
Archive for Mathematical Logic
https://doi.org/10.1007/s00153-024-00928-3 Mathematical Logic

Positive indiscernibles

Mark Kamsma1

Received: 27 June 2023 / Accepted: 16 April 2024
© The Author(s) 2024

Abstract
We generalise various theorems for finding indiscernible trees and arrays to positive
logic: based on an existing modelling theorem for s-trees, we prove modelling theo-
rems for str-trees, str0-trees (the reduct of str-trees that forgets the length comparison
relation) and arrays. In doing so, we prove stronger versions for basing—rather than
locally basing or EM-basing—str-trees on s-trees and str0-trees on str-trees. As an
application we show that a thick positive theory has k-TP2 iff it has 2-TP2

Keywords Positive logic · Generalised indiscernibles · Modelling theorem ·
Indiscernible tree · Indiscernible array · Tree property

Mathematics Subject Classification 03C45 (Primary) · 03C95 · 03B20 (Secondary)

Contents

1 Introduction .
2 Preliminaries .
3 Generalised indiscernibles .
4 The tree modelling theorems .
5 The array modelling theorem .
6 An application: TP2 .
References .

1 Introduction

As model theory in positive logic is maturing [1, 2, 5–7, 10] the need for the develop-
ment of tools available to us in full first-order logic becomesmore andmore necessary.
An important notion in model-theoretic arguments is that of indiscernibles. The most
popular occurrence of this is an indiscernible sequence: a sequence where any two
finite subsequences have the same type. The notion of indiscernibility can be gener-
alised by replacing the linear order that indexes an indiscernible sequence by another

B Mark Kamsma
mark@markkamsma.nl

1 Department of Mathematics, Imperial College London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-024-00928-3&domain=pdf

M. Kamsma

indexing structure. In this paper we consider various kinds of trees and an array as
indexing structure. The main results are modelling theorems for positive logic, which
allow us to find indiscernibles indexed by trees or arrays based on an arbitrary set of
parameters indexed by the same structure, while inheriting certain local structure.

Tree indiscernibles have already found deep applications in model theory. For
example, in the development of Kim-independence for NSOP1 theories [7, 13]. Their
original motivation stems from the proof of [17, Theorem III.7.11], which is the cel-
ebrated theorem that a theory is simple iff it is NTP1 and NTP2. In that proof the
existence of tree indiscernibles is claimed, and the details are filled in [12].

As any full first-order theory can be seen as a (thick) positive theory (see Remark
2.2), our main results are a direct generalisation of existing results for full first-order
logic [12, 15, 18]. The main difficulty in generalising the proofs is that arguments
using Ramsey’s theorem break down. In these arguments one can write down a partial
type that expresses indiscernibility formula by formula, using formulas of the form
∀x1x2(ϕ(x1) ↔ ϕ(x2)). By compactness one can then reduce to finding parameters
that are indiscernible with respect to a finite set of formulas. This can be done using
Ramsey’s theorem by colouring using types restricted to this finite set of formulas,
of which there are finitely many. In positive logic, under the assumption of thickness,
we can still write down a partial type expressing indiscernibility. However, this is no
longer necessarily done formula by formula. So instead we have to use all possible
types as colours, of which there are infinitely many. The solution is to replace the
use of Ramsey’s theorem by the Erdős-Rado theorem. This makes arguments more
complicated, but we also get stronger statements (see Theorems 4.8 and 4.10).

Main results. Our main results are the following three modelling theorems. The
thickness assumption is the mild assumption that being an indiscernible sequence is
type-definable (Definition 2.6). Further justification and reason for this assumption is
given in the discussion after Definitions 2.6 and 4.4. For the other definitions involved,
we refer the reader to Sect. 3.

Theorem 1.1 (str-modelling) Let T be a thick theory. Let (aη)η∈ω<ω be a tree of tuples
of the same length and let C be any set of parameters, then there is a tree (bη)η∈ω<ω

that is str-indiscernible over C and EMstr-based on (aη)η∈ω<ω over C.

In the process of proving the above theorem we prove Theorem 4.8, which states that
given a tall enough s-indiscernible tree we can base an str-indiscernible tree on it. This
statement is interesting on its own because more information is carried over when
basing one tree on another, instead of EM-basing trees on each other. Similarly, in
proving the following theorem we prove that str0-trees can be based on str-trees, see
Theorem 4.10.

Theorem 1.2 (str0-modelling) Let T be a thick theory. Let (aη)η∈ω<ω be a tree of
tuples of the same length and let C be any set of parameters, then there is a tree
(bη)η∈ω<ω that is str0-indiscernible over C and EMstr0 -based on (aη)η∈ω<ω over C.

Theorem 1.3 (array modelling) Let T be a thick theory. Let (ai, j)i, j<ω be an array
of tuples of the same length and let C be any set of parameters, then there is an array
(bi, j)i, j<ω that is array-indiscernible over C and EMar-based on (ai, j)i, j<ω over C.

123

Positive indiscernibles

As an application of the array modelling theorem we generalise the following from
full first-order logic, completing a task from [6, Remark 7.3].

Theorem 1.4 Let T be a thick theory. If ϕ(x, y) has k-TP2 for some k ≥ 2 then some
conjunction

∧n
i=1 ϕ(x, yi) has 2-TP2. Hence, T has k-TP2 for some k ≥ 2 iff T has

2-TP2.

2 Preliminaries

We only recall the definitions and facts about positive logic that we need, for a more
extensive treatment and discussion see [1, 5] and for a more survey-like overview see
[7, Section 2].

Definition 2.1 A positive formula in a fixed language is one that is obtained from
combining atomic formulas using ∧, ∨, �, ⊥ and ∃. An h-inductive sentence is a
sentence of the form ∀x(ϕ(x) → ψ(x)), where ϕ(x) and ψ(x) are positive formulas.
A positive theory is a set of h-inductive sentences.

Remark 2.2 Full first-order logic can be studied as a special case of positive logic.
This is done through Morleyisation. For this we add a relation symbol Rϕ(x) to our
language for every full first-order formula ϕ(x), and have our theory (inductively)
express that Rϕ(x) and ϕ(x) are equivalent. This way every first-order formula is
equivalent to a relation symbol, and thus in particular to a positive formula.

We are interested in positively closed models. There are various characterisations (see
e.g. [7, Definition 2.5], where they are called “existentially closed”), but we only need
one.

Definition 2.3 We call a model M of a positive theory T positively closed or p.c. if
for every positive formula ϕ(x), whenever M �| ϕ(a) then there is a positive formula
ψ(x) that implies ¬ϕ(x) modulo T , i.e. T | ¬∃x(ϕ(x) ∧ ψ(x)), with M | ψ(a)

A positive type will be a set of positive formulas, over some parameter set B, satisfied
by some tuple a in some p.c. model M :

tp(a/B) = {ϕ(x, b) : ϕ is a positive formula, M | ϕ(a, b) and b ∈ B}.

Given a positive theory T , we will work in a monster model M of that theory. For
this we need to assume the joint continuation property or JCP for T . This means that
for any two models M1 and M2 of T there is a third model N with homomorphisms
M1 → N ← M2. This is the positive version of working in a complete theory, and
we can always extend a positive theory T to one with JCP by taking the set of all
h-inductive sentences that are true in some p.c. model of T .

The monster modelM of T can then be constructed as usual. We let the reader fix
their favourite notion of smallness (e.g., fix a big enough cardinal κ , and let “small”
mean < κ). We recall the properties of a monster modelM:

• positively closed, M is a p.c. model of T ;

123

M. Kamsma

• very homogeneous, for any small a, b,C we have that tp(a/C) = tp(b/C) iff there
is f ∈ Aut(M/C) with f (a) = b (we will also write a ≡C b);

• very saturated, any finitely satisfiable small set of positive formulas � over M is
satisfiable inM.

As usual,wewill omit themonstermodel fromnotation. For example,wewrite | ϕ(a)

instead of M | ϕ(a).
We stress that the monster is only saturated for sets of positive formulas, and so

we can only apply compactness to such sets. This is where the main challenges in
generalising arguments from the full first-order setting stem from.

