variable x1 has a range of [−1,1]. Using the rules, the domain
of the subtree starting at “mult” will be estimated at [−1,1].
Therefore, this will be considered an invalid tree because the
square root could be taken of a negative number. In reality, of
course, the range of the subtree starting at “mult” should be
[0,1], leading to a valid tree. This is not a significant problem
though, since we simplify the function and check again if the
function is considered invalid.
Step 5 Calculating the coefficients

After the transformation functions are determined, the
problem of calculating the coefficients is a linear regression
problem. Note that only the linear constants by which the
transformation functions are multiplied can be calculated;
the remaining constants are entered randomly during a
transformation function change.

Table 2 Rules for interval arithmetic

Operator Lower bound Upper bound Invalid if

Sum lb1+lb2 ub1+ub2
DiffA lb1−ub2 ub1−lb2
DiffB lb2−ub1 ub2+lb1
Mult Min {lb1lb2, lb1ub2, ub1lb2, ub1ub2} Max {lb1lb2, lb1ub2, ub1lb2, ub1ub2}
DivA min lb1=lb2; lb1=ub2; ub1=lb2; ub1=ub2gf max lb1=lb2; lb1=ub2; ub1=lb2; ub1=ub2f g 0 2 lb2; ub2½ �
DivB min lb2=lb1; lb2=ub1; ub2=lb1; ub2=ub1f g max lb2=lb1; lb2=ub1; ub2=lb1; ub2=ub1gf 0 2 lb1; ub1½ �
PowerA min lblb21 ; lbub21 ; ublb21 ; ubub21 ; 0

� �
if 0 2 lb1; ub1½ �

min lblb21 ; lbub21 ; ublb21 ; ubub21

� �
otherwise

max lblb21 ; lbub21 ; ublb21 ; ubub21 ; 0
� �

if 0 2 lb1; ub1½ �

max lblb21 ; lbub21 ; ublb21 ; ubub21

� �
otherwise

lb1<0

PowerB min lblb12 ; lbub12 ; ublb12 ; ubub12 ; 0
� �

if 0 2 lb2; ub2½ �
min lblb12 ; lbub12 ; ublb12 ; ubub12

� �
otherwise

max lblb12 ; lbub12 ; ublb12 ; ubub12 ; 0
� �

if 0 2 lb2; ub2½ �
min lblb12 ; lbub12 ; ublb12 ; ubub12

� �
otherwise

lb2<0

RootA
ffiffiffiffiffiffi
lb1

p ffiffiffiffiffiffiffi
ub1

p
lb1<0

RootB
ffiffiffiffiffiffi
lb2

p ffiffiffiffiffiffiffi
ub2

p lb2<0

LogA Log (lb1) Log (ub1) lb1<0
LogB Log (lb2) Log (ub2) lb2<0
ExpA Exp (lb1) Exp (ub1)
ExpB Exp (lb2) Exp (ub2)
SinA −1 1
SinB −1 1
Left lb1 ub1
Right lb2 ub2

left

left r.o.

r.v.

r.o.

r.v. r.v.

left

r.v.

Fig. 3 The initialized transformation function

318 Struct Multidisc Optim (2008) 35:315–326

Step 6 Evaluating the quality of a metamodel
The quality of the changed metamodel is evaluated on

the basis of two criteria. First, the metamodel should fit
well to the data in the training set. For this, we calculate the
root mean squared error (RMSE):

RMSE ¼
ffi
1

m

Xm
i¼1

yi � f xið Þð Þ
2

vuut ð5Þ

in which yi represents the output of simulation i, xi

represents the input of the model of simulation i, m the
number of simulations, and f(x) the approximating model.
Since trying to find a perfect RMSE does not prevent us
from overfitting, we use the leave-one-out cross-validation
measure, which is defined as

CV �RMSE ¼
ffi
1

m

Xm
i¼1

yi � f�i xið Þð Þ
2

vuut ; ð6Þ

where f−i denotes the metamodel obtained by fitting all
simulation data except simulation i. Therefore, m times a fit
is made based on m−1 simulations, where the remaining
simulation is only used for model validation. Note that the
CV-RMSE can be quickly evaluated using the projection
matrix [this method uses only one calculation of a solution
to a system of linear equations, whereas m solutions to a
linear system of equations are needed in the straightforward
method for calculating formula (6)]:

CV �RMSE ¼
ffi
1

m

Xm
i¼1

yi � f xið Þ
1� Hi;i

� �2
vuut ; ð7Þ

where

H ¼ X XTX
	
�1

XT : ð8Þ

Note that for the calculation of the CV-RMSE, we only
refit the linear coefficients and not the model structure.

