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Abstract
A family I of subsets of a set X is an ideal on X if it is closed under taking subsets and
finite unions of its elements. An ideal I on X is below an ideal J on Y in the Katětov
order if there is a function f :Y → X such that f −1[A] ∈ J for every A ∈ I. We
show that the Hindman ideal, the Ramsey ideal and the summable ideal are pairwise
incomparable in the Katětov order, where

• The Ramsey ideal consists of those sets of pairs of natural numbers which do not
contain a set of all pairs of any infinite set (equivalently do not contain, in a sense,
any infinite complete subgraph),

• TheHindman ideal consists of those sets of natural numbers which do not contain
any infinite set together with all finite sums of its members (equivalently do not
contain IP-sets that are considered in Ergodic Ramsey theory),

• The summable ideal consists of those sets of natural numbers such that the series
of the reciprocals of its members is convergent.
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1 Introduction

The Katětov order is an efficient tool for studying ideals over countable sets [17–20,
31, 33]. Originally, the Katětov order (introduced by Katětov [21] in 1968) was used to
study convergence in topological spaces, and our interest in Katětov order between the
Hindman, Ramsey and summable ideals stems from the study of sequentially compact
spaces defined as, in a sense, topological counterparts of well-known combinatorial
theorems: Ramsey’s theorem for coloring graphs and Hindman’s finite sums theorem
[3, 4, 22–25]. It is known [10, 27] that an existence of a sequentially compact space
which distinguishes the above mentioned classes of spaces is reducible to a question
whether particular ideals are incomparable in the Katětov order.

Beside our primary interest in the Katětov order described above we mention one
more strength of this order. Using the Katětov order, we can classify non-definable
objects (like ultrafilters or maximal almost disjoint families) using Borel ideals [18].
For instance, an ultrafilter U is a P-point if and only if the dual ideal U∗ is not Katětov
above Fin2 (equivalently U is a Fin2-ultrafilter as defined by Baumgartner [2]). It is
known [9] that an existence of an ultrafilter which distinguishes between some classes
of ultrafilters is reducible to a question whether particular ideals are incomparable in
the Katětov order.

Below we describe the results obtained in this paper and introduce the necessary
notions and notations.

We write ω to denote the set of all natural numbers (with zero). We write [A]2 to
denote the set of all unordered pairs of elements of A, [A]<ω to denote the family of
all finite subsets of A and [A]ω to denote the family of all infinite countable subsets
of A.

A family I ⊆ P(X) of subsets of a set X is an ideal on X if it is closed under taking
subsets and finite unions of its elements, X /∈ I and I contains all finite subsets of X .
By Fin(X) we denote the family of all finite subsets of X and we write Fin instead of
Fin(ω).

For an ideal I on X , we write I+ = {A ⊆ X : A /∈ I} and call it the coideal of I,
and we write I∗ = {X \ A : A ∈ I} and call it the filter dual to I. It is easy to see that
I � A = {A ∩ B : B ∈ I} is an ideal on A if and only if A ∈ I+.

For a set B ⊆ ω, we write FS(B) to denote the set of all finite (nonempty) sums
of distinct elements of B i.e. FS(B) = {∑n∈F n : F ∈ [B]<ω\{∅}}.

In this paper we are interested in the following three ideals:

• the Ramsey ideal

R =
{
A ⊆ [ω]2 : ∀B ∈ [ω]ω ([B]2 � A)

}
,

• the Hindman ideal

H = {
A ⊆ ω : ∀B ∈ [ω]ω FS(B) � A

}
,
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• the summable ideal

I1/n =
{

A ⊆ ω :
∑

n∈A

1

n + 1
< ∞

}

.

The Ramsey ideal was introduced byMeza-Alcántara [30, p. 28] where he used the
notation Gc for this ideal. Moreover, the author noted that if we identify a set A ⊆ [ω]2
with a graph GA = (ω, A), the ideal R can be seen as an ideal consisting of graphs
without infinite complete subgraphs. The Hindman ideal was introduced by Kojman
and Shelah [24, p. 1620] where they used the notation II P . The summable ideal is
a particular instance of the so-called summable ideals which seem to be “ancient”
compared to previously mentioned ideals as they were introduced in 1972 by Mathias
[28, Example 3, p.206].

We say that an ideal I on X is below an ideal J on Y in the Katětov order [21] if
there is a function f : Y → X such that f −1[A] ∈ J for every A ∈ I (equivalently,
f [B] /∈ I for all B /∈ J ). Note that the Katětov order has been extensively examined
(even in its own right) for many years so far [1, 2, 5–7, 14–20, 30–33, 36].

The aim of this paper is to prove the following

Theorem 1.1 The ideals R, H and I1/n are pairwise incomparable in the Katětov
order.

One more ideal is closely related to the above ones – the van der Waerden ideal

W = {A ⊆ ω :A does not contain arithmetic progressions

of arbitrary finite length},

Similarly to the Hindman ideal, van derWaerden ideal was introduced by Kojman and
Shelah [24, p. 1620] where they used the notation IAP for this ideal.

It is known that the idealsR,H and I1/n are not below the idealW in the Katětov
order (see [10, Theorem 7.7], [24, Lemma 1] and [12, Lemma 3.1], respectively).
However, the remaining three questions about these ideals are still open.

Question 1.2 Is the idealW below the idealR (H, I1/n, resp.) in the Katětov order?
Note that in the case of the summable ideal, Question 1.2 is a weakening of the

famous Erdős-Turán conjecture which says that W ⊆ I1/n .

2 Preliminaries

An ideal I on X is tall [29, Definition 0.6] if for every infinite set A ⊆ X there exists
an infinite set B ⊆ A such that B ∈ I. It is not difficult to see that I is not tall ⇐⇒
I ≤K J for every idealJ ⇐⇒ I ≤K Fin ⇐⇒ I � A = Fin(A) for some A ∈ I+.
It is easy to show the following
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Proposition 2.1 The ideals H,R, W and I1/n are tall.
Ideals I and J on X and Y , respectively are isomorphic (in short: I ≈ J ) if there

exists a bijection φ : X → Y such that A ∈ I ⇐⇒ φ[A] ∈ J for each A ⊆ X . An
ideal I is homogeneous [26, Definition 1.3] if the ideals I and I � A are isomorphic
for every A ∈ I+.

Proposition 2.2 [26, Examples 2.5 and 2.6] The idealsH,R andW are homogeneous.

By identifying subsets of X with their characteristic functions, we equipP(X)with
the topology of the space 2X (the product topology of countably many copies of the
discrete topological space {0, 1}) and therefore we can assign topological notions to
ideals on X . In particular, an ideal I is Borel (Fσ , resp.) if I is a Borel (Fσ , resp.)
subset of 2X .

If A ⊆ ω and n ∈ ω, we write A+ n = {a + n : a ∈ A} and A− n = {a − n : a ∈
A, a ≥ n}.

