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Abstract
It is shown that both classical and intuitionistic propositional logics of an associative
binary modality are undecidable. The proof is based on the deduction theorem for
these logics.
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1 Introduction

This paper deals with the classical and intuitionistic modal logics which are obtained
from the respective propositional logics by extending their language with the binary
modal connective • and adding the following axiom schemes and rules of inference.

The K-like axioms (left and right):

(KL) ψ • (ϕ ⊃ χ) ⊃ (ψ • ϕ ⊃ ψ • χ) (KR) (ϕ ⊃ χ) • ψ ⊃ (ϕ • ψ ⊃ χ • ψ)1

The associativity axioms:

(AL) (ϕ • χ) • ψ ⊃ ϕ • (χ • ψ) (AR) ϕ • (χ • ψ) ⊃ (ϕ • χ) • ψ

The necessitation rules of inference (left and right):

1 As usual, • binds more closely than the propositional connectives, but negation. We also omit the paren-
theses, when no ambiguity arises.
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(NECL)
ϕ

χ • ϕ
(NECR)

ϕ

ϕ • χ

These classical and intuitionistic logics will be denoted by CL• and IL•, respec-
tively. The former is tightly related to relation algebras, cf. [5–7], [3, Section 5.3],
and [1, Section 5.2]. Namely, it is the logical counterpart of the fragment of a rela-
tional algebra consisting of a Boolean algebra augmented with a binary associative
operator that is distributive under ordinary Boolean addition. In particular, the logical
counterpart of that binary operator is the De Morgan dual of • defined in Sect. 4.1,
and, naturally, the logical counterparts of the Bolean operators are the corresponding
propositional connectives.

We assume that both CL• and IL• contain falsity ⊥ and abbreviate ¬⊥ by �.
In what follows, L• may be any of CL• or IL• and the classical and intuitionistic
propositional logics will be denoted by CL and IL, respectively.

It is known from [10, 11] that CL• is undecidable. Namely, it is shown in [10,
11] that the equational theory of the Lindenbaum–Tarski algebra LTACL• of CL• is
undecidable, which is equivalent to undecidability of CL• itself. The proof in [10,
11] consists of first, restating the problem in an algebraic setting and then, translating
the word problem of semigroups (that is undecidable) to equations in LTACL• , in a
validity preserving way, see [11, Section 2] for details.

Such a detour obscures a logical nature of the problem: semigroups come from
concatenation and the translation of the word problem of semigroups to equations
in LTACL• is, actually, the deduction theorem that (equivalently) converts the conse-
quence relation to implication.

In our undecidability proof we reduce the undecidability of L• to the undecidability
of the reachability problem for semi-Thue systems (i.e., string rewriting). This is done
in two stages. In the first stage,we translate the reachability in semi-Thue systems to the
consequence relation between implications of a suitable logic of concatenation (i.e., a
logic of the free semigroup generated by the letters of the underlying alphabet) and, in
the second stage, we translate the consequence relation in the logic of concatenation to
the consequence relation in the logics of the binary connective.Then, the undecidability
of the latter consequence relation gives rise to the undecidability of provability in these
logics by encoding the unary modal operator � with an S4-type deduction theorem
into these logics.

Actually, our approach is “logically dual” to that in [10, 11], see Sect. 5, and, in
particular, undecidability of the equational theory of LTACL• established in [10, 11]
follows from undecidability of CL•. In addition to its transparency, an advantage of
our proof is that it uniformly applies to both classical and intuitionistic logics, whereas
the proofs in [10, 11] are for CL• only. Also, the deduction theorem, that converts
assumption to implications’ premises and is our main technical tool, seems to be of
interest in its own right.

This paper is organized as follows. In the next section we prove the deduction
theorem for L•. In Sect. 3 we define semi-Thue systems and a logic of concatenation
and prove their equivalence. Then, in Sect. 4, we embed the logic of concatenation
into L•, thus, proving its undecidability. We conclude the paper with a comparison of
our approach to that in [11]. Finally, in the appendix, we show that the Lindenbaum–
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Tarski algebra of the logic of of concatenation defined in Sect. 3.2 is the free semigroup
generated by the set of all propositional variables.

2 Deduction theorem for L•

The deduction theorem for L• (Theorem 1 below) employs the following notation.
For a formula ϕ, we denote the formula

ϕ ∧ ⊥ • ϕ ∧ ϕ • ⊥ ∧ ⊥ • ϕ • ⊥2 (1)

by �ϕ, cf. the “algebraically” dual unary term c(x) in [10, 11]. In fact, Lemma 3
shows that (1) behaves like �ϕ of modal logic S4.

Theorem 1 (Deduction theorem for L•) Let �, ϕ, and χ be a set of formulas and two
formulas, respectively. Then �,ϕ �L• χ if and only if � �L• �ϕ ⊃ χ .

For the proof of Theorem 1 we need the following properties of L•.
First, like in modal logic K, one can prove implications (2)–(5) below, see [4,

Exercise 1-1(c), p. 21], say.

ϕ • (χ ∧ ψ) ⊃ (ϕ • χ ∧ ϕ • ψ) (2)

(ϕ • χ ∧ ϕ • ψ) ⊃ ϕ • (χ ∧ ψ) (3)

(χ ∧ ψ) • ϕ ⊃ (χ • ϕ ∧ ψ • ϕ) (4)

and

(χ • ϕ ∧ ψ • ϕ) ⊃ (χ ∧ ψ) • ϕ (5)

We shall also use thewell-known derivable rules given by the following proposition.