Further, the metamodel should be interpretable, i.e., not
too complex. A measure that estimates this quality is

described in Section 3.2. For now, we only consider the
objective function as a user specified linear combination of
the RMSE and the CV-RMSE. In Section 3.3, we describe
how the approach handles multiple objectives.
Step 7 Acceptance of a change

If the change in the transformation function results in an
improvement of the objective function, the change is always
accepted. To avoid getting stuck in a local minimum, we
sometimes have to accept a deterioration of the objective.
The greater the deterioration, the smaller is the probability of
acceptance. The probability of acceptance is given by:

P ¼ e� Δ objectivej j=c; ð9Þ

where Δobjective is the change in the quality of the
metamodel compared to the previous iteration, and param-
eter c is the annealing temperature. In simulated annealing,
this parameter gradually decreases for every iteration,
lowering the probability of accepting big deteriorations of
the objective. The general idea is that at the start of the
search, we would like to have a broad look at all parts of the
solution space. Thus, we have to accept relatively large
deteriorations. The closer we get to the end of the search, the
smaller the chance that a large deterioration will eventually
lead to an improvement of the objective; hence, the smaller
the probability should be that large deteriorations are
accepted.

A difficulty using simulated annealing is determining a
start value for annealing temperature c, because this implies
that we have to quantify a “large deterioration”. This is
particularly difficult in symbolic regression because this
means that we need to be able to tell beforehand how well
the quality of a function can probably become. Therefore,
we introduce the new concept of reannealing: The anneal-
ing is started with a temperature that is a percentage of the
first objective value. After a number of iterations, it is
checked how often a change is accepted and rejected. If too
many changes are accepted, the starting temperature was
too high, and hence we start the annealing again with half
the temperature. If on the other hand too few changes were
accepted, the temperature was too low and we start with
double the temperature. We continue this until a suitable
temperature is found.
Step 8 Simplification

Obviously, random changes in the transformation func-
tions may lead to functions that can be simplified. Symbolic
simplification is very time-consuming though. Therefore,
only some simple rules are checked after each iteration:

1. If a function node evaluates to a constant, the
subtree starting at that node is replaced by a
constant term. The value of the constant term is
equal to the constant output of the function node.

sqrta

x1

...

... ...

mult

x1

Fig. 4 Example of a model tree for which the interval arithmetic rules
are too strict

Struct Multidisc Optim (2008) 35:315–326 319

2. If the left and right arguments of a function node
are equal, we can make replacements for certain
functions. For example,

– f(x)+ f(x) is replaced by 2 f(x).
– f(x)− f(x) is replaced by 0.
– f(x) / f(x) is replaced by 1.
– f(x) f(x) is replaced by f 2(x).

The simplification is only carried out when the changed
solution is accepted by the simulated annealing algorithm.
The simplification rules are applied as long as changes are
made during the previous application of the simplification
rules. Whether this simplification step has a positive effect
on the search depends very much on the case. The effect
may be negative since simplifications make the transfor-
mation functions smaller, causing a change to be relatively
large on average. Future research will show if this step is
beneficial for the search.
Step 9 Stopping criterion

If the maximum number of iterations is reached, or if the
approximation is evaluated as good enough, the algorithm
stops. The maximum number of iterations is typically
200,000.

3 Extensions to the basic algorithm

3.1 Reasons for extension

As mentioned in the introduction, metamodels are often
used in situations where getting data with the real model is
too time consuming. Fitting functions on these data sets
implies the risk that we find a function that only fits well on
this particular data set but does not describe the general
behavior of the system. This problem is called overfitting.
Using the CV-RMSE instead of only the RMSE to measure
the quality of the metamodel already reduces the risk of
overfitting, but it does not remove it.