A set D ⊆ ω is sparse [22, p. 1598] if for each x ∈ FS(D) there exists the unique
set α ⊆ D such that x = ∑

n∈α n. This unique set will be denoted by αD(x). For
instance, the set E = {2n : n ∈ ω} is sparse, and in the text, we write α(x) instead of
αE (x).

A set D ⊆ ω is very sparse [11, p. 894] if it is sparse and

∀x, y ∈ FS(D) (αD(x) ∩ αD(y) �= ∅ �⇒ x + y /∈ FS(D)) .

In the text, we will use the following

Lemma 2.3 [11, Lemma 2.2] For every infinite set D ⊆ ω there is an infinite set
D′ ⊆ D which is very sparse.

Moreover, the following versions of Ramsey and Hindman’s theorems will be used
in some proofs.

Theorem 2.4 Canonical Ramsey’s Theorem [8, Theorem II]; see also [13, Theorem 2
at p. 129] For every function φ : ω → ω there exists an infinite set T ⊆ ω such that
one of the following four cases holds:

(1) ∀x, y ∈ [T ]2(φ(x) = φ(y)),
(2) ∀x, y ∈ [T ]2(φ(x) = φ(y) ⇐⇒ min x = min y),
(3) ∀x, y ∈ [T ]2(φ(x) = φ(y) ⇐⇒ max x = max y),
(4) ∀x, y ∈ [T ]2(φ(x) = φ(y) ⇐⇒ x = y).

Theorem 2.5 Canonical Hindman’s Theorem [34, Theorem 2.1]; see also [13, The-
orem 5 at p. 133] For every function φ : ω → ω there exists an infinite set
C = {cn : n ∈ ω} ⊆ ω such that max α(cn) < min α(cn+1) for every n ∈ ω

and one of the following five cases holds:

(1) ∀x, y ∈ FS(C)(φ(x) = φ(y)),
(2) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ min α(x) = min α(y)),
(3) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ max α(x) = max α(y)),
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(4) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ (min α(x) = min α(y) and max α(x) =
max α(y))),

(5) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ x = y).

The ordinary Ramsey’s Theorem (Hindman’s Theorem, resp.) says that if the range
of φ is finite in the Canonical Ramsey’s Theorem (Canonical Hindman’s Theorem,
resp.) then we can always require that item (1) holds. There is also the Canonical van
derWaerden Theorem, however wewill not use it here, so let us just recall the ordinary
version.

Theorem 2.6 van der Waerden’s Theorem [35]; see also [13, Theorem 1 at p. 29] For
every function φ : ω → ω with finite range there exists an infinite set A ⊆ ω which
contains arbitrarily long finite arithmetic progressions and φ(x) = φ(y) for every
x, y ∈ A.

3 Summable and Hindman ideals are incomparable

Theorem 3.1 H �K I1/n and I1/n �K H.

Proof In [10, Theorem 7.7], the authors proved H �K I1/n , while I1/n �K H is
proved in [11, Theorem 3.2]. Below we provide a simpler proof of the latter inequality
which is based on the Canonical Hindman’s Theorem.

Let φ : ω → ω be an arbitrary function. Using the Canonical Hindman’s Theorem
(Theorem2.5)we can find an infinite setC = {cn : n ∈ ω} ⊆ ω such thatmax α(cn) <

min α(cn+1) for every n ∈ ω and one of the following five cases holds:

(1) ∀x, y ∈ FS(C)(φ(x) = φ(y)),
(2) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ min α(x) = min α(y)),
(3) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ max α(x) = max α(y)),
(4) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ (min α(x) = min α(y) and max α(x) =

max α(y))),
(5) ∀x, y ∈ FS(C)(φ(x) = φ(y) ⇐⇒ x = y).

We will show that φ is not a witness for I1/n ≤K H i.e. we will find an infinite set
D ⊆ ω such thatφ[FS(D)] ∈ I1/n . To be precise, wewill construct (separately in each
case) a strictly increasing sequence {kn : n ∈ ω} such that the set D = {ckn : n ∈ ω}
will work.

Case (1) In this case we put kn = n. Then D = C and we see that the set φ[FS(D)]
has only one element, so it belongs to I1/n .

Case (2) (Case (3), resp.) We construct kn such that φ(ckn ) > 2n for every n ∈ ω.
Suppose that ki are constructed for i < n. Since max α(ck) < min α(ck+1) for

every k ∈ ω, min α(ck) �= min α(cl) (max α(ck) �= max α(cl), resp.) for distinct
k, l ∈ ω. Consequently, φ � C is one-to-one, so we can find kn > kn−1 such that
φ(ckn ) > 2n . That finishes the recursive construction of kn .

We put An = φ[ckn + FS({cki : i > n})] (An = φ[ckn + FS({cki : i < n})], resp.)
for every n ∈ ω. Using the properties of ckn ’s we can see that An = {φ(ckn )} for every
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n ∈ ω, so

∑

y∈φ[FS (D)]

1

y + 1
=

∑

n∈ω

⎛

⎝
∑

y∈{φ(ckn )}∪An

1

y+1

⎞

⎠=
∑

n∈ω

1

φ(ckn )+1
≤

∑

n∈ω

1

2n + 1
<∞.

Case (4) We construct kn such that

∀n ∈ ω ∀i < n
(
φ(ckn ) > n2n ∧ φ(ckn + cki ) > n2n

)
.

Suppose that ki are constructed for i < n. Since max α(ck) < min α(ck+1) for
every k ∈ ω, we obtain that min α(ck + cki ) �= min α(ck + ck j ) and min α(ck) �=
min α(ck + cki ) for every k > kn−1 and i < j ≤ n − 1. Consequently, the function
φ � ({ck+cki : k > kn−1, i < n}∪{ck : k > kn−1}) is one-to-one, so using pigeonhole
principle we can find kn > kn−1 such that φ(ckn ) > n2n and φ(ckn + cki ) > n2n for
every i < n. That finishes the recursive construction of kn .

We put Am,n = φ[ckm + FS({cki : m < i < n}) + ckn ] for every m, n ∈ ω, m < n.
Using the properties of ckn ’s we can see that Am,n = {φ(ckm + ckn )} for every m < n,
m, n ∈ ω, so

∑

y∈φ[FS(D)]

1

y + 1
=

∑

n∈ω

1

φ(ckn ) + 1
+

∑

n∈ω

∑

m<n

⎛

⎝
∑

y∈{φ(ckm+ckn )}∪Am,n

1

y + 1

⎞

⎠

=
∑

n∈ω

1

φ(ckn ) + 1
+

∑

n∈ω

∑

m<n

1

φ(ckm + ckn ) + 1

≤
∑

n∈ω

1

n2n + 1
+

∑

n∈ω

∑

m<n

1

n2n + 1
< ∞.