Proposition 2 Rules of monotonicity (6)–(9) are derivable in L•:

ϕ ⊃ χ

ψ • ϕ ⊃ ψ • χ
(6)

ϕ ⊃ χ

ϕ • ψ ⊃ χ • ψ
(7)

ϕ′ ⊃ χ ′ ϕ′′ ⊃ χ ′′

ϕ′ • ϕ′′ ⊃ χ ′ • χ ′′ (8)

and

ϕ ⊃ χ

ψ • ϕ • ω ⊃ ψ • χ • ω
(9)

2 Since • is associative, we may omit the parentheses.
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Proof The derivation of (6) is

1. ϕ ⊃ χ assumption
2. ψ • (ϕ ⊃ χ) follows from 1 by (NECL)

3. ψ • (ϕ ⊃ χ) ⊃ (ψ • ϕ ⊃ ψ • χ) axiom (KL)

4. ψ • ϕ ⊃ ψ • χ follows from 2 and 3 bymodus ponens
The derivation of (7) is symmetric to that of (6).
The derivation of (8) is

1. ϕ′ ⊃ χ ′ assumption
2. ϕ′′ ⊃ χ ′′ assumption
3. ϕ′ • ϕ′′ ⊃ χ ′ • ϕ′′ follows from 1 by (7)
4. χ ′ • ϕ′′ ⊃ χ ′ • χ ′′ follows from 2 by (6)
5. ϕ′ • ϕ′′ ⊃ χ ′ • χ ′′ already derivable from 3 and 4 inIL
Finally, the derivation of (9) is

1. ϕ ⊃ χ assumption
2. ψ • ϕ ⊃ ψ • χ follows from 1 by (6)
3. ψ • ϕ • ω ⊃ ψ • χ • ω follows from 2 by (7)

�	
Finally, we shall need the following properties of �.

Lemma 3 For all formulas ϕ and χ ,

(i) �L• �ϕ ⊃ χ • ϕ and �L• �ϕ ⊃ ϕ • χ ;
(ii) �L• �(ϕ ⊃ χ) ⊃ (�ϕ ⊃ �χ);
(iii) �L• �ϕ ⊃ ϕ;
(iv) �L• �ϕ ⊃ ��ϕ; and
(v) ϕ �L• �ϕ.

Remark 4 Items (ii)–(v) of the lemma are an axiomatization of modal logic S4.

Proof of Lemma 3 (i) The proof of �L• �ϕ ⊃ χ • ϕ is presented below and the proof
of �L• �ϕ ⊃ ϕ • χ is symmetric.

1. ⊥ ⊃ χ axiom
2. ϕ • ⊥ ⊃ ϕ • χ follows from 1 by (6)
3. �ϕ ⊃ ϕ • ⊥ already derivable inILby the definition of �ϕ

4. �ϕ ⊃ ϕ • χ already derivable from 3 and 2 inIL
(ii) We have

(a) (ϕ ⊃ χ) ⊃ (ϕ ⊃ χ),
(b) ⊥ • (ϕ ⊃ χ) ⊃ (⊥ • ϕ ⊃ ⊥ • χ);
(c) (ϕ ⊃ χ) • ⊥ ⊃ (ϕ • ⊥ ⊃ χ • ⊥); and
(d) ⊥ • (ϕ ⊃ χ) • ⊥ ⊃ (⊥ • ϕ • ⊥ ⊃ ⊥ • χ • ⊥);

where (a) is already derivable in IL, (b) and (c) are axioms (KL) and (KR),
respectively (with ψ being ⊥), and (d) follows from (c) by (6) and (KL). Obvi-
ously, (ii) is already derivable in IL from (a)–(d).

(iii) This is immediate, by the definition of �.
(iv) It follows from the definition and (2)–(5) that ��ϕ is IL-equivalent to the

conjunction of
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(1) ϕ,
(2) ⊥ • ϕ,
(3) ϕ • ⊥,
(4) ⊥ • ϕ • ⊥,
(5) ⊥ • ⊥ • ϕ,
(6) ϕ • ⊥ • ⊥,
(7) ⊥ • ⊥ • ϕ • ⊥,
(8) ⊥ • ϕ • ⊥ • ⊥, and
(9) ⊥ • ⊥ • ϕ • ⊥ • ⊥.

We shall denote the conjunct in item (i) by ϕi , i = 1, . . . , 9. It suffices to show
that

�L• �ϕ ⊃ ϕi (10)

i = 1, . . . , 9.
Thefirst four conjuncts are also conjuncts of�ϕ, implying (10) for i = 1, 2, 3, 4.
For i = 5, from the axiom ⊥ ⊃ ⊥ • ⊥, by (7), we obtain

⊥ • ϕ ⊃ (⊥ • ⊥) • ϕ

implying, by associativity of •,

⊥ • ϕ ⊃ ⊥ • ⊥ • ϕ

Since ⊥ • ϕ is a conjunct of �ϕ, (10) follows.
The case of i = 6 is symmetric.
For i = 7, from the axiom ⊥ ⊃ ⊥ • ⊥, by (7), we obtain

⊥ • (ϕ • ⊥) ⊃ (⊥ • ⊥) • (ϕ • ⊥)

implying, by associativity of •,

⊥ • ϕ • ⊥ ⊃ ⊥ • ⊥ • ϕ • ⊥

Since ⊥ • ϕ • ⊥ is a conjunct of �ϕ, (10) follows.
The case of i = 8 is symmetric.
Finally, for i = 9, from the axiom ⊥ ⊃ ⊥ • ⊥, by (6), we obtain

(⊥ • ⊥ • ϕ) • ⊥ ⊃ (⊥ • ⊥ • ϕ) • (⊥ • ⊥)

implying, by associativity of •,

⊥ • ⊥ • ϕ • ⊥ ⊃ ⊥ • ⊥ • ϕ • ⊥ • ⊥

This, together with (10) for i = 7 implies (10) for i = 9.
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(v) It suffices to show that each conjunct of �ϕ is derivable from ϕ. Trivially, ϕ is
derivable from itself and ⊥ • ϕ and ϕ • ⊥ are derivable from ϕ by (NECL) and
(NECR), respectively. Finally, ⊥ • ϕ • ⊥ is derivable from ϕ • ⊥ by (NECL).

�	

By Remark 4, � behaves like the ordinary S4 modality and, indeed, the proof of
Theorem 1 is very similar to the proof of the deduction theorem for S4 in [16].

Proof of Theorem 1 The “if” part of the theorem follows from Lemma 3(v) by modus
ponens.