Definition 2.4 A sequence (ai)i∈I (for some linear order I) is C-indiscernible if for
any i1 < . . . < in and j1 < . . . < jn in I we have that ai1 . . . ain ≡C a j1 . . . a jn .

Definition 2.5 We write dC (a, a′) ≤ n if there are a = a0, a1, . . . , an = a′ such that
ai and ai+1 are on a C-indiscernible sequence for all 0 ≤ i < n, and we say that a
and a′ have Lascar distance at most n.

Definition 2.6 ([3, Proposition 1.5]) A positive theory T is called thick if the following
equivalent conditions hold:

(i) being an indiscernible sequence is type-definable, i.e. there is a partial type
�((xi)i<ω) such that | �((ai)i<ω) iff (ai)i<ω is an indiscernible sequence;

(ii) the property dz(x, y) ≤ n is type-definable for all n < ω, i.e. for all n < ω there
is a partial type �n(x, y, z) such that | �n(a, a′,C) iff dC (a, a′) ≤ n.

Note that it is essential in Definition 2.6 that we evaluate the partial types in a p.c.
model, which we indeed do by working in a monster model.

Thickness is amild assumption, as it is satisfied bymany classes of positive theories.

• Any full first-order theory, seen as a positive theory (Remark 2.2), is thick.
• Any continuous theory in the sense of [4] is Hausdorff, and therefore thick.
• Jonsson theories, and even the positive Jonsson theories from [14], by definition
have the property that any span M1 ← M0 → M2 of homomorphisms between
models can be amalgamated. This implies that these theories are Hausdorff by [5,
Theoreme 20]), and so in particular they are thick.

• Adding hyperimaginaries, such as the T heq construction, preserves thickness, see
[7, Theorem 10.17].

• Specific examples include the positive NIP theories in [8, Section 6.3] and the
positive theory of exponential fields from [10]. These are both in the class of
positive Jonsson theories. Another specific example, which is not in any of the
classes mentioned before, is the positive theory of bilinear spaces over a fixed
infinite field from [11], which is semi-Hausdorff and thus thick (see Proposition
4.14 there).

Furthermore, neostability theory, where results like the ones in this paper often find
their applications, works best under the thickness assumption. For example, without
thickness a stable theory may not be simple in the sense that local character fails
for dividing [2, Example 4.3]. In [7] thickness is crucial for the existence of Lascar-
invariant types, which are the basis for Kim-dividing in positive NSOP1 theories.

123

Positive indiscernibles

Conventions.

• Whenever we say “formula”, “type” or “theory” we will mean “positive formula”,
“positive type” and “positive theory” respectively, unless explicitly stated other-
wise. This also means that every formula, type and theory we consider will be
implicitly assumed to be positive.

• Let I be some indexing set and suppose that we have an I -indexed set of variables
(xi)i∈I or parameters (ai)i∈I . Then for any tuple η̄ = (η1, . . . , ηn) in I we write
xη̄ and aη̄ for the tuples (xη1 , . . . , xηn) and (aη1 , . . . , aηn) respectively.

3 Generalised indiscernibles

The following idea stems from [17, Definition VII.2.4].

Definition 3.1 Let L be a language (which we always assume to include the equality
symbol), I an L-structure, and (ai)i∈I an I -indexed set of parameters. We will refer
to I as the indexing structure. Let C be any parameter set. We say that (ai)i∈I is
I -indiscernible over C if for any two tuples η̄ and ν̄ in I we have that

qftpL(η̄) = qftpL(ν̄) ⇒ aη̄ ≡C aν̄ ,

where qftpL(η̄) is the quantifier-free L-type of η̄.

At the end of Sect. 2wemade a convention about every formula and type being positive.
For the quantifier-free L-types in the indexing structures this has no real effect. This
is because we will only be interested in whether or not such quantifier-free L-types
are equal, and two tuples have the same quantifier-free L-type in the full first-order
sense if and only if they satisfy the same atomic L-formulas. In other words, for the
quantifier-free L-formulas, where L is the language of some indexing structure, we
may as well allow the ¬ symbol.

Example 3.2 We letL< = {<} be the language with a single ordering symbol and con-
siderω as anL<-structure with the usual ordering. Then (ai)i<ω beingω-indiscernible
over C means precisely that (ai)i<ω is a C-indiscernible sequence.

Definition 3.3 Let L be some language and let (ai)i∈I and (bi)i∈I ′ be two sets of
parameters indexed by L-structures I and I ′ respectively. Let furthermore C be any
parameter set. We say that (bi)i∈I ′ is L-based on (ai)i∈I over C if for any finite tuple
η̄ in I ′ there is a tuple ν̄ in I such that qftpL(ν̄) = qftpL(η̄) and bη̄ ≡C aν̄ .

We say that (bi)i∈I ′ is locally L-based on (ai)i∈I over C if for any finite tuple η̄ in
I ′ and any formula ϕ(xη̄) over C such that | ϕ(bη̄) there is a tuple ν̄ in I such that
qftpL(ν̄) = qftpL(η̄) and | ϕ(aν̄).

We note the difference in terminology from [12, Definition 3.8], where “based on” is
used for what we call “locally based on”, a distinction that is further promoted in [15,
Definition 2.5]. The difference is important, see Example 3.11. Another difference is

123

M. Kamsma

that we call it “(locally) L-based on” instead of “(locally) I -based on”, this is because
we wish to compare sets of parameters indexed by different structures in the same
language.

Remark 3.4 An alternative formulation to (bi)i∈I ′ being locally L-based on (ai)i∈I
over C is the following (see e.g. [15, Definition 2.5]). For any finite set of formulas

with parameters in C denote by tp
(a/C) the restriction of tp(a/C) to the formulas
in
. Then (bi)i∈I ′ is locally L-based on (ai)i∈I over C if for every finite set
 of
formulas over C and any finite tuple η̄ in I ′ there is a finite tuple ν̄ in I with the same
quantifier-freeL-type such that tp
(bη̄/C) = tp
(aν̄/C). This is indeed an equivalent
formulation, even in positive logic. It clearly implies the formulation in Definition 3.3,
so we prove the converse.

Let ϕ ∈
 be some formula and let η̄′ ⊆ η̄ be a tuple whose length matches the
number of free variables in ϕ. Define ψϕ,η̄′(xη̄′) as follows: if | ϕ(bη̄′) then take
ψϕ,η̄′(xη̄′) to be ϕ(xη̄′), otherwise there is χ(xη̄′) that implies ¬ϕ(xη̄′) modulo T such
that | χ(bη̄′) and we take ψϕ,η̄′(xη̄′) to be χ(xη̄′). Now let

ψ(xη̄) =
∧

{ψϕ,η̄′(xη̄′) : ϕ ∈
 and η̄′ ⊆ η̄ matching the free variables in ϕ}.

By construction | ψ(bη̄) and so there is ν̄ in I such that | ψ(aν̄), from which it
follows that tp
(bη̄/C) = tp
(aν̄/C).

Example 3.5 We recall the following fact for finding indiscernible sequences [2,
Lemma 1.2]. Let C be any parameter set and let κ be any cardinal, and set λ =
�(2|T |+|C |+κ)+ . Then for any sequence (ai)i<λ of κ-tuples there is a C-indiscernible
sequence (bi)i<ω such that for all n < ω there are i1 < . . . < in < λ with
b1 . . . bn ≡C ai1 . . . ain .

With C , κ and λ as above, this is exactly saying that for any sequence (ai)i<λ there
is C-indiscernible (bi)i<ω that is L<-based on (ai)i<λ over C .

Definition 3.6 Let I be a structure in some language L, let (ai)i∈I be an I -indexed set
of parameters and let C be some set of parameters. We write

EML((ai)i∈I /C) = {ϕ(xη̄) : ϕ(xη̄) is a formula with parameters in C and

| ϕ(aν̄) for all ν̄ with qftpL(ν̄) = qftpL(η̄)}.

for the EML-type of (ai)i∈I over C , which is a partial type in variables (xi)i∈I . For
ϕ(xη̄) ∈ EML((ai)i∈I /C) we call qftpL(η̄) the associated quantifier-free L-type.