Case (5) We construct kn such that

∀n ∈ ω ∀x ∈ FS({cki : i < n})
(
φ(ckn ) > 22n ∧ φ(ckn + x) > 22n

)
.

Suppose that ki are constructed for i < n. Let m ∈ ω be such that m > 22n

and m > φ(x) for every x ∈ FS({cki : i < n}). Since φ � FS(C) is one-to-one,
the set F = φ−1[{0, 1, . . . ,m}] is finite. Let kn ∈ ω be such that ckn > max F .
Since ckn > max F , we obtain that ckn /∈ F and consequently φ(ckn ) > m > 22n .
Similarly, for every x ∈ FS({cki : i < n}) we have ckn + x > ckn > max F , so
φ(ckn + x) > m > 22n . That finishes the recursive construction of kn .
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We put An = φ[ckn + FS({cki : i < n})] for every n ∈ ω. Using the properties of
ckn ’s we can see that:

∑

y∈φ[FS(D)]

1

y + 1
=

∑

n∈ω

⎛

⎝ 1

φ(ckn ) + 1
+

∑

y∈An

1

y + 1

⎞

⎠

≤
∑

n∈ω

⎛

⎝ 1

22n + 1
+

∑

y∈An

1

22n + 1

⎞

⎠

≤
∑

n∈ω

(
1

22n + 1
+ (2n − 1) · 1

22n + 1

)

< ∞.

��

4 Summable and Ramsey ideals are incomparable

Theorem 4.1 R �K I1/n and I1/n �K R.

Proof In [10, Theorem 7.7], the authors provedR �K I1/n . Belowwe provide a proof
of I1/n �K R which is based on the Canonical Ramsey’s Theorem.

Let φ : [ω]2 → ω be an arbitrary function. Using the Canonical Ramsey’s Theorem
(Theorem 2.4) we can find an infinite set T ⊆ ω such that one of the following four
cases holds:

(1) ∀x, y ∈ [T ]2(φ(x) = φ(y)),
(2) ∀x, y ∈ [T ]2(φ(x) = φ(y) ⇐⇒ min x = min y),
(3) ∀x, y ∈ [T ]2(φ(x) = φ(y) ⇐⇒ max x = max y),
(4) ∀x, y ∈ [T ]2(φ(x) = φ(y) ⇐⇒ x = y).

We will show that φ is not a witness for I1/n ≤K R i.e. we will find an infinite set
H ⊆ ω such that φ[[H ]2] ∈ I1/n .

Case (1) We take H = T and see that the set φ[[H ]2] has only one element, so it
belongs to I1/n .

Case (2) (Case (3), resp.) In this case, for every t ∈ T the restriction φ � {{t, s} :
s ∈ T , s > t} (φ � {{t, s} : s ∈ T , s < t}, resp.) is constant with distinct values for
distinct t . Thus, for every t ∈ T there is kt such that {kt } = φ[{{t, s} : s ∈ T , s > t}]
({kt } = φ[{{t, s} : s ∈ T , s < t}], resp.).

Since ktn are pairwise distinct, we can find a one-to-one sequence {tn : n ∈ ω} ⊆ T
such that ktn > 2n for every n ∈ ω.

Let H = {tn : n ∈ ω} and An = φ[{{tn, ti } : i > n}] (An = φ[{{ti , tn} : i < n}],
resp.) for every n ∈ ω. Then

∑

k∈φ[[H ]2]

1

k + 1
=

∞∑

n=0

⎛

⎝
∑

k∈An

1

k + 1

⎞

⎠ =
∞∑

n=0

1

ktn + 1
≤

∞∑

n=0

1

2n
< ∞.
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Case (4) We construct recursively a one-to-one sequence {tn : n ∈ ω} ⊆ T such
that φ({ti , tn}) > n · 2n for every n ∈ ω and every i < n.

Suppose that ti are constructed for i < n. Since there are only finitelymany numbers
below n · 2n and the function φ is one-to-one on [T ]2 there is tn ∈ T \ {ti : i < n}
such that φ({t, tn}) > n · 2n for every t ∈ T . That finishes the recursive construction
of tn .

Now, we take H = {tn : n ∈ ω} and notice that

∑

k∈φ[[H ]2]

1

k + 1
=

∞∑

n=0

∑

i<n

1

φ({ti , tn}) + 1
≤

∞∑

n=0

∑

i<n

1

n · 2n + 1
≤

∞∑

n=0

1

2n
< ∞.

��

5 Hindman ideal is not below Ramsey ideal

Lemma 5.1 If D is very sparse, then {x ∈ FS(D) : αD(x) ∩ αD(y) �= ∅} ∈ H for
every y ∈ FS(D).

Proof Let (dn)n∈ω be the increasing enumeration of all elements of D and αD(y) =
{k0, . . . , kn}. Since

{

x ∈ FS(D) : αD(x) ∩ αD(y) �= ∅
}

=
⋃

i≤n

{
x ∈ FS(D) : ki ∈ αD(x)

}

,

we only need to show that {x ∈ FS(D) : ki ∈ αD(x)} ∈ H for every i ≤ n.
If y, z ∈ {x ∈ FS(D) : ki ∈ αD(x)}, then ki ∈ αD(y) ∩ αD(z) �= ∅, so y + z /∈

FS(D) (since D is very sparse). Thus, there is no infinite (even two-element) set C
such that FS(C) ⊆ {x ∈ FS(D) : ki ∈ αD(x)}. ��
Theorem 5.2 H �K R.

Proof Let D ⊆ ω be a very sparse set (which exists by Lemma 2.3). Since the ideal
H is homogeneous (see Proposition 2.2), it suffices to show that H � FS(D) �K R.

Assume to the contrary that there exists f : [ω]2 → FS(D) which witnesses
H � FS(D) ≤K R.

We will recursively define infinite sets Bn ⊆ ω and pairwise distinct elements
bn ∈ ω such that for all n ∈ ω the following conditions are satisfied:

(a) bn ∈ Bn , bn+1 > bn ,
(b) Bn+1 ⊆ Bn , B0 = ω,
(c) for each y ∈ f

[[{bi : i < n}]2] we have

f [[Bn]2] ∩ {x ∈ FS(D) : αD(x) ∩ αD(y) �= ∅} = ∅,
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(d) for each y ∈ f
[[{bi : i < n}]2] and i < n we have

f [{{bi , b} : b ∈ Bn}] − y ∈ H.

Let b0 = 0 and B0 = ω. Then b0 and B0 are as required. Assume that bi and Bi
have been constructed for i < n and satisfy items (b)–(d).