Furthermore, to improve interpretability of the metamodel,
it is usually wise to limit the depth of the function trees.
However, this has two drawbacks. Firstly, the function tree
depth does not always represent the complexity of a function.
For instance, a sine operator is often considered more difficult
to interpret than a plus-operator although they both require
one function node. Secondly, the upper bound on the tree
depth has to be set by the user. It is difficult to set this value
beforehand.

The extensions we describe in the next subsections are
meant to reduce overfitting and improve interpretability.
First, we introduce a complexity measure, which aims to
measure interpretability and penalize possible overfitting.
Second, instead of putting an upper bound on the
complexity value we add minimization of complexity as a
second objective. To deal with the two objectives, we use
an algorithm based on Pareto simulated annealing.

3.2 Complexity measure

The basic idea of the complexity measure is that the
complexity of a model is measured by the minimal degree
of the polynomial necessary to approximate the model with a
precision e in a set of points S. The idea behind this is that
overfitted metamodels often have high oscillation. This
makes them difficult to approximate, and results in a
polynomial of a high degree to obtain the required precision.

To determine the necessary complexity of the approxi-
mating polynomial, we use the function tree representation.
We calculate the complexity in every node from the
terminal nodes to the root node. We use calculation rules
for the binary and nested operators. For the unary operators,
we calculate the complexity by successively approximating
the function by a polynomial of increasing degree. This
method is based on Garishina and Vladislavleva (2004).
However, we use different calculation rules and a different
method for approximation of unary operators. The main
difference is in the method for approximation of unary
operators. In the measure of Garishina and Vladislavleva, a

Table 3 Complexity rules for binary and nested operators

Operator Complexity rule

f(x)+g(y) Max {compl(f (x)), compl(g(y))}
f(x)−g(y) Max {compl(f (x)), compl(g(y))}
f(x)*g(y) compl(f (x))+compl(g(y))
f(x)/g(y) compl(f (x))+compl(1/g(y)) (special case of f(x) * g(y))
f(g(y)) compl(f (x)) * compl(1/g(y))
f(x)const compl f xð Þð Þ* const if const � 0 ^ const 2 N (special case of f(x) * g(y)) compl(f(x)) * compl (yconst)

otherwise, where y is a variable with the same range as f(x)
const f(x) compl(f (x)) * compl (consty) with y a variable with the same range as f(x)
f(x)g(y) Use the relation f(x)g(y)=exp(g(y)*ln (f(x))) in combination with the previous rules

320 Struct Multidisc Optim (2008) 35:315–326

polynomial with increasing degree is fitted in a fixed
number of points until the approximation of the polynomial
to the unary operator in these points is accurate enough. In
our approach, we apply polynomial interpolation through
an increasing number of training points until the accuracy
in a certain test set is high enough. Other differences are
that we use some different calculation rules and take the
number of nodes in a function explicitly into account to
make the measure more discriminative.

To determine the complexity of the terminal and binary
function nodes, we use a set of calculation rules. The
complexity of a constant node is zero, and the complexity
of a variable node is one. The rules for binary and nested
operators are derived from relations between polynomial
interpolations and are listed in Table 3.

Take for example the formula hðxÞ ¼ x6 þ 6x. This
formula can be written as f xð Þ þ g xð Þ with f xð Þ ¼ x6; and
g xð Þ ¼ 6x. With the sixth rule, we can find that f(x) has
complexity 6 and g(x) complexity 1. The first rule now tells
us that h(x) has complexity 6.

The complexity rules serve as an approximation to the
complexity as defined by the minimal degree of the
polynomial necessary to approximate the model. To explain
the above calculation rules, let us first define PS(f (x)) as a
polynomial that interpolates f(x) in a set of points S. The
function PS f xð Þð Þ þ PT g yð Þð Þ then forms a polynomial
interpolation of f xð Þ þ g yð Þ in the set of points S×T
because the sum of two polynomials is again a polynomial.
The degree of this polynomial is at most the maximum of
the degrees of PS(f (x)) and PT(g(y)). This explains the
calculation rule for addition.

