Archive for Mathematical Logic . o

https://doi.org/10.1007/500153-024-00924-7 Mathematical Logic
Check for
updates

Katétov order between Hindman, Ramsey and summable
ideals

Rafat Filipow’ - Krzysztof Kowitz' - Adam Kwela'

Received: 16 July 2023 / Accepted: 15 April 2024
© The Author(s) 2024

Abstract

A family 7 of subsets of a set X is an ideal on X if it is closed under taking subsets and
finite unions of its elements. An ideal Z on X is below an ideal (7 on Y in the Katétov
order if there is a function f:¥ — X such that f~![A] € J for every A € Z. We
show that the Hindman ideal, the Ramsey ideal and the summable ideal are pairwise
incomparable in the Katétov order, where

e The Ramsey ideal consists of those sets of pairs of natural numbers which do not
contain a set of all pairs of any infinite set (equivalently do not contain, in a sense,
any infinite complete subgraph),

e The Hindman ideal consists of those sets of natural numbers which do not contain
any infinite set together with all finite sums of its members (equivalently do not
contain [P-sets that are considered in Ergodic Ramsey theory),

e The summable ideal consists of those sets of natural numbers such that the series
of the reciprocals of its members is convergent.
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1 Introduction

The Katétov order is an efficient tool for studying ideals over countable sets [17-20,
31, 33]. Originally, the Katétov order (introduced by Katétov [21] in 1968) was used to
study convergence in topological spaces, and our interest in Katétov order between the
Hindman, Ramsey and summable ideals stems from the study of sequentially compact
spaces defined as, in a sense, topological counterparts of well-known combinatorial
theorems: Ramsey’s theorem for coloring graphs and Hindman’s finite sums theorem
[3, 4, 22-25]. It is known [10, 27] that an existence of a sequentially compact space
which distinguishes the above mentioned classes of spaces is reducible to a question
whether particular ideals are incomparable in the Katétov order.

Beside our primary interest in the Katétov order described above we mention one
more strength of this order. Using the Katétov order, we can classify non-definable
objects (like ultrafilters or maximal almost disjoint families) using Borel ideals [18].
For instance, an ultrafilter I/ is a P-point if and only if the dual ideal Z/* is not Katétov
above Fin? (equivalently I/ is a Fin’-ultrafilter as defined by Baumgartner [2]). It is
known [9] that an existence of an ultrafilter which distinguishes between some classes
of ultrafilters is reducible to a question whether particular ideals are incomparable in
the Katétov order.

Below we describe the results obtained in this paper and introduce the necessary
notions and notations.

We write o to denote the set of all natural numbers (with zero). We write [A]? to
denote the set of all unordered pairs of elements of A, [A]<% to denote the family of
all finite subsets of A and [A]“ to denote the family of all infinite countable subsets
of A.

A family Z C P(X) of subsets of a set X is an ideal on X if itis closed under taking
subsets and finite unions of its elements, X ¢ Z and Z contains all finite subsets of X.
By Fin(X) we denote the family of all finite subsets of X and we write Fin instead of
Fin(w).

For an ideal Z on X, we write Z* = {A € X : A ¢ Z} and call it the coideal of T,
and we write Z* = {X \ A : A € Z} and call it the filter dual to T. It is easy to see that
I|A={ANB:BeTI}isanidealon Aifandonlyif A € 7.

For a set B € w, we write F'S(B) to denote the set of all finite (nonempty) sums
of distinct elements of B i.e. FS(B) = {}_,.pn : F € [B]=*\{#}}.

In this paper we are interested in the following three ideals:

o the Ramsey ideal
R={AcwP:VB el (BP ¢ A,
e the Hindman ideal

H={ACw:VBe[0]”FS(B) ¢ A},
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o the summable ideal

The Ramsey ideal was introduced by Meza-Alcantara [30, p. 28] where he used the
notation G, for this ideal. Moreover, the author noted that if we identify aset A C [w]?
with a graph G4 = (w, A), the ideal R can be seen as an ideal consisting of graphs
without infinite complete subgraphs. The Hindman ideal was introduced by Kojman
and Shelah [24, p. 1620] where they used the notation Z7p. The summable ideal is
a particular instance of the so-called summable ideals which seem to be “ancient”
compared to previously mentioned ideals as they were introduced in 1972 by Mathias
[28, Example 3, p.206].

We say that an ideal Z on X is below an ideal 7 on Y in the Katétov order [21] if
there is a function f : ¥ — X such that f~![A] € J for every A € Z (equivalently,
fIB] ¢ Z for all B ¢ J). Note that the Katétov order has been extensively examined
(even in its own right) for many years so far [1, 2, 5-7, 14-20, 30-33, 36].

The aim of this paper is to prove the following

Theorem 1.1 The ideals R, H and 1\;, are pairwise incomparable in the Katétoy
order.

One more ideal is closely related to the above ones — the van der Waerden ideal

W = {A C w :A does not contain arithmetic progressions

of arbitrary finite length},

Similarly to the Hindman ideal, van der Waerden ideal was introduced by Kojman and
Shelah [24, p. 1620] where they used the notation Z4 p for this ideal.

It is known that the ideals R, H and Zy, are not below the ideal V in the Katétov
order (see [10, Theorem 7.7], [24, Lemma 1] and [12, Lemma 3.1], respectively).
However, the remaining three questions about these ideals are still open.

Question 1.2 Is the ideal VW below the ideal R (H, 1y, resp.) in the Katétov order?

Note that in the case of the summable ideal, Question 1.2 is a weakening of the
famous Erd6s-Turdn conjecture which says that W C 7y ,,.

2 Preliminaries
Anideal Z on X is tall [29, Definition 0.6] if for every infinite set A C X there exists
an infinite set B C A such that B € Z. It is not difficult to see that Z is not tall <—

T <k Jforeveryideal 7 <= Z <k Fin <= Z | A = Fin(A) forsome A € It.
It is easy to show the following
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Proposition 2.1 The ideals H, R, W and 1,,, are tall.

Ideals Z and J on X and Y, respectively are isomorphic (in short: Z =~ 7) if there
exists a bijection ¢ : X — Y suchthat A € 7 <= ¢[A] € J foreach A C X. An
ideal Z is homogeneous [26, Definition 1.3] if the ideals 7 and Z | A are isomorphic
forevery A € .

Proposition 2.2 [26, Examples 2.5 and 2.6] The ideals H, R and VV are homogeneous.