Since {x ∈ FS(D) : αD(x)∩αD(y) �= ∅} ∈ H for every y ∈ f
[[{bi : i < n}]2] ⊆

FS(D) (by Lemma 5.1), [Bn−1]2 ∈ R+ and we assumed that f witnesses H �
FS(D) ≤K R, there exists an infinite set B ⊆ ω such that

[B]2 ⊆ [Bn−1]2 \
⋃

y∈ f [[{bi :i<n}]2]
f −1 [{x ∈ FS(D) : αD(x) ∩ αD(y) �= ∅}] .

Observe that for each infinite set E ⊆ ω and b, y ∈ ω there exists an infinite set
C ⊆ E such that f [{{b, c} : c ∈ C}]− y ∈ H. Indeed, let g : E\{b} → ω be given by
g(x) = f ({b, x}) − y. Since H is a tall ideal (Proposition 2.1), H �K Fin(E \ {b}).
Thus, there is C /∈ Fin(E\{b}) such that C ⊆ E\{b} and g[C] = f [{{b, c} : c ∈
C}] − y ∈ H.

Now, using recursively the above observation we can find an infinite set C ⊆ B
such that f [{{bi , c} : c ∈ C}] − y ∈ H for every i < n and y ∈ f

[[{bi : i < n}]2].
We put Bn = C and pick any bn ∈ Bn with bn > bn−1.
The construction of the sequences (Bn)n∈ω and (bn)n∈ω is finished.
Let B = {bn : n ∈ ω}. Since B is infinite, [B]2 ∈ R+. Since we assumed that f

witnesses H � FS(D) ≤K R, f [[B]2] ∈ H+ � FS(D), and consequently there exists
an infinite set C ⊆ ω such that FS(C) ⊆ f [[B]2].

Pick any c ∈ C and let j, n ∈ ω be such that c = f ({b j , bn}) and j < n.
Since X = [{bi : i ≤ n}]2 is finite, f [X ] − c ∈ H.
Let Y = {{bi , bk} : i ≤ n < k}}. Since {bk : k > n} ⊆ Bn+1 and Bn+1 satisfies

item (d) applied to y = c, we have f [Y ] − c ∈ H.
Let Z = [{bi : i > n}]2. We claim that FS(C\{c}) ∩ ( f [Z ] − c) = ∅. Suppose to

the contrary that there exists a ∈ FS(C\{c}) ∩ ( f [Z ] − c). Then a + c ∈ FS(C) ∩
f [Z ] ⊆ FS(D)∩ f [[Bn+1]2], so by item (c) applied to y = c, αD(c)∩αD(a+c) = ∅.
On the other hand, a, c ∈ FS(D), D is very sparse and a + c ∈ FS(D), so αD(a) ∩
αD(c) = ∅. Consequently, αD(a + c) = αD(a) ∪ αD(c), so αD(c) ∩ αD(a + c) =
αD(c) �= ∅, a contradiction.

Since [B]2 = X ∪ Y ∪ Z and FS(C\{c}) ⊆ FS(C) − c ⊆ f [[B]2] − c, we have

FS(C \ {c}) ⊆ ( f [X ] − c) ∪ ( f [Y ] − c) ∪ (( f [Z ] − c) ∩ FS(C \ {c}))
= ( f [X ] − c) ∪ ( f [Y ] − c) ∪ ∅ ∈ H,

a contradiction. ��
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6 Ramsey ideal is not below Hindman ideal

Theorem 6.1 R �K H.

Proof By� wewill denote the set� = {(z0, z1) ∈ ω2 : z0 > z1}. In this proof we will
view R as an ideal on � consisting of those A ⊆ � that do not contain any B2 ∩ �,
for infinite B ⊆ ω.

By Lemma 2.3, there is a very sparse X ∈ [ω]ω. The idealH is homogeneous (see
Proposition 2.2), so it suffices to show thatR �K H � FS(X). Fix any f : FS(X) → �

and assume to the contrary that it witnesses R ≤K H. There are two possible cases.
Case (1) There are k ∈ ω and very sparse D ∈ [ω]ω, FS(D) ⊆ FS(X), such that

for all n > k and x ∈ FS(D)we have: ( f −1[(ω×{n})∩�]∩{y ∈ FS(D) : αD(x) ⊆
αD(y)}) − x ∈ H � FS(X).

In this case we recursively pick {xn : n ∈ ω} ⊆ FS(D) and {Dn : n ∈ ω ∪{−1}} ⊆
[ω]ω such that D−1 = D and for all n ∈ ω we have:

(a) xn ∈ FS(Dn−1) \ ({xi : i < n} ∪ ⋃
i<n

⋃
j<n{y ∈ FS(Dj ) : αDj (y) ∩ αDj (xi ) �=

∅}) (here we put αDj (xi ) = ∅ whenever xi /∈ Dj );
(b) Dn is very sparse;
(c) FS({x0, . . . , xn}) ⊆ FS(D);
(d) FS(Dn) ⊆ FS(Dn−1) ⊆ FS(D);
(e)

(
f −1[(ω × {k + i}) ∩ �] − x

)∩FS(Dn) = ∅ for every x ∈ FS({x0, . . . , xn}) and
1 ≤ i ≤ n + 1;

(f) f −1[(ω × {k + i}) ∩ �] ∩ FS(Dn) = ∅ for all 1 ≤ i ≤ n + 1.

The initial step of the construction is given by the requirement D−1 = D. Suppose
now that xi and Di for all i < n are defined.

Find xn ∈ FS(Dn−1) such that FS({x0, . . . , xn}) ⊆ FS(D) and xn �= xi for all
i < n. This is possible since it suffices to pick any point from the set

FS(Dn−1) \
⋃

i<n

⋃

j<n

{y ∈ FS(Dj ) : αDj (y) ∩ αDj (xi ) �= ∅},

which is nonempty as FS(Dn−1) /∈ H � FS(X) and

⋃

i<n

⋃

j<n

{y ∈ FS(Dj ) : αDj (y) ∩ αDj (xi ) �= ∅} ∈ H � FS(X)

byLemma 5.1 and item (b) for all j < n (herewe putαDj (xi ) = ∅whenever xi /∈ Dj ).
Enumerate FS({x0, . . . , xn}) = {c0, c1, . . . , c2n+1−2}. We will define sets Et ∈

[ω]ω for −1 ≤ t ≤ n such that E−1 = Dn−1 and for all 0 ≤ t ≤ n:

• FS(Et ) ⊆ FS(Et−1) ⊆ FS(Dn−1),
• (⋃

1≤i≤n+1 f −1[(ω × {k + i}) ∩ �] − cl
)∩FS(Et ) = ∅ for every 0 ≤ l ≤ 2n+1−

2.
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Such construction is possible. Indeed, since we are in Case 1 and each cl ∈
FS({x0, . . . , xn}) ⊆ FS(D), we know that:

⎛

⎝
⋃

1≤i≤n+1

f −1[(ω × {k + i}) ∩ �] − cl

⎞

⎠ ∩ ({y ∈ FS(D) : αD(cl) ⊆ αD(y)} − cl)

=
⎛

⎝
⋃

1≤i≤n+1

f −1[(ω × {k + i}) ∩ �] ∩ {y ∈ FS(D) : αD(cl) ⊆ αD(y)}
⎞

⎠

− cl ∈ H � FS(D).