The calculation rule for nested functions follows from
replacing every x in PS(f (x)) by PT(g(y)). This gives a
polynomial with a degree equal to the product of the
degrees of PS(f (x)) and PT(g(y)).

The other rules are obtained in a similar way and will
therefore not be discussed.

The complexity of a unary function node is determined
in the following way. First, we determine the minimal size
of the training set such that the unique polynomial
interpolation through the data in the training set approx-
imates the unary operator good enough. The polynomial
interpolation is only considered on the range of the input

argument of the unary operator. This range is determined by
the interval arithmetic (see Section 2.2, step 3). The
approximation is considered good enough if the maximum
approximation error on a test set is below a user-defined
threshold e. The test set consists of a number of data points
located between the interpolation points.

The algorithm to determine the complexity of a unary
function node is described in algorithm 2.

Algorithm 2. Method for determination of complexity
for unary operators.

The reason for sampling Chebyshev points instead of
equidistant points for the training set is avoiding Runge’s
phenomena. Runge’s phenomena states that for some func-
tions, the approximation by a polynomial interpolation
through an increasing number of equidistant points on a fixed
interval gets worse when the number of points increases.
However, in algorithm 2, we assume that the approximation
does get better when we use more points. Fortunately, this
does hold for Chebyshev points because they do not suffer
from Runge’s phenomena (Mathews and Fink 2004).

The procedure to determine the complexity of binary
operators might seem time consuming. However, when using
it in our simulated-annealing-based algorithm, it can be
calculated quite efficiently. After changing one node in a
function, we only have to recalculate the complexity of the
nodes between (and including) the changed node and the root
node of the transformation function. This limits the number of
times we have to use algorithm 2 per iteration of the simulated
annealing algorithm. The computation time can also be
limited by setting a maximum to the value of k in algorithm 2.

3.3 Pareto simulated annealing

Now that we have determined a complexity measure, we
still need a method for finding a function with a desired
quality and complexity. The main problem is that functions
with better fit generally have a higher complexity (over-
fitting). The trade-off decision between fit and complexity
is difficult to make before we have any results. We regard
maximizing metamodel quality and minimizing complexity
as two separate objectives and use a multiobjective
combinatorial optimization (MOCO) method to find multi-
ple good solutions.

Initialize: Approximate the range of the input values with interval arithmetic
 Set k = 1
Repeat
 Increase k by 1
 Create a training set consisting of k Chebyshev points
 Find the interpolating polynomial of degree at most k-1
 Create a test set
Until the maximum error on the test set is below

Complexity of the unary operator is k-1

Struct Multidisc Optim (2008) 35:315–326 321

The use of simulated annealing in the basic algorithmmakes
it a natural choice to use the multiobjective extension called
Pareto simulated annealing (see Czyżak and Jaszkiewicz 1998).
Pareto simulated annealing does not try to find a solution that
is optimal according to one objective, but instead, to find an
approximation of the Pareto set. The Pareto set is the set of
Pareto optimal solutions. In our situation, Pareto optimal
solutions are defined by the fact that their metamodel quality
cannot improve without deteriorating the complexity and vice
versa.

The two main differences between “normal” simulated
annealing and Pareto simulated annealing are the method
for comparing two solutions and the method for determin-
ing the amount of difference in performance of two
solutions.

In Pareto simulated annealing, comparing two solutions
f1(x) and f2(x) leads to four possible scenarios:

– f1(x) and f2(x) are equally good: f1(x) and f2(x) are
equally good on all objectives.

– f1(x) dominates f2(x): f1(x) is at least equally good as
f2(x) on all objectives and better on at least one.

– f1(x) is dominated by f2(x): f1(x) is at most equally good
as f2(x) on all objectives and worse on at least one.

– f1(x) and f2(x) are mutually nondominating: f1(x) is
worse than f2(x) on at least one objective and better on
at least one other objective.

We choose to always accept f2(x) if it dominates f1(x) or
if it is equally good as f1(x). We only accept f2(x) with a
certain probability if it is dominated by f1(x) or if f1(x) and
f2(x) are mutually nondominating.