By identifying subsets of X with their characteristic functions, we equip P (X) with
the topology of the space 2% (the product topology of countably many copies of the
discrete topological space {0, 1}) and therefore we can assign topological notions to
ideals on X. In particular, an ideal Z is Borel (Fy, resp.) if Z is a Borel (F,, resp.)
subset of 2.

fACwandn e w,wewritte A+n={a+n:a€AlandA—n={a—n:ac€
A,a > n}.

A set D C w is sparse [22, p. 1598] if for each x € FS(D) there exists the unique
set « C D such that x = ), _, n. This unique set will be denoted by «p(x). For
instance, the set E = {2" : n € w} is sparse, and in the text, we write o (x) instead of
or(x).

A set D C wis very sparse [11, p. 894] if it is sparse and

Vx,y € FS(D) (ap(x) Nap(y) #0 — x4+ y ¢ FS(D)).

In the text, we will use the following

Lemma 2.3 [11, Lemma 2.2] For every infinite set D C o there is an infinite set
D’ C D which is very sparse.

Moreover, the following versions of Ramsey and Hindman’s theorems will be used
in some proofs.

Theorem 2.4 Canonical Ramsey’s Theorem [8, Theorem I1]; see also [13, Theorem 2
atp. 129] For every function ¢ : w — w there exists an infinite set T C w such that
one of the following four cases holds:

(1) Vx,y € [T (¢ (x) = (),

(2) Vx,y € [T (¢(x) = ¢(y) <= minx = miny),
(3) Vx,y € [TT*(¢(x) = ¢(y) < maxx = maxy),
(4) Vx,y € [TT(9p(x) = ¢ (y) & x =y).

Theorem 2.5 Canonical Hindman’s Theorem [34, Theorem 2.1]; see also [13, The-
orem 5 at p. 133] For every function ¢ : w — o there exists an infinite set
C ={c, : n € w} € w such that maxa(c,) < mina(c,+1) for every n € w
and one of the following five cases holds:

(1) Vx,y € FS(C)(¢(x) = ¢(y)),
(2) Vx,y € FS(O)(¢(x) = ¢(y) <= mina(x) = mina(y)),
(3) YVx,y e FS(C)(¢(x) = ¢(y) <= maxoa(x) = maxa(y)),
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(4) Vx,y € FS(C)(¢(x) = ¢(y) <= (mina(x) = mina(y) and max o(x) =
max «(y))),
(5) Vx,y e FS(C) (¢ (x) = ¢(y) < x=y).

The ordinary Ramsey’s Theorem (Hindman’s Theorem, resp.) says that if the range
of ¢ is finite in the Canonical Ramsey’s Theorem (Canonical Hindman’s Theorem,
resp.) then we can always require that item (1) holds. There is also the Canonical van
der Waerden Theorem, however we will not use it here, so let us just recall the ordinary
version.

Theorem 2.6 van der Waerden’s Theorem [35]; see also [13, Theorem 1 at p. 29] For
every function ¢ : @ — w with finite range there exists an infinite set A C w which
contains arbitrarily long finite arithmetic progressions and ¢ (x) = ¢(y) for every
X,y € A.

3 Summable and Hindman ideals are incomparable
Theorem3.1 H £k Zi/, and Ty /n £x H.

Proof In [10, Theorem 7.7], the authors proved H £k Zi/n, while Z/, £k H is
proved in [11, Theorem 3.2]. Below we provide a simpler proof of the latter inequality
which is based on the Canonical Hindman’s Theorem.

Let ¢ : @ — w be an arbitrary function. Using the Canonical Hindman’s Theorem
(Theorem 2.5) we can find an infinite set C = {¢, : n € w} C wsuchthatmax a(c,) <
min «(cy+1) for every n € w and one of the following five cases holds:

(1) Vx,y e FS(C)(¢(x) = ¢ (¥)),

(2) Vx,y e FS(O)(¢(x) = ¢(y) <= mina(x) = mina(y)),

(3) Vx,y e FS(O)(¢(x) = ¢(y) <= maxa(x) = maxa(y)),

4) Vx,y € FS(C)(¢(x) = ¢(y) <= (mina(x) = minw(y) and max «(x) =
max & (y))),

(5) Vx,y e FS(C)(@(x) = ¢(y) < x=1y).

We will show that ¢ is not a witness for 71, <k H i.e. we will find an infinite set
D C wsuchthat p[FS(D)] € Iy,,. To be precise, we will construct (separately in each
case) a strictly increasing sequence {k, : n € w} such that the set D = {c, : n € w}
will work.

Case (1) In this case we put k,, = n. Then D = C and we see that the set ¢[FS(D)]
has only one element, so it belongs to Z1 .

Case (2) (Case (3), resp.) We construct &, such that ¢ (cg,) > 2" for every n € w.

Suppose that k; are constructed for i < n. Since max o(cx) < mina(cg4+1) for
every k € w, mina(cy) # mina(c;) (maxa(cky) # maxa(cy), resp.) for distinct
k,! € w. Consequently, ¢ | C is one-to-one, so we can find k,, > k;,_1 such that
¢ (ck,) > 2". That finishes the recursive construction of k.

We put A, = ¢lck, +FS({cy; : i > n})] (A, = plek, +FSck, 11 < n})], resp.)
forevery n € w. Using the properties of ¢k, ’s we can see that A, = {¢(cx, )} for every
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n € w, so

1 1 1 1
2 = X :Z¢(ckn>+1522"+1<°°'

YEQLES (D)) new \ ye( (cx, )JUA, new new

Case (4) We construct k,, such that

VnewVi<n (qb(ck”) > n2" A @(ck, + cx;) > n2”).

Suppose that k; are constructed for i < n. Since max o(cx) < mina(ck+1) for
every k € w, we obtain that mina(cx + cx;) 7 mino(ck + ck_/) and mina(cy) #
mina(ck + c;) for every k > k,—1 andi < j < n — 1. Consequently, the function
¢ | ({ex+ck; k> ky—1,i < n}U{ck : k > k,—1}) is one-to-one, so using pigeonhole
principle we can find k,, > k,_1 such that ¢ (cx,) > n2" and ¢ (cx, + c;) > n2" for
every i < n. That finishes the recursive construction of k;,.

