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Abstract
Realizability notions in mathematical logic have a long history, which can be traced
back to the work of StephenKleene in the 1940s, aimed at exploring the foundations of
intuitionistic logic. Kleene’s initial realizability laid the ground for more sophisticated
notions such as Kreisel’s modified realizability and various modern approaches. In
this context, our work aligns with the lineage of realizability strategies that emphasize
the accumulation, rather than the propagation of precise witnesses. In this paper, we
introduce a new notion of realizability, namely herbrandized modified realizability.
This novel form of (cumulative) realizability, presented within the framework of semi-
intuitionistic logic is based on a recently developed star combinatory calculus, which
enables the gathering of witnesses into nonempty finite sets. We also show that the
previous analysis can be extended from logic to (Heyting) arithmetic.

Keywords Realizability · Star combinatory calculus · Finite sets · Intuitionistic
logic · Heyting arithmetic

Mathematics Subject Classification 03F10 · 03B20 · 03B40 · 03F30 · 03F25

1 Introduction

Notions of realizability have a rich history, with the first generation dating back to the
40s, with the pioneeringKleene’s realizability [10] andKreisel’smodified realizability
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[12]. These realizability strategies, closely connected with the Brouwer–Heyting–
Kolmogorov foundational interpretation of intuitionistic logic developed in the early
1900s, aim to explicitly reveal the constructive content of proofs, decide disjunctions,
and offer precise witnesses for existential statements. Later, a second generation of
realizability strategies emerged, shifting the focus fromprecisewitnesses to bounds for
those witnesses. Examples of such realizability strategies include the bounded modi-
fied realizability (BMR) [7] and the confined modified realizability (CMR) [9], which
draw inspiration from earlier works of Ulrich Kohlenbach, Fernando Ferreira, and
Paulo Oliva. In 1996, Kohlenbach introduced the monotone functional interpretation
[11], and in 2005, Ferreira and Oliva introduced the bounded functional interpretation
[8]. [Although with different approaches] Both strategies differ from the well-known
Gödel’s functional (Dialectica) interpretation since they do not rely on precise wit-
nesses but instead on majorizing functionals. BMR and CMR apply the concept of
majorizability in all finite types to the realizability method, also delivering bounds
instead of precise realizers.

In 2017, a new type of combinatory calculus was introduced, incorporating star
types [6] that enable the formation of sets of potential witnesses. The focus can now
shift from bounds for witnesses to finite sets of possible witnesses. Based on this
calculus, a cumulative/herbrandized functional interpretation was developed within
the framework of classical first-order predicate logic, drawing on the corresponding
Shoenfield version of the Dialectica interpretation. This cumulative interpretation fol-
lowed in the footsteps of a previous work of Benno van den Berg, Eyvind Briseid
and Pavol Safarik [18] in the context of nonstandard arithmetic. For a comparison
between this later approach and the one pursued in [6], see [2]. Another cumulative
interpretation based on (this time denumerable) sets can be found in [1].

Based on the above prior research, this paper shows how the star combinatory
calculus can serve as the basis for a novel modified realizability approach, namely the
herbrandized modified realizability, within the domains of semi-intuitionistic logic
and Heyting arithmetic.

Overview: The paper is structured as follows. In the next section we recall the star
combinatory calculus and its nice proof-theoretic properties. In Sect. 3 we introduce
the herbrandized modified realizability in the semi-intuitionistic context and establish
the corresponding soundness and characterization theorems. We finish the paper with
some final notes, including the possibility of extending the previous analysis to the
Heyting arithmetic context.

2 Background: star combinatory calculus

As the star combinatory calculus serves as the base of the realizability notion intro-
duced in this paper, we start this session by revisiting this calculus and its main
properties. For further details on the star combinatory calculus, please consult [6].

Let us fix a language L of pure first-order logic containing at least one constant
symbol. We are going to define the language Lω∗ , a language in all finite types (based
on a given ground type G).
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Definition 1 The types are inductively generated as follows:

(i) The ground type (G) is a type;
(ii) If σ and τ are types, σ → τ is a type;
(iii) If σ is a type, σ ∗ is a type (a star type).

Each type represents a class of objects. As usual, informally the type σ → τ

represents the functionals from objects of type σ to objects of type τ . The intended
meaning of σ ∗ is the type of all finite non-empty subsets of objects of type σ .

Remark 1 Any type is of the form σ1 → (σ2 → (· · · → (σn → ρ) · · · )) with ρ

the type G or a star type. We follow the convention of associating → to the right,
abbreviating the above type by σ1 → · · · → σn → ρ.

For each functional symbol f of L, with arity n (n ≥ 0), f denotes a constant of
Lω∗ , of type G → · · · → G → G with n arrows.

Additionally, we have the logical constants or combinators:

– �σ,τ of type σ → τ → σ , for each pair of types σ , τ ;
– �ρ,σ,τ of type (ρ → σ → τ) → (ρ → σ) → ρ → τ , for each triple of types ρ,

σ , τ ;

and the star constants:

– sσ of type σ → σ ∗, for each type σ ;
– ∪σ of type σ ∗ → σ ∗ → σ ∗, for each type σ ;
–

⋃
σ,τ of type σ ∗ → (σ → τ ∗) → τ ∗, for each pair of types σ , τ .

Definition 2 The terms of Lω∗ are inductively generated as follows:

(i) Constants are terms;
(ii) For each type σ , there exists a countable infinite number of variables of type σ

(usually denoted by x, y, z . . .). Variables are terms;
(iii) If t is a term of type σ → τ and q is a term of type σ , then tq is a term of type τ .

