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Abstract
In this paper we study the set of MV-algebras with given prime spectrum and we
introduce the class of spectralMV-algebras.AnMV-algebra is spectral if it is generated
by the union of all its prime ideals (or proper ideals, or principal ideals, or maximal
ideals). Among spectral MV-algebras, special attention is devoted to bipartite MV-
algebras. An MV-algebra is bipartite if it admits an homomorphism onto the MV-
algebra of two elements. We prove that both bipartite MV-algebras and spectral MV-
algebras can be finitely axiomatized in first order logic. We also prove that there is
only, up to isomorphism, a set of MV-algebras with given prime spectrum. A further
part of the paper is devoted to some relations between bipartite MV-algebras and their
states. Recall that a state on anMV-algebra is a generalization of a probability measure
on a Boolean algebra. Particular states are the states with Bayes’ property. We show
that an MV-algebra admits a state with the Bayes’ property if and only if it is bipartite.

Keywords MV-algebra · Prime spectrum · Spectral MV-algebra · Bipartite
MV-algebra · State

Mathematics Subject Classification 06D35

1 Introduction

The use of topological invariants in algebra begins with Stone [23], where it is shown
that a Boolean algebra can be recovered from its prime spectrum. More precisely,
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Boolean algebras with homeomorphic prime spectrum are isomorphic. As usual in
mathematics, we will identify two topological spaces when they are homeomorphic
and two algebraic structures when they are isomorphic.

In this paper we are interested in the relation between an MV-algebra and its prime
spectrum. Recall that in [9] there is a characterization of prime spectra ofMV-algebras
as Stone duals of closed homomorphic images of lattices of cylinder polyhedra (a kind
of generalization of polyhedra in infinite dimension) in hypercubes; here Stone dual
is understood relative to Stone duality for bounded distributive lattices.

In this paper we consider the class of MV-algebras with given spectrum. We
call equispectral two MV-algebras with homeomorphic spectrum. For convenience,
sometimes we use the abbreviation E-class for equispectrality class.

It is known that an MV-algebra cannot be recovered from its prime spectrum.
However, we will prove that there is only a set of MV-algebras with given prime
spectrum (up to isomorphism), see Theorem 43.We try to study the set ofMV-algebras
with given prime spectrum. Note that twoMV-algebras have the same prime spectrum
if and only if they have the same Belluce lattice, hence, the same lattice of principal
ideals. So, these equivalence classes of MV-algebras are quite natural.

We are in search of “nice” representatives of the equispectrality classes. For this rea-
son we introduce the class of spectral MV-algebras. Every MV-algebra is equispectral
with a spectral MV-algebra, although not with a unique one.

Among spectral MV-algebras we find some classes of MV-algebras which have
been studied before. For instance, we have bipartite MV-algebras, that is the MV-
algebras admitting a homomorphism in {0, 1}. Every bipartite MV-algebra is spectral,
but not the other way round. We will see that both bipartite MV-algebras and spectral
MV-algebras can be finitely axiomatized in first order logic.

A further part of the paper is devoted to some relations between bipartite MV-
algebras and their states. Recall that states on MV-algebras are introduced in [20] in
order to generalize the notion of probability on Boolean algebras. This allows one to
reason about continuously valued events, like “tomorrow it will rain a lot”, rather than
on yes-no events. From states and partitions we can define a notion of entropy which
can be studied with the methods of analysis.

The paper is organized as follows. In Sect. 3we introduce spectral and bipartiteMV-
algebras; in Sect. 3.1 we prove that spectral MV-algebras are finitely axiomatizable in
first order logic. In Sect. 3.2 we deal with strongly spectral MV-algebras and we treat
the ideals corresponding to spectral MV-algebras, that is, spectral ideals. Section 4 is
also devoted to bipartite MV-algebras; in Sect. 4.1 we provide a finite axiomatization
of bipartite MV-algebras in first order logic; in Sect. 4.2 we give a relation between
bipartite MV-algebras and states on MV-algebras. Section 5 is about what we call
the inverse spectrum problem, that is, the problem of investigating MV-algebras with
a given prime spectrum; in the same vein, Sect. 5.1 investigates smallest and largest
chains with given spectrum. The section contains an example of a property sensitive to
the spectrum, the Cantor-Bernstein property. Section 5.2 specializes the two classical
equivalences of [18] and [10] toMV-algebras or abelian �-groups with fixed spectrum,
Sect. 5.3 studies the categories of MV-algebras of given prime spectrum; the case of
maximal spectrum is different and is treated in Sect. 5.4.
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2 Preliminaries

AnMV-algebra is a structure (A, 0, 1,⊕,¬) of type (0, 0, 2, 1) such that:

1. (A, 0,⊕) is a monoid (necessarily commutative, see [15]);
2. ¬¬x = x ;
3. 1 = ¬0;
4. x ⊕ 1 = 1;
5. ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x .

The relation x ≤ y given by ¬x ⊕ y = 1 is a distributive lattice order in every
MV-algebra.

Let x � y = ¬(¬x ⊕ ¬y) and x � y = x � ¬y.
Let d(x, y) be the Chang distance function, namely d(x, y) = (x � y) ⊕ (y � x).
An ideal of an MV-algebra A is a subset I of A which is closed under sum and

closed downwards.
Given a subset S of A, we denote by ideal(S) the ideal generated by S.
A principal ideal is an ideal generated by one element. It can be shown that every

finitely generated ideal in an MV-algebra is principal.
A prime ideal P is an ideal different from A such that x ∧ y ∈ P implies x ∈ P or

y ∈ P .
A maximal ideal of A is a proper ideal M such that there is no proper ideal N with

M ⊂ N . An MV-algebra is local if it has only one maximal ideal.
Recall also that an ideal I of an MV-algebra A is primary if x � y ∈ I implies

xn ∈ I or yn ∈ I for some n ∈ N. It results that an ideal I is primary if and only if
the quotient MV-algebra A/I is local.

The prime spectrum Spec(A) is the topological space whose universe is the set of
all prime ideals of A and whose topology is generated by the open sets

U (x) = {P ∈ Spec(A) | x /∈ P}

where x ∈ A. This topology is called the Zariski topology.
Likewise, the maximal spectrum of A is the set of maximal ideals of A with the

Zariski topology.
The Belluce lattice Bell(A) of an MV-algebra A is the quotient of A modulo the

equivalence relation of lying in the same prime ideals, where the lattice structure on
the equivalence classes is given by [x] ∧ [y] = [x ∧ y] and [x] ∨ [y] = [x ∨ y].

The Belluce lattice of an MV-algebra A is isomorphic to the lattice idc(A) of all
principal ideals of A (the c stands for compact, since finitely generated ideals are
the compact elements in the lattice of all ideals). As a sketch of proof, note that two
elements x, y of an MV-algebra A lie in the same prime ideals if and only if the
generate the same principal ideal. In fact, if ideal(x) = ideal(y), then they lie in the
same ideals (not only the prime ones). Conversely, if x /∈ ideal(y), then the set of all
ideals I such that x /∈ I and y ∈ I has a maximal element (by Zorn’s lemma) and this
element is prime.

If S is a subset of an MV-algebra A, we denote by Alg(S) the subalgebra of A
generated by S.
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The radical Rad(A) of an MV-algebra A is the intersection of all maximal ideals.
The radical coincides with the set of infinitesimal elements, that is, those elements x
such that nx ≤ ¬x for every n ∈ N. Intuitively, an infinitesimal is an element less
than 1/n for every n, but not quite, since 1/n may not exist in A. As an example
of MV-algebra with infinitesimals, we can consider the Chang MV-algebra, which is
formed by a sequence 0, ε, 2ε, . . . , 1 − 2ε, 1 − ε, 1 where ε and all its multiples are
infinitesimal.