On the other hand, we get:

FS(Et−1) ∩ ({y ∈ FS(D) : αD(cl) ⊆ αD(y)} − cl)

⊇ FS(Et−1) ∩ (FS(D) \ {y ∈ FS(D) : αD(cl) ∩ αD(y) �= ∅})
⊇ FS(Et−1) \ {y ∈ FS(D) : αD(cl) ∩ αD(y) �= ∅} /∈ H � FS(D),

as {y ∈ FS(D) : αD(cl) ∩ αD(y) �= ∅} ∈ H � FS(D) (by Lemma 5.1). Then
FS(Et−1)\

(⋃
1≤i≤n+1 f −1[(ω × {k + i}) ∩ �] − cl

)
contains the set

(FS(Et−1) ∩ ({y ∈ FS(D) : αD(cl) ⊆ αD(y)} − cl))

\
⎛

⎝

⎛

⎝
⋃

1≤i≤n+1

f −1[(ω × {k + i}) ∩ �] − cl

⎞

⎠ ∩ ({y ∈ FS(D) : αD(cl) ⊆ αD(y)} − cl)

⎞

⎠

which does not belong to H � FS(D). Thus, there is Et ∈ [ω]ω as needed.
Once all Et are defined, observe that

⋃

1≤i≤n+1

(ω × {k + i}) ∩ � ∈ R.

Since we assumed that f witnesses R ≤K H,

FS(En) \
⋃

1≤i≤n+1

f −1[(ω × {k + i}) ∩ �] /∈ H.

Hence, there is a very sparse Dn ∈ [ω]ω such that

FS(Dn) ⊆ FS(En) \
⋃

1≤i≤n+1

f −1[(ω × {k + i}) ∩ �]

(by Lemma 2.3). Note that FS(Dn) ⊆ FS(En) ⊆ FS(Dn−1) ⊆ FS(D) and

⋃

1≤i≤n+1

(
f −1[(ω × {k + i}) ∩ �] − x

)
∩ FS(Dn) = ∅
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for all x ∈ FS({x0, . . . , xn}).
This finishes the construction of {xn : n ∈ ω} ⊆ FS(D) and {Dn : n ∈ ω∪{−1}} ⊆

[ω]ω.
Define B = FS({xn : n ∈ ω}). Obviously, B /∈ H � FS(X) as FS({x0, . . . , xn}) ⊆

FS(D) ⊆ FS(X) for all n ∈ ω. We will show that f [B] ∩ (ω × {n}) ∩ � is finite for
all n > k. This will finish the proof in this case as

⋃
n≤k(ω × {n}) ∩ � ∈ R and any

set finite on each (ω × {n}) ∩ � belongs toR.
Assume that f (x) ∈ (ω×{k+m+1})∩� for somem ∈ ω and x = xn0+· · ·+xnt ∈

B, where n0 < . . . < nt . If n0 > m, then x ∈ FS({xn : n > m}) ⊆ FS(Dm)

which contradicts f (x) ∈ (ω × {k + m + 1}) ∩ � (by item (f)). If n0 ≤ m but
J = { j ≤ t : n j > m} �= ∅, then let j = min J and note that x ∈ ∑

i< j xni +FS(Dm).
As

∑
i< j xni ∈ FS({x0, . . . , xm}), item (e) gives us a contradiction with f (x) ∈

(ω × {k +m + 1}) ∩ �. Hence, the only possibility is that n j ≤ m for all j ≤ t . Thus,
f [B] ∩ (ω × {k + m + 1}) ∩ � ⊆ f [FS({x0, . . . , xm})], which is a finite set.
Case (2) For every k ∈ ω and very sparse D ∈ [ω]ω, FS(D) ⊆ FS(X), there are

n > k and x ∈ FS(D) such that:

( f −1[(ω × {n}) ∩ �] ∩ {y ∈ FS(D) : αD(x) ⊆ αD(y)}) − x /∈ H � FS(X).

In this case we will pick {ni : i ∈ ω} ⊆ ω, { ji : i ∈ ω} ⊆ {0, 1}, {xi : i ∈ ω} ⊆
FS(D), {Di : i ∈ ω ∪ {−1}} ⊆ [ω]ω, {ki : i ∈ ω} ⊆ ω ∪ {−1} and {Fi : i ∈ ω} ⊆ Fin
such that D−1 = X and for each i ∈ ω:

(a) (a1) ni > ni−1 (here we put n−1 = −1);
(a2) ni > min{a ∈ ω : f [FS({x j : j < i})] ⊆ {0, 1, . . . , a}2 ∩ �};

(b) (b1) FS(Di ) ⊆ FS(Di−1) ⊆ FS(X);
(b2) Di is very sparse;

(c) if ji = 0, then:

(c1) ki = −1;
(c2) Fi = ∅;
(c3) xi ∈ FS(Di−1) ∩ f −1[(ω × {ni }) ∩ �];
(c4) xi + FS(Di ) ⊆ f −1[(ω × {ni }) ∩ �];

(d) if ji = 1, then:

(d1) ki ∈ {0 ≤ u < i : u /∈ ⋃
q<i Fq , ju = 0};

(d2) Fi = {ki , ki + 1, . . . , i − 1};
(d3) (d3a) xi ∈ f −1[{(ni , nki )}];

(d3b) xi ∈ xki + ({0} ∪ FS({xr : ki < r < i, r /∈ ⋃
q<i Fq})) + FS(Di−1);

(d4) xi + FS(Di ) ⊆ f −1[{(ni , nki )}];
(e) if x = ∑

b≤a xtb for some 0 ≤ t0 < . . . < ta < i , tb /∈ ⋃
q≤i Fq (so x ∈ FS({xt :

t < i, t /∈ ⋃
q≤i Fq})), then:

(e1) (x + xi + FS(Di )) ∩ f −1[{(ni , nt0)}] = ∅;
(e2) (x + FS(Di )) ∩ f −1[{(ni , nt0)}] = ∅;
(e3) (x + xi ) ∩ f −1[{(ni , nt0)}] = ∅;
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(f) FS(Di ) ∩ {y ∈ FS(Dt ) : αDt (y) ∩ αDt (xu) �= ∅} = ∅ for all −1 ≤ t < i and
0 ≤ u ≤ i such that xu ∈ FS(Dt );

(g) (g1) FS({xt : t ≤ i, t /∈ ⋃
q≤i Fq}) ⊆ FS(X);