The proof of the “only if” part is by induction on the length of the derivation of χ

from �,ϕ.
For the basis, χ is an axiom, or belongs to �, or is ϕ itself. In the two former cases,

�ϕ ⊃ χ is already derivable from χ in IL and the latter case is Lemma 3(iii).
For the induction step, χ is obtained from previously derived formulas by one of the

rules of inference—modus ponens, necessitation (NECL), or necessitation (NECR).
Assume that χ is obtained by modus ponens from ψ and ψ ⊃ χ :

ψ ψ ⊃ χ

χ

By the induction hypothesis,� �L• �ϕ ⊃ ψ and� �L• �ϕ ⊃ (ψ ⊃ χ) fromwhich
� �L• �ϕ ⊃ χ is already derivable in IL, see, e.g., [13, pp. 28–29].3

Assume that χ is obtained by (NECL) from χ ′:

χ ′

χ ′′ • χ ′

That is, χ is of the form χ ′′ • χ ′. By the induction hypothesis, � �L• �ϕ ⊃ χ ′ from
which we proceed as follows.

1. �ϕ ⊃ χ ′ induction hypothesis
2. �(�ϕ ⊃ χ ′) follows from 1 by Lemma 3 (v)

3. �(�ϕ ⊃ χ ′) ⊃ (��ϕ ⊃ �χ ′) Lemma 3 (i i)
4. ��ϕ ⊃ �χ ′ follows from 2 and 3 by modus ponens
5. �ϕ ⊃ ��ϕ Lemma 3 (iv)

6. �ϕ ⊃ �χ ′ is already derivable from 5 and 4 inIL
7. �χ ′ ⊃ χ ′′ • χ ′ Lemma 3 (i)
8. �ϕ ⊃ χ ′′ • χ ′ is already derivable from 6 and 7 inIL
The case of (NECR) is symmetric to that of (NECL). �	

A routine inspection of the proof of Theorem 1 shows that it holds for any extension
of L• with new connectives and axioms (but not rules of inference).

3 The proof in [13] does not involve ¬.
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3 Semi-Thue systems and a logic of concatenation

This section contains the definitions of semi-Thue systems and logic of concatenation
LC and the proof of their equivalence. Namely, semi-Thue systems are defined in
Sect. 3.1, LC is defined in Sect. 3.2, and the equivalence proof is presented in Sect. 3.3.

3.1 Semi-Thue systems

As we have already mentioned in the introduction, undecidability of L• is reduced to
undecidability of the reachability problem in semi-Thue systems. This section contains
the relevant definitions.

In what follows, � is a finite alphabet not containing → and, as usual, �∗ and �+
denote the sets of all words and of all nonempty words over �, respectively.

Definition 5 A semi-Thue system (over �) is a pair T = (�, P), where P is a finite
set of productions, which are expressions of the form u → v, where u, v ∈ �∗.

A semi-Thue system (�, P) is a Thue system, if for each production u → v ∈ P ,
the production v → u is also in P .

A semi-Thue system T = (�, P) is positive if for all u → v ∈ P , both u and v

are nonempty.
A semi-Thue system T induces the following binary relation ⇒T on �∗: w ⇒T z,

if for some u → v ∈ P and some w′, w′′ ∈ �∗, w = w′uw′′ and z = w′vw′′.
Wewritew′ ⇒n

T w′′,n = 0, 1, . . ., if there is the sequence ofwordsw0, w1, . . . , wn

such that w0 = w′, wn = w′′, and wi ⇒T wi+1, i = 0, 1, . . ., n −1. Such a sequence
is called a derivation of w′′ from w′.

Also, we write w′ ⇒∗
T w′′, if for some n = 0, 1, . . ., w′ ⇒n

T w′′.4

Definition 6 The reachability problem for semi-Thue systems is whether for a semi-
Thue system T = (�, P) and w, z ∈ �∗, w ⇒∗

T z?

Theorem 7 [15] The reachability problem for semi-Thue systems over alphabets with
more than one letter is undecidable.5

3.2 Logic of concatenation LC

In this section we define the logic of concatenation LC and, in Sect. 3.3, we show
that this logic is “equivalent” to positive semi-Thue systems. This equivalence will be
used in Sect. 4 for the proof of undecidability of L•.

LC has a countably infinite set VarLC of propositional variables and a single binary
connective · to extend VarLC to the set FmLC of formulas of LC. An LC-sequent is
an expression ϕ → χ , where ϕ and χ are LC-formulas.

The axioms of LC are sequents of the form

ϕ → ϕ (11)

4 That is, ⇒∗
T is the reflexive transitive closure of ⇒T .

5 The semi-Thue system in [15] is positive.
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(ϕ · χ) · ψ → ϕ · (χ · ψ) (12)

and

ϕ · (χ · ψ) → (ϕ · χ) · ψ (13)

and the rules of inference are

ϕ → ψ ψ → χ

ϕ → χ
(14)

and

ϕ′ → χ ′ ϕ′′ → χ ′′

ϕ′ · ϕ′′ → χ ′ · χ ′′ (15)

Indeed, as we shall see in the next section, LC can be thought of as a logic of
concatenation of non-empty words over VarLC .

Equivalently, LC can be thought of as a logic of the free semigroup generated by
VarLC . Namely, the Lindenbaum–Tarski algebra LTALC of LC is isomorphic to that
semigroup, see the appendix.

Propositions 8 and 9 below will be used in Sect. 4 for embedding LC into CL•.

Proposition 8 All propositional variables occurring in an LC-derivation of ϕ → χ

from a set of assumption � either occur in both ϕ and χ or they occur in sequents of
�.

Proof The proof is by induction on the derivation length of ϕ → χ from �.
The basis, i.e., the case of an LC-axiom or an assumption from � is trivial.
For the induction step, if the derivation ends in an application of (14), then, by the

induction hypothesis, all propositional variables in the derivation of the left premise
are common to ϕ and ψ or belong to �, likewise all propositional variables in the
derivation of the right premise are common to ψ and χ or belong to �.

Suppose a propositional variable in the derivation ofϕ → χ from� does not belong
to �. If it occurs in the derivation of the left premise, by the induction hypothesis, it
is common to ϕ and ψ . As it occurs in ψ , by the induction hypothesis, it occurs in the
derivation of the right premise as well, and, again, by the induction hypothesis, this
propositional variable is common to ψ and χ . Hence, it is common to ϕ and χ .

Similarly, if the propositional variable occurs in the derivation of the right premise,
it is, by the induction hypothesis, common to ψ and χ . As it occurs in ψ , it occurs in
the derivation of the left premise as well, and, again, by the induction hypothesis, this
propositional variable is common to ϕ and ψ . Hence, it is common to ϕ and χ .