The acceptance probability depends among others on the
amount of difference in performance of the two solutions.
To determine this difference, we need to convert the
performances on multiple objectives into one single
measure. For this, we choose to use the dominance-based
performance measure. This measure is introduced in Smith
et al. (2004) for general Pareto simulated annealing and
solves some drawbacks of more traditional measures like
the weighted sum. The dominance-based performance
measure is defined by:

ΔE f1 xð Þ; f2 xð Þð Þ

¼ 1

A ePF�� �� A ePFf1 xð Þ
�� ��� A ePFf2 xð Þ

�� ��� �
; ð10Þ

with:

APF set of solutions that approximate the Pareto front
AePF APF [f1 xð Þ; f2 xð Þf g
A ePFf xð Þ set of solutions in AePF that dominate f(x).

An example of an APF is depicted in Fig. 5 by the circles.
When we let the triangle depict f1(x) and the star depict f2(x),

then A ePF�� �� ¼ 11; A ePFf1 xð Þ
�� �� ¼ 5 and AePFf2 xð Þ

�� �� ¼ 2. The
value of the dominance-based performance measure thus
becomes 3/11.

Therefore, the performance of a solution is measured by
the percentage of solutions in AePF that it dominates. An
advantage of this measure is that solutions that are not
dominated by a solution in the current APF are always
accepted, which is not always the case with other measures.
Furthermore, solutions in sparsely populated areas of the
APF generally have a better performance than solutions in
densely populated areas. This stimulates the search of a set
of solutions that is evenly spread over the APF.

The main drawback of the measure is that performance
differences can be relatively high when the APF contains few
points. This can result in a coarse acceptance probability
distribution meaning that a slightly worse fit or complexity
can result in a large reduction in acceptance probability.
Smith et al. (2004) present a number of methods to alleviate
this problem. The solution we choose to prevent this is to
create extra points evenly spread on the attainment surface
of the APF as described in Smith et al. (2004). The
attainment surface of the APF is the boundary of the area
containing all points dominated by the points in the APF.
The points in the APF are thus on the attainment surface. In
Fig. 5, the attainment surface is depicted by the black line.
The extra points are created on the part of the attainment
surface that lies between the solution with the highest
complexity and the solution with the lowest complexity.
This part of the attainment surface is depicted in Fig. 5 by
the thick part. Half of the extra points are now evenly
spread over the horizontal parts and the other half over the
vertical parts. An important advantage of this solution is
that it maintains both above described advantages of the
dominance-based performance measure.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Complexity

F
it

Fig. 5 Example of the APF and the attainment surface

322 Struct Multidisc Optim (2008) 35:315–326

The Pareto simulated annealing version of algorithm 1 is
described in algorithm 3. Note that step 6 and step 7 are
adapted and that step 9 is added. To efficiently store and
update the APF, we use two vectors containing, respective-
ly, the complexities and fits of the functions in the APF. In
these vectors, the functions are ordered according to
increasing complexity. For functions in the APF, this is
equivalent to sorting them according to decreasing fit. With
these two vectors, we can easily determine if the current
solution dominates or is dominated by solutions in the APF.
We only change the APF in two ways. Firstly, if some
solutions in the APF are dominated by the current solution,
we remove these solutions. Secondly, if no solution in the
APF dominates our current solution, the current solution is
added to the APF.

Algorithm 3. The Pareto simulated annealing version of
the symbolic regression algorithm. The differences to
algorithm 2 are noted in italics.

4 Numerical comparison to other metamodel types

In this section, we present a comparison between our
suggested approach and two other metamodels approaches.
First of all, we compared the results of our algorithm to the

Kriging model (for details on fitting Kriging models, see
Sacks et al. 1989). Next, we compared the results to
symbolic regression based on genetic programming. We
used the implementation of Smits and Kotanchek (2004) to
compare our results.

From Sections 2 and 3, it can be noted that there are
many parameters in our algorithm that may influence the
numerical results. However, the reannealing concept takes
care of the simulated annealing parameters. Most other
parameters that we varied turned out to be insensitive with
respect to the quality of the model, except the tree depth
and the number of trees. We varied these parameters in the
first case.