An MV-algebra is perfect if it is generated by its radical. An example of perfect
MV-algebra is Chang MV-algebra.

The perfect part Per f (A) of A is the largest perfect subalgebra of A.
In [10] an equivalence � is given between the category of perfect MV-algebras and

the category of abelian �-groups.
An MV-algebra is called local if it has a unique maximal ideal.
Note that an MV-algebra is Boolean if and only if x ⊕ x = x for every x (in which

case ⊕,�,¬ become the Boolean algebra operations). Every MV-algebra A has a
largest Boolean subalgebra B(A), that is, the set of all x such that x = x ⊕ x .

SinceMV-algebras are defined equationally, they form a variety and free objects on
any cardinal k exist. The free MV-algebra over k is the set of McNaughton functions
from [0, 1]k to [0, 1], that is, the continuous functions which are piecewise affine with
integer coefficients.

The order of an element x ∈ A is the smallest integer m such that mx = 1, or ∞ if
this m does not exist. In this paper we will use the following terminology, for x ∈ A:

1. x is small if x has infinite order;
2. x is large if it is not small;
3. x is cosmall if ¬x is small;
4. x is colarge if ¬x is large.

Recall the following well known theorem:

Theorem 1 The following items are equivalent for every MV-algebra A:

1. x ⊕ x = x for all x ∈ A;
2. x � x = x for all x ∈ A;
3. x ∧ ¬x = 0 for all x ∈ A;
4. A is a Boolean algebra.

Proof See [5, Theorem 1.5.3]. ��
A kind of structure closely related to MV-algebras is given by (abelian) �-groups.
An �-group (lattice ordered group) is a group G with a lattice order such that x ≤ y

implies x + z ≤ y + z.
In this paper �-groups will always be abelian.
The absolute value of an element x ∈ G is | x |= x ∨ −x .
A strong unit of an �-group G is an element u ∈ G which is positive and such that

for every x ∈ G there is n such that x ≤ nu.
In [18] an equivalence � is given between the category of MV-algebras and the

category of lattice ordered abelian groups with strong unit. Namely �(G, u) is an
MV-algebra with domain [0, u] and operations x ⊕ y = (x + y)∧ u and ¬x = u − x .
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Note that theMV-algebra�(G, u) is definable, in first order logic, in the unital �-group
(G, u).

The motivation behind the functor � comes from the study of AF C∗-algebras in
quantum mechanics.

For example we have:

Definition 1 The Chang MV-algebra is defined as

C = �(Z lex Z, (1, 0))

where � is the Mundici functor of [18] and lex denotes lexicographic product of
groups.

Let us call � the equivalence of [10] between abelian �-groups and perfect MV-
algebras. Namely

�(G) = �(Z lex G, (1, 0)).

3 Spectral MV-algebras

In this section we study spectral MV-algebras. We begin with the following definition.

Definition 2 Given an MV-algebra A, the spectral skeleton Ss(A) of A is the
subalgebra of A generated by the union of Spec(A).

A characterization of the spectral skeleton is the following:

Proposition 2 For every MV-algebra A, Ss(A) coincides with

1. the MV-algebra Umax(A) generated by the union of all maximal ideals of A;
2. the MV-algebra Uprop(A) generated by the union of all proper ideals of A;
3. the MV-algebra Uprinc(A) generated by the union of all proper principal ideals

of A;
4. the MV-algebra generated by the small elements of A.

Proof For the first point, every maximal ideal is prime and every prime ideal is
contained in a maximal ideal, so Umax(A) = Ss(A).

For the second point, every maximal ideal is proper and every proper ideal is
contained in a maximal ideal, so Umax(A) = Uprop(A) = Ss(A).

For the third point, every proper ideal is a union of proper principal ideals, so
Uprop(A) = Uprinc(A) = Ss(A).

The fourth point follows from the third, because an element is small if and only if
it belongs to a proper principal ideal. ��
Definition 3 An MV-algebra A is called spectral if A = Ss(A).
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Proposition 3 For every MV-algebra A:

1. Ss(A) has the same proper ideals as A;
2. Ss(A) is spectral;
3. Ss(A) has the same principal proper ideals as A;
4. idc(A) and idc(Ss(A)) are isomorphic;
5. Spec(A) and Spec(Ss(A)) are homeomorphic.

Proof (1) First let I be a proper ideal of A. Then I is included in Ss(A), it is stable
under sum and is stable downwards in Ss(A), and 1 /∈ I . So I is a proper ideal in
Ss(A).

Conversely, let J be a proper ideal of Ss(A). Let K be the ideal of A generated
by J . Then K is the set of elements of A which are below some element of J . Since
1 /∈ J , we have also 1 /∈ K and K is a proper ideal of A. Then K is included in Ss(A)

and J = K . So proper ideals of A and Ss(A) coincide.
(2) Ss(A) is generated by the proper ideals of A, so by 1), Ss(A) is generated by

the proper ideals of Ss(A) itself, and is spectral.
(3) For the third point, let I be a proper principal ideal of A, generated by x . Then

I ⊆ Ss(A) and is generated by x , so I is a principal ideal of Ss(A). Since 1 /∈ I , I is
a proper principal ideal of Ss(A).

Conversely, let J be a proper principal ideal of Ss(A). Let K be the ideal generated
by J in A. Then K is the set of all elements of A below some element of J , and since
1 /∈ J , we have 1 /∈ K and K is proper, so K ⊆ Ss(A) and K = J and J is proper
principal in A.

(4) For the fourth point, we have an isomorphism between the lattices of principal
ideals of A and Ss(A), which is the identity outside the top elements of the lattices
and maps the top of the one lattice to the top of the other.

(5) For the fifth point, Recall the isomorphism Bell(A) ∼= idc(A), valid for every
MV-algebra A. So, by item 3, the lattices Bell(A) and Bell(Ss(A)) are isomorphic. So
Spec(Bell(A)) and Spec(Bell(Ss(A))) are homeomorphic. Since the Belluce lattice
operator preserves the spectrum, we conclude that Spec(A) and Spec(Ss(A)) are
homeomorphic. ��

The aboveproposition shows the relevance of spectralMV-algebras for the spectrum
problem. Recall from [9] that the spectrum problem is the (informal) problem of
characterizing the prime spectrum of anMV-algebra or abelian �-group. This problem
has a long story, essentially beginning with [14], where spectra of commutative rings
with unity are characterized as spectral spaces.

Note also:

Proposition 4 For every MV-algebra A we have:

1. Rad(A) ⊆ Ss(A).
2. B(A) ⊆ Ss(A).

Proof The first point holds because Rad(A) is always a proper ideal of A.
For the second point, let x ∈ B(A). If x �= 1, then x generates a proper ideal of A.

If x = 1, then x = ¬0 and 0 belongs to a proper ideal of A. ��
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From the previous proposition it follows:

Corollary 1 1. Every perfect MV-algebra is spectral;
2. every Boolean algebra is spectral.

Proposition 5 Let A be an MV-algebra in the variety generated by the Chang MV-
algebra C. Then A is spectral.

Proof By [10, Corollary 5.2], for every MV-algebra A in the variety generated by C ,
and for every maximal ideal M of A, we have A = M ∪ ¬(M). So A is generated by
any maximal ideal M and is spectral. ��

Let us consider MV-chains. Note that ideal theory of MV-chains is much simpler
than the general case of MV-algebras. For instance, every ideal is prime, and ideals
are totally ordered by inclusion. The spectrum problem for the particular case of
MV-chains has been solved by [6].

Proposition 6 Let A be an MV-chain. Then Ss(A) = Per f (A).

Proof The union of the spectrum of an MV-chain is the set of all elements belonging
to a proper ideal of A, that is, the radical of A. Note that Per f (A) is the subalgebra
generated by the radical of A. ��
Proposition 7 Let A, B be twoMV-chains and f : A → B be a homomorphism. Then
f restricts to a homomorphism g : Per f (A) → Per f (B).