If the derivation ends in an application of (15), by the induction hypothesis, a
propositional variable in the derivation that does not belong to � is common in ϕ′ and
χ ′, or common in ϕ′′ and χ ′′, hence, in any case, it is common in ϕ′ ·ϕ′′ and χ ′ ·χ ′′. �	

To state Proposition 9 we need the following notation.
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For a set of sequents � we define the set of sequents �← by

�← = {χ → ϕ : ϕ → χ ∈ �}

Proposition 9 Let � and ϕ → χ be a set of sequents and a sequent respectively. Then
� �LC ϕ → χ if and only if �← �LC χ → ϕ.

Proof We prove the “only if” direction only. The proof of the “if” direction follows
from (�←)← being �.

The proof is by induction on the length of the derivation of ϕ → χ from �.
For the basis, ϕ → χ is either an axiom or belongs to �. If ϕ → χ is axiom (11),

then χ → ϕ is also axiom (11), if ϕ → χ is axiom (12) then χ → ϕ is axiom (13),
and, vice versa. If ϕ → χ is an assumption from �, then, by the definition of �←,
χ → ϕ is an assumption from �←.

For the induction step, ϕ → χ is obtained from previously derived sequents either
by rule (14) or by rule (15).

If the last rule in the derivation of ϕ → χ is (14):

ϕ → ψ ψ → χ

ϕ → χ
(14)

then, by the induction hypothesis, �← �LC ψ → ϕ and �← �LC χ → ψ , from
which, by (14), we obtain χ → ϕ:

χ → ψ ψ → ϕ

χ → ϕ
(14)

If the last rule in the derivation of ϕ → χ is (15):

ϕ′ → χ ′ ϕ′′ → χ ′′

ϕ′ · ϕ′′ → χ ′ · χ ′′ (15)

i.e., ϕ and χ are of the form ϕ′ · ϕ′′ and χ ′ · χ ′′ respectively, then, by the induction
hypothesis, �← �LC χ ′ → ϕ′ and �← �LC χ ′′ → ϕ′′, from which, by (15), we
obtain χ ′ · χ ′′ → ϕ′ · ϕ′′:

χ ′ → ϕ′ χ ′′ → ϕ′′

χ ′ · χ ′′ → ϕ′ · ϕ′′ (15)

�	
Next, we recall the relational semantics of LC.
An interpretation is a triple I = 〈W , R, V 〉, where W is a non-empty set of (possi-

ble) worlds, R is a ternary (accessibility) relation on W , and V is a (valuation) function
from W into sets of propositional variables (propositional interpretations).

The satisfiability relation |� between worlds in W and LC-formulas and sequents
is defined as follows.

Let u ∈ W .
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– If ϕ is a propositional variable, then I, u |� ϕ, if ϕ ∈ V (u);
– I, u |� ϕ ·χ , if for some v,w ∈ W such that R(u, v, w), I, v |� ϕ and I, w |� χ ;
and

– I, u |� ϕ → χ , if I, u |� ϕ implies I, u |� χ .

A sequent ϕ → χ is satisfiable, if I, u |� ϕ → χ for some interpretation I =
〈W , R, V 〉 and some u ∈ W . Also, we say that I satisfies a sequent ϕ → χ , denoted
I |� ϕ → χ , if I, u |� ϕ → χ , for all u ∈ W and we say that I satisfies a set of
sequents �, denoted I |� �, if I |� ϕ → χ , for all ϕ → χ ∈ �. Finally, a set of
sequents � semantically entails a sequent ϕ → χ , denoted � |� ϕ → χ , if for each
interpretation I, I |� � implies I |� ϕ → χ .

Definition 10 Let � be a set of LC-sequents. The �-canonical interpretation I� =
〈W�, R�, V�〉 is defined as follows.

– W� is FmLC ;
– R� = {(ϕ, χ,ψ) ∈ W 3

� : � �LC ϕ → χ · ψ}; and
– V�(ϕ) = {p ∈ VarLC : � �LC ϕ → p}.

Example 11 For all formulas χ , I�, χ |� χ . The proof is by a straightforward induc-
tion on the complexity of χ . The basis (in which χ is a propositional variable) is by
definition; and for the induction step assume that χ is of the form χ ′ ·χ ′′. Then, by the
induction hypothesis,I�, χ ′ |� χ ′ andI�, χ ′′ |� χ ′′, fromwhichI�, χ ′·χ ′′ |� χ ′·χ ′′
follows by the definition of |� and the axiom χ ′ · χ ′′ → χ ′ · χ ′′.

Proposition 12 Let � be a set of LC-sequents. Then, for LC-formulas ϕ and χ ,
I�, ϕ |� χ if and only if � �LC ϕ → χ .

Proof The proof of the “only if’ direction of the proposition is by induction on the
complexity of χ . The basis, i.e., the case in which χ is a propositional variable,
immediately follows from the definition. The induction step is equally easy.

Let χ be of the form χ ′ · χ ′′ and assume I�, ϕ |� χ . That is, for some formulas
ϕ′ and ϕ′′ such that � �LC ϕ → ϕ′ · ϕ′′, I�, ϕ′ |� χ ′ and I�, ϕ′′ |� χ ′′. By the
induction hypothesis, � �LC ϕ′ → χ ′ and � �LC ϕ′′ → χ ′′, implying

ϕ → ϕ′ · ϕ′′
ϕ′ → χ ′ ϕ′′ → χ ′′

ϕ′ · ϕ′′ → χ ′′ · χ ′′
ϕ → χ ′ · χ ′′

(15)
(14)

For the proof of the “if” direction of the proposition, assume � �LC ϕ → χ ′ · χ ′′.
Then, R�(ϕ, χ ′, χ ′′) and, by Example 11, I�, χ ′ |� χ ′ and I�, χ ′′ |� χ ′′. Thus, by
the definition of |�, I�, ϕ |� χ ′ · χ ′′. �	
Definition 13 [2] A ternary relation R on a set W is associative, if for all u, v, w, x ∈
W the following holds.

– There exists y such that R(y, v, w) and R(u, y, x) if and only if there exists z such
that R(z, w, x) and R(u, v, z).