Let I ′ be a second L-structure. We say that (bi)i∈I ′ is EML-based on (ai)i∈I over
C if the following holds: for any ϕ ∈ EML((ai)i∈I /C) with associated quantifier-free
L-type , and any tuple η̄ in I ′ realising we have that | ϕ(bη̄).

The name “EM-type” is short for “Ehrenfeucht-Mostowski type” and the above is a
straightforward generalisation from the traditional case where the indexing structure
is a linear order (see e.g. [19, Definition 5.1.2]).

It could be the case that (bi)i∈I ′ is (locally) L-based or EML-based on (ai)i∈I
because I does not realise a quantifier-free L-type that is realised in I ′, or vice versa.

123

Positive indiscernibles

For example, for any sequence (ai)i<ω we have that a0 (as a singleton indexed set) is
L<-based on (ai)i<ω. To circumvent this issue we introduce the following definition,
which will be satisfied by all our indexing structures of interest.

Definition 3.7 Two L-structures I and I ′ are qftp-comparable if I ′ realises every
quantifier-free L-type in finitely many variables that is realised in I , and vice versa.

Remark 3.8 Let I , I ′ and I ′′ be pairwise qftp-comparable L-structures. Suppose that
(di)i∈I ′′ is L-based on (bi)i∈I ′ over some parameter set C and (bi)i∈I ′ is L-based on
(ai)i∈I over C . Then (di)i∈I ′′ is L-based on (ai)i∈I over C . We call this “transitivity
of L-basing”, and similarly for locally L-basing and EML-basing.

Remark 3.9 Let I and I ′ be two qftp-comparable L-structures. Then we can equiva-
lently be phrase the definition of being EML-based as follows. Define

�((xi)i∈I ′) = {ϕ(xη̄) : η̄ is a finite tuple in I ′ and
for some tuple ν̄ in I with qftpL(ν̄) = qftpL(η̄)

we have that ϕ(xν̄) ∈ EML((ai)i∈I /C)}.

Then (bi)i∈I ′ is EML-based on (ai)i∈I over C iff �((xi)i∈I ′) ⊆ EML((bi)i∈I ′/C)

iff | �((bi)i∈I ′). Note that when I = I ′ then �((xi)i∈I) = EML((ai)i∈I /C), so in
that case we get that (bi)i∈I is EML-based on (ai)i∈I over C iff EML((ai)i∈I /C) ⊆
EML((bi)i∈I /C) iff (bi)i∈I | EML((ai)i∈I /C).

Proposition 3.10 Let (ai)i∈I and (bi)i∈I ′ be sets of parameters indexed by qftp-
comparable L-structures I and I ′ respectively. For any parameter set C we have
that (i) ⇒ (ii) ⇒ (iii) as below:

(i) (bi)i∈I ′ is L-based on (ai)i∈I over C,
(ii) (bi)i∈I ′ is locally L-based on (ai)i∈I over C,
(iii) (bi)i∈I ′ is EML-based on (ai)i∈I over C.

Proof The implication (i) ⇒ (ii) is clear (even without the assumption of being
qftp-comparable), we prove (ii) ⇒ (iii). So let ϕ ∈ EML((ai)i∈I /C) and let be
the associated quantifier-free L-type. Let η̄ be a tuple in I ′ satisfying , which exists
by qftp-comparability. Suppose for a contradiction that �| ϕ(bη̄). Then there is ψ(x̄)
that implies ¬ϕ(x̄) modulo T such that | ψ(bη̄). As (bi)i∈I ′ is locally L-based on
(ai)i∈I over C there must then be ν̄ with qftpL(ν̄) = qftpL(η̄) such that | ψ(aν̄).
However, that means that �| ϕ(aν̄), contradicting ϕ ∈ EML((ai)i∈I /C). ��
Example 3.11 None of the implications in Proposition 3.10 are reversible, not even
assuming thickness. As an example we will consider a language with countably many
constants (ci)i<ω and the structure M consisting of only the constants, which are all
interpreted as distinct elements.

First we consider the full first-order theory ofM andwork in amonstermodel of this
theory (in the full first-order sense). This theory has quantifier elimination, because
every type is determined by its quantifier-free part. Let (ai)i<ω be a sequence of distinct
elements in themonster that are not equal to any of the constant symbols. Then (ai)i<ω

123

M. Kamsma

is locally L<-based on the sequence (ci)i<ω that enumerates the constants, but it is
not L<-based on this sequence (in both cases over ∅).

Next we consider the positive theory T of M (i.e. all h-inductive sentences true in
M). So T just expresses that all the constants are distinct, and M is the only p.c. model
of T (up to isomorphism) and is thus the monster. Consider the sequence (bi)i<ω with
constant value c0, so bi = c0 for all i < ω. Then (bi)i<ω is EML<

-based on (ci)i<ω

but it is not locally L<-based on (ci)i<ω (in both cases over ∅).
Note that in the last case we really needed to consider an example in positive logic.

The key is that x0 �= x1 is not a positive formula and is thus not in the EML<
-type.

In fact, as is well known, in full first-order logic we do have that (ii) and (iii) from
proposition 3.10 are equivalent (for qftp-comparable structures). We include a proof
for completeness’ sake, and to point out the usage of negation.

Let η̄ be any finite tuple in I ′ and letϕ(xη̄) be any formula overC such that | ϕ(bη̄).
Suppose for a contradiction that there is no tuple ν̄ in I with qftpL(ν̄) = qftpL(η̄) such
that | ϕ(aν̄). Then | ¬ϕ(aν̄) for all such ν̄. Now picking one such ν̄, which exists
by qftp-comparability, we get ¬ϕ(xν̄) ∈ EML((ai)i∈I /C). This is a contradiction,
because then | ¬ϕ(bη̄) as (bi)i∈I ′ is EML-based on (ai)i∈I over C .

Remark 3.12 Versions of the proof of Proposition 3.10 and the argument at the end
of Example 3.11 reveal an equivalent formulation of being EML-based, which is a
negative version of being locally L-based. Namely, (bi)i∈I ′ is EML-based on (ai)i∈I
over C if for any finite tuple η̄ in I ′ and any formula ϕ(xη̄) over C such that �| ϕ(bη̄)

there is a tuple ν̄ in I such that qftpL(ν̄) = qftpL(η̄) and �| ϕ(aν̄).
We will continue working with the EM-type perspective, because that makes it

immediately clear that type-definable behaviour is captured and thus carried over.

Remark 3.13 In Example 3.5 we saw that we can base an indiscernible sequence on
a sufficiently long sequence. In Example 3.11 we saw examples of indiscernible
sequences that are EML<

-based on sequences of length ω (the sequences (ai)i<ω

and (bi)i<ω there are indiscernible). This can always be done and illustrates the use
of EM-types.

That is, for any sequence (ai)i<ω of tuples of the same length and any parameter
set C there is a C-indiscernible sequence (bi)i<ω that is EML<

-based on (ai)i<ω over
C . To see this we let λ be the cardinal from Example 3.5. Then we define

�((xi)i<λ) = {ϕ(xi1 , . . . , xin) : ϕ(x1, . . . , xn) ∈ EML<
((ai)i<ω/C)

and i1 < . . . < in < λ},

note that this is the same construction of � as in Remark 3.9, just specialised to L<.
Let (a′

i)i<λ be any realisation of �, which exists by compactness because every finite
part of � is realised by (ai)i<ω. Then use Example 3.5 to L<-base a C-indiscernible
sequence (bi)i<ω on (a′

i)i<λ. By Proposition 3.10 this means that (bi)i<ω is in partic-
ular EML<

-based on (a′
i)i<λ over C , which is in turn EML<

-based on (ai)i<ω over C
by construction. Since EM-basing is transitive, we conclude that (bi)i<ω is as required.

123

Positive indiscernibles

In the remainder of this section we provide tools to deal with carrying over indiscerni-
bility and EM-types between indexing structures in different languages. We refer to
Example 4.3 for examples.