Proof It is known that f preserves the radical, and Per f (A) is generated by the radical.
��

Instead, for non-linearly ordered MV-algebras, homomorphisms do not respect the
spectral skeleta (not even for finite MV-algebras).

Example 1 Let A = {0, 1/2, 1} × {0, 1}, B = {0, 1/2, 1}. Let f (x, y) = x . Then
(1/2, 1) ∈ Ss(A) but f (1/2, 1) = 1/2 /∈ Ss(B).

In the following theorem we denote by Spec the functor from the category of MV-
algebras to the category of topological spaces which associates to every MV-algebra
A its spectrum.

Theorem 8 Let A, B be twoMV-chains and f : A → B be a homomorphism. Let g be
as in Proposition 7. Then Spec( f ) coincides with Spec(g). So every homomorphism
of MV-chains has the same Spec as a homomorphism of perfect MV-chains.

Proof Claim: consider any Q ∈ Spec(Per f (B)), or equivalently Q ∈ Spec(B). We
have f −1(Q) ∈ Spec(A) = Spec(Per f (A)), so f −1(Q) ⊆ Per f (A) = dom g.
So if x ∈ f −1(Q) then f (x) ∈ Q and x ∈ dom g, hence g(x) = f (x) ∈ Q and
f −1(Q) ⊆ g−1(Q). Clearly also g−1(Q) ⊆ f −1(Q), so f −1(Q) = g−1(Q) and
Spec( f ) = Spec(g). ��
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3.1 Axiomatizing spectral MV-algebras

In this subsection we continue the study of spectral MV-algebras by building an
axiomatization of spectral MV-algebras in first order logic. We give first a number
of preliminary results.

Lemma 1 An MV-algebra A is spectral if and only if A = Alg(S), where S is the set
of small elements of A.

Proof Suppose that A is spectral. Then A is generated by elements lying in proper
ideals of A, which are small. Conversely, if A is generated by small elements, then it
is generated by proper ideals, since every small element generates a proper ideal. ��
Lemma 2 An MV-algebra A is spectral if and only if for every x ∈ A, either x is a
finite sup of small elements, or ¬x is a finite sup of small elements.

Proof If every element of A is finite sup of small elements or negation of finite sup of
small elements, then A is generated by small elements, so A is spectral.

Conversely, suppose A is spectral. By the previous lemma, for every element x ∈ A
there is an MV-term t such that x = t(s1, . . . , sn), where si are small elements. We
can prove that x is finite sup of small or negation of finite sup of small by induction
on t .

In fact, if t is a variable then x itself is small.
If t = ¬u, then the thesis follows easily.
If t = u ⊕ v, we apply the inductive hypothesis to u and v. If u and v are sup of

small then t = u ⊕ v ≤ 2u ∨ 2v, so t is below a finite sup of small (note that if u is
small then 2u is small) and t is itself a finite sup of small. If ¬u is a sup of small then
u = u1 ∧ . . . ∧ uk is an inf of cosmall. Then u ⊕ v = (u1 ⊕ v) ∧ . . . ∧ (uk ⊕ v) is an
inf of cosmall, so ¬(u ⊕ v) is a sup of small. Similarly, if ¬v is a sup of small then
¬(u ⊕ v) is a sup of small. So, in any case, t = u ⊕ v verifies the inductive step. This
completes the inductive argument. ��
Lemma 3 Let A be a spectral MV-algebra. If x ∈ A is a finite supremum of small
elements, then x is the supremum of at most two small elements.

Proof By [6, 7] we can suppose A is included in a powerUH , whereU is an ultrapower
of [0, 1] and H is a set.

Suppose x = s1 ∨ . . . ∨ sk where s1, . . . , sk are small and k is the least possible.
Let i < j ≤ k. If for every n there is a component h ∈ H such that shi , shj ≤ 1/n then

si ∨ s j is small, which is not possible. So, there is n such that for every h, shi ≥ 1/n or
shj ≥ 1/n, that is, shi ∨ shj ≥ 1/n, that is si ∨ s j ≥ 1/n and n(si ∨ s j ) = nsi ∨ ns j = 1
so x ≤ nsi ∨ ns j and x is the supremum of two small elements, that is, x ∧ nsi and
x ∧ ns j . ��

By the two previous lemmas we obtain:

Proposition 9 A is spectral if and only if for every element x, either x or its negation
are supremum of at most two small elements.
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Alternatively we have:

Proposition 10 A is spectral if and only if either all elements are small or cosmall, or
1 is the sup of two small elements.

Proof Clearly, if all elements are small or cosmall, or if 1 is the sup of two small, then
A is spectral.

Conversely, suppose A spectral. Suppose x is neither small nor cosmall. By the
previous proposition, one of x or ¬x is sup of two small. Suppose x = y ∨ z is the
sup of two small elements (if ¬x is the sup of two small elements the argument is the
same). Then 1 = nx = ny ∨ nz = 1, so 1 is the sup of two small elements ny and nz.

��
In order to find nonspectral MV-algebras we observe that [0, 1] is not spectral, and

more generally:

Proposition 11 A local MV-algebra is spectral if and only if it is perfect.

Proof Let A be local and perfect. Then A is generated by its maximal ideal, so it is
spectral.

Conversely, let A be local and non-perfect. The small elements are in the maximal
ideal, so they generate the perfect part of A. Hence, A is not spectral. ��

The following theorem clarifies the relation between spectral and local MV-
algebras:

Theorem 12 Every non-spectral MV-algebra is local.

Before proving the theorem let us put a lemma:

Lemma 4 In every MV-algebra the following are equivalent:

1. 1 is the sup of two small elements;
2. 1 is the sum of two small elements;
3. there is an element which is both small and cosmall.

Proof (of the lemma) If 1 = s1 ∨ s2, with s1, s2 small, then 1 = s1 ⊕ s2. Conversely if
1 = s1 ⊕ s2, with s1, s2 small, then 1 = (2s1) ∨ (2s2), and 2s1 and 2s2 are still small.

Suppose now that 1 = s1 ⊕ s2 with s1, s2 small; then ¬s1 ≤ s2 so ¬s1 is small and
s1 is cosmall. So s1 is small and cosmall. Conversely, if s is small and cosmall then
1 = s ⊕ ¬s is the sum of two small. ��

Now let us prove the theorem.

Proof By Proposition 10, if A is not spectral, then 1 is not the sup of two small
elements. Hence by the previous lemma, there is no element both small and cosmall.
So every element is large or colarge. Then A is local, see for instance [4]. ��

From Proposition 11 and Theorem 12 it follows:

Corollary 2 An MV-algebra is spectral if and only if it is non-local or perfect.

123



G. G. Barbieri et al.

By the previous corollary we can say that an MV-algebra is not spectral if and only
if it is local non perfect. Thus we have seen that the elements of an MV-algebra which
are not small and not cosmall play a special role in the structure of a non spectral
MV-algebra. Let us stress that in [8] not small and not cosmall elements of a local
MV-algebra are called finite elements. Thus, for a local MV-algebra A, the set Fin(A)

is defined as the set of all finite elements of A. Then by [8, Proposition 3.9] we get:

Corollary 3 An MV-algebra A is not spectral if and only if it is generated by the union
of the set of all large and colarge elements and the set of all infinitesimal elements.

Corollary 2 can be further elaborated so to obtain a finitary axiomatization of
spectral MV-algebras in first order logic. In fact, let us prove the following theorem:

Theorem 13 Spectral MV-algebras are finitely axiomatizable in first order logic.

Proof Let us consider two lemmas. ��
Lemma 5 (see [3]) Perfect MV-algebras are finitely axiomatizable in first order logic.

Then for local MV-algebras we have:

Lemma 6 (see [8]) Local MV-algebras are finitely axiomatizable in first order logic.