An interpretation I = 〈W , R, V 〉 is associative, if R is associative.
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Proposition 14 Relation R� is associative.

Proof Assume R�(τ, υ, ϕ) and R�(χ, τ, ψ). We have to show that for some formula
ω, R�(ω, ϕ,ψ) and R�(χ, υ, ω).

By the definitions of R�, � �LC τ → υ · ϕ and � �LC χ → τ · ψ , implying
� �LC χ → (υ ·ϕ) ·ψ . Thus, by (12) (and (14), of course), � �LC χ → υ · (ϕ ·ψ).
That is, the formula ω we are looking for is ϕ · ψ .

The proof of the other direction of associativity is symmetric. �	
Theorem 15 (Cf. [2, Proposition 1]) LC is strongly sound and complete with respect
to associative interpretations.6

Proof For the proof of soundness, assume that � �LC ϕ → χ and let I = 〈W , R, V 〉
be an associative interpretation satisfying�. We shall prove by induction on the length
of the derivation of ϕ → χ from � that I satisfies ϕ → χ as well.

For the basis, ϕ → χ is either an assumption, i.e., belongs to �, or is an axiom.
The case of an assumption follows from I |� �, and the case of axiom (11) follows

from the definition of |�.
For the case of axiom (12), let u ∈ W and let I, u |� (ϕ · χ) · ψ . That is, there are

worlds x and y such that R(u, y, x), I, y |� ϕ ·χ , and I, x |� ψ ; and there are worlds
v and w, such that R(y, v, w), I, v |� ϕ, and I, w |� χ .

Since R is associative, there is a world z such that R(z, w, x) and R(u, v, z). Then,
I, z |� χ · ψ , implying I, u |� ϕ · (χ · ψ).

The case of axiom (13) is symmetric and is omitted.
For the induction step, the case of rule (14) immediately follows from the definition

of |�. The case of rule (15) is also straightforward:
Assume that the derivation ends in rule (15) and assume I, u |� ϕ′ · ϕ′′. That is,

there are worlds v and w such that R(u, v, w), I, v |� ϕ′, and I, w |� ϕ′′. Then, by
the definition of |� and the induction hypothesis, I, v |� χ ′ and I, w |� χ ′′, implying
I, u |� χ ′ · χ ′′. That is, I, u |� ϕ′ · ϕ′′ → χ ′ · χ ′′.

The proof of completeness is equally easy: if � �LC ϕ → χ , Then, by Proposi-
tion 12,I�, ϕ �|� χ . Since, by Example 11,I�, ϕ |� ϕ, by the definition of satisfaction
of sequents, I�, ϕ �|� ϕ → χ . Thus, I� �|� ϕ → χ either. Note that, by Proposi-
tion 14, I� is an associative interpretation. �	

3.3 Embedding semi-Thue systems into LC

The proof of the undecidability theorem in Sect. 4 is based on embedding positive
semi-Thue systems into L• via their embedding into LC and embedding LC into
L•.7 In some sense, the translation theorems below (Theorems 16 and 17) and the
passage from the word problem for semigroups to the Lindenbaum–Tarski algebra
LTALC in the algebraic original proof in [11] are related. Namely, the word problem
of semigroups is an equation in LTALC with suitable assumptions. We do not rely on
this fact in our proof, but, for sake of completeness, present it in the appendix.

6 Actually, we need completeness only.
7 In fact, the embedding of LC into L• is dual to the translation of the word problem of semigroups to
equations in LTACL• in [11]. The logical counterpart of the construction in [11] is presented in Sect. 5.
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Embedding positive semi-Thue systems into LC is based on the following trans-
lations of semi-Thue systems and LC to each other.

To translate LC to semi-Thue systems, with each formula ϕ of LC we associate
the word over VarLC , denoted ϕ, that is defined by the following recursion.

– If ϕ is a propositional variable, then ϕ is ϕ itself; and
– ϕ · χ is the word concatenation ϕ χ .

Then, the translation of a set of sequents�, denoted by�, is the set of productions

� = {ϕ → χ : ϕ → χ ∈ �}

Theorem 16 If � �LC ϕ → χ and � is finite, then ϕ ⇒∗
T χ , where T is the semi-

Thue system (�,�) and � is the set of the LC propositional variables occurring in
� ∪ {ϕ → χ}.
Proof The proof is by induction on the length of the LC-derivation of ϕ → χ from
the set of assumptions �.

For the basis, i.e., derivations of length one, either ϕ → χ is an instance of one of
the axioms (11), (12), or (13), or is an assumption from �.

If ϕ → χ is an axiom, then ϕ ⇒0
T χ , because the case of axiom (11) is immediate

and the cases of axioms (12) and (13) follow from associativity of (word) concatena-
tion.

If ϕ → χ is an an assumption from �, then ϕ ⇒1
T χ by the definition of T .

For the induction step, if the last rule in the derivation is (14):

ϕ → ψ ψ → χ

ϕ → χ
(14)

then, by Proposition 8, all propositional variables occurring in the “cut formula” ψ

occur in � ∪ {ϕ → χ}. Thus, by the induction hypothesis, for some nonnegative
integers i and j , ϕ ⇒i

T ψ and ψ ⇒ j
T χ , implying

ϕ ⇒i
T ψ ⇒ j

T χ

and, if the last rule in the derivation is (15):

ϕ′ → χ ′ ϕ′′ → χ ′′

ϕ′ · ϕ′′ → χ ′ · χ ′′ (15)

i.e., ϕ and χ are of the form ϕ′ · ϕ′′ and χ ′ · χ ′′ respectively, then, by the induction
hypothesis, for somenonnegative integers i and j ,ϕ′ ⇒i

T χ ′ andϕ′′ ⇒ j
T χ ′′, implying

ϕ′ ϕ′′ ⇒i
T χ ′ ϕ′′ ⇒ j

T χ ′ χ ′′

�	
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For the converse translation, renaming the symbols in �, if necessary, we may
assume that � is a finite set of propositional variables. Then, for each non-empty
word u ∈ �∗ there is a �-formula u such that u is u. For example, u can be defined,
recursively, as follows.

– If u ∈ �, then u is u itself; and
– for u ∈ �+ and p ∈ �, up is u · p.