Definition 3.14 ([16, Definition 3.2]) Let L and L′ be languages and I and I ′ be
structures in those respective languages.We call a function f : I → I ′ qftp-respecting
if for any two finite tuples η̄ and ν̄ in I we have that qftpL(η̄) = qftpL(ν̄) implies
qftpL′(f (η̄)) = qftpL′(f (ν̄)).

Lemma 3.15 (Re-indexing lemma) Let f : I → I ′ be a qftp-respecting function
between structures I and I ′ in languagesL andL′ respectively. LetC be any parameter
set.

(i) Let (a′
i)i∈I ′ and (ai)i∈I be such that ai = a′

f (i) for all i ∈ I . If (a′
i)i∈I ′ is I ′-

indiscernible over C then (ai)i∈I is I -indiscernible over C.
(ii) Let (a′

i)i∈I ′ , (b′
i)i∈I ′ , (ai)i∈I and (bi)i∈I be such that ai = a′

f (i) and bi = b′
f (i)

for all i ∈ I . If f is surjective and (bi)i∈I is EML-based on (ai)i∈I over C then
(b′

i)i∈I ′ is EML′ -based on (a′
i)i∈I ′ over C.

(iii) Suppose that there is g : J → I , where J is an L′-structure, such that f g is an
L′-embedding. Let (a′

i)i∈I ′ , (bi)i∈I , (ai)i∈I and (b′
j) j∈J be such that ai = a′

f (i)
and b′

j = bg(j) for all i ∈ I and j ∈ J . If (bi)i∈I is EML-based on (ai)i∈I over
C then (b′

j) j∈J is EML′ -based on (a′
i)i∈I ′ over C.

Proof

(i) Let η̄ and ν̄ be tuples in I such that qftpL(η̄) = qftpL(ν̄) then qftpL′(f (η̄)) =
qftpL′(f (ν̄)) because f is qftp-respecting. Hence, by I ′-indiscernibility of (a′

i)i∈I ′
we have that aη̄ = a′

f (η̄) ≡C a′
f (ν̄) = aν̄ .

(ii) Let ϕ ∈ EML′((a′
i)i∈I ′/C) and let ′ be the associated quantifier-free L′-type.

Let η̄′ be any tuple in I ′ satisfying ′. By surjectivity there is a tuple η̄ in I
such that f (η̄) = η̄′. For any tuple ν̄ in I such that qftpL(ν̄) = qftpL(η̄) we
have that qftpL′(f (ν̄)) = qftpL′(f (η̄)) = ′ because f is qftp-respecting. So
| ϕ(a′

f (ν̄)), and hence | ϕ(aν̄). As ν̄ as arbitrary satisfying qftpL(η̄), we see that
ϕ ∈ EML((ai)i∈I /C)with qftpL(η̄) as the associated quantifier-freeL-type. Since
(bi)i∈I isEML-based (overC) on (ai)i∈I ,weget that | ϕ(bη̄) andhence | ϕ(b′

η̄′).
As η̄′ was arbitrary satisfying ′ we conclude that ϕ ∈ EML′((b′

i)i∈I ′/C), as
required.

(iii) Let ϕ ∈ EML′((a′
i)i∈I ′/C) and let′ be the associated quantifier-freeL′-type. Let

η̄′ be any tuple in J satisfying ′. Let ν̄ be any tuple in I satisfying qftpL(g(η̄′)).
Then qftpL′(f (ν̄)) = qftpL′(f g(η̄′)) = ′ because f is qftp-respecting and
because of our assumption on f g. We thus have that | ϕ(a′

f (ν̄)) and so | ϕ(aν̄).
As ν̄ was arbitrary satisfying qftpL(g(η̄′)) and such ν̄ exists (take ν̄ = g(η̄′)) we
get that ϕ ∈ EML((ai)i∈I /C) with qftpL(g(η̄′)) as the associated quantifier-free
L-type. Since (bi)i∈I is EML-based on (ai)i∈I over C , we get that | ϕ(bg(η̄′))
and hence | ϕ(b′

η̄′). As η̄′ was arbitrary satisfying ′ we conclude that ϕ ∈
EML′((b′

j) j∈J/C), as required.

��

123

M. Kamsma

4 The treemodelling theorems

Definition 4.1 ([12, Definition 2.1]) For any ordinals α and β we view the set α<β

of functions η : γ → α with γ < β as a tree with the usual partial ordering: η � ν

iff ν is an extension of η. We will simultaneously view a function η : γ → α as a
sequence of elements in α of length γ . We put further structure on α<β as follows,
where η, ν ∈ α<β :

• we write η ∧ ν for the meet of η and ν with respect to �, i.e. the largest initial
segment shared by η and ν;

• we write η <lex ν for the lexicographical ordering, i.e. either η � ν or η and ν are
incomparable with respect to � and for the least ordinal γ such that η(γ) �= ν(γ)

we have that η(γ) < ν(γ);
• we write �(η) for the length or level of η, i.e. �(η) is the domain of η;
• we write η <len ν iff �(η) < �(ν);
• for γ < β we let Pγ = {η ∈ α<β : �(η) = γ }.

Based on the above we put different structures on α<β using the following languages.

• the Shelah language Ls = {�,∧,<lex, (Pγ)γ<β},
• the strong Shelah language Lstr = {�,∧,<lex,<len},
• the language Lstr0 = {�,∧,<lex}.

To abbreviate notationwewillwrite “EMs” and “s-based” for “EMLs” and “Ls-based”.
Whenever we consider a tree α<β as an Ls-structure we will call it an s-tree and write
“s-indiscernible” instead of “α<β -indiscernible”. For any two tuples η̄ and ν̄ in α<β

we will write η̄ ≡s-qf ν̄ for qftpLs
(η̄) = qftpLs

(ν̄).
We abbreviate notation involving Lstr and Lstr0 in a similar way, replacing the “s”

in the above by “str” or “str0” respectively.

Definition 4.2 For γ0, . . . , γn−1 ∈ α wewrite 〈γ0, . . . , γn−1〉 for the function i �→ γi ,
which is an element of α<β . For η, ν ∈ α<β we write η�ν for the concatenation of η

and ν. Formally:

(η�ν)(i) =
{

η(i) if i < �(η)

ν(j) if i = �(η) + j

For n < ω we will write ηn for the concatenation of η with itself n times:

ηn = η�η� . . . �η
︸ ︷︷ ︸

n times

So 〈0〉n is the sequence of n zeroes, or formally: the constant function n → {0}.
Example 4.3 We apply the re-indexing lemma (Lemma 3.15) to the different tree
structures.

(i) Consider the identity function f : ω<ω → ω<ω, where the domain carries the
structure of an str-tree and the codomain that of an str0-tree. Then f is just a reduct

123

Positive indiscernibles

of structures, and hence qftp-respecting. By Lemma 3.15(i) we thus see that if a
tree (aη)η∈ω<ω is str0-indiscernible over C then it is also str-indiscernible over
C . Similarly, we could consider the domain and codomain of f to be an s-tree
and str-tree respectively instead. Now f is not simply a reduct, but it is still qftp-
respecting as the predicates (Pn)n<ω determine the relation <len. So if (aη)η∈ω<ω

is str-indiscernible over C then it is s-indiscernible over C .
(ii) Like in the previous point, we consider the identity function f : ω<ω → ω<ω as

a qftp-respecting function between an str-structure and str0-structure, or between
an s-structure and an str-structure. We get the following from Lemma 3.15(ii):
if (bη)η∈ω<ω is EMs-based on (aη)η∈ω<ω over C then it is also EMstr-based on
(aη)η∈ω<ω over C , and if (bη)η∈ω<ω is EMstr-based on (aη)η∈ω<ω over C then it is
also EMstr0 -based on (aη)η∈ω<ω over C .