Putting together Corollary 2, Lemmas 5 and 6 we obtain the theorem.

3.2 Strongly spectral MV-algebras and spectral ideals

In this section we study strongly spectral MV-algebras, another particular case of
spectral MV-algebras.

Definition 4 An MV-algebra is called strongly spectral if every element is small or
cosmall.

Proposition 14 Every strongly spectral MV-algebra is spectral.

Proof Every small element lies in a proper ideal, and every cosmall element is the
negation of an element lying in a proper ideal. ��

Conversely we have the following collapse:

Proposition 15 A local MV-algebra is spectral if and only if it is strongly spectral.

Proof Both conditions are equivalent to the non-existence of elements x such that
1/n ≤ x ≤ 1 − 1/n for some n. ��

In more general MV-algebras the two notions do not collapse, for instance:

Proposition 16 Every MV-algebra [0, 1]I , with | I |> 1, is spectral but not strongly
spectral.
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Proof The MV-algebra is non local, so it is spectral. However, the constant function
1/2 is large and colarge. ��

Note also:

Proposition 17 Every free MV-algebra is strongly spectral.

Proof Let Fk be the free MV-algebra on k elements. Let f ∈ Fk be a McNaughton
function. Then f : [0, 1]k → [0, 1] and f = p(π1, . . . , πk) where p is an MV-
polynomial and π1, . . . , πk are the projections. Let 0 be the vertex zero of [0, 1]k . It
can be shown by induction on p that f (0) ∈ {0, 1}. So, f is not contained between
1/n and 1 − 1/n since it assumes at least one of the values 0 and 1. ��

Often in MV-algebra theory, properties of quotient MV-algebras A/I correspond
to properties of the ideal I .

In this vein, we could say that an ideal I of an MV-algebra A is spectral if A/I is
a spectral MV-algebra, and I is perfect if A/I is perfect. We describe explicitly these
ideals as follows:

Proposition 18 1. I is spectral if and only if I is not primary or I is perfect.
2. I is perfect if and only if for every a ∈ A, n ∈ N n(a ∧ ¬a) � (a ∨ ¬a) ∈ I .

Proof The first point follows because an MV-algebra is spectral if and only if it is not
local or perfect. The second point follows because an MV-algebra A is perfect if and
only if for every a ∈ A, a ∧ ¬a is infinitesimal. ��

4 Bipartite MV-algebras

We recall the class of bipartiteMV-algebras, studied in [12]. BipartiteMV-algebras are
a particular case of spectral MV-algebras, despite the definition is based on maximal
ideals, whereas the definition of spectral MV-algebras is based on prime ideals.

Definition 5 An MV-algebra A is called bipartite if A contains an ideal M such that
A/M has two elements. We call BP the class of bipartite MV-algebras.

We denote by BP the class of bipartite MV-algebras.
Among the results proved in [12] we recall the following:

1. A ∈ BP iff A is embeddable into a direct product
∏

i∈I Ai such that for at least
one j ∈ I , A j is perfect.

2. A /∈ BP iff Alg(I n f (A)) = A, where I n f (A) = {x ∧ ¬x | x ∈ A}.
Finally, we recall that in [1] we have a classification of algebras in BP.

Proposition 19 Every bipartite MV-algebra is spectral.

Proof Let A be bipartite, suppose M is an ideal and A/M has two elements. Clearly
1 /∈ M . Moreover, let x be any element of A. If x /∈ M , then x and 1 are in the same
class modulo M , so d(x, 1) ∈ M , where d is Chang distance. But d(x, 1) = ¬x , so
for every x /∈ M we have ¬x ∈ M , and since x = ¬¬x , M generates A. ��
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Corollary 4 Every free MV-algebra is bipartite.

Proof Let A be the free MV-algebra on a set X . Then A is isomorphic to the MV-
algebra MX of McNaughton functions from [0, 1]X to [0, 1]. Let 0 be the constant
function zero from X to [0, 1]. Every element of MX has value 0 or 1 on 0. The set I
of all elements f ∈ MX such that f (0) = 0 is an ideal of MX and, since f (0) ∈ {0, 1}
for every f ∈ MX , it follows that MX/I has two elements. So MX is bipartite and, by
the previous proposition, MX is spectral. ��

Now we need the following definition.

Definition 6 Let A be anMV-algebra,M ⊆ A an ideal, thenM is called supermaximal
if for all x ∈ A, x ∈ M or ¬x ∈ M .

We get A ∈ BP if and only if A admits a super maximal ideal.
It is clear that a super maximal ideal M is a maximal ideal. Equivalently, M is

super maximal iff A/M ∼= {0, 1}. Also, if M is a super maximal ideal of A, then M
generates A as an MV-algebra.

By Propositions 19 and 11, not every MV-algebra has a super maximal ideal.

Proposition 20 Suppose A ⊆ ∏
i Ai subdirectly. If some Ai is in BP, then A is in BP.

Proof Let A′ = ∏
i Ai . Denote by (xi )i a tuple belonging to A′. Suppose each A j has

a supermaximal ideal Mj . Let

M ′ = {(xi )i ∈ A′ | x j ∈ Mj f or all j}

It is clear that M ′ is a proper ideal. Suppose (xi )i /∈ M ′. Then x j /∈ Mj for some j .
Therefore ¬x j ∈ Mj . It follows that (¬xi )i ∈ M ′ and so M ′ is a super maximal ideal
of A′. But A is a subalgebra of A′, so also A has a super maximal ideal. ��

In general the class BP is not closed under MV-homomorphisms. In fact, every free
MV-algebra is in BP, [0, 1] is not in BP (since it is not spectral) but [0, 1], like every
MV-algebra, is a homomorphic image of a free MV-algebra.

4.1 Axiomatizing bipartite MV-algebras

We begin with an infinite axiomatization of bipartite MV-algebras in first order logic
and then we show that the axiomatization can be simplified to a finite one.

Theorem 21 An MV-algebra A is in BP if and only if for every k, n, A verifies the
formula

(Bn,k) NOT (x1 ∧ ¬x1) ∨ . . . ∨ (xk ∧ ¬xk) ≥ 1/n.

Remark: in this and the following proofs, AND, OR, NOT are intended as logical
operators, whereas ∨,∧,¬ are the MV-algebra operators.
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Proof By [6, 7] we can suppose that A is embedded in a power of an ultrapower of
[0, 1], say A ⊆ ([0, 1]∗)I .

(BP → Bn,k) Suppose A is in BP. So A contains a maximal ideal M with A/M =
{0, 1}.

For x ∈ A let

An,x = {i ∈ I | xi ≤ 1/n OR ¬xi ≤ 1/n}.

Note An,x = An,¬x .
Then the sets An,x with n positive and x ∈ A must enjoy the finite intersection

property. In fact, suppose the finite intersection property is false.
Then An1,x1 ∩ . . . ∩ Ank ,xk = ∅. Up to exchange x with ¬x we can suppose

x1, . . . , xk ∈ M , and up to take the maximum of n1, . . . , nk we can suppose n1 =
. . . = nk = n.

Now for every i ∈ I , if xi1, . . . , x
i
k−1 ≤ 1/n then xik ≥ 1/n. So x1∨· · ·∨ xk ≥ 1/n,

and multiplying by n we have n(x1 ∨ . . . ∨ xk) = 1, and since M is an ideal we have
1 ∈ M , contrary to the definition of maximal ideal. This proves the finite intersection
property.

Now suppose i ∈ An+1,x1 ∩ · · · ∩ An+1,xk . Then

NOT (xi1 ∧ ¬xi1) ∨ · · · ∨ (xik ∧ ¬xik) ≥ 1/n

and the left hand side is the i-th component of (x1 ∧ ¬x1) ∨ · · · ∨ (xk ∧ ¬xk), so the
latter cannot be greater than 1/n. This proves Bn,k .