(g2)
∑

b≤a xtb ∈ xt0 + FS(Dt0) for every a > 0, 0 ≤ t0 < . . . < ta ≤ i ,
tb /∈ ⋃

q≤i Fq ;

In the first step, since we are in Case 2, for k = 0 and D = X there are n0 > k
(note that (a) is satisfied) and x ′

0 ∈ FS(X) such that: ( f −1[(ω × {n0}) ∩ �] ∩ {y ∈
FS(X) : αX (x ′

0) ⊆ αX (y)}) − x ′
0 /∈ H � FS(X). Hence, there is D′

0 ∈ [ω]ω such that:
x ′
0+FS(D′

0) ⊆ f −1[(ω×{n0})∩�]∩{y ∈ FS(X) : αX (x ′
0) ⊆ αX (y)} ⊆ FS(X). Put

j0 = 0, k0 = −1 and F0 = ∅ (note that (c1) and (c2) are satisfied). Moreover, define
x0 = x ′

0+min(D′
0) (note that (c3) and (g1) are satisfied, because x0 ∈ x ′

0+FS(D′
0) ⊆

FS(X) and x ′
0 + FS(D′

0) ⊆ f −1[(ω × {n0}) ∩ �]) and using Lemma 2.3 find a very
sparse D0 ∈ [ω]ω such that

FS(D0) ⊆ FS(D′
0 \ {min(D′

0)}) \ {y ∈ FS(X) : αX (y) ∩ αX (x0) �= ∅},

which is possible as {y ∈ FS(X) : αX (y) ∩ αX (x0) �= ∅} ∈ H � FS(X) by Lemma
5.1 (note that (c4), (f) and (b) are satisfied, because x0 + FS(D0) ⊆ x ′

0 + FS(D′
0) ⊆

f −1[(ω×{n0})∩�] andFS(D0) ⊆ FS(D′
0) ⊆ {y ∈ FS(X) : αX (x ′

0) ⊆ αX (y)}−x ′
0 ⊆

FS(X)). In conditions (e) and (g2) there is nothing to check. Thus, all the requirements
are met.

In the i th step, where i > 0, since we are in Case 2, if k = max{ni−1,min{a ∈ ω :
f [FS({x j : j < i})] ⊆ {0, 1, . . . , a}2 ∩ �}} and D = Di−1, then there are ni > k (so
(a) is satisfied) and x ′

i ∈ FS(Di−1) such that

(
f −1[(ω × {ni })∩�]∩{y∈FS(Di−1) : αDi−1(x

′
i )⊆αDi−1(y)}

)
−x ′

i /∈ H � FS(X).

Hence, there is D′
i ∈ [ω]ω such that: x ′

i + FS(D′
i ) ⊆ f −1[(ω × {ni }) ∩ �] ∩ {y ∈

FS(Di−1) : αDi−1(x
′
i ) ⊆ αDi−1(y)}. In particular, FS(D′

i ) ⊆ {y ∈ FS(Di−1) :
αDi−1(x

′
i ) ⊆ αDi−1(y)} − x ′

i = {y ∈ FS(Di−1) : αDi−1(x
′
i ) ∩ αDi−1(y) = ∅} ⊆

FS(Di−1). There are two possibilities.
Assume first that there is x = ∑

b≤a xtb for some t0 < . . . < ta < i , tb /∈ ⋃
q<i Fq

such that either x+ x ′
i +FS(D̄i ) ⊆ f −1[{(ni , nt0)}] or x+FS(D̄i ) ⊆ f −1[{(ni , nt0)}]

for some D̄i ∈ [ω]ω such that FS(D̄i ) ⊆ FS(D′
i ). Define ji = 1 and let ki be minimal

such that there is (one or more) x as above with ki = t0.
Notice that ki ∈ {0 ≤ u < i : u /∈ ⋃

q<i Fq}. We will show that jki = 0 (i.e.,

(d1) is satisfied). Suppose that jki = jt0 = 1. Observe that x ′
i + FS(D̄i ) ⊆ FS(Di−1)

(by FS(D̄i ) ∩ {y ∈ FS(Di−1) : αDi−1(y) ∩ αDi−1(x
′
i ) �= ∅} = ∅) and consequently

x ′
i + FS(D̄i ) ⊆ FS(Dt0) (by item (b1)). Then items (b1), (f) and (g2) give us:

• x + x ′
i + FS(D̄i ) ⊆ xt0 + FS(Dt0),

• x + FS(D̄i ) ⊆ xt0 + FS(Dt0).

Then from (d4) we have:

• f [x + x ′
i + FS(D̄i )] ⊆ {(nt0 , nkt0 )},
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• f [x + FS(D̄i )] ⊆ {(nt0 , nkt0 )}.
This contradicts x+x ′

i+FS(D̄i ) ⊆ f −1[{(ni , nt0)}] or x+FS(D̄i ) ⊆ f −1[{(ni , nt0)}],
because nt0 < ni (by t0 < i and item (a1)).

Define Fi = {ki , ki + 1, . . . , i − 1} (so (d2) is satisfied) and x̄i = x + x ′
i (or x̄i = x

if x + FS(D̄i ) ⊆ f −1[{(ni , nt0)}]).
To define Di and xi , note that by the choice of ki , for each y = ∑

b≤a xtb , t0 <

. . . < ta < i , tb /∈ ⋃
q≤i Fq (so in fact ta < ki ) we know that (y + x̄i + FS(E)) �

f −1[{(ni , nt0)}] and (y + FS(E)) � f −1[{(ni , nt0)}] for every E ∈ [ω]ω such that
FS(E) ⊆ FS(D′

i ). In other words, f −1[{(ni , nt0)}] − (y + x̄i ) ∈ H � FS(D′
i ) and

f −1[{(ni , nt0)}] − y ∈ H � FS(D′
i ), for every such y. Thus, we can find D̃i ∈ [ω]ω

such that:

• FS(D̃i ) ⊆ FS(D̄i );
• (y+ x̄i +FS(D̃i ))∩ f −1[{(ni , nt0)}] = ∅ and (y+FS(D̃i ))∩ f −1[{(ni , nt0)}] = ∅
for every y = ∑

b≤a xtb , where t0 < . . . < ta < i , tb /∈ ⋃
q≤i Fq ;

• FS(D̃i ) ∩ {y ∈ FS(Di−1) : αDi−1(y) ∩ αDi−1(x
′
i ) �= ∅} = ∅;

(the last item is trivial, as FS(D̃i ) ⊆ FS(D̄i ) ⊆ FS(D′
i ) and FS(D′

i ) ⊆ {y ∈
FS(Di−1) : αDi−1(x

′
i ) ∩ αDi−1(y) = ∅}).