(iii) Let L ⊆ ω be an infinite set, and enumerate L in order as �0 < �1 < For
η ∈ ω<ω of length n we define νη ∈ ω<ω of length �n as:

νη(k) =
{

η(i) if k = �i+1 − 1

0 otherwise

Define fL : ω<ω → ω<ω as fL(η) = νη. The picture to keep in mind here is that
of including one tree into another by only having the levels in L taking non-zero
values. If we consider the domain and codomain of fL as s-trees then fL is qftp-
respecting. We write ω<ω�L for the image of fL with the induced s-structure, and
call this the restriction of ω<ω to levels L . If (aη)η∈ω<ω is s-indiscernible over C
then so is (aη)η∈ω<ω�L . This construction works in the exact same way for str-trees
and str0-trees.

(iv) Fix some η ∈ ω<ω and consider fη : ω → ω<ω, i �→ η�〈i〉. So fη injects
the linear order ω into the tree by sending it to the immediate successors of η.
We consider ω as the usual L<-structure and ω<ω as an s-structure. Then fη is
qftp-respecting. So if (aη)η∈ω<ω is s-indiscernible over C then (a′

i)i<ω defined by
a′
i = a fη(i) is a C-indiscernible sequence, by Lemma 3.15(i).

The following notation will be useful in proofs. We define it for finite tuples, but it
would make sense for infinite tuples.

Definition 4.4 Let η̄ = (η1, . . . , ηn) be a tuple in a tree α<β . We define:

• �(η̄) = {�(ηi) : 1 ≤ i ≤ n} to be the set of levels of the elements in η̄,
• cl∧(η̄) to be the closure of η̄ under meets.

The thickness assumption in the main theorems is needed to make the various forms
of indiscernibility type-definable, which we make precise below in Proposition 4.5.
We also rely on a result from [7] (see Theorem 4.6), whose proof heavily relies
on s-indiscernibility being type-definable. While we do not exclude the possibility
of achieving the same results without the thickness assumption, it seems unlikely.
Meanwhile, the discussion after Definition 2.6 shows the relevance of our results,
even with the thickness assumption.

123

M. Kamsma

Proposition 4.5 Let T be a thick theory. The properties of being s-indiscernible, being
str-indiscernible and being str0-indiscernible are type-definable. This is done by taking
the partial type that states that any two tuples of variables, whose tuples of indices
have the same quantifier-free type (in the relevant language), have Lascar distance at
most 2.

More precisely, define the partial type πs((xη)η∈ω<ω, y) to be

⋃
{dy(xη̄, xν̄) ≤ 2 : η̄, ν̄ are finite tuples inω<ω with η̄ ≡s-qf ν̄},

define πstr((xη)η∈ω<ω, y) to be

⋃
{dy(xη̄, xν̄) ≤ 2 : η̄, ν̄ are finite tuples inω<ω with η̄ ≡str-qf ν̄},

and define πstr0((xη)η∈ω<ω, y) to be

⋃
{dy(xη̄, xν̄) ≤ 2 : η̄, ν̄ are finite tuples inω<ω with η̄ ≡str0-qf ν̄}.

Then for any parameter set C we have that | πs((aη)η∈ω<ω,C) iff (aη)η∈ω<ω is s-
indiscernible over C, and similarly for πstr and πstr0 and being str-indiscernible and
being str0-indiscernible over C.

Proof For πs this is [7, Corollary 5.7]. We prove the case for πstr using a similar
argument, and the case for πstr0 uses the exact same argument as for πstr.

If | πstr((aη)η∈ω<ω,C) then for any finite tuples η̄, ν̄ in ω<ω with η̄ ≡str-qf ν̄ we
have that dC (aη̄, aν̄) ≤ 2, and so in particular aη̄ ≡C aν̄ .

Conversely, suppose that (aη)η∈ω<ω is str-indiscernible over C . Let η̄, ν̄ be finite
tuples in ω<ω such that η̄ ≡str-qf ν̄. We may assume that both η̄ and ν̄ are closed
under meets. As η̄ and ν̄ are both finite, there is some k < ω such that they are
both contained in k<k . Write η̄ = (η1, . . . , ηn). For i < ω and 1 ≤ j ≤ n we
define χ

j
i = 〈k〉(i+1)k�η j , and write χ̄i = (χ1

i , . . . , χn
i). One straightforwardly

verifies that η̄, χ̄0, χ̄1, . . . and ν̄, χ̄0, χ̄1, . . . are indiscernible sequences with respect
to quantifier-freeLstr-formulas. Then dC (aη̄, aν̄) ≤ 2 follows from str-indiscernibility
of (aη)η∈ω<ω . ��
Theorem 4.6 (s-modelling, [7, Proposition 5.8]) Let T be a thick theory. Let (aη)η∈ω<ω

be a tree of tuples and let C be any set of parameters, then there is a tree (bη)η∈ω<ω

that is s-indiscernible over C and EMs-based on (aη)η∈ω<ω over C.

Proof The cited result [7, Proposition 5.8] only states the above theorem for trees of
finite height (i.e., trees indexed by ω≤k for some k < ω). However, type-definability
of s-indiscernibility in thick theories is also established there [7, Corollary 5.7]. So
the statement here is really just an easy application of compactness, and so we still
attribute it to [7]. ��
Using the <len relation in Lstr we get the following fact.

123

Positive indiscernibles

Fact 4.7 Let η̄ and ν̄ be finite meet-closed tuples in α<β , then η̄ ≡s-qf ν̄ iff η̄ ≡str-qf ν̄

and �(η̄) = �(ν̄).

Theorem 4.8 Let C be any parameter set, κ be any cardinal, and let λ = �(2|T |+|C |+κ)+ .
Given any tree (aη)η∈ω<λ of κ-tuples that is s-indiscernible over C, there is a tree
(bη)η∈ω<ω that is str-indiscernible over C str-based on (aη)η∈ω<λ over C.

The proof of this theorem relies on the Erdős-Rado theorem, which we will recall for
the reader’s convenience. For n < ω and cardinals κ, λ, μ the notation κ → (λ)nμ
means that for any function f : [κ]n → μ we can find X ⊆ κ with |X | = λ such that
f is constant on [X]n , where [κ]n and [X]n are the sets of subsets of size n of κ and
X respectively.

Fact 4.9 (Erdős-Rado) For any n < ω and any infinite cardinal μ we have that

�
+
n (μ) → (μ+)n+1

μ .

Proof Let S be the set of types over C in max(κ, ω) many variables. Then λ has the
following properties:

(i) λ is a limit cardinal with cf(λ) > |S|,
(ii) for all μ < λ and n < ω there is μ′ < λ such that μ′ → (μ)n|S|.

Property (i) is immediate, and (ii) follows from Erdős-Rado (Fact 4.9).
For any tuple η̄ in ω<ω and any type p(xη̄), we write

�p,η̄((xν)ν∈ω<ω) =
⋃

{p(xν̄) : ν̄ ≡str-qf η̄}

for the partial type expressing that in the tree (xν)ν∈ω<ω any tuple indexed by something
with the same str-quantifier-free type as η̄ has type p.

There are countablymany quantifier-freeLstr-types in finitelymany variables. Enu-
merate the ones that are the type of a meet-closed tuple in ω<ω as (i)i<ω. For i < ω

we let η̄i be a tuple in ω<ω satisfying i . By induction we will construct types
(pi (xη̄i))i<ω over C such that:

(1)
⋃

j≤i �p j ,η̄ j is consistent,
(2) for every μ < λ there is I ⊆ λ with |I | = μ such that for all j ≤ i we have that

whenever ν̄ ≡str-qf η̄ j with �(ν̄) ⊆ I then | p j (aν̄).

Suppose that (p j) j<i has been constructed, we construct pi . Set n = |�(η̄i)|. We
define f : [λ]n → S as follows. For E ∈ [λ]n we let η̄E be some tuple in ω<λ such
that η̄E ≡str-qf η̄i and �(η̄E) = E . Then we set

f (E) = tp(aη̄E /C).