(Bn,k → BP) Conversely, suppose A verifies Bn,k , that is

NOT (x1 ∧ ¬x1) ∨ · · · ∨ (xk ∧ ¬xk) ≥ 1/n.

Then, the sets An,x with x ∈ A and n arbitrary must enjoy the finite intersection
property as above.

In fact, fix n, x1, . . . , xk ; there is an index i such that

NOT (xi1 ∧ ¬xi1) ∨ · · · ∨ (xik ∧ ¬xik) ≥ 1/n,

in other words

(xi1 ∧ ¬xi1) ∨ · · · ∨ (xik ∧ ¬xik) < 1/n,

or by eliminating the supremum

(xi1 ∧ ¬xi1) < 1/n AND · · · AND(xik ∧ ¬xik) < 1/n,

so

i ∈ An,x1 ∩ · · · ∩ An,xk .
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By the finite intersection property there is an ultrafilterU on I which contains An,x

for every n, x . By definition of ultrafilter, for every n, x , either U contains {i | xi ≤
1/n} or contains {i | ¬xi ≤ 1/n}. Now consider the set

M = {x ∈ A | ∀∞n {i | xi ≤ 1/n} ∈ U }

where ∀∞n means that the property is true for every n except for a finite number.
We note that M is an ideal of A and also that for every x ∈ A we have either x ∈ M

or ¬x ∈ M . It follows that M is a maximal ideal and A/M = {0, 1}. ��
Now let us continue the investigation:

Lemma 7 Let A be an MV-algebra embedded in a power of an ultrapower ([0, 1]∗)I
(such an embedding always exists by [6]).

An element x of A has the form y ∧ ¬y if and only if x ≤ 1/2.

Proof Clearly y ∧ ¬y ≤ 1/2 for every y ∈ A. Conversely, if x ≤ 1/2, then x ≤ ¬x ,
so x = x ∧ ¬x . ��

By the previous lemma and the definition of Bn,k we have:

Corollary 5 An MV-algebra verifies Bn,k if and only if for every x1, . . . , xk ≤ 1/2 one
has NOT (x1 ∨ . . . ∨ xk ≥ 1/n).

So we have the following simplification:

Corollary 6 For every n, k, Bn,k is equivalent to Bn,1.

Proof The negation of Bn,1 implies the negation of Bn,k . In fact, if there is x ≤ 1/2
with x ≥ 1/n then we can take x1 = . . . = xk = x .

Conversely, the negation of Bn,k implies the negation of Bn,1. In fact, if for some
x1, . . . , xk ≤ 1/2 one has x1 ∨ . . . xk ≥ 1/n, then we can define y = x1 ∨ . . . ∨ xk
and we have y ≤ 1/2 and y ≥ 1/n. ��

Before the concluding theorem we need a technical lemma on McNaughton
functions:

Lemma 8 For every n ≥ 4 there is aMcNaughton function f : [0, 1] → [0, 1] sending
the interval [1/(n + 1), 1/2] to [1/n, 1/2].
Proof We use the theory of McNaughton functions (or Z -maps) developed in [17].

The set

T = {1/(n + 1), 1/n, . . . , 1/2}

is a regular triangulation (or segmentation in our case) of the interval I = [1/(n +
1), 1/2].

In fact, let r ∈ I be a rational element different from 1/(n + 1), . . . , 1/2. Then
r = p/d where p ≥ 2 and (p, d) = 1. For some q one has 1/(q + 1) < r < 1/q,
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hence p/p(q+1) < p/d < p/pq, hence d > pq, d ≥ pq+1 ≥ 2q+1 = q+q+1.
So the denominator of r is at least the sum of the denominators of 1/(q + 1) and 1/q.
Since r is arbitrary, the segmentation is regular.

Hence by [17, Lemma 3.7.iii] there is a McNaughton function η : [0, 1] → [0, 1]
such that:

1. η sends 1/(n + 1) to 2/(n + 1);
2. η fixes 1/n, . . . , 1/2;
3. η is linear on [1/q + 1, 1/q] for every q with 2 ≤ q ≤ n.

Since η is linear in each piece of the segmentation, the range of η is included in
the smallest interval J containing the images of the vertices of T , which are 2/(n +
1), 1/n, . . . , 1/2. Since 1/n ≤ 2/(n + 1) ≤ 1/2, this interval is J = [1/n, 1/2]. ��

Here is the final collapse result:

Theorem 22 The Bn,1 hierarchy collapses.

Proof As usual we can suppose that A is embedded in ([0, 1]∗)I . It is enough to show
that for n ≥ 4, if an MV-algebra A contains an element x such that 1/(n + 1) ≤ x ≤
1/2, then it contains an element y such that 1/n ≤ y ≤ 1/2.

Now suppose 1/(n + 1) ≤ x ≤ 1/2. All the components of x are comprised
between 1/(n + 1) and 1/2. By the previous lemma, there is a unary McNaughton
function f which sends the interval [1/(n+1), 1/2] into the interval [1/n, 1/2]. Now
it is enough to put y = f (x). ��

Since the Bn,k hierarchy collapses we get:

Corollary 7 The class BP is finitely axiomatizable in first order logic.

Finally we can make a remark on abelian �-groups.
We have seen that spectral MV-algebras are axiomatizable in first order logic, say

via a formula β. So, the class of unital abelian �-groups (G, u) such that �(G, u) is a
spectral MV-algebra is also finitely axiomatizable via a formula β ′, which is obtained
from β by restricting quantifiers to the interval [0, u]. This follows from the fact that
the MV-algebra �(G, u) is definable, in first order logic, in the unital �-group (G, u).

The same holds for abelian bipartite unital �-groups.

4.2 Bipartite MV-algebras and Bayes’property

In this section, we give some remarks related to the relationship between bipartite
MV-algebras and Bayes’ property contained in Rybárik’s paper [21]. As explained in
the latter paper, the entropy of partitions on probabilistic spaces was introduced by
Kolmogorov and Sinaj [16, 22] as a criterion to distinguish nonisomorphic dynamical
systems. In this section we collect a few results on the entropy of partitions in MV-
algebras.

For the sake of completeness we recall some definitions inspired by (but not exactly
copied from) [21].
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Notation 1 Given two elements x, y of anMV-algebra A, we write x ⊥ y if x� y = 0.

Recall that when x ⊥ y we write x + y = x ⊕ y. So the operation + is a partial
binary operation on MV-algebras.

Definition 7 A state on an MV-algebra A is a map s : A → [0, 1] such that s(1) = 1
and s(x ⊕ y) = s(x) + s(y) when x ⊥ y.

Definition 8 A finite system P = (x1, x2, . . . , xk) in A is said to be an ⊕-orthogonal
system if

(
l⊕

i=1

xi

)

⊥ xl+1

for every l = 1, . . . , k − 1. P is said to be a partition of A with respect to the state s if
(P1) P is an ⊕-orthogonal system.
(P2) s(

⊕k
i=1 xi ) = 1.

Definition 9 We define partition of unity in A any finite sequence (x1, . . . , xp) such
that x1 + · · · + xp = 1.

Obviously, each partition according to Definition 9 is also a partition with respect
to an arbitrary state.

Definition 10 A state s has Bayes’ property if it satisfies the following condition:
Let (x1, x2, . . . , xl) be any partition corresponding to a state s and y ∈ A, then

s
(
⊕l

j=1(y � x j )
)

= s(y)

Definition 11 Let P = (x1, x2, . . . , xk) and Q = (y1, y2, . . . , yl) be two partitions
of A corresponding to a state s. Then the common refinement of these partitions will
be defined as the system

P ∪ Q = {xi � y j : xi ∈ P, y j ∈ Q, i ∈ {1, 2, . . . , k}; j ∈ {1, 2, . . . , l}}

The next lemma clarifies a condition that ensures P ∪ Q being a partition:

Lemma 9 If the state s has Bayes’ property, and P, Q are partitions with respect to
s, then also the system P ∪ Q is a partition with respect to s.