4.1 The six-hump-camel-back function

The first case is called the six-hump-camel-back function
Fig. 6. This is an explicit formula, which has the advantage
that we can accurately assess how the approximations
compare to the real function. For the training set, we
created a two-dimensional space-filling latin hypercube
design (LHD) containing 30 experiments on the range [−2,
2]×[−1, 1]. Using 30 experiments, it should be possible to
build an accurate model. A space-filling (Maximin) LHD is
often used for the approximation of deterministic simula-

Fig. 6 The six-hump camel
back function (left) and the
meta-model (right)

0: Initialize: find a good initial set of transformation functions
 Repeat
1: Adapt annealing temperature
2: Select a transformation function
3: Change the selected transformation function
4: Check the integrity of the model
 If the integrity-check is OK then
5: Calculate the coefficients of the model
6: Evaluate the quality and complexity of the approximating model
7: Always accept the change if the model dominates its predecessor or if it is
 equally good.
 Otherwise, accept the change with a probability based on the performance
 difference and the annealing temperature.
 If the model is accepted
8: Simplify the selected transformation function
9: Compare the model with the current APF and update the APF if necessary
 Endif
 Endif
10: Until stopping criterion is reached

Struct Multidisc Optim (2008) 35:315–326 323

tion models. For details on the construction of such LHDs,
we refer to Morris and Mitchell (1995).

The explicit formula is given by:

f x1; x2ð Þ ¼ x21 4� 2:1x21 þ
x41
3

� �
þ x1x2

þ x22 �4þ 4x22
	
 ð11Þ

The best symbolic regression function that was found on
this data set is selected by choosing the function with the
lowest RMSE with an acceptable complexity from the Pareto
front. This selection process depends on the priorities of the
user. If a simple model is requested, then a worse model fit
would be accepted. The chosen metamodel is given by:

f x1; x2ð Þ ¼ c1 þ c2 cos x1ð Þ þ c3 cos 2x1ð Þ
þ c4 x1x2ð Þ þ c5 cos x2ð Þ þ c6 sin c7x

2
1

	

þ c8x

2
1; ð12Þ

where ci is a constant. Note that all constants can be fit using
linear regression except c7, which was randomly entered by
our algorithm. Further note that unfortunately, the formula
(12) has very little resemblance to formula (11). If we would
have carried out enough iterations, and the original function
would fit in the model trees that we would have used (i.e.,
enough terms and tree depth), then the algorithm would have
come up with the original function. With less complex test
functions, we have rediscovered the original functional
format.

The APF after 200,000 iterations was calculated in a few
minutes on a modern PC (2.00 GHz Intel Pentium M
processor). The time intensive part of each iteration is the
calculation of the least squares coefficients and the cross
validation statistic. This is a o n3 þ m2ð Þ operation, where n
is equal to the number of transformation functions and m is
equal to the number of experiments. The APF is depicted in
Fig. 7. To compare the actual quality of the metamodel, we
created another test set of 30 experiments, by extending the
original LHD to a new space-filling LHD consisting of 60
experiments. The results are printed in Table 4.

These results were found with a maximal tree depth of 4.
Increasing the tree depth to 6 led to considerably more
complex metamodels, but also even better results on the test
and training set.

The second test case is also based on an exact formula.
This example originates from Smits and Kotanchek (2004)
of Dow Core R&D. The data consists of five input
variables x1; . . . ; x5ð Þ 2 0; 4½ �5, of which only the first two
(x1 and x2) are significant. The output variable (y) consists
of two parts. The first part is an explicitly known formula;

Fig. 7 A linear interpolation of the points in the APF for the six-
hump camel back case after 200,000 iterations, in which the crosses
represent the Pareto optimal solutions. Note that this is not the
attainment surface of the APF (The fit on the vertical axis is a linear
combination of CV-RMSE and RMSE)

Table 4 Results for the metamodels on the six-hump-camel-back case

RMSE on the
training set

RMSE on the test set

Kriging model 0 0.1119
Symbolic
regression model/
SA

0.0367 0.0386

Symbolic
regression model/
GP

0.114 0.141

Fig. 8 The second example is based on an explicit function in x1 and
x2, with added noise

324 Struct Multidisc Optim (2008) 35:315–326

the second part is noise. The explicitly known formula is
given by

y x1; x2; x3; x4; x5ð Þ ¼ e� x2�1ð Þ2

1:2þ x1 � 2:5ð Þ2 ; ð13Þ

to which we will refer as the Kotanchek formula. In Fig. 8,
a plot of the Kotanchek formula is depicted.