Let nowμ < λ be arbitrary. By (ii) there isμ′ < λ such thatμ′ → (μ)n|S|. By (2) there
is I ⊆ λ with |I | = μ′ such that for all j < i we have that whenever ν̄ ≡str-qf η̄ j with
�(ν̄) ⊆ I then | p j (aν̄) (in case i = 0 we just take I = μ′). We apply μ′ → (μ)n|S|

123

M. Kamsma

to the restriction of f to I to find Iμ ⊆ I with |Iμ| = μ such that f is constant on
[Iμ]n . We write qμ for the constant value of f on [Iμ]n , that is qμ = f (E), where
E ∈ [Iμ]n .

As μ < λ was arbitrary, there is such an Iμ and qμ for every μ < λ. By (i) we then
find a cofinal subset J ⊆ λ of cardinals such that qμ = qμ′ for any μ,μ′ ∈ J . Set
pi = qμ, where μ ∈ J . For part (2) of the induction hypothesis we note that for every
μ < λ there is μ′ ∈ J with μ < μ′. We verify (2) for Iμ′ (technically we would need
to take a μ-sized subset, but that we can clearly do). For j < i the required property
follows by construction of Iμ′ , in particular because it is a subset of what we called I
in its construction. For j = i the required property follows because f is constant on
[Iμ′]n , together with s-indiscernibility of (aη)η∈ω<λ and Fact 4.7. Then part (1) follows
from part (2): let μ ∈ J be any infinite cardinal and let L be the first ω elements of Iμ,
then

⋃
j≤i �p j ,η̄ j is realised by the restriction (aη)η∈ω<λ�L to levels L (see Example

4.3(iii)).
This finishes the inductive construction of (pi (xη̄i))i<ω. Set

�((xη)η∈ω<ω) =
⋃

i<ω

�pi ,η̄i .

By (1) this is consistent, so we let (bη)η∈ω<ω be a realisation, which has the following
properties:

(a) for any finite tuple η̄ in ω<ω there is some i such that cl∧(η̄) ≡str-qf η̄i ,
(b) if cl∧(η̄) ≡str-qf η̄i then bcl∧(η̄) | pi .

It follows that (bη)η∈ω<ω is str-indiscernible over C . Let η̄ ≡str-qf ν̄ be finite tuples
in ω<ω. Then cl∧(η̄) ≡str-qf cl∧(ν̄). By (a) there is i < ω such that cl∧(η̄) ≡str-qf η̄i .
Then by (b) we get that bcl∧(η̄) | pi and bcl∧(ν̄) | pi , so since pi is a type over C we
get bη̄ ≡C bν̄ after restricting the types. Finally, (bη)η∈ω<ω is str-based on (aη)η∈ω<λ :
for any finite tuple η̄ in ω<ω we have by (a) that there is i < ω with cl∧(η̄) = η̄i .
By construction pi is realised by aν̄′ for some ν̄′ in ω<λ with ν̄′ ≡str-qf η̄i . Using the
fact that ν̄′ ≡str-qf cl∧(η̄) we find ν̄ ⊆ ν̄′ such that ν̄ ≡str-qf η̄. By (b) we have that
tp(bcl∧(η̄)/C) = pi , so restricting types yields bη̄ ≡C aν̄ , as required. ��
Theorem 1.1 repeated. Let T be a thick theory. Let (aη)η∈ω<ω be a tree of tuples of
the same length and let C be any set of parameters, then there is a tree (bη)η∈ω<ω that
is str-indiscernible over C and EMstr-based on (aη)η∈ω<ω over C.

Proof By Theorem 4.6 we find (a′
η)η∈ω<ω that is s-indiscernible over C and is EMs-

based on (aη)η∈ω<ω over C . Let λ be the cardinal in Theorem 4.8. Using Proposition
4.5 we can write down a partial type � for a tree (a′′

η)η∈ω<λ that is s-indiscernible
over C and EMstr-based on (a′

η)η∈ω<ω over C . Using (a′
η)η∈ω<ω , and renaming levels

whenever needed, we see that � is finitely satisfiable. So we find our tree (a′′
η)η∈ω<λ

that is s-indiscernible overC andEMstr-based on (a′
η)η∈ω<ω overC .We applyTheorem

4.8 to (a′′
η)η∈ω<λ to find (bη)η∈ω<ω that is str-indiscernible over C and str-based on

(a′′
η)η∈ω<λ over C . Being str-based and EMs-based both imply being EMstr-based, and

being EMstr-based is transitive, so (bη)η∈ω<ω is EMstr-based on (aη)η∈ω<ω over C . ��

123

Positive indiscernibles

The proof strategies in Theorems 4.8 and 1.1 are very similar to the case for indis-
cernible sequences. The use of the Erdős-Rado theorem in Theorem 4.8 is very similar
how one constructs an indiscernible sequence based on a very long sequence (see
Example 3.5 and the reference there). Then Theorem 1.1 is similar to Remark 3.13:
we use compactness to stretch the input and then apply the previous result that uses the
Erdős-Rado theorem. One key difference though is that Theorem 4.8 requires the input
to already be s-indiscernible. This is why we assume thickness in Theorem 1.1. That
way we can use type-definability of s-indiscernibility to guarantee that the stretched
input remains s-indiscernible.

Theorem 4.10 Let C be any parameter set. Given any tree (aη)η∈ω<ω that is str-
indiscernible over C, there is a tree (bη)η∈ω<ω that is str0-indiscernible over C and
str0-based on (aη)η∈ω<ω over C.

Proof Fix 1 ≤ k < ω. By induction on m < ω we define f mk : k≤m → ω<ω and
lmk < ω as in [15, Claim A.7] (which in turn is based on [9, page 142]):

f mk (∅) = ∅ for all m < ω,

lmk = max{�(f mk (η)) + 1 : η ∈ k≤m},
f m+1
k (〈i〉�η) = 〈i〉�〈0〉(i+1)lmk � f mk (η).

Then for all k,m < ω:

(*) f mk is an Lstr0 -embedding such that η <lex ν implies f mk (η) <len f mk (ν).

Let η̄ be a finite tuple in ω<ω and let k,m < ω be such that η̄ is contained in k≤m .
Then we assign the type pη̄(xη̄) = tp(a f km (η̄)/C) to η̄. By (*) and str-indiscernibility,

the type pη̄ does not depend on k or m and whenever η̄ ≡str0-qf ν̄ then pη̄ = pν̄ (after
renaming variables). Define

�((xη)η∈ω<ω) =
⋃

{pη̄ : η̄ is a finite tuple in ω<ω}.

Let�0 be any finite part of�, and let k,m < ω be such that the variables appearing in
�0 are contained in (xη)η∈k≤m . Then �0 is realised by (a′

η)η∈k≤m where a′
η = a f mk (η)

for all η ∈ k≤m . So by compactness we find a realisation (bη)η∈ω<ω of �, which is the
tree we needed to construct. Indeed, let η̄ be any finite tuple in ω<ω and let k,m < ω

be such that η̄ is contained in k≤m . Then tp(bη̄/C) = pη̄ = tp(a f mk (η̄)/C), and so

because f mk (η̄) ≡str0-qf η̄ this shows that (bη)η∈ω<ω is str0-based on (aη)η∈ω<ω over
C . Let now ν̄ be such that ν̄ ≡str0-qf η̄, then tp(bη̄/C) = pη̄ = pν̄ = tp(bν̄/C) and we
have established str0-indiscernibility over C . ��
Theorem 1.2 repeated. Let T be a thick theory. Let (aη)η∈ω<ω be a tree of tuples of
the same length and let C be any set of parameters, then there is a tree (bη)η∈ω<ω that
is str0-indiscernible over C and EMstr0 -based on (aη)η∈ω<ω over C.

Proof By Theorem 1.1 there is a tree (a′
η)η∈ω<ω that is str-indiscernible over C and

EMstr-based on (aη)η∈ω<ω over C . By Theorem 4.10 there is then a tree (bη)η∈ω<ω

123

M. Kamsma

that is str0-indiscernible over C and str0-based on (a′
η)η∈ω<ω over C . Being EMstr-

based and being str0-based both imply being EMstr0 -based, and being EMstr0 -based is
transitive, so we conclude that (bη)η∈ω<ω is the required tree. ��

5 The arraymodelling theorem

Definition 5.1 ([12, Definition 5.4]) We define the following structure on ω × ω,
where (i, j), (s, t) ∈ ω × ω:

• (i, j) <1 (s, t) iff i < s,
• (i, j) <2 (s, t) iff i = s and j < t .