We put Ay, = @lck,, +FS({cr;, :m < i <n}) +ci,]foreverym,n € w,m < n.
Using the properties of ¢k, ’s we can see that A,, , = {¢(cx,, + cx,)} forevery m < n,
m,n € w, SO

1

Y o nt il )

vegirsoon T e newm=n \ yeld (ciy +cin) W Am.n
1 1

=y ——+ _—

Z¢(Ck,l)+1 ZZ ¢ (ck,, +ck,) +1

new newm<n

1 1
DB D D) D il

new newm<n

Case (5) We construct k,, such that

Vi€ w¥x € FS({ey, 1 i < n}) <¢(ckn) > 22 A ek, +x) > 22”) .

Suppose that k; are constructed for i < n. Let m € w be such that m > 22"
and m > ¢(x) for every x € FS({cy, : i < n}). Since ¢ | FS(C) is one-to-one,
the set F = (;5_1[{0, 1,...,m}] is finite. Let k, € w be such that ¢, > max F.
Since ¢;, > max F, we obtain that ¢y, ¢ F and consequently ¢ (cx,) > m > 22"
Similarly, for every x € FS({cy; : i < n}) we have ¢, +x > ¢, > max F, so
¢(ck, +x)>m > 227 That finishes the recursive construction of &,,.
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We put A,, = @lck, +FS({cx, : i < n})] for every n € w. Using the properties of
Ck, s we can see that:

1 1 1
2 it 2\ seorit 2
y€@[FS(D)] new " YEA,
=53] P S
- 220 +1 22 1
new YEA,
< ! +©2"=1) !
— . < OQ.
- 220 +1 22n +1
new

4 Summable and Ramsey ideals are incomparable

Theorem4.1 R £k Zi/y and 1/, £k R.

Proof In[10, Theorem 7.7], the authors proved R f k Z1/n. Below we provide a proof
of Zyn j{ k R which is based on the Canonical Ramsey’s Theorem.

Let¢ : [w]> — w be an arbitrary function. Using the Canonical Ramsey’s Theorem
(Theorem 2.4) we can find an infinite set 77 € w such that one of the following four
cases holds:

(D) Vx,y € [TP(p(x) = 9 (3)),

(2) Vx,y € [TT*(¢(x) = ¢(y) <= minx =miny),
(3) Vx,y € [TP(¢p(x) = ¢(y) < maxx = maxy),
@) Vx,y € [TP(p(x) = p(y) & x =Y).

We will show that ¢ is not a witness for 71, <g R i.e. we will find an infinite set
H C o such that ¢[[H1*] € Ty,

Case (1) We take H = T and see that the set ¢[[H 1] has only one element, so it
belongs to Z .

Case (2) (Case (3), resp.) In this case, for every ¢t € T the restriction ¢ | {{z, s} :
seT,s >t} (| {{t,s}:s €T,s < t}, resp.) is constant with distinct values for
distinct z. Thus, for every t € T there is k; such that {k;} = ¢[{{t,s}:5s € T,s > t}]
(k) = o[{{t, s} : s € T, s < t}], resp.).

Since k;, are pairwise distinct, we can find a one-to-one sequence {#, : n € w} € T
such that k, > 2" for every n € w.

Let H=1{t, :n € w}and A, = ¢[{{tn, t;} : i > n}] (A, = o[{{t;, 1} : i < n}],
resp.) for every n € w. Then

D 3] D ppe

1 =1
< Z — < o0.
ke +1 n
kepllH]?] n=0 \keA, n=0 " n=0
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Case (4) We construct recursively a one-to-one sequence {#, : n € w} € T such
that ¢ ({t;, t,}) > n - 2" forevery n € w and every i < n.

Suppose that #; are constructed fori < n. Since there are only finitely many numbers
below 7 - 2" and the function ¢ is one-to-one on [T]* there is t, € T \ {t; : i < n}
such that ¢ ({r, #,}) > n - 2" for every ¢ € T. That finishes the recursive construction
of t,,.

Now, we take H = {t,, : n € w} and notice that

D D D) B D DL T
k€¢[[1’1]2]k+1 n=0i<n ot tn}) +1 n=0i<n n-2"+1 n:02

5 Hindman ideal is not below Ramsey ideal

Lemma 5.1 If D is very sparse, then {x € FS(D) : ap(x) Nap(y) # @} € H for
every y € FS(D).

Proof Let (d,;),c, be the increasing enumeration of all elements of D and ap(y) =
{ko, ..., ky}. Since

{x € FS(D) : ap(x) Nap(y) £ @} -U {x €FS(D) : k; € oeD(x)},
i<n
we only need to show that {x € FS(D) : k; € ap(x)} € H foreveryi < n.
If y,z € {x € FS(D) : k; € ap(x)},thenk; € ap(y) Nap(z) # J,s0y +z ¢
FS(D) (since D is very sparse). Thus, there is no infinite (even two-element) set C
such that FS(C) C {x € FS(D) : k; € ap(x)}. O

Theorem 5.2 H £k R.

Proof Let D C w be a very sparse set (which exists by Lemma 2.3). Since the ideal
‘H is homogeneous (see Proposition 2.2), it suffices to show that H [ FS(D) f Kk R.
Assume to the contrary that there exists f : [w]*> — FS(D) which witnesses
H | FS(D) <k R.
We will recursively define infinite sets B, < w and pairwise distinct elements
b, € w such that for all n € w the following conditions are satisfied:

(@) by € By, b1 > by,
(c) foreachy e f [[{b,- i< n}]z] we have

FIUB 1N {x € ES(D) : ap(x) Nap(y) # ¥} =0,
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(d) foreachy € f[[{b;i :i < n}]*] andi < n we have
S I{{bi. b} b e By}l —y e H.

Let by = 0 and By = w. Then by and By are as required. Assume that b; and B;
have been constructed for i < n and satisfy items (b)—(d).

Since {x € FS(D) : ap(x) Nap(y) # B} € Hiorevery y € f[[{b; :i <n}*]
FS(D) (by Lemma 5.1), [B,—1]*> € RT and we assumed that f witnesses ‘H |
FS(D) <k 'R, there exists an infinite set B C  such that

BP (B, |J ' Hx € BS(D): ap(x) Nap(y) # B
ye f[{bi:i<n}?]

Observe that for each infinite set £ C w and b, y € w there exists an infinite set
C C E suchthat f[{{b,c}:c € C}]—y € H.Indeed, let g : E\{b} — w be given by
g(x) = f({b, x}) — y. Since H is a tall ideal (Proposition 2.1), H £ Fin(E \ {b}).
Thus, there is C ¢ Fin(E\{b}) such that C € E\{b} and g[C] = f[{{b,c} : c €
Cll—yeH.