Define xi = x̄i + min(D̃i ) and let Di ∈ [ω]ω be very sparse such that FS(Di ) ⊆
FS(D̃i\{min(D̃i )}) and Di satisfies item (f). It is possible using Lemma 2.3, as {y ∈
FS(Dt ) : αDt (y) ∩ αDt (xu) �= ∅} ∈ H � FS(X) by Lemma 5.1 and item (b2) for all
−1 ≤ t < i . Then (b2) is satisfied. Observe that other conditions are met:

(b1) FS(Di ) ⊆ FS(D̃i ) ⊆ FS(D̄i ) ⊆ FS(D′
i ) ⊆ FS(Di−1) ⊆ FS(X);

(d3b) if x̄i = x + x ′
i , then xi = x̄i + min(D̃i ) = xki + (x − xki ) + x ′

i + min(D̃i ) ∈
xki + ({0} ∪ FS({xr : ki < r < i, r /∈ ⋃

q<i Fq})) + FS(Di−1) by the fact that

FS(D̃i ) ∩ {y ∈ FS(Di−1) : αDi−1(y) ∩ αDi−1(x
′
i ) �= ∅} = ∅ (if x̄i = x this is

even easier to show);
(d3a) if x̄i = x + x ′

i , then xi ∈ x + x ′
i + FS(D̄i ) ⊆ f −1[{(ni , nki )}] (if x̄i = x this

is also true);
(d4) if x̄i = x + x ′

i , then xi + FS(Di ) ⊆ x + x ′
i + FS(D̄i ) ⊆ f −1[{(ni , nki )}] (if

x̄i = x this is also true);
(e) for (e3), if y = ∑

b≤a xtb , t0 < . . . < ta < i , tb /∈ ⋃
q≤i Fq , then note that

y + xi = y + x̄i + min(D̃i ) ∈ y + x̄i + FS(D̃i ) and recall that (y + x̄i +
FS(D̃i )) ∩ f −1[{(ni , nt0)}] = ∅, thus y + xi /∈ f −1[{(ni , nt0)}] ((e1) and (e2)
are similar);

(g1) FS({xt : t ≤ i, t /∈ ⋃
q≤i Fq}) ⊆ FS({xt : t < i, t /∈ ⋃

q<i Fq})∪(xi+FS({xt :
t < i, t /∈ ⋃

q<i Fq}) ⊆ FS(X) by items (f) and (g1) applied to i − 1 and item
(d3b) applied to i ;

(g2) if a > 0, t0 < . . . < ta ≤ i , tb /∈ ⋃
q≤i Fq then either ta < i and

∑
b≤a xtb ∈

xt0 + FS(Dt0) (by (g2) applied to i − 1) or ta = i and
∑

b≤a xtb = ∑
b<a xtb +

xi ∈ xt0 + ({0}∪FS({xr : t0 < r < ki , r /∈ ⋃
q<i Fq}))+ xki + ({0}∪FS({xr :

ki < r < i, r /∈ ⋃
q<i Fq}))+FS(Di−1) ⊆ xt0 +FS(Dt0) by items (b1), (d3b),

(f) and (g2) for i − 1.
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Hence, all the requirements are met. This finishes the case of ji = 1.
Assume now that for all x = ∑

b≤a xtb , t0 < . . . < ta < i , tb /∈ ⋃
q<i Fq we

have x + x ′
i + FS(E) � f −1[{(ni , nt0)}] and x + FS(E) � f −1[{(ni , nt0)}] for all

E ∈ [ω]ω such that FS(E) ⊆ FS(D′
i ). Put ji = 0, ki = −1 and Fi = ∅ (note that (c1)

and (c2) are satisfied).
Similarly as above (in the construction of D̃i ), we can find D̃i ∈ [ω]ω such that:

• FS(D̃i ) ⊆ FS(D′
i );

• (x+x ′
i +FS(D̃i ))∩ f −1[{(ni , nt0)}] = ∅ and (x+FS(D̃i ))∩ f −1[{(ni , nt0)}] = ∅

for every x = ∑
b≤a xtb , t0 < . . . < ta < i , tb /∈ ⋃

q≤i Fq ;

• FS(D̃i ) ∩ {y ∈ FS(Di−1) : αDi−1(y) ∩ αDi−1(x
′
i ) �= ∅} = ∅.

Define xi = x ′
i + min(D̃i ) and let Di ∈ [ω]ω be very sparse such that FS(Di ) ⊆

FS(D̃i\{min(D̃i )}) and Di satisfies item (f) (which is possible by Lemmas 2.3 and
5.1 and (b2) applied to all −1 ≤ t < i). Note that (b2) is satisfied. Observe that other
conditions are met:

(b1) FS(Di ) ⊆ FS(D̃i ) ⊆ FS(D′
i ) ⊆ FS(Di−1) ⊆ FS(X);

(c3) xi ∈ FS(Di−1) as FS(D̃i ) ∩ {y ∈ FS(Di−1) : αDi−1(y) ∩ αDi−1(x
′
i ) �= ∅} = ∅,

xi ∈ x ′
i + FS(D′

i ) ⊆ f −1[(ω × {ni }) ∩ �];
(c4) xi + FS(Di ) ⊆ x ′

i + FS(D′
i ) ⊆ f −1[(ω × {ni }) ∩ �];

(e) for (e3), if x = ∑
b≤a xtb , t0 < . . . < ta < i , tb /∈ ⋃

q≤i Fq , then note that

x + xi = x + x ′
i + min(D̃i ) ∈ x + x ′

i + FS(D̃i ) and recall that (x + x ′
i +

FS(D̃i )) ∩ f −1[{(ni , nt0)}] = ∅, thus x + xi /∈ f −1[{(ni , nt0)}] ((e1) and (e2)
are similar);

(g1) by items (f) and (g1) applied to i − 1 and item (c3) applied to i , FS({xt : t ≤
i, t /∈ ⋃

q≤i Fq}) = FS({xt : t < i, t /∈ ⋃
q<i Fq}) ∪ (xi + FS({xt : t < i, t /∈⋃

q<i Fq})) ⊆ FS(X);
(g2) if a > 0, t0 < . . . < ta ≤ i and tb /∈ ⋃

q≤i Fq , then either ta < i and∑
b≤a xtb ∈ xt0 + FS(Dt0) (by item (g2) applied to i − 1) or ta = i and∑
b≤a xtb ∈ xt0 + FS(Dt0) as

∑
b<a xtb ∈ xt0 + FS(Dt0) and xi ∈ FS(Di−1) ⊆

FS(Dt0)\{y ∈ FS(Dt0) : ∃ j<i αDt0
(y) ∩ αDt0

(x j ) �= ∅} by item (c3) for i and
items (b1), (f) and (g2) for i − 1.

Hence, all the requirements are met. This finishes the case of ji = 0.
Note that xi �= x j for i �= j (it follows from items (a2), (c3) and (d3a)). Once the

whole recursive construction is completed, define A = {xi : i /∈ ⋃
q∈ω Fq}. We need

to show two facts:

(i) A is infinite;
(ii) f [FS(A)] ∈ R.