We define the array language to be Lar = {<1,<2} and we call the structure ω × ω

an array. We abbreviate notation involving Lar in a similar way as described at the
end of Definition 4.1, replacing the “s” there by “ar” or “array”.

Theorem 1.3 repeated. Let T be a thick theory. Let (ai, j)i, j<ω be an array of tuples of
the same length and let C be any set of parameters, then there is an array (bi, j)i, j<ω

that is array-indiscernible over C and EMar-based on (ai, j)i, j<ω over C.

Proof Let J be the <lex-order type of ω<ω and, using compactness, let (a′
i, j)i<ω, j∈J

be an array that is EMar-based on (ai, j)i, j<ω over C . Here ω × J carries the expected
Lar-structure: (i, j) <1 (s, t) iff i < s, and (i, j) <2 (s, t) iff i = s and j < t
in the order on J . Let f ′ : ω<ω → J be the <lex-order isomorphism and define
f : ω<ω → ω × J as f (η) = (�(η), f ′(η)). Then f is an injection such that for any
η, ν ∈ ω<ω:

(i) η <len ν implies f (η) <1 f (ν),
(ii) �(η) = �(ν) and η <lex ν implies f (η) <2 f (ν).

So in particular, f is qftp-respecting, where ω<ω is considered as an str-tree. Define
a tree (a∗

η)η∈ω<ω by a∗
η = a′

f (η). By Theorem 1.1 we find a tree (b∗
η)η∈ω<ω that is

str-indiscernible over C and EMstr-based on (a∗
η)η∈ω<ω . Define g : ω × ω → ω<ω by

g(i, j) = 〈0〉2i�〈 j + 1〉 and define an array (bi, j)i, j<ω by bi, j = b∗
g(i, j). We claim

that (bi, j)i, j<ω is the required array.
First, we note that g is qftp-respecting. Indeed, for any (i, j), (s, t) ∈ ω × ω we

have that:

• (i, j) <1 (s, t) implies g((i, j)) <len g((s, t)) and g((s, t)) <lex g((i, j)),
• (i, j) <2 (s, t) implies g((i, j)) <lex g((s, t)),
• g((i, j)) � g((s, t)) iff (i, j) = (s, t).

That leaves the relations between any meets in the image of g to be checked, but
this is also straightforward using the fact that the meet of a finite number of nodes
in ω<ω can be written as the meet of two of those nodes, together with the fact that
g((i, j))∧g((s, t)) = 〈0〉2min(i,s) (unless (i, j) = (s, t), of course).We can thus apply
the re-indexing lemma, Lemma 3.15(i), and get that (bi, j)i, j<ω is array-indiscernible
over C because (b∗

η)η∈ω<ω is str-indiscernible over C .

123

Positive indiscernibles

We will again use the re-indexing lemma, Lemma 3.15(iii), to conclude that
(bi, j)i, j<ω is EMar-based on (a′

i, j)i<ω, j∈J over C . From this the result then fol-
lows because (a′

i, j)i<ω, j∈J is EMar-based on (ai, j)i, j<ω over C . So we only need to

verify that for any finite tuple η̄ in ω × ω we have that η̄ ≡ar-qf f g(η̄). Indeed, let
(i, j), (s, t) ∈ ω × ω, then

• f and g are both injective functions, so equality is preserved and reflected;
• if (i, j) <1 (s, t) then g((i, j)) <len g((s, t)), and so f g((i, j)) <1 f g((s, t));
• if f g((i, j)) <1 f g((s, t)) then 2i + 1 = �(g((i, j))) < �(g((s, t))) = 2s + 1
and so (i, j) <1 (s, t);

• if (i, j) <2 (s, t) then �(g((i, j))) = �(g((s, t))) and g((i, j)) <lex g((s, t)), so
f g((i, j)) <2 f g((s, t));

• if f g((i, j)) <2 f g((s, t)) then �(g((i, j))) = �(g((s, t))) and f ′(g((i, j))) <

f ′(g((s, t))), the latter means that g((i, j))) <lex g((s, t)) and since their lengths
are the same, and so i = s, we must have j + 1 < t + 1 and thus (i, j) <2 (s, t).

��
Remark 5.2 The proof of Theorem 1.3 is based on that of [12, Theorem 5.5]. However,
there the existence of a non-existing embedding is claimed. In more detail, we view
ω<ω as an Lar-structure by interpreting <1 as <len and setting η <2 ν iff �(η) = �(ν)

and η <lex ν. The claim is then that there is an Lar-embedding f : ω<ω → ω × ω.
Such an f cannot exist. Our proof fixes this by stretching the original array, so that
our f can play the role of this embedding, and the third author of [12] has a similar
fix in [16, Corollary 3.8].

Suppose that an f as above exists. Let η, ν ∈ ω<ω be such that �(η) = �(ν), and let
(i, j) = f (η) and (s, t) = f (ν). Then we must have i = s, because <1 is interpreted
as <len in the tree and <1 is preserved and reflected by f . Let g be the restriction of
f to the nodes of length two. Then the image of g is contained in {n} × ω for some
n < ω. So g(〈1, 0〉) = (n, k) for some k < ω. However, 〈0, i〉 <lex 〈1, 0〉 for all
i < ω. We thus get that the second coordinate of g(〈0, i〉) is strictly less than k for all
i < ω, contradicting injectivity of g. So f cannot exist.

Though we have no use for it, the following may be useful in future applications.

Proposition 5.3 Let T be a thick theory. The property of being array-indiscernible
is type-definable. That is, let πar((xi, j)i, j<ω, y) be the union of the following partial
types:

• a partial type that expresses that ((xi, j) j<ω)i<ω is y-indiscernible;
• for each i < ω, a partial type that expresses that (xi, j) j<ω is indiscernible over

(y, (xk, j)k, j<ω,k �=i).

Then for any parameter set C we have that | πar((ai, j)i, j<ω,C) iff (ai, j)i, j<ω is
array-indiscernible over C.

Proof If (ai, j)i, j<ω is array-indiscernible over C then we clearly have that:

• ((ai, j) j<ω)i<ω is C-indiscernible;
• for each i < ω, (ai, j) j<ω is indiscernible over (C, (ak, j)k, j<ω,k �=i).

123

M. Kamsma

So | πar((ai, j)i, j<ω,C).
For the converse, we assume | πar((ai, j)i, j<ω,C) and let (q1, r1), . . . , (qn, rn) ∈

ω × ω and (s1, t1), . . . , (sn, tn) ∈ ω × ω be such that (q1, r1) . . . (qn, rn) ≡ar-qf

(s1, t1) . . . (sn, tn). For notational convenience we may assume that (q1, r1) ≤1
(q2, r2) ≤1 . . . ≤1 (qn, rn) and (necessarily) the same for the (si , ti). Then because
((ai, j) j<ω)i<ω is C-indiscernible we have that

aq1,r1 . . . aqn ,rn ≡C as1,r1 . . . asn ,rn .

Now let 1 ≤ m ≤ n be maximal such that s1 = sm (so for all 1 ≤ m′ ≤ m we have
that s1 = sm′). Then because (as1, j) j<ω is indiscernible over (C, (ak, j)k, j<ω,k �=s1),
we have that

as1,r1 . . . asn ,rn ≡C as1,t1 . . . asm ,tm asm+1,rm+1 . . . asn ,rn .

Repeating this process we find

as1,r1 . . . asn ,rn ≡C as1,t1 . . . asn ,tn ,

and thus aq1,r1 . . . aqn ,rn ≡C as1,t1 . . . asn ,tn , as required. ��

6 An application: TP2

The definition of 2-TP2 in positive logic first appeared in [10, Definition 6.1]. We take
the version from [6], which defines k-TP2 for k ≥ 2.