In fact, setting u to be any formula ϕ such that ϕ is u (or, equivalently,�LC u → ϕ)
does not affect the proof of Theorem 17 below. This is because the free semigroup
generated by the propositional variables coincides with LTALC , see the appendix.

Next, the LC-translation P of a set of productions P is defined by

P = {u → v : u → v ∈ P}

Then P is P .

Theorem 17 For a positive semi-Thue system T = (�, P), w ⇒∗
T z implies P �LC

w → z.

Proof The proof is by induction on the length n of the derivation of

w = w0 ⇒ w1 ⇒ · · · ⇒ wn = z

The basis, n = 0, is immediate, because the LC counterpart of

w0 ⇒0
T w0

is the corresponding instance of axiom (11).
For the induction step, assume

w0 ⇒T · · · ⇒T wn ⇒T wn+1

That is, wn is of the form w′uw′′, wn+1 is of the form w′vw′′, and u → v ∈ P . By
the induction hypothesis, P �LC w0 → w′uw′′. Then,8

1. w′ → w′ axiom (11)
2. u → v assumption from P
3. w′ · u → w′ · v follows from 1 and 2 by (15)
4. w′′ → w′′ axiom (11)
5. (w′ · u) · w′′ → (w′ · v) · w′′ follows from 3 and 4 by (15)
6. w0 → w′uw′′ induction hypothesis
7. w′uw′′ → w′vw′′ follows from 5 by (12), (13), and (14)
8. w0 → w′vw′′ follows from 6 and 7 by (14)

�	
8 In the derivation below, we assume that both w′ and w′′ are nonempty. In the emptiness case, we just
skip the corresponding derivation steps.
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The corollary below immediately follows from Theorems 7, 16, and 17.

Corollary 18 The consequence relation �LC is undecidable.

Proof By Theorems 16 and 17, for a semi-Thue system (�, P) and words w and
z over �, w ⇒∗

(�,P) z if and only if P �LC w → z9; and, by Theorem 7, the
reachability problem for semi-Thue systems over alphabets with more than one letter
is undecidable. �	

It follows from Theorem 15 and [2, Proposition 1] that the associative Lambek
calculus L is a (strong) conservative extension of LC . Since L is decidable (see [12,
Section 8]), sequent derivability in the “pure” LC, i.e., the LC-derivability from the
axioms only, is also decidable.

4 Embedding LC into L• and its undecidability

The desired undecidability result is based on an embedding of (undecidable) LC into
L•. To embed LC into L•, we translate LC-sequents to L•-formulas by replacing
· by • and → by ⊃. Namely, an LC-formula ϕ is translated to the L•-formula ϕ•,
recursively, as follows.

– If ϕ is a propositional variable, then ϕ• is ϕ; and
– (ϕ · χ)• is ϕ• • χ•.

Then a set � of LC-sequents is translated to the set of L•-formulas �• defined by

�• = {ϕ• ⊃ χ• : ϕ → χ ∈ �}

Theorem 19 Let � and ϕ → χ be a set of LC-sequents and an LC-sequent, respec-
tively. Then � �LC ϕ → χ if and only if �• �L• ϕ• ⊃ χ•.

We postpone the proof of Theorem 19 to the end of this section, because the proof
involves the De Morgan dual connective of • and the relational semantics of CL•.
These are presented in Sects. 4.1 and 4.2, respectively.

Undecidability of L• follows from undecidability of LC, its embedding into L•,
and the deduction theorem.We summarize these arguments in the proof of Theorem 20
below.

Theorem 20 Both CL• and IL• are undecidable.

Proof By Corollary 18, the consequence relation in LC is undecidable. This, in turn,
implies, by Theorem 19 that the consequence relations in L• are undecidable. Namely,
for L•-formulas ϕ1, ϕ2, . . . , ϕn , and ϕ (which are the •-translations of LC-sequents)
it is undecidable whether

ϕ1, ϕ2, . . . , ϕn �L• ϕ (16)

9 Recall that � is a set of propositional variables.
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By the deduction theorem (Theorem 1), (16) is equivalent to

�L•
n∧

i=1

�ϕi ⊃ ϕ

Therefore, derivability in L• is undecidable either. �	

4.1 The dual of •

We denote by ◦ the De Morgan dual connective of •. That is, in CL•, ϕ ◦ χ is an
abbreviation for ¬(¬ϕ • ¬χ), if • is the primary connective or, alternatively, ϕ • χ is
an abbreviation for ¬(¬ϕ ◦ ¬χ), if ◦ is the primary connective. In addition of being
a technical tool in the proof of Theorem 19, the algebraic counterpart of ◦ (that is
semigroup multiplication) plays the major role in the translation of the word problem
of semigroups to equations in LTACL• in [11], sketched in Sect. 5.

In the case of the primary connective ◦, CL• may be axiomatized by the following
axioms and rules of inference (which are in addition to CL).

Axioms:

(∨L) ψ ◦ (ϕ ∨ χ) ⊃ (ψ ◦ ϕ ∨ ψ ◦ χ) (∨R) (ϕ ∨ χ) ◦ ψ ⊃ (ϕ ◦ ψ ∨ χ ◦ ψ)

(⊥L) ϕ ◦ ⊥ ⊃ ⊥ (⊥R) ⊥ ◦ ϕ ⊃ ⊥
(A◦

L) (ϕ ◦ χ) ◦ ψ ⊃ ϕ ◦ (χ ◦ ψ) (A◦
R) ϕ ◦ (χ ◦ ψ) ⊃ (ϕ ◦ χ) ◦ ψ

The ◦-monotonicity rule of inference:

(MON)
ϕ′ ⊃ χ ′ ϕ′′ ⊃ χ ′′

ϕ′ ◦ ϕ′′ ⊃ χ ′ ◦ χ ′′

cf. (8).

Proposition 21 In CL•, axioms (KL), (KR), (AL), (AR) and rules (NECL) and
(NECR) are derivable from axioms (A◦

L), (A◦
R), (∨L), (∨R), (⊥L), (⊥R), and rule

(MON) and vice versa, axioms (∨L), (∨R), (⊥L), (⊥R), (A◦
L), (A◦

R) and rule (MON)

are derivable from axioms (KL), (KR) (AL), (AR) and rules (NECL) and (NECR).