Now, using recursively the above observation we can find an infinite set C € B
such that f[{{b;,c}:c € C}]—y e Hforeveryi <nandy € f [[{bi i< n}]2].

We put B, = C and pick any b, € B,, with b,, > b,,_.

The construction of the sequences (Bj,)nee and (by,),eq 1s finished.

Let B = {b, : n € w}. Since B is infinite, [B]> € R*. Since we assumed that f
witnesses H | FS(D) <x R, fI[B]*] € H* | FS(D), and consequently there exists
an infinite set C C w such that FS(C) C f[[B]z].

Pick any ¢ € C and let j, n € w be such thatc = f({b;, b,}) and j < n.

Since X = [{b; : i < n}]?is finite, f[X] —c € H.

LetY = {{bj,br} : i <n < k}}. Since {b; : k > n} C B,4+1 and B, satisfies
item (d) applied to y = ¢, we have f [Y] —c € H.

LetZ=1[{b; :i > n}]2. We claim that FS(C\{c}) N (f [Z] — ¢) = @. Suppose to
the contrary that there exists a € FS(C\{c}) N (f [Z] — ¢). Then a + ¢ € FS(C) N
flZ] < FS(D)ﬂf[[B,,H]z], so by item (c) appliedto y = c,ap(c) Nap(a+c) = 0.
On the other hand, a, ¢ € FS(D), D is very sparse and a + ¢ € FS(D), so ap(a) N
ap(c) = A. Consequently, ap(a + ¢) = ap(a) Uap(c), so ap(c) Napla +c) =
ap(c) # @, a contradiction.

Since [B]> = X UY U Z and FS(C\{c}) € FS(C) — ¢ € f[[B]*] — ¢, we have

ES(C\ {ch) € (f[XT =) U (fIY] =) U((f[Z] —c) NES(C \ {c}))
=(f[X]I-aU(flY]-c)Ub e X,

a contradiction. O
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6 Ramsey ideal is not below Hindman ideal
Theorem 6.1 R %k H.

Proof By I" we will denote the set I" = {(zp, z1) € w? 70 > 21 }. In this proof we will
view R as an ideal on I" consisting of those A C I' that do not contain any B2 N r,
for infinite B C w.

By Lemma 2.3, there is a very sparse X € [w]®. The ideal H is homogeneous (see
Proposition 2.2), so it suffices to show that R %_K ‘H | FS(X).Fixany f : FS(X) - I'
and assume to the contrary that it witnesses R <k H. There are two possible cases.

Case (1) There are k € w and very sparse D € [w]®, FS(D) C FS(X), such that
foralln > k and x € FS(D) we have: (f ~'[(wx {n}) NT1N{y € FS(D) : ap(x) C
ap(y)}) —x € H [ FS(X).

In this case we recursively pick {x, : n € o} CFS(D) and {D,, :n € o U{—1}} C
[w]® such that D_| = D and for all n € w we have:

(@) xp € FS(Dp—) \ (fxi 11 <n}UU, ., U, -, {y € FS(D)) : ap; (y) Nap, (xi) #
#}) (here we put ap; (x;) = ¥ whenever x; ¢ D);

(b) D, is very sparse;

(¢) FS({xo, ..., xn}) € FS(D);

(d) FS(Dy,) € FS(Dy—1) € FS(D);

(e) (f_l[(a) x{k+i}h)NI]— x) NFS(D,) = @ forevery x € FS({xo, ..., x,}) and
I1<i<n+1;

®) f'(wx{k+i)NTINFS(D,) =@ foralll <i<n+1.

The initial step of the construction is given by the requirement D_; = D. Suppose
now that x; and D; for all i < n are defined.

Find x,, € FS(D,—1) such that FS({xp, ..., x,}) € FS(D) and x,, # x; for all
i < n. This is possible since it suffices to pick any point from the set

ES(D,—0)\ | J (Jy € FS(D)) : ap; () Nap; (xi) # B},

i<n j<n

which is nonempty as FS(D,,—1) ¢ H | FS(X) and

U Uty € BSD)) : ap; (y) N, (xi) # B} € H | FS(X)

i<n j<n

by Lemma 5.1 and item (b) for all j < n (here we putap, (x;) = Y wheneverx; ¢ D).
Enumerate FS({xo, ..., x,}) = {co,c1,...,com+1_5}. We will define sets E; €
[w]® for —1 <t <nsuchthat E_; = D,_jandforall0 <t < n:

e FS(E;) CFS(E;—1) S FS(Dy-1),
° (UISZ.SHJrl (@ x {k+i}) NT] = ¢;)NFS(E;) = Bforevery0 < < 2"+ —
2.

@ Springer



Katétov order between some Ramsey-like ideals...

Such construction is possible. Indeed, since we are in Case 1 and each ¢; €
FS({xo, ..., x,}) € FS(D), we know that:

( U F'liexik+ihnr- cz) N({y € FS(D) rap(c) S ap(y)} —a)

1<i<n+l

= ( U /'@ x {k+ipNTIN{y € FS(D) s ap(er) € aD(y)})

1<i<n+1

—c¢; € H | FS(D).
On the other hand, we get:

ES(E;—1) N ({y € FS(D) : ap(c)) S ap(y)} —cp)
2 FS(E;—1) N (FS(D) \ {y € FS(D) : ap(c)) Nap(y) # 9}
2 FS(Ei—) \ {y € FS(D) s ap(c)) Nap(y) # ¥} ¢ H [ FS(D),

as {y € FS(D) : ap(c) Nap(y) # ¥} € H | FS(D) (by Lemma 5.1). Then
FS(E;—1)\ (U1§i§n+l fFwx{k+i)nTr]— c;) contains the set

(FS(Ei—1) N ({y € FS(D) :ap(c) S ap(y)} — <)

1<i<n+l

\ (( U rlexk+ipnri- cz) N ({y € FS(D) : ap(er) S ap(y)) — Cz))

which does not belong to H [ FS(D). Thus, there is E; € [w]® as needed.
Once all E; are defined, observe that

U @xik+ipnrenr.

l<i<n+1

Since we assumed that f witnesses R <gx H,

FS(E)\ | f'lextk+ihnTl¢H.

1<i<n+l

Hence, there is a very sparse D,, € [w]® such that

FS(Dy) SFS(ED\ | f'lwx {k+ihNT]

I<i<n+l1

(by Lemma 2.3). Note that FS(D,,) € FS(E,) € FS(D;,—1) € FS(D) and

U (f—l[(w X (k+i})NT] —x) NES(D,) =

1<i<n+1
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for all x € FS({xo, ..., xx}).