Definition 6.1 ([6, Definition 4.5]) A formula ϕ(x, y) has the k-tree property of the
second kind (k-TP2) for k ≥ 2 if there are (ai, j)i, j<ω and ψ(y1, . . . , yk) that implies
¬∃x(ϕ(x, y1) ∧ . . . ∧ ϕ(x, yk)) modulo T such that:

(i) for all σ ∈ ωω the set {ϕ(x, ai,σ (i)) : i < ω} is consistent,
(ii) for all i < ω and j1 < . . . < jk < ω we have that | ψ(ai, j1 , . . . , ai, jk).

We say that a theory T has k-TP2 if some formula has k-TP2.

Lemma 6.2 Let T be a thick theory. A formula ϕ(x, y) has k-TP2 for k ≥ 2 if and only
if there is an array-indiscernible array (ai, j)i, j<ω such that

(i) {ϕ(x, ai,0) : i < ω} is consistent,
(ii) {ϕ(x, a0,i) : i < ω} is k-inconsistent.
Proof If ϕ(x, y) has k-TP2 as witnessed by (a′

i, j)i, j<ω andψ(y1, . . . , yk) then we can
use Theorem 1.3 to EMar-base an array-indiscernible array (ai, j)i, j<ω on (a′

i, j)i, j<ω.
Then points (i) and (ii) in Definition 6.1 are captured by the EMar-type of (a′

i, j)i, j<ω

and respectively yield points (i) and (ii) for (ai, j)i, j<ω as above.
Conversely, let (ai, j)i, j<ω be as above. Then ((i, σ (i)))i<ω ≡ar-qf ((i, 0))i<ω for

anyσ ∈ ωω, so by (i) and array-indiscernibility {ϕ(x, ai,σ (i)) : i < ω} is consistent. By

123

Positive indiscernibles

(ii) we have that �| ∃x(ϕ(x, a0,0)∧ . . .∧ϕ(x, a0,k−1)). Letψ(y1, . . . , yk) be such that
it implies¬∃x(ϕ(x, y1)∧ . . .∧ϕ(x, yk))modulo T and | ψ(a0,0, . . . , a0,k−1). Then
by array-indiscernibility | ψ(ai, j1 , . . . , ai, jk) for all i < ω and j1 < . . . < jk < ω.
We conclude that (ai, j)i, j<ω and ψ witness k-TP2 for ϕ(x, y). ��
Theorem 1.4 repeated. Let T be a thick theory. If ϕ(x, y) has k-TP2 for some k ≥ 2
then some conjunction

∧n
i=1 ϕ(x, yi) has 2-TP2. Hence, T has k-TP2 for some k ≥ 2

iff T has 2-TP2.

Proof Based on [12, Proposition 5.7]. We prove this by induction on k ≥ 2. The base
case, k = 2, is trivial. So assume that the theorem holds for 2, . . . , k − 1 and suppose
that ϕ(x, y) has k-TP2. By Lemma 6.2 there is an array-indiscernible array (ai, j)i, j<ω

such that

(i) {ϕ(x, ai,0) : i < ω} is consistent,
(ii) {ϕ(x, a0,i) : i < ω} is k-inconsistent.
We finish the induction step, and thus the proof, by considering two cases.

• The case where {ϕ(x, ai,0), ϕ(x, ai,1) : i < ω} is consistent. Define an array
(bi, j)i, j<ω by bi, j = (ai,2 j , ai,2 j+1) for all i, j < ω, then (bi, j)i, j<ω is
array-indiscernible. Let ϕ′(x, y0, y1) be ϕ(x, y0) ∧ ϕ(x, y1). Then by assumption
{ϕ′(x, bi,0) : i < ω} is consistent, while {ϕ′(x, b0,i) : i < ω} is �k/2�-
inconsistent. So by Lemma 6.2 we have that ϕ′(x; y0, y1) has �k/2�-TP2, and
we conclude this case by using the induction hypothesis.

• The case where {ϕ(x, ai,0), ϕ(x, ai,1) : i < ω} is inconsistent. By compactness
there is then n < ω such that {ϕ(x, ai,0), ϕ(x, ai,1) : i < n} is inconsistent.
Define an array (bi, j)i, j<ω by bi, j = (ani, j , . . . , ani+n−1, j), then (bi, j)i, j<ω is
array-indiscernible. Let ϕ′(x, y0, . . . , yn−1) be ϕ(x, y0) ∧ . . . ∧ ϕ(x, yn−1). Then
{ϕ′(x, bi,0) : i < ω} is consistent, while by assumption {ϕ′(x, b0,i) : i < ω}
is 2-inconsistent. So by Lemma 6.2 we have that ϕ′(x; y0, . . . , yn−1) has 2-TP2,
completing the induction step for this case.

��
Acknowledgements We thank the anonymous referee for their suggestions for improvement, and in
particular for suggesting a simpler version of Example 3.11 compared to a previous version of this paper.

Author Contributions M.K. is the sole author, hence all work on this paper is his.

Declarations

Conflict of interest The authors declare no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

M. Kamsma

References

1. Ben-Yaacov, I.: Positive model theory and compact abstract theories. J. Math. Log. 03(01), 85–118
(2003)

2. Ben-Yaacov, I.: Simplicity in compact abstract theories. J. Math. Log. 03(02), 163–191 (2003)
3. Ben-Yaacov, I.: Thickness, and a categoric view of type-space functors. Fundam. Math. 179, 199–224

(2003)
4. Ben-Yaacov, I., Berenstein, A., Ward Henson, C., Usvyatsov, A.: Model theory for metric structures.

In: Zoé, C., Dugald, M., Anand, P., Alex, W. (eds.) Model Theory with Applications to Algebra and
Analysis, vol. 2, pp. 315–427. Cambridge University Press, Cambridge (2008)

5. Ben-Yaacov, I., Poizat, B.: Fondements de la logique positive. J. Symbol. Logic 72(4), 1141–1162
(2007)

6. Dmitrieva, A., Gallinaro, F., Kamsma, M.: Dividing lines between positive theories. J. Symbol. Logic
(2023). https://doi.org/10.1017/jsl.2023.89

7. Dobrowolski, J., Kamsma,M.: Kim-independence in positive logic.Model Theory 1(1), 55–113 (2022)
8. Dobrowolski, J., Mennuni, R.: The Amalgamation Property for automorphisms of ordered abelian

groups, (2023). arXiv:2209.03944
9. Džamonja, M.: On �∗-maximality. Ann. Pure Appl. Logic 125(1), 119–158 (2004)

10. Haykazyan, L.: Existentially closed exponential fields. Israel J. Math. 241(1), 89–117 (2021)
11. Kamsma, Mark: Bilinear spaces over a fixed field are simple unstable. Annals of Pure Appl. Logic

174(6), 103268 (2023)
12. Kim, B., Kim, H.-J., Scow, L.: Tree indiscernibilities, revisited. Arch. Math. Logic 53(1), 211–232

(2014)
13. Kaplan, I., Ramsey, N.: On Kim-independence. J. Eur. Math. Soc. 22(5), 1423–1474 (2020)
14. Poizat, B., Yeshkeyev, A.: Positive Jonsson theories. Log. Univers. 12(1), 101–127 (2018)
15. Scow, L.: Indiscernibles, EM-types, and Ramsey classes of trees. Notre Dame J. Formal Logic 56(3),

429–447 (2015)
16. Scow, Lynn: Ramsey transfer to semi-retractions. Ann. Pure Appl. Logic 172(3), 102891 (2021)
17. Shelah, S.: Classification Theory and the Number of Nonisomorphic Models, 2nd edn. North-Holland

Publishing, Amsterdam (1990)
18. Takeuchi, K., Tsuboi, A.: On the existence of indiscernible trees. Ann. Pure Appl. Logic 163(12),

1891–1902 (2012)
19. Tent, K., Ziegler, M.: A Course in Model Theory. Cambridge University Press, Cambridge (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1017/jsl.2023.89
http://arxiv.org/abs/2209.03944

	Positive indiscernibles
	Abstract
	1 Introduction
	2 Preliminaries
	3 Generalised indiscernibles
	4 The tree modelling theorems
	5 The array modelling theorem
	6 An application: TP2
	Acknowledgements
	References