Proof See [21, Lemma 5]. ��
Example 2 Consider a subset A of the interval [0, 1] of real numbers such that 0 ∈ A,
and if x, y ∈ A, then

x ⊕ y = min(1, x + y) ∈ A, x � y = max(0, x + y − 1) ∈ A, ¬x = 1 − x ∈ A

where symbols + and − denote the usual sum and difference of real numbers. Let
P = ( 13 ,

1
3 ,

1
3 ) and Q = ( 12 ,

1
2 ) be two partitions corresponding to the identity state.

We have 1
3 � 1

2 = 0, hence P ∪ Q is not a partition any more.
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We mention the following, apparently open problem:

Question 1 Let P = (x1, x2, . . . , xk) and Q = (y1, y2, . . . , yl) be two partitions of
A with respect to a state s. If P ∪ Q is a partition with respect to s for every P, Q,
then does s have Bayes’ property?

The question, if answered positively, coupled with its converse Lemma 9, could
help clarify the theory of Bayes states.

Wewill now investigate whichMV-algebras possess a statem with Bayes’ property
and which ones do not. In Boolean algebras there are plenty of states with Bayes’
property, because every homomorphism in {0, 1} is a state. Other examples of MV-
algebras which admit states with Bayes’ property are contained in Example 3:

Definition 12 A is a Bayes MV-algebra if it admits a state with Bayes’ property.

Example 3 Let h be an MV-homomorphism from A to {0, 1}, then h is a state with
Bayes’ property.

In particular,

(i) Boolean algebras are Bayes;
(ii) Let A be the MV-algebra of all sequences converging to either 0 or 1, and consider

the state s which maps every sequence to its limit, then s has Bayes’ property;
(iii) Let A = {0, 1} × [0, 1], then it is Bayes.

Now we give the following definition, which apparently generalizes idempotent
MV-algebras (that is, Boolean algebras), but actually it collapses to them:

Definition 13 We will say that an MV-algebra is weakly idempotent if

x � x = 0 �⇒ x = 0

Obviously, Boolean algebras areweakly idempotentwhileMV-chains of length greater
than 2 (and MV-algebras which contain them) are not.

Conversely:

Theorem 23 Every weakly idempotent MV-algebra A is a Boolean algebra. So weakly
idempotent MV-algebras and Boolean algebras coincide.

Proof First, we claim that Chang distance d in [0, 1] verifies

d(x, x ⊕ x) � d(x, x ⊕ x) = 0

To verify the claim, we distinguish the cases x ≤ 1/2 and x ≥ 1/2. If x ≤ 1/2 then
d(x, x ⊕ x) = x ≤ 1/2 so d(x, x ⊕ x)�d(x, x ⊕ x) = 0.. If x ≥ 1/2 then x ⊕ x = 1
so d(x, x ⊕ x) = d(x, 1) = 1 − x ≤ 1/2 and again d(x, x ⊕ x) � d(x, x ⊕ x) = 0.

Since [0, 1] generates the variety of MV-algebras, the claim extends to every MV-
algebra.

Suppose theMV-algebra A is weakly idempotent. Thenwe have d(x, x⊕x) = 0 for
every x . As d is a metric we get x ⊕ x = x for every x . By Theorem 1 the MV-algebra
is a Boolean algebra. ��

123



G. G. Barbieri et al.

Definition 14 A state s on an MV-algebra A is called idempotent if s(x � x) = s(x)
for every x ∈ A.

Definition 15 Given a state s on an MV-algebra A, we denote by N (s) the set of
elements x of A such that s(x) = 0.

Proposition 24 Let A be a MV-algebra. There is an idempotent state s on A if and
only if there exists an MV-algebra homomorphism from A to {0, 1}.
Proof Suppose there is an idempotent state s on A. N (s) is an ideal of A, and since s is
idempotent, A/N (s) is a weakly idempotent MV-algebra. By Theorem 23 there is an
MV-homomorphism from A/N (s) to {0, 1}, hence there exists anMV-homomorphism
from A to {0, 1}.

Vice versa suppose that there exists a homomorphism f from A to {0, 1}. It is easy
to check that f itself is an idempotent state. ��
Proposition 25 Let A be an MV-algebra and s be a state on A with Bayes’ property,
then s is idempotent.

Proof Suppose s is a state on A with Bayes’ property. Let x ∈ A. By applying Bayes
property to the partition (x,¬x) we obtain

s(x) = s(x � x) + s(x � ¬x) = s(x � x) + s(0) = s(x � x).

��
Moreover we have the following relation between a state s and its null set N (s):

Proposition 26 The state s is idempotent if and only if the quotient A/N (s) is Boolean.

Proof Suppose s is an idempotent state. Then A/N (s) is weakly idempotent since
x ∈ N (s) if and only if x � x ∈ N (s), and by Theorem 23, A/N (s) is Boolean.

Conversely, suppose A/N (s) is Boolean. Then for every x ∈ A, x and x � x are
congruent modulo N (s), so d(x, x � x) ∈ N (s) and s(d(x, x � x)) = 0. In particular
s(x � (x � x)) = 0, but x � x ≤ x , so s(x) = s(x � x), and s is idempotent. ��
Proposition 27 AnMV-algebra A is Bayes if and only if it admits an idempotent state.

Proof By Proposition 25 every state with Bayes’ property is idempotent.
Vice versa, suppose that there is an idempotent state s on A. By Proposition 26

the MV-algebra A/N (s) admits a state m̂ with Bayes’ property, since it is a Boolean
algebra. Then the map m defined by elements m(x) := m̂(x mod N (s)) is a state of
A with Bayes’ property.

In fact, clearlym is a state. We verify Bayes’ property. Write x̂ = x mod N (s). Let
P = (y1, y2, . . . , yl) be any partition corresponding to m. Then P̂ = (ŷ1, ŷ2, . . . , ŷl)
is a partition corresponding to m̂. Since m̂ has Bayes’ property, we have

m̂(x̂) = m̂(⊕l
j=1(x̂ � ŷ j ))
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whence

m(x) = m̂(x̂) = m̂(⊕l
j=1(x̂ � ŷ j )) = m̂( ̂⊕l

j=1(x � y j )) = m(⊕l
j=1(x � y j ))

in other words m has Bayes’ property. ��
Theorem 28 An MV-algebra A is Bayes if and only if it is bipartite.

Proof It follows from Propositions 24 and 27. ��
The theorem implies that Bayes’ property is not stable under quotients, because we

know that bipartite MV-algebras are not closed under quotients; other information is
given in the following

Lemma 10 1. Let A, F be two MV-algebras and let s be a state on A with Bayes’
property, let h : F → A be an MV-homomorphism. Then s ◦h is a state on F with
Bayes’ property.

2. If A is Bayes, then for each MV-algebra F A × F is Bayes (in particular Bayes
MV-algebras are closed under product).

3. Bayes MV-algebras are closed under subalgebras.
4. Bayes MV-algebras are closed under ultraproducts.

Proof The proof of item 1 is straightforward.
The proof of 2 follows from 1 taking for h the projection from E × F to A.
3 holds because a restriction of a state with Bayes property is still a state with Bayes

property.
Item 4 is true since Bayes MV-algebras coincide with bipartite MV-algebras, so

they are first order definable. ��
Example 4 In [0, 1] there is only one state s (like in every linearly orderedMV-algebra)
and s(x) = x for every x , so s( 12 ) = 1

2 , and

s

(
1

2
� 1

2
+ 1

2
� 1

2

)

= s(0) = 0,

hence s does not have Bayes’ property and the MV-algebra [0, 1] is not Bayes.
More generally, recall that a Riesz MV-algebra is a MV-algebra together with an

external product from [0, 1] × A to A satisfying a few axioms, see [11]. A state of a
Riesz MV-algebra is defined as a state of its MV-algebra reduct.