This finishes the construction of {x, : n € w} C FS(D)and {D,, : n € 0 U{—1}} C
[w]®.

Define B = FS({x,, : n € w}). Obviously, B ¢ H | FS(X) as FS({xo, ..., x,}) C
FS(D) C FS(X) for all n € w. We will show that f[B] N (w x {n}) N T is finite for
all n > k. This will finish the proof in this case as |, ., (@ x {n}) NT" € R and any
set finite on each (w x {n}) N T belongs to k. N

Assume that f(x) € (o x{k+m~+1})NI" forsomem € wandx = x,,+---+x,, €
B, where ng < ... < n;. If ngp > m, then x € FS({x, : n > m}) € FS(Dy,)
which contradicts f(x) € (w x {k +m + 1}) N [ (by item (f)). If nop < m but
J={j<t:n;>m}#0@,thenlet j = min J and note thatx € ij Xn; +FS(Dy,).
As Y i jXn; € FS({xo, ..., xm}), item (e) gives us a contradiction with f(x) €
(w x {k+m +1}) NT'. Hence, the only possibility is thatn; < m forall j < ¢. Thus,
fIBIN(w x{k+m+1}) NT < fIFS({xo, ..., xn})], which is a finite set.

Case (2) For every k € w and very sparse D € [w]®, FS(D) C FS(X), there are
n > k and x € FS(D) such that:

(o x n) NTIN{y e FS(D) : ap(x) C ap(»)}) — x ¢ H | FS(X).

In this case we will pick {n; : i €e w} Cw, {ji :i € w} C {0, 1}, {x; : i € w} C
FS(D),{D; :i € oU{—1}} C [w]?, {ki :i € w} CwU{—1}and {F; : i € w} C Fin
such that D_; = X and for eachi € w:

(a)(al) n; > nj_1 (here we putn_; = —1);
(@2) n; > minfa € w: f[FS({x; : j <iP] S {0, 1,.. Lay¥Nry;

(b)(bl) FS(D;) € FS(Di—1) € FS(X);
(b2) D; is very sparse;

(c) if j; = 0, then:

(cl) ki = —1;
(c2) F; =0,
(c3) xi e FS(D;—) N f~(w x {m;H) NT;
(c4) x; +FS(D;) € f~'(w x {n;)h NTI;
(d) if j; = 1, then:
dD) ki e{0<u<i:u¢U,_; Fyju=0)
d2) Fy ={kiki+1,...,i—1};
(d3) (d3a) xi € £ {0, m)Y;
(d3b) x; € xi, + {0y UFS({x, 1 ki <7 <ir ¢ U, -; Fy)) +FS(D;-1);
(d4) x; +FS(D;y) € f ' {(ni, i)Y

(e) ifx = sta Xy, forsome 0 <19 < ... <ty <i,tp ¢ UqSi Fy (sox € FS({x; :
r<i, té¢ qui Fy4})), then:

el) (x +x; +FS(D)) N f~ {(ni, ni) = 05
(€2) (x +FS(D)) N £~ {(ni, ney)}1 = 05
€3) (x +x) N fF {(ni, ne) = 05

@ Springer



Katétov order between some Ramsey-like ideals...

(f) FS(D;) N {y € FS(Dy) : ap,(y) Nap,(x,) # ¥} =@ forall -1 <t < i and
0 < u < i such that x,, € FS(D;,);
(@) FS{x; :t <i,t ¢ U, Fg)) S FS(X);
(82) > pey X, € X1y + FS(Dy) foreverya > 0,0 <19 < ... <ty < i,
p ¢ Uqfi Fq?

In the first step, since we are in Case 2, for k = 0 and D = X there are ng > k
(note that (a) is satisfied) and x{, € FS(X) such that: (f "(w x {no}) NTIN{y €
FS(X) : ax(xy) € ax(y)}) —x, ¢ H [ FS(X). Hence, there is D, € [w]® such that:
x)+FS(D)) € f~'(wx {no) NTIN{y € FS(X) : ax(x)) € ax(y)} € FS(X). Put
Jjo =0, kg = —1and Fy = @ (note that (c1) and (c2) are satisfied). Moreover, define
xo = x(,+min(D;) (note that (c3) and (g1) are satisfied, because xo € x,+FS(D() <
FS(X) and x{, + FS(Dy) < f~ (@ x {no}) N T']) and using Lemma 2.3 find a very
sparse Do € [w]® such that

FS(Do) € FS(Dy \ {min(Dp)}) \ {y € FS(X) : ax (y) Newx (x0) # 7},

which is possible as {y € FS(X) : ax(y) Nax(xg) # ¥} € H [ FS(X) by Lemma
5.1 (note that (c4), (f) and (b) are satisfied, because xo + FS(Dg) € x, + FS(D()) <
£ @x {no})NT'Tand FS(Dg) C FS(Dy) < {y € FS(X) : ax (x)) S arx (0} —x) €
FS(X)). In conditions (e) and (g2) there is nothing to check. Thus, all the requirements
are met.

In the i step, where i > 0, since we are in Case 2, if k = max{n;_;, min{a € w :
SIFS({x; : j <ih] € {0, 1, ...,a}2 NT}} and D = D;_1, then there are n; > k (so
(a) is satisfied) and x! € FS(D;_1) such that

(/"1 x (DATINYEFS(D) : ap, () Sap,, ()) =x] ¢ H [ FS(X).

Hence, there is D] € [w]® such that: x] + FS(D]) € FHox{m)hnNTIn{y e
FS(D;_1) : ap,_,(x)) € ap,_;(y)}. In particular, FS(D}) € {y € FS(D;_y) :
ap,_(x)) € ap,_; (N} —x; = {y € FS(D;—1) : ap,_;(x)) Nap,_,(y) = ¥} <
FS(D;_1). There are two possibilities.

Assume first that there is x = beu xy, forsomety < ... <t, <i, 1 ¢ Uq<i Fy
such that either x +x/ +FS(D;) € f~'[{(n;, ny)Norx+FS(D;) S f ' [{(ni, nyp)}]
for some D; € [w]” such that FS(D;) € FS(D}). Define j; = 1 and let k; be minimal
such that there is (one or more) x as above with k; = 1.