We assume the noise to be uniformly distributed in the
interval [−0.05, 0.05]. On 100 data points (again a space-
filling LHD), four Pareto fronts were created in 200,000
iterations using different settings of the algorithm: two or
six terms and a tree depth of four or seven. For each of the
settings, a good function was chosen from the Pareto front
by selecting a function with a low RMSE and an acceptable

complexity, and for which the RMSE cannot be improved
much by selecting a function with higher complexity. Then,
a test set of 50 data points is generated by extending the
LHD. Table 5 contains the results for this experiment. The
results are compared with the Kriging model. On the test
set, the result of the Kriging model is comparable to the
best symbolic regression model. It is far less interpretable
though, since it consists of 100 terms in which all 5
dimensions are present.

The four metamodels are depicted in Fig. 9.
We conclude that for this experiment, even the com-

plexity used by the model with six terms and a tree depth of
seven, overfitting has not occurred. Metamodels one, two
and four consist of only variables x1 and x2. Metamodel
three consists of variables x1, x2 and x3.

2 terms, depth 4 2 terms, depth 7

6 terms, depth 4 6 terms, depth 7

Fig. 9 The four meta-models
for the Kotanchek set. The var-
iable x3 is fixed to 0

Table 5 The training set and test set results for the four symbolic regression models and the kriging model

Metamodel No. terms Tree depth Training set RMSE Test set RMSE

Symbolic regression model/SA 1 2 4 0.111 0.090
Symbolic regression model/SA 2 2 7 0.104 0.088
Symbolic regression model/SA 3 6 4 0.056 0.052
Symbolic regression model/SA 4 6 7 0.041 0.037
Kriging 0 0.039
Symbolic regression model/GP 0.033 0.048

Struct Multidisc Optim (2008) 35:315–326 325

5 Conclusion

In this paper, we have described a simulated-annealing-
based approach to symbolic regression. We have elaborated
on the algorithm and data structures, and have presented the
results based on two cases. We conclude that although it
requires some effort to find the best symbolic regression
model, the quality of the metamodels that can be found are
very promising. A large advantage of symbolic regression
compared to Kriging is interpretability. The complexity
measure as described in this paper is a quantification of the
interpretability. Although the expressions used by the
symbolic regression metamodels are less complex, the fit
results are comparable or better than Kriging models.
Compared to genetic programming approaches, our method
offers a better way of dealing with constants in the model
via linear regression. In genetic programming, estimating
constants is a big issue. Further, the amount of models that
need to be evaluated in a simulated annealing method will
on average be less compared to the tens of thousands of
models that need to be evaluated in each generation of
Genetic Programming. Usually, many generations are
needed to come up with an acceptable model. However,
further testing on a wider variety of test functions will need
to be performed to validate these claims. The Pareto
simulated annealing algorithm produces a list of solutions
with different fit/complexity trade-offs. This gives the user
flexibility to choose the metamodel that best fits his or her
demands.

There are some open issues though. One significant
improvement of the algorithm might be found by first
applying a number of transformations of the response data.
Next, the search procedure can check the metamodel on all
transformation without much computational effort and
select not only the best transformation functions for the in-
put parameters, but also the best transformation for the
output parameter. Another interesting extension to the
algorithm could be fitting rational functions of transforma-
tion functions. This would increase the number of param-
eters in the metamodel that can be efficiently calculated,
and thus probably increase the quality of the model. Finally,
it would be beneficial to be able to dynamically alter the
number of terms and the depth of the trees during the
search. That way, the user would not need to make these
decisions.