Example 5 Riesz MV-algebras do not admit any states with Bayes’ property. In fact,
they contain an isomorphic copy of [0, 1] and the latter MV-algebra is not Bayes.

Since RieszMV-algebras do not admit any states with Bayes’ property, it’s a natural
question to find out a newdefinition of entropy in the framework ofRieszMV-algebras.

Now we focus our attention on finite MV-algebras.
Recall that
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Proposition 29 Any finite MV-algebra is isomorphic to a product 	αSnα for α in a
finite set A and nα ∈ N.

Proof See [5, Corollary 3.5.4] or [2, Corollary 4.2.8] ��
Proposition 30 A finite MV-algebra A is Bayes if and only if at least one of its linear
factors is {0, 1}.
Proof The simple quotients of A coincide with its linear factors. ��

We can apply this proposition also to infinite MV-algebras, for instance:

Example 6 Let A be the MV-algebra of all sequences in [0, 1]ω converging to either 0
or 1

2 or 1. Then A is not Bayes. In fact, A contains an isomorphic copy of {0, 1/2, 1},
which is not Bayes by the previous proposition.

5 The inverse spectrum problem

Informally, the problem we are referring to is to investigate the MV-algebras with a
given prime spectrum. We will see that the prime spectrum is much more informative
than the maximal spectrum: in fact, the MV-algebras with a given prime spectrum are
(up to isomorphism) a set, whereas the MV-algebras with a given maximal spectrum
are (up to isomorphism) a proper class.

Note that from the previous sections it follows:

Proposition 31 Given two MV-algebras A, B, the following are equivalent:

1. the topological spaces Spec(A) and Spec(B) are homeomorphic;
2. the lattices Bell(A) and Bell(B) are isomorphic;
3. the lattices idc(A) and idc(B) are isomorphic.

Definition 16 We say that MV-algebras have the same E-class whenever they are
equivalent according to Proposition 31.

For the finite case we have:

Proposition 32 Let A be an MV-algebra. Then the following are equivalent:

1. Bell(A) is finite;
2. idc(A) is finite;
3. Spec(A) is finite.

Proof The first and second point are equivalent trivially since the lattices Bell(A) and
idc(A) are isomorphic for every MV-algebra A.

If Spec(A) is finite, then Bell(A) ∼= K (Spec(A)), where K (Spec(A)) is the lattice
of compact open sets of Spec(A); so Bell(A) is finite, too.

Conversely, if Bell(A) is finite, then Spec(A) = Spec(Bell(A)) is the spectrum
of a finite lattice, so it is finite. ��

By the previous proposition we can give the following definition:
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Definition 17 An MV-algebra is of finite type if it satisfies any of the three equivalent
properties of Proposition 32.

Note that every finite MV-algebra has finite type, but not the other way round (for
instance [0, 1] has finite type).

Given two perfect chains A, B, if Spec(A) and Spec(B) are isomorphic, then A, B
are not isomorphic in general: consider the MV-algebra C defined above and the
variant

CR = �(Z lex R, (1, 0)).

Both idc(C) and idc(CR) are distributive lattices with two elements, so they are
isomorphic, whereas C is countable and CR is uncountable, so C and CR are not
isomorphic.

Note that [6, Theorem 2] shows that every bounded linear order is isomorphic to
the Belluce lattice of an MV-algebra (necessarily linear). In fact, it is known that:

Proposition 33 (see [6]) For every bounded, linearly ordered lattice L there is a
canonical perfect MV-chain A(L) such that I dc(A(L)) ∼= L.

Proof The MV-chain A(L) is obtained by taking the group which is a lexicographic
direct sum ẐL of copies of Z, one for every element of L , and then letting A(L) =
�(ẐL , 1L), where 1L is the sequence which has component 1 at the maximum element
of L and 0 elsewhere. ��

We put a definition coming from the theory of archimedean �-groups:

Definition 18 (commensurability) Let x, y be elements of an �-group. We say that x
dominates y is n | x |≥| y | for some n ∈ N. The elements x, y are commensurable
if they dominate each other.

Let instead consider x, y elements of an MV-algebra. We say that x dominates y is
nx ≥ y for some n ∈ N. The elements x, y are commensurable if they dominate each
other.

Moreover we have the following:

Proposition 34 For every MV-chain A there is a perfect MV-chain B such that:

1. A, B have the same spectrum;
2. B has at most the same size as max(ℵ0, idc(A));
3. in every principal ideal I of B, there is a generator g of I such that every element

of I is infinitely close to a multiple of g.

Proof By compactness we can construct an MV-chain U containing a subset S of
pairwise incommensurable infinitesimals, such that S is order isomorphic to idc(A).
Let B be the subalgebra of U generated by S.

Claim: idc(A) ∼= idc(B).
To prove the claim, first we can show that every infinitesimal element x of B is

commensurablewith an element of S. This can be shownbywriting x = p(s1, . . . , pn)
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where p is an MV-polynomial and s1, . . . , sn ∈ S, and by proceeding by induction on
p.

Moreover, different elements of S generate different principal ideals. So, there is
an increasing bijection between idc(A) and S, and also one between idc(B) and S,
and this proves the claim. ��

Sowe have amap from the class of bounded linear orders to the class ofMV-chains.
Can this map be made functorial? This is an open problem to our knowledge.

5.1 Least and greatest chains

This subsection investigates smallest and largest chains with given spectrum.
We want to study the commensurability relation for MV-algebras defined above.

However we note that the theory is much simpler if the MV-algebras are linearly
ordered.

We stick to MV-chains for simplicity. In fact we have:

Lemma 11 Let A be an MV-chain. There is an order preserving bijection between the
commensurability classes of A and the principal ideals of A.

Proof Let x, y ∈ A, then x, y generate the same principal ideal if and only if they
belong to the same commensurability class. ��

In an MV-algebra we can define x + y = x ⊕ y when x ⊥ y, and we can define
x − y = x � y when x ≥ y. So a partial sum and a partial subtraction are defined.

Definition 19 A subset G of an MV-algebra A is a set of generators over Z if every
x ∈ A can be uniquely written as x = �i ni gi , where gi ∈ G and ni ∈ Z.

Lemma 12 Let L be a bounded linear order. Let A(L) be the MV-chain recalled in
Proposition 33 and let B every MV-chain with spectrum homeomorphic to the one of
A(L). Then A(L) embeds in B.

Proof Let φ : idc(A(L)) → idc(B) be an order isomorphism.
Recall the definition of A(L) in the proof of Proposition 33. Let G be the set of

sequences in A(L) where one component is 1 and the others are 0. G is a pairwise
incommensurable set of generators of A(L).

Every element of A(L) is a unique finite sum of elements of G. For every g ∈ G,
let g′ be a generator of φ(ideal(g)).

This gives an injective embedding η of A(L) into B. That is, we let η(�i ni gi ) =
�i ni g′

i , where ni are integers (possibly negative). ��
In general, in an MV-algebra A there is no smallest subalgebra of A equispectral

with A (smallest with respect to inclusion).

Example 7 Consider the perfect MV-chain A(L) where L is the rational interval in
[0, 1]. Let Q′ be a proper subset of L isomorphic to L and containing 0 and 1. Let B
be the subalgebra of A(L) generated by the principal generators of the elements of
Q′. Then idc(B) is order isomorphic to the rationals, so B is a proper subalgebra of
A(L) and idc(B) is isomorphic to idc(A(L)).
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We can also obtain a greatest perfect MV-chain with a given spectrum. To this
aim we first recall the classical Hahn embedding theorem for totally ordered abelian
groups.