Notice thatk; € {0 <u <i: u ¢ Uq<i F,}. We will show that ji, = 0 (i.e.,
(d1) is satisfied). Suppose that ji, = j,, = 1. Observe that xlf +FS(D;) C FS(D;_)
(by FS(D;) N {y e FS(D;—1) : ap,_,(y) N aDH(xlf) # (I} = () and consequently
xlf +FS(D;) C FS(Dy,) (by item (bl)). Then items (b1), (f) and (g2) give us:

o x+x +_FS(D,~) C x4 + FS(Dy),
e x +FS(D;) C x4, + FS(Dy,).

Then from (d4) we have:
o fIx +x] +FS(D)] € {(nyy, g, )},
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o flx +FS(D)] S {(n, 1, ).

This contradicts x+x/+FS(D;) € f~'[{(ni, ny)orx+FS(D;) € £~ [{(n;i, nip)}l,
because ny, < n; (by tp < i and item (al)).

Define F; = {k;, ki +1,...,i — 1} (so (d2) is satisfied) and X; = x +x] (or X; = x
if x + FS(D;) € £ [{(ni, ni)}).

To define D; and x;, note that by the choice of k;, foreach y = ), _, x;,, to <

<ty <, ¢ Uqﬁi Fy (so in fact t, < k;) we know that (y + X; + FS(E)) ¢
F (i, ng)}l and (y + FS(E)) € £~ [{(ni, nyy)}] for every E € [w]® such that
FS(E) € FS(Dy). In other words, F{(n;, m)— @ +x)eH| FS(D;) and
f '@, ng) 1 —y eH | FS(D)), for every such y. Thus, we can find D; € [w]?
such that:

e FS(Di) C FS(D;);

o (y+% +FS(D))Nf{(n;, ny)} =¥ and +FSD))N (s, ny)l =10
for every y = sta Xy, wherety < ... <t, <i,tp ¢ Uqfl 7

e FS(D;) N{y e FS(Dj—) : ap,_, (y) Nap,_, (x)) # 0} = ;

(the last item is trivial, as FS(D;) € FS(D;) C FS(D)) and FS(D)) € {y €
ES(Di—1) tap,_, (x)) Nap,_, (y) = 0)).

Define x; = %; + min(D;) and let D; € [w]® be very sparse such that FS(D;) C
FS(D \{mm(D )}) and D; satisfies item (f). It is possible using Lemma 2.3, as {y €
FS(Dy) : ap,(y) Nap,(x,) # ¥} € H | FS(X) by Lemma 5.1 and item (b2) for all
—1 <t < i. Then (b2) is satisfied. Observe that other conditions are met:

(bl) FS(D;) € FS(D;) € FS(D;) € FS(D)) € FS(D;—1) € FS(X);

(d3b) if &; = x +x/, then x; = % + min(D;) = xx, + (x — xi,) + x/ + min(D;) €
X F{OYUFSHxy : ki <r <i,r ¢ Uq<i Fy})) +FS(D;_) by the fact that
FS(D;) N{y € FS(D;_1) : ap,_ (y) Nap,_, (x]) # @} = @ (if X; = x this is
even easier to show);

(d3a) if ¥; = x +x/, then x; € x + x/ + FS(D;) € f~'[{(n;, ni;)}] (f Xi = x this
is also true);

(d4) if & = x + x/, then x; + FS(D;) C x + x/ + FS(D;) € f~'[{(n;, ni)}] Gf
X; = x this is also true);

(e) for (e3),if y = beu X o < oo < tg < i, tp ¢ Uqfi F,, then note that
y+x = y—l—)?l + min(D;) € y + % + FS(D;) and recall that (y + %; +
FS(D) N £ (i, )1 = 0, thus y + x; & £~ [{(ni, nye)}] ((e1) and (e2)
are similar);

(gl) FS({x; : t <i,t ¢ qui Fy) CFS({x; 1t <i,t ¢ Uq<i FyDUxi+FS({x; :
t<i,té¢ Uq<i F,}) € FS(X) by items (f) and (g1) applied to7 — 1 and item
(d3b) applied to i;

(g2) ifa>0,10<...<t, <i,tp ¢ qui Fy then either #, < iand ) ,_, Xy, €
x4 +FS(Dy,) (by (g2) appliedtoi — 1) ort, =i and beu Xty = Y peu Xy, +
Xi € x5+ ({OYUFS({x, 110 <r < ki, 1 ¢ Uq<i Fg)) +xp, + {0y UFS({x, :
ki<r<i,ré¢ Uq<i Fy))+FS(D;—1) € x4 +FS(Dy,) by items (b1), (d3b),
(f) and (g2) fori — 1.
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Hence, all the requirements are met. This finishes the case of j; = 1.

Assume now that for all x = Zbid Xpyo 0 < oo < tg < i, tp ¢ Uq<i F, we
have x + xlf + FS(E) Q f_l[{(ni, ny)}l and x + FS(E) g f_l[{(ni, ng,)}] for all
E € [w]® such that FS(E) € FS(D)). Put j; = 0,k; = —1 and F; = @ (note that (c1)
and (c2) are satisfied).

Similarly as above (in the construction of ﬁi), we can find ﬁi € [w]® such that:

e FS(D;) € FS(D));

o (x+x/+FS(D))N f~{(ni, nyy)}] = Pand (x +FS(D))N £~ [{(ni, ngg)}] = 0
for every x = Zbiu Xpyo o < .. <tg <i,tp ¢ qui Fy;

e FS(D) N{y € FS(D;_1) : ap, ,(y) Nap, ,(x)) # ¥} = 0.

Define x; = xi’ + min(ﬁi) and let D; € [w]® be very sparse such that FS(D;) C
FS(D,-\{min(Di)}) and D; satisfies item (f) (which is possible by Lemmas 2.3 and
5.1 and (b2) applied to all —1 < ¢ < 7). Note that (b2) is satisfied. Observe that other
conditions are met:

(bl) FS(D;) € FS(D;) € FS(D]) € FS(D;—1) € FS(X);

(c3) x; € FS(D;—1) as FS(D;) N {y € FS(D;—1) : ap,_,(y) Nap,_, (x])) # B} =¥,
xi € x{ +FS(D)) € [~ (@ x {n;)) NT];

(c4) x; +FS(D;) € x{ +FS(D)) € f~'[(@ x {n;) NTI;

(e) for (e3),if x = Y, Xpoto < ... <tqg <i,tp ¢ Uqﬁi F,, then note that
Xx4x =x+x + min(D;) € x + x! + FS(D;) and recall that (x + X+
FS(D)) N f~ [{(ni, nip)}] = 0, thus x + x; ¢ f~'[{(n;, nyy)}] ((el) and (e2)
are similar);

(gl) by items (f) and (gl) applied to i — 1 and item (c3) applied to i, FS({x; : t <
it ¢ qui Fy) =FS({x; it <i,t ¢ Uq<i FHhU (i +FSH{x; 1 <t ¢
U, <i Fah) € FS(X);

g)ifa > 0,10 < ... <t, <iandt, ¢ Uqﬁ F,, then either 7, < i and
D pea X, € Xy + FS(Dy) (by item (g2) applied to i — 1) or 1, = i and
Zbga Xy, € X1y + FS(Dyy) as Yy, Xy, € Xy + FS(Dyy) and x; € FS(D;—1) C
FS(Dy)\{y € FS(Dyy) : 3 ap,, N ap,, (xj) # ¥} by item (c3) for i and
items (b1), (f) and (g2) fori — 1.