Proof We start with the first part of the proposition.
Axiom (KL) equivalently translates to

¬(¬ψ ◦ ¬(ϕ ⊃ χ)) ⊃ (¬(¬ψ ◦ ¬ϕ) ⊃ ¬(¬ψ ◦ ¬χ))

that is CL equivalent to

¬ψ ◦ ¬χ ⊃ (¬ψ ◦ ¬ϕ ∨ ¬ψ ◦ ¬(ϕ ⊃ χ))

and the latter can be derived as follows.
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1. ¬ψ ⊃ ¬ψ tautology
2. ¬χ ⊃ (¬ϕ ∨ ¬(ϕ ⊃ χ)) derivable in CL
3. ¬ψ ◦ ¬χ ⊃

¬ψ ◦ (¬ϕ ∨ ¬(ϕ ⊃ χ)) follows from 1 and 2 by (MON)

4. ¬ψ ◦ (¬ϕ ∨ ¬(ϕ ⊃ χ)) ⊃
(¬ψ ◦ ¬ϕ ∨ ¬ψ ◦ ¬(ϕ ⊃ χ)) axiom (∨L)

5. ¬ψ ◦ ¬χ ⊃
(¬ψ ◦ ¬ϕ ∨ ¬ψ ◦ ¬(ϕ ⊃ χ)) already derivable from 3 and 4 in CL

Axiom (AL) equivalently translates to axiom (A◦
R)

¬ϕ ◦ (¬χ ◦ ¬ψ) ⊃ (¬ϕ ◦ ¬χ) ◦ ¬ψ

Rule (NECL) equivalently translates to

ϕ

¬χ ◦ ¬ϕ ⊃ ⊥
that can be derived as follows.

1. ϕ assumption
2. ¬ϕ ⊃ ⊥ already derivable from 1 inCL
3. ¬χ ⊃ ¬χ tautology
4. ¬χ ◦ ¬ϕ ⊃ ¬χ ◦ ⊥ follows from 2 and 3 by (MON)

5. ¬χ ◦ ⊥ ⊃ ⊥ axiom (⊥L)

6. ¬χ ◦ ¬ϕ ⊃ ⊥ already derivable from 4 and 5 inCL
The derivations of axioms (AR), (KR), and rule (NECR) are symmetric.
For the second part of the proposition, axiom (∨L) translates to

¬(¬ψ • ¬(ϕ ∨ χ)) ⊃ (¬(¬ψ • ¬ϕ) ∨ ¬(¬ψ • ¬χ))

that is equivalent to the instance

(¬ψ • ¬ϕ ∧ ¬ψ • ¬χ) ⊃ ¬ψ • (¬ϕ ∧ ¬χ)

of (3).
Axiom (⊥L) translates to

¬(¬ϕ • ¬⊥) ⊃ ⊥
that is equivalent to ¬ϕ • � and the latter is derivable from � by (NECL).

Axiom (A◦
L) equivalently translates to axiom (AR)

¬ϕ • (¬χ • ¬ψ) ⊃ (¬ϕ • ¬χ) • ¬ψ

The derivations of axioms (∨R), (⊥R), and (A◦
R), are symmetric.

Finally, rule (MON) translates to

ϕ′ ⊃ χ ′ ϕ′′ ⊃ χ ′′

¬(¬ϕ′ • ¬ϕ′′) ⊃ ¬(¬χ ′ • ¬χ ′′)
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or, equivalently to

¬χ ′ ⊃ ¬ϕ′ ¬χ ′′ ⊃ ¬ϕ′′

¬χ ′ • ¬χ ′′ ⊃ ¬ϕ′ • ¬ϕ′′

that is an instance of (8). �	

4.2 The relational semantics of CL•

In this section we recall the (ternary) relational semantics of CL•.
For an interpretation I = 〈W , R, V 〉, the satisfiability relation |� between worlds

in W and CL•-formulas is defined as follows.
Let u ∈ W .

– If ϕ is a propositional variable, then I, u |� ϕ, if ϕ ∈ V (u);
– I, u �|� ⊥;
– I, u |� ϕ ∧ χ , if I, u |� ϕ and I, u |� χ ;
– I, u |� ϕ ∨ χ , if I, u |� ϕ or I, u |� χ ;
– I, u |� ϕ ⊃ χ , if I, u �|� ϕ or I, u |� χ ;
– I, u |� ¬ϕ, if I, u �|� ϕ;
– I, u |� ϕ ◦χ , if there are v,w ∈ W such that R(u, v, w), I, v |� ϕ and I, w |� χ ;
and

– I, u |� ϕ • χ , if for all v,w ∈ W such that R(u, v, w), I, v |� ϕ or I, w |� χ .

The definitions of satisfiability by an interpretation and of semantical entailment
are similar to the corresponding definitions in Sect. 3.2.

Theorem 22 Associative interpretations10 are strongly sound and complete for CL•.

Soundness can be proved by a straightforward induction on the length of the CL•
derivation. In this paper, we do not use completeness and refer the reader to [8, Sec-
tion 4], say, for the proof.

4.3 Proof of Theorem 19

We shall use one more translation of LC-formulas to the CL• ones. This formula
translation is similar to the •-translation defined in the beginning of Sect. 4 and results
in replacing · with ◦. That is, the ◦-translation of an LC-formula ϕ, denoted ϕ◦, is
defined, recursively, as follows.

– If ϕ is a propositional variable, then ϕ◦ is ϕ; and
– (ϕ · χ)◦ is ϕ◦ ◦ χ◦.
Then, similarly to the case of the •-translation, for a set of LC-sequents � we

define the set of CL•-formulas �◦ by

�◦ = {ϕ◦ ⊃ χ◦ : ϕ → χ ∈ �}
10 See Definition 13.
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Remark 23 It follows from the definition of the ◦-translation, by a straightforward
induction on the length of an LC-formula p1 · p2 · · · · · p
, where p1, p2, . . . , p
 are
propositional variables, that (p1 · p2 · · · · · p
)

◦ is CL•-equivalent to ¬(¬p1 • ¬p2 •
· · · • ¬p
).