Let � be a totally ordered set and let G be a totally ordered abelian group. We will
say that the Hahn group H(G,�) is the group of all functions from � to G which are
zero outside a well ordered set. Addition is defined componentwise. An element of
H(G,�) is defined to be positive if the smallest nonzero component is positive. The
theorem reads as follows:

Theorem 35 [13] (Hahn embedding theorem) Let G be a totally ordered abelian group
with a linearly ordered set � of archimedean classes. Then G embeds in the Hahn
group H(G,�). Moreover the ordered set of archimedean classes of H(G,�) is
isomorphic to �.

Now we can derive from Hahn theorem the following result:

Proposition 36 For every perfect MV-chain A there is a perfect MV-chain B which is
maximal in the E-class of A.

Proof Let us call � the equivalence of [10] between abelian �-groups and perfect
MV-algebras. � restricts to an equivalence between totally ordered abelian groups
and perfect MV-chains. Let A be a perfect MV-chain and let � = idc(A). Let G =
�−1(A). Let B = �(H(G,�)). From Theorem 35 it follows that G embeds in
H(G,�) so A embeds in B. ��

If we vary the principal ideal lattice �, the category of MV-algebras or abelian �-
groups with idc = �may have different behavior. An example is the Cantor-Bernstein
property.

We will say that a category verifies the Cantor-Bernstein property if two pair-
wise monomorphic objects are isomorphic. This property is notoriously false for
MV-algebras in general. Note that there are “small” types for which the property
is true and “large” types where the property is false. Here are two examples.

Proposition 37 For the category of the totally ordered abelian groupsG with idc(G) =
Q the Cantor Bernstein property is false.

Proof Consider G1 = H(Z, Q)lex H(R, Q) and G2 = H(R, Q), where lex denotes
the lexicographic product of totally ordered abelian groups. Then G1 and G2 embed
into each other and have isomorphic lattices of principal ideals, that is, both lattices
are isomorphic to Q. However G1 and G2 are not isomorphic, since G2 is divisible
and G1 is not. ��
Proposition 38 For the category of MV-chains A with | idc(A) |= 2 (that is simple
MV-algebras) the Cantor Bernstein property is true.

Proof It follows from the known fact that no simple MV-algebra has a proper
subalgebra isomorphic to itself. ��
Conjecture 1 Let n be a natural number. For the category of MV-chains A with |
idc(A) |= n the Cantor Bernstein property is true.
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5.2 Specializing classical equivalences

Let � be any E-class. The two classical dualities of [18] and [10] preserve the
archimedean type, so we have:

Proposition 39 The equivalence� specializes to an equivalence between the category
of MV-algebras of E-class � and the category of unital abelian �-groups of E- class
�.

Corollary 8 The equivalence � specializes to one between the category of MV-chains
of E-class � and the category of unital totally ordered abelian groups of E-class �.

Proposition 40 The equivalence� specializes to an equivalence between the category
of perfect MV-algebras of E-class � and the category of abelian �-groups of E-class
�.

Corollary 9 The equivalence� specializes to one between the category of perfect MV-
chains of E-class � and the category of totally ordered abelian groups of E-class
�.

The last equivalence implies the existence of an interesting endofunctor:

Proposition 41 For every E-class �, the perfect part functor Per f is an endofunctor
from the category C of MV-chains of E-class � and the category D of perfect MV-
chains of E-class �. Moreover Per f is a retraction.

Proof Per f is a retraction because D embeds in C via the subset functor j , and
j(Per f (d)) = d for every d ∈ D. ��
Note that we do not expect that the previous proposition extends to perfect MV-

algebras, because the E-class of an MV-algebra is different from the one of its perfect
part.

5.3 The category of MV-algebras of a given E-class

In this subsection we prove that the category of MV-algebras of a given E-class is
small like the category of abelian �-groups of a given E-class.

Theorem 42 The category of MV-chains with a given E-class is small in the sense
of category theory (that is the isomorphism classes of objects form a set) and has a
greatest element.

Proof By Hahn embedding theorem, the category of (unital) totally ordered abelian
groups with given E-class is small and has a greatest element. Then, the result follows
by Mundici equivalence. ��
Theorem 43 The category of MV-algebras of a given E-class is small.
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Proof Let A be an MV-algebra. We have a subdirect embedding

A ⊆ 	P∈Spec(A)A/P.

The MV-algebras A/P are MV-chains with prime spectrum embeddable in the one of
A, so they range over a set (depending only on Spec(A)) by the previous theorem. ��

In the same vein we have:

Theorem 44 The category of abelian �-groups of a given E-class is small.

Proof By the previous section, it is enough to prove that the category of perfect MV-
algebras of a given E-class is small. But this follows from the previous theorem.

��

5.4 Themaximal case

In this subsection we show that Theorem 43 fails for the maximal spectrum. To prove
this we need the notion of free product. By [19] any two MV-algebras A, B have a
free product A

∐
B, which is an MV-algebra such that:

Lemma 13 Any twoMV-algebras A and B embed in A
∐

B.Moreover the topological
spaces Max(A

∐
B) and Max(A) × Max(B) are homeomorphic.

Proof (i) The first claim follows from the definition of free product.
(ii) The maximal spectrum of any MV-algebra M is homeomorphic to the set of

homomorphisms from M to [0, 1]. So it is enough to prove

Hom(A
∐

B, [0, 1]) ∼= Hom(A, [0, 1]) × Hom(B, [0, 1]).

Actually we exhibit a homeomorphism φ. Let i A : A → A
∐

B, iB : B → A
∐

B
the canonical embeddings. Given h : A∐

B → [0, 1], define

φ(h) = (h ◦ i A, h ◦ iB).

By definition of free product, φ is a bijection.
Moreover, let us prove that φ is continuous. In fact, both the maps h → h ◦ i A and

h → h ◦ iB are continuous: given any basic open Ax = {k : A → [0, 1] | k(x) = 0},
where x ∈ A, we have h◦i A ∈ Ax if and only if h◦i A(x) = 0, that is h(i A(x)) = 0, that
is h is in {k : A∐

B → [0, 1] | k(i A(x)) = 0} which is open in Hom(A
∐

B, [0, 1]).
So the preimage under h → h ◦ i A of any basic open is open, and the map h → h ◦ i A
is continuous. Similarly the map h → h ◦ iB is continuous. Since Max(A

∐
B) and

Max(A)×Max(B) are compact Hausdorff spaces and there is a bijective continuous
function between them, this function is a homeomorphism. ��

We note that Theorem 43 fails for the maximal spectrum in the following strong
sense:
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Theorem 45 For every compact Hausdorff topological space S, the MV-algebras
whose maximal spectrum is S are (up to isomorphism) a proper class.

Proof We know that S is a closed subset of some hypercube [0, 1]X for some set X ,
and S is the maximal space of the MV-algebra C(S) of McNaughton functions on
[0, 1]X restricted to S.
If B is any MV-chain then Max(B) has one point, so by the previous lemma,
Max(A

∐
B) ∼= Max(A). Taking A = C(S) we have Max(C(S)

∐
B) ∼= S. Since

B embeds inC(S)
∐

B, andMV-chains are a proper class by Löwenheim-Skolem the-
orem, theMV-algebras of the formC(S)

∐
B where B is anMV-chain are themselves

a proper class, and all of them have maximal spectrum S. ��

6 Conclusions

In this paper we give another contribution to understanding the relation between an
MV-algebra and its prime spectrumand,moregenerally,with its ideals. The resultsmay
be generalized in several ways. For instance, bipartite MV-algebras can be generalized
to k-partite MV-algebras, where there is a homomorphism from the MV-algebra into
the MV-chain with k elements. Moreover, the study of equispectrality classes, espe-
cially their categorical properties, seems promising. The Cantor Bernstein property is
only an example. So there is room for further investigations in future papers.
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