Hence, all the requirements are met. This finishes the case of j; = 0.

Note that x; # x; fori # j (it follows from items (a2), (c3) and (d3a)). Once the
whole recursive construction is completed, define A = {x; : i ¢ (J,¢,, Fq}. We need
to show two facts:

(i) A is infinite;

(i) f[FS(A)] e R.

Note that this will finish the proof as item (i) together with FS(A) € FS(X) (by item
(gl)) guarantee that FS(A) ¢ H | FS(X).

(i) Since x; # x; fori # j, we only need to show that there are infinitely many
t € w such that x;, € A. Assume to the contrary that there is p € w such that x;, ¢ A
for all ¥ > p. Without loss of generality we may assume that p is minimal with
that property. Since x, ¢ A, we have that p € | gew Fg> hence there is g such that
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p € F,.Byitems (c2) and (d2), we know that j, = 1,¢ > p and, by minimality of p,
Fy={p,p+1,...q—1}. Again, as x,; ¢ A (because ¢ > p), there should be r such
thatg € F, = {ky, kr +1,...,r — 1} (S0 k < g < r)and k, > p (by minimality of
p). However, this is impossible as item (d1) gives us:

kre{u<r:u¢ UFw,juzo}ﬂ{O,l,...,q}

w<r

Clusq:u¢ FgdNfu=<gq:ju=0}

(here, if p =0then {0, 1, ..., p — 1} = ).
(ii) We have:

FS(A) = U({xi} U +FS(A\{O0, 1,...,x:})))
ieB
UJdx U @i + FS(AN\ {0 1..... x; D)),

ieC

where B={i € w:i ¢ Uye, Fg. ji =0land C ={i € i ¢ U,e,, Fy. Ji = 1}

First we will show that f[{J;cc({xi} U (x; + FS(A\{0,1,...,x;D)] € R.
Note that f(x;) = (n;,ng) (by item (d3a)) and f[x; + FS(A\{0,1,...,x;})] €
fIxi + FS(D;)] = {(n;, ny)} for each i € C (by items (d4) and (g2)). More-
over, the sequence (7;);e, 1 injective (by item (al)). Hence, f [Uiec({xi} U (x +
FS(A\{0, 1, ..., x;})))] € R, as any set intersecting each ({rn} x w) N I" on at most
one point belongs to R.

Now we will show that f[{; .5 ({xi}U(x; +FS(A\{0, 1, ..., x;})))] € R.Byitems
(c3), (c4) and (g2), f[{x;i}U(xi +FS(A\{0, 1, ..., x;})] S f[{xi}U(xi +FS(Di))] <
(w x {n;}) NT for all i € B. Note that UieB fl{xi}] € R (from (al), as each set
intersecting each (w x {n}) N T" on at most one point belongs to R). Suppose that
7Z:NTr C Uiep flxi + FS(A\{0, 1, ..., x;})] for some Z € [w]®.

First we will show that |Z \ {n; : i € B}| < 1. Suppose that there are z, w €
Z\{n; : i € B} such that z > w. Then there is i € B such that (z, w) € f[x; +
FS(A\{0, 1, ..., x;D], hence x; +FS(A\{0, 1, ..., x;}) € f~'[{(z, w)}]. But by (c4)
and (g2) we have x; + FS(A\{0, 1, ..., x;}) € x; + FS(D;) C f‘l[(a) x {n;}) NT].
So (z,w) € (w x {n;}) NT,i.e., w = n;. A contradiction.

By the previous paragraph, since Z is infinite, there are i, j € B such that j < i
and n;,n; € Z. We will show that (n;,n;) ¢ Urcp flxx + FS(A\{O, 1, ..., xxD].
This will contradict ZZ N T C UkeB flxr + FS(A\{O, 1, ..., x¢})] and finish the
proof.

Suppose that (n;,n;) € UkeB flxr +FS(A\{O, 1, ..., x¢})]. From (c4) and (g2),
forevery k # j, k € B we have f[x; +FS(A\{O, 1, ..., xx D] C flxx +FS(Dp)] <
(w x {ne})) NI, s0 (nj,nj) ¢ flxx + FS(A\{O, 1, ..., x})]. Hence, (n;,n;) €
flxj+FS(A\{0, 1,...,x;}].Lety € x;+FS(A\{0, 1, ..., x;}) be such that f(y) =
(ni,nj). Theny = x; + x5, + ce X, for some j < 59 < ... < sp. We have five
cases:
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e Ifs, < i,thenfromitem (a2) we have f(y) € [{0,...,n; — 1}12. A contradiction.

olfs, =i, theny = (x; +--- + xspfl) + x; and from item (e3) (applied to
x=(xj+-+ xsp_])) we get f(y) # (n;,n;), a contradiction.

o If there exists k < psuchthatsy =i,theny = (x; +---+xg_,) +x; + (X5, +
o+ x5,) € (xj + -+ x5 ) +x; + FS(D;) by item (g2) and from item (el)
(applied to x = (xj + - - - + xy,_,)) we get a contradiction.

o Ifthere exists k < psuchthatsi_1 <i < s, theny = (x;+- - +x5_ ) + (x5 +
S xsp) € (xj +---+xg4_,) +FS(D;) by item (g2) and from item (e2) we get
a contradiction.

o Ifi < so,theny = x; + (x5 + - +x5,) € x; + FS(D;) by item (g2) and from
item (e2) we get a contradiction.

Thus, f[FS(A)] € R and the proof is finished. O

Acknowledgements The authors would like to thank the reviewer for comments that helped to improve
the manuscript.

Author Contributions A.K. obtained results concerning comparison of Ramsey and Hindman ideals. R.F.
and K.K. obtained the remaining results. R.F. prepared the manuscript. All authors reviewed the manuscript.