Proposition 24 Let � and ϕ → χ be a set of LC-sequents and an LC-sequent,
respectively. Then �◦ �CL• ϕ◦ ⊃ χ◦ implies � �LC ϕ → χ .

Proof Let �◦ �CL• ϕ◦ ⊃ χ◦ and assume to the contrary that � �LC ϕ → χ . By
completeness of the relational semantics of LC , there is an an associative interpretation
I = 〈W , R, V 〉 satisfying � such that for some world u ∈ W , I, u �|� ϕ → χ . Then
also I |� �◦, but I, u �|� ϕ◦ ⊃ χ◦, because the interpretations of · and ◦ are the same.
This, however, contradicts soundness of the relational semantics of CL•. �	

Now we are ready for the proof of Theorem 19.

Proof of Theorem 19 The “only if” direction is immediate, because the •-translation of
axiom (11) is L•-derivable, the •-translations of axioms (12) and (13) are L•-axioms,
rule (14) is L•-derivable, and the •-translation of rule (15) is rule (8).

For the proof of the “if” direction, we first consider the case of CL•.
Let �• �CL• ϕ• ⊃ χ• and assume to the contrary that � �LC ϕ → χ . Then,

by (the contraposition of) Proposition 9, �←
�LC χ → ϕ either, implying, by (the

contraposition of) Proposition 24, �←◦
�CL• χ◦ ⊃ ϕ◦.

Let ϕ and χ be q1 · q2 · · · · · qn and r1 · r2 · · · · · rm , respectively. Then, by
Remark 23,

¬(¬r1 • ¬r2 • · · · • ¬rm) ⊃ ¬(¬q1 • ¬q2 • · · · • ¬qn)

is not CL•-derivable from
{¬(¬p′′

1 • ¬p′′
2 • · · · • ¬p′′


′′) ⊃ ¬(¬p′
1 • ¬p′

2 • · · · • ¬p′

′) :

p′
1 · p′

2 · · · · · p′

′ → p′′

1 · p′′
2 · · · · · p′′


′′ ∈ �
}

or, equivalently,

¬q1 • ¬q2 • · · · • ¬qn ⊃ ¬r1 • ¬r2 • · · · • ¬rm (17)

is not CL•-derivable from

{¬p′
1 • ¬p′

2 • · · · • ¬p′

′ ⊃ ¬p′′

1 • ¬p′′
2 • · · · • ¬p′′


′′ :
p′
1 · p′

2 · · · · · p′

′ → p′′

1 · p′′
2 · · · · · p′′


′′ ∈ �} (18)

However, replacing all propositional variables with their negations in the CL•-
derivation of ϕ• ⊃ χ• from �• we obtain a CL•-derivation of (17) from (18). That
is, we have arrived at a contradiction and the proof of the “if” direction is complete
for the case of CL•.

Finally, the “if” direction of the case of IL• follows from the case of CL•, because
�• �IL• ϕ• ⊃ χ• implies �• �CL• ϕ• ⊃ χ•. �	
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It follows from the proof of Theorem 19 and the completeness of the relational
semantics of CL• that the binary connective · of LC is self dual. That is, the interpre-
tation of · as
– I, u |� ϕ · χ , if for all v,w ∈ W such that R(u, v, w), I, v |� ϕ or I, w |� χ .

is also strongly sound and complete for LC, cf. [14].

5 Back to the algebraic approach of [11]

In contrast to Theorem 20, the intuitionistic logic of an associative binary modality
based on ◦ and denoted by IL◦ is decidable, see [9, Proposition 64].11

As we have mentioned in the beginning of Sect. 2, the translation of the word
problem of semigroups to equations in LTACL• in [11] involves the unary term c(·)
that is the algebraic counterpart of the dual of �, denoted (as usual) by ♦. That is, ♦ϕ

is

ϕ ∨ � ◦ ϕ ∨ ϕ ◦ � ∨ � ◦ ϕ ◦ �

cf. (1).
Then, for a semigroupgenerated by a set of propositional variableswith presentation

{ui = vi }i=1,...,m , the (direct) logical counterpart of the “algebraic” translation of the
word problem u0 = v0 in [11] is

u0 ⊕ v0 ⊃ ♦
m∨

i=1

ui ⊕ vi (19)

where ⊕ is symmetric difference. Since (19) is an IL◦-formula, the approach in [11]
does not apply in the intuitionistic case.

Note that (19) is the (classical) contraposition of the translation

�
m∧

i=1

ui ≡ vi ⊃ (u0 ≡ v0)

in Sect. 4.
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Appendix: The Lindenbaum–Tarski algebra of LC

The Lindenbaum–Tarski algebra LTALC of LC is a free semigroup that is tightly
related to the embedding semi-Thue systems into LC in Sect. 3.3 and to the unde-
cidability proof in [11]. We precede its description with the following definition and
proposition.

Definition 25 (Cf. Definition 5). A set � of LC-sequents is called a Thue set if for
each sequent ϕ → χ ∈ �, the sequent χ → ϕ is also in �.

Proposition 26 Let � and ϕ → χ be a Thue set of LC-sequents and an LC-sequent,
respectively. Then � �LC ϕ → χ if and only if � �LC χ → ϕ.

Proof By the definition of the Thue set, �← = �. Thus, the proposition follows from
Proposition 9. �	

Next, for a Thue set of LC-sequents �, we define a binary relation ∼� on FmLC
by

ϕ ∼� χ if and only if � �LC ϕ → χ .

It follows from axiom (11), Proposition 26, and rule (14) that ∼� is an equivalence
relation. Moreover, by rule (15), ∼� is a congruence and we define multiplication on
FmLC/∼�, also denoted by ·, by

[ϕ]∼� · [χ ]∼� = [ϕ · χ ]∼�

where, as usual, [ϕ]∼� is the ∼�-congruence class of an LC-formula ϕ.
By axioms (12) and (13), LTALC = (FmLC/∼�, ·) is a semigroup. It can be readily

seen that this semigroup is generated by {[p]∼� : p ∈ VarLC} with the presentation
{[ϕ]∼� = [χ ]∼� : ϕ → χ ∈ �}, whereas the latter semigroup is isomorphic to the
semigroup generated by VarLC with the presentation {ϕ = χ : ϕ → χ ∈ �}.
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