Acknowledgement The authors would like to acknowledge Guido
Smits and Katya Vladislavleva of DOW Chemical for sharing the
comparison data and the valuable discussions on symbolic regression.
Further, we would like to thank the anonymous referees for their
valuable comments.

References

Aarts E, Korst J (1989) Simulated annealing and boltzmann machines:
a stochastic approach to combinatorial optimization and neural
computing. Wiley, Chichester

Alexandrov NM, Dennis JE, Lewis RM, Torczon V (1998) A trust
region framework for managing use of approximation models in
optimization. J Struct Optim 15(1):16–23

Barthelemy JFM, Haftka RT (1993) Approximation concepts for
optimum structural design—a review. J Struct Optim 5:129–144

Cuyt A, Verdonk B (1992) Multivariate rational data fitting: general
data structure, maximal accuracy and object orientation. Numer
Algorithms 3:159–172

Czyżak P, Jaszkiewicz A (1998) Pareto simulated annealing—a
metaheuristic technique for multiple-objective combinatorial
optimization. J Multi-Criteria Decis Anal 7(1):34–47

Gambling M, Jones RD, Toropov VV, Alvarez LF (2001) Application
of optimization strategies to problems with highly non-linear
response. In engineering design optimisation, proceedings of the
3rd ASMO UK/ISSMO conference on engineering design
optimization. Harrogate, UK, pp 249–256 (9–10 July)

Garishina NV, Vladislavleva CJ (2004) On development of a
complexity measure for symbolic regression via genetic program-
ming. Technical report, Mathematics for industry program of the
Stan Ackermans Institute, Eindhoven

Jin R, Chen W, Simpson T (2001) Comparative studies of metamodel-
ing techniques under multiple modeling criteria. Struct Multi-
discipl Optim 23(1):1–13

Jin R, Du X, Chen W (2003) The use of metamodeling techniques for
optimization under uncertainty. Struct Multidiscipl Optim 25:99–116

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimiza-
tion of expensive black-box functions. J Glob Optim 13:455–492

Keijzer M (2003) Improving symbolic regression with interval
arithmetic and linear scaling. In genetic programming, proceed-
ings of EuroGP’2003, vol. 2610 of LNCS. Essex, UK, pp 71–83

Koza JR (1992) Genetic programming: on the programming of
computers by means of natural selection. MIT, Cambridge,
MA, USA

Mathews JH, Fink KD (2004) Numerical methods using matlab, 4th
edn. Prentice Hall Pub, Upper Saddle River, NJ, USA

Montgomery DC (1984) Design and analysis of experiments. Wiley,
New York

Morris MD, Mitchell TJ (1995) Exploratory designs for computer
experiments. J Stat Plan Inference 43:381–402

Powell MJD (1987) Radial basis functions for multivariable interpo-
lation: a review. In: Algorithms for approximation of functions
and data. Oxford University Press, Oxford, UK, pp 143–167

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis
of computer experiments. Stat Sci 4:409–435

Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN, Yang RJ
(2004) Approximation methods in multidisciplinary analysis and
optimization: a panel discussion. Struct Multidiscipl Optim 27
(5):302–313

Smith KI, Everson RM, Fieldsend JE (2004) Dominance measures for
multi-objective simulated annealing. In: Proceedings of the 2004
IEEE Congress on Evolutionary Computation. IEEE Press, New
Jersey, pp 23–30

Smits G, Kotanchek M (2004) Pareto-front exploitation in symbolic
regression. In: Genetic programming theory and practice II.
Springer, Ann Arbor, USA, pp 283–299

Vapnik V, Golowich SE, Smola A (1997) Support vector method for
function approximation, regression estimation, and signal pro-
cessing. In: Advances in NeuralIAProcessings Systems. MIT,
Cambridge, MA, USA, pp 281–287

326 Struct Multidisc Optim (2008) 35:315–326

	Metamodeling by symbolic regression and Pareto simulated annealing
	Abstract
	Introduction
	Symbolic regression approach
	Model structure
	Finding the best transformation functions

	Extensions to the basic algorithm
	Reasons for extension
	Complexity measure
	Pareto simulated annealing

	Numerical comparison to other metamodel types
	The six-hump-camel-back function

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