Declarations

Conflict of interest The authors declare no conflict of interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Barbarski, P., Filipéw, R., Mrozek, N., Szuca, P.: When does the Katétov order imply that one ideal
extends the other? Colloq. Math. 130(1), 91-102 (2013)

2. Baumgartner, J.E.: Ultrafilters on w. J. Symbol. Log. 60(2), 624—-639 (1995)

3. Bergelson, V., Zelada, R.: Strongly Mixing Systems are Almost Strongly Mixing of All Orders, pp.
1-39 (2021). https://doi.org/10.48550/arXiv.2010.06146

4. Bojanczyk, M., Kopczynski, E., Toruiczyk, S.: Ramsey’s theorem for colors from a metric space.
Semigroup Forum 85(1), 182-184 (2012)

5. Brendle, J., Flaskova, J.: Generic existence of ultrafilters on the natural numbers. Fund. Math. 236(3),
201-245 (2017)

6. Cancino-Manriquez, J.: Every maximal ideal may be Katétov above of all Fi; ideals. Trans. Am. Math.
Soc. 375(3), 1861-1881 (2022)

7. Das, P, Filipéw, R., Glab, S., Tryba, J.: On the structure of Borel ideals in-between the ideals £D and

Fin ® Fin in the Katétov order. Ann. Pure Appl. Logic 172(8), Paper No. 102976, 17 (2021)

Erdss, P., Rado, R.: A combinatorial theorem. J. Lond. Math. Soc. 25, 249-255 (1950)

9. Filipéw, R., Kowitz, K., Kwela, A.: Characterizing existence of certain ultrafilters. Ann. Pure Appl.
Logic 173(9), 103157, 31 (2022)

*®

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2010.06146

R. Filipéw et al.

10.

12.
13.

14.

15.

17.

18.
19.

20.
21.
22.
23.
24.

25.
26.

27.
28.
29.
30.
31.
32.
33.
34.

35.
. Zhang, H., Zhang, S.: Some applications of the theory of Katétov order to ideal convergence. Topol.

Filipéw, R., Kowitz, K., Kwela, A.: A unified approach to Hindman, Ramsey and van der Waerden
spaces, , pp. 1-48 https://doi.org/10.48550/arXiv.2307.06907 (2023)

. Filipéw, R., Kowitz, K., Kwela, A., Tryba, J.: New Hindman spaces. Proc. Am. Math. Soc. 150(2),

891-902 (2022)

Flaskova, J.: Ideals and sequentially compact spaces. Topol. Proc. 33, 107-121 (2009)

Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey theory, second ed., Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley, New York (1990), A Wiley-Interscience Publication
Grebik, J., Hrusak, M.: No minimal tall Borel ideal in the Katétov order. Fund. Math. 248(2), 135-145
(2020)

Guzmadn-Gonzdlez, O., Meza-Alcédntara, D.: Some structural aspects of the Katétov order on Borel
ideals. Order 33(2), 189-194 (2016)

. Hrusdk, M., Meza-Alcdntara, D., Thiimmel, E., Uzcétegui, C.: Ramsey type properties of ideals. Ann.

Pure Appl. Logic 168(11), 2022-2049 (2017)

Hrusak, M.: Combinatorics of filters and ideals, Set theory and its applications, Contemp. Math., vol.
533, American Mathematical Society, Providence, RI, pp. 29-69 (2011)

Hrusak, M.: Katétov order on Borel ideals. Arch. Math. Logic 56(7-8), 831-847 (2017)

Hrusak, M., Garcia Ferreira, S.: Ordering MAD families a la Katétov. J. Symbol. Logic 68(4), 1337—
1353 (2003)

Hrusak, M., Meza-Alcdntara, D.: Katétov order, Fubini property and Hausdorff ultrafilters. Rend. Istit.
Mat. Univ. Trieste 44, 503-511 (2012)

Katétov, M.: Products of filters. Comment. Math. Univ. Carolinae 9, 173—-189 (1968)

Kojman, M.: Hindman spaces. Proc. Am. Math. Soc. 130(6), 1597-1602 (2002)

Kojman, M.: van der Waerden spaces. Proc. Am. Math. Soc. 130(3), 631-635 (2002)

Kojman, M., Shelah, S.: van der Waerden spaces and Hindman spaces are not the same. Proc. Am.
Math. Soc. 131(5), 1619-1622 (2003)

Kubis, W., Szeptycki, P.: On a topological Ramsey theorem. Canad. Math. Bull. 66(1), 156—165 (2023)
Kwela, A., Tryba, J.: Homogeneous ideals on countable sets. Acta Math. Hungar. 151(1), 139-161
(2017)

Kwela, A.: Unboring ideals. Fund. Math. 261(3), 235-272 (2023)

Mathias, A.R.D.: Solution of problems of Choquet and Puritz, Conference in Mathematical Logic—
London *70 (Proc. Conf., Bedford Coll., London, 1970), Lecture Notes in Mathematics, Vol. 255,
Springer, Berlin, pp 204-210 (1972)

Mathias, A.R.D.: Happy families. Ann. Math. Logic 12(1), 59-111 (1977)

Meza-Alcantara, D.: Ideals and filters on countable set, Ph.D. thesis, Universidad Nacional Autonoma
de México (2009). https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000645364

Minami, H., Sakai, H.: Katétov and Katétov-Blass orders on Fy-ideals. Arch. Math. Logic 55(7-8),
883-898 (2016)

Mrozek, N.: Some applications of the Katétov order on Borel ideals. Bull. Pol. Acad. Sci. Math. 64(1),
21-28 (2016)

Sakai, H.: On Katétov and Katétov-Blass orders on analytic P-ideals and Borel ideals. Arch. Math.
Logic 57(3-4), 317-327 (2018)

Taylor, A.D.: A canonical partition relation for finite subsets of w. J. Combin. Theory Ser. A 21(2),
137-146 (1976)

van der Waerden, B.L.: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk. 15, 212-216 (1927)

Appl. 301, 107545, 9 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.48550/arXiv.2307.06907
https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000645364

	Katětov order between Hindman, Ramsey and summable ideals
	Abstract
	1 Introduction
	2 Preliminaries
	3 Summable and Hindman ideals are incomparable
	4 Summable and Ramsey ideals are incomparable
	5 Hindman ideal is not below Ramsey ideal
	6 Ramsey ideal is not below Hindman ideal
	Acknowledgements
	References