Note that this will finish the proof as item (i) together with FS(A) ⊆ FS(X) (by item
(g1)) guarantee that FS(A) /∈ H � FS(X).

(i) Since xi �= x j for i �= j , we only need to show that there are infinitely many
t ∈ ω such that xt ∈ A. Assume to the contrary that there is p ∈ ω such that xt /∈ A
for all t ≥ p. Without loss of generality we may assume that p is minimal with
that property. Since xp /∈ A, we have that p ∈ ⋃

q∈ω Fq , hence there is q such that
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p ∈ Fq . By items (c2) and (d2), we know that jq = 1, q > p and, by minimality of p,
Fq = {p, p+1, . . . q −1}. Again, as xq /∈ A (because q > p), there should be r such
that q ∈ Fr = {kr , kr + 1, . . . , r − 1} (so kr ≤ q < r ) and kr ≥ p (by minimality of
p). However, this is impossible as item (d1) gives us:

kr ∈
{

u < r : u /∈
⋃

w<r

Fw, ju = 0

}

∩ {0, 1, . . . , q}

⊆ {u ≤ q : u /∈ Fq} ∩ {u ≤ q : ju = 0}
= ({0, 1, . . . , p − 1} ∪ {q}) ∩ {u ≤ q : ju = 0} ⊆ {0, 1, . . . , p − 1}

(here, if p = 0 then {0, 1, . . . , p − 1} = ∅).
(ii)We have:

FS(A) =
⋃

i∈B
({xi } ∪ (xi + FS(A \ {0, 1, . . . , xi })))

∪
⋃

i∈C
({xi } ∪ (xi + FS(A \ {0, 1, . . . , xi }))),

where B = {i ∈ ω : i /∈ ⋃
q∈ω Fq , ji = 0} and C = {i ∈ ω : i /∈ ⋃

q∈ω Fq , ji = 1}.
First we will show that f [⋃i∈C ({xi } ∪ (xi + FS(A\{0, 1, . . . , xi })))] ∈ R.

Note that f (xi ) = (ni , nki ) (by item (d3a)) and f [xi + FS(A\{0, 1, . . . , xi })] ⊆
f [xi + FS(Di )] = {(ni , nki )} for each i ∈ C (by items (d4) and (g2)). More-
over, the sequence (ni )i∈ω is injective (by item (a1)). Hence, f [⋃i∈C ({xi } ∪ (xi +
FS(A\{0, 1, . . . , xi })))] ∈ R, as any set intersecting each ({n} × ω) ∩ � on at most
one point belongs to R.

Nowwewill show that f [⋃i∈B({xi }∪(xi+FS(A\{0, 1, . . . , xi })))] ∈ R. By items
(c3), (c4) and (g2), f [{xi }∪(xi +FS(A\{0, 1, . . . , xi }))] ⊆ f [{xi }∪(xi +FS(Di ))] ⊆
(ω × {ni }) ∩ � for all i ∈ B. Note that

⋃
i∈B f [{xi }] ∈ R (from (a1), as each set

intersecting each (ω × {n}) ∩ � on at most one point belongs to R). Suppose that
Z2 ∩ � ⊆ ⋃

i∈B f [xi + FS(A\{0, 1, . . . , xi })] for some Z ∈ [ω]ω.
First we will show that |Z \ {ni : i ∈ B}| ≤ 1. Suppose that there are z, w ∈

Z\{ni : i ∈ B} such that z > w. Then there is i ∈ B such that (z, w) ∈ f [xi +
FS(A\{0, 1, . . . , xi })], hence xi +FS(A\{0, 1, . . . , xi }) ⊆ f −1[{(z, w)}]. But by (c4)
and (g2) we have xi + FS(A\{0, 1, . . . , xi }) ⊆ xi + FS(Di ) ⊆ f −1[(ω × {ni }) ∩ �].
So (z, w) ∈ (ω × {ni }) ∩ �, i.e., w = ni . A contradiction.

By the previous paragraph, since Z is infinite, there are i, j ∈ B such that j < i
and ni , n j ∈ Z . We will show that (ni , n j ) /∈ ⋃

k∈B f [xk + FS(A\{0, 1, . . . , xk})].
This will contradict Z2 ∩ � ⊆ ⋃

k∈B f [xk + FS(A\{0, 1, . . . , xk})] and finish the
proof.

Suppose that (ni , n j ) ∈ ⋃
k∈B f [xk + FS(A\{0, 1, . . . , xk})]. From (c4) and (g2),

for every k �= j , k ∈ B we have f [xk + FS(A\{0, 1, . . . , xk})] ⊆ f [xk + FS(Dk)] ⊆
(ω × {nk}) ∩ �, so (ni , n j ) /∈ f [xk + FS(A\{0, 1, . . . , xk})]. Hence, (ni , n j ) ∈
f [x j+FS(A\{0, 1, . . . , x j })]. Let y ∈ x j+FS(A\{0, 1, . . . , x j }) be such that f (y) =
(ni , n j ). Then y = x j + xs0 + · · · + xsp for some j < s0 < . . . < sp. We have five
cases:
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• If sp < i , then from item (a2) we have f (y) ∈ [{0, . . . , ni −1}]2. A contradiction.
• If sp = i , then y = (x j + · · · + xsp−1) + xi and from item (e3) (applied to

x = (x j + · · · + xsp−1)) we get f (y) �= (ni , n j ), a contradiction.
• If there exists k < p such that sk = i , then y = (x j + · · · + xsk−1) + xi + (xsk+1 +

· · · + xsp ) ∈ (x j + · · · + xsk−1) + xi + FS(Di ) by item (g2) and from item (e1)
(applied to x = (x j + · · · + xsk−1)) we get a contradiction.

• If there exists k ≤ p such that sk−1 < i < sk , then y = (x j +· · ·+ xsk−1)+ (xsk +
· · · + xsp ) ∈ (x j + · · · + xsk−1) + FS(Di ) by item (g2) and from item (e2) we get
a contradiction.

• If i < s0, then y = x j + (xs0 + · · · + xsp ) ∈ x j + FS(Di ) by item (g2) and from
item (e2) we get a contradiction.

Thus, f [FS(A)] ∈ R and the proof is finished. ��
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21. Katětov, M.: Products of filters. Comment. Math. Univ. Carolinae 9, 173–189 (1968)
22. Kojman, M.: Hindman spaces. Proc. Am. Math. Soc. 130(6), 1597–1602 (2002)
23. Kojman, M.: van der Waerden spaces. Proc. Am. Math. Soc. 130(3), 631–635 (2002)
24. Kojman, M., Shelah, S.: van der Waerden spaces and Hindman spaces are not the same. Proc. Am.

Math. Soc. 131(5), 1619–1622 (2003)
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