The fact that the term t has type σ is sometimes denoted by tσ or t : σ .
Concerning the intended meaning of the star constants above: sσ t represents a set

with a unique element t ; ∪σ tq represents the union of the sets t and q and
⋃

σ,τ tq for
t : σ ∗ and q : σ → τ ∗ represents the union

⋃
w∈t qw.

The star combinatory calculus has the following conversions:

�ρ,σ,τ tqr � tr(qr) (t : ρ → σ → τ, q : ρ → σ, r : ρ)
�σ,τ tq � t (t : σ, q : τ )⋃

σ,τ (sσ t)q � qt (t : σ, q : σ → τ ∗)⋃
σ,τ (∪σ tq)r � ∪τ (

⋃
σ,τ tr)(

⋃
σ,τ qr) (t : σ ∗, q : σ ∗, r : σ → τ ∗)

Given two terms t and q of the same type, we say that we have a one-step reduction,
which we denote by t �1 q, if q is obtained from t applying one of the above
conversions to a subterm of t . We write t � q, and say that t reduces to q (or we have
a reduction from t to q) if q is obtained from t by an arbitrary number (possibly zero)
of one-step reductions.
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A term is said to be normal if it is not possible to apply any one-step reduction on
the term. A term t is said to be strongly normalizable if there is no infinite chain of
one-step reductions starting from t .

The star combinatory calculus has the following three key properties, whose proofs
can be found on [6].

Theorem 1 The star combinatory calculus has the strong normalization property.

Theorem 2 The star combinatory calculus has the Church–Rosser property, that is,
each term has a unique normal form.

Definition 3 A term t of star type is said to be set-like if it is constructed from terms
of the form sq and the constant ∪.
Theorem 3 If t is a normal closed term of star type, then t is set-like.

For each type ρ, we have an equality symbol =ρ and a membership symbol ∈ρ .
An atomic formula is a formula of the form ⊥, tρ =ρ qρ , tρ ∈ρ qρ∗

or
R(tG1 , . . . , tGn ) where R is a relational symbol of L.
Definition 4 The formulas of Lω∗ are inductively generated as follows:

(i) Atomic formulas are formulas;
(ii) If A and B are formulas and x is a variable, then A ∨ B, A ∧ B, A → B,∀x A

and ∃x A are formulas.
(iii) If A and B are formulas, x is a variable of type ρ and t is a term of type ρ∗ where

xρ does not occur, then ∀x ∈ t A, ∃x ∈ t A are formulas. [∀x ∈ t and ∃x ∈ t are
called bounded quantifications.]

A formula is said to be ∃-free if it does not contain any unbounded existential
quantifiers ∃x .

We use the following abbreviations:

¬A :≡ A → ⊥
A ↔ B :≡ (A → B) ∧ (B → A)

The theory ILω∗ that we are about to introduce is intuitionistic logic in all finite
types. First we start by listing what we call the IL axioms and rules.
Axioms of IL:

A ∨ A → A, A → A ∧ A
A → A ∨ B, A ∧ B → A
A ∧ B → B ∧ A, A ∨ B → B ∨ A
⊥ → A
∀x A → A[t/x], A[t/x] → ∃x A, where t is a term free for x in A and A[t/x]
denotes the formula obtained from A after replacing each instance of x by t .

Rules of IL:
A, A → B

B
A → B, B → C

A → C
A → B

C ∨ A → C ∨ B
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A ∧ B → C
A → (B → C)

A → (B → C)

A ∧ B → C
In the following rules, x does not occur free in B.

B → A
B → ∀x A

A → B
∃x A → B

The theory ILω∗ is an extension of IL (in the language of all finite types) with the
following axioms and axiom schemes:

(i) Axioms for =ρ :

x =ρ x
x =ρ y ∧ A → A′, where A is an atomic formula and A′ is obtained from A
replacing some instances of x by y.

(ii) ∀x ∈ t A(x) ↔ ∀x(x ∈ t → A(x)), ∃x ∈ t A(x) ↔ ∃x(x ∈ t ∧ A(x))
(iii) �xyz = xz(yz), �xy = x
(iv) Axioms for star types:

w ∈ sx ↔ w = x
w ∈ ∪xy ↔ w ∈ x ∨ w ∈ y
z ∈ x ∧ w ∈ yz → w ∈ ⋃

xy⋃
(sx)y = yx⋃
(∪xy)z = ∪(

⋃
xz)(

⋃
yz)

Remark 2 From the equalities of the conversions and the axioms for equality, we
conclude that reduction implies equality.

Lemma 1 Let t be a closed term of type ρ∗. Then there are closed terms q1, . . . , qn of
type ρ such that

ILω∗ � w ∈ t ↔ w = q1 ∨ . . . ∨ w = qn

Proof Since reduction implies equality and due to the axioms of equality, we only
need to show the case when t is in normal form, that is, when t is set-like. The proof
follows by induction on the complexity of t . If t is sq, by the axiom for s, we can take
the term q. If t is ∪rs, we apply the induction hypothesis. Let r1, . . . , rm be the terms
associated to r and s1, . . . , sl be the terms associated to s. Then, by the axiom for ∪:

ILω∗ � w ∈ ∪rs ↔ w = r1 ∨ . . . ∨ w = rm ∨ w = s1 ∨ . . . ∨ w = sl

��
Given that terms are derived solely from constants and variables through the opera-

tionof application,wenaturally achievewhat is commonly referred to as combinatorial
completeness.

Theorem 4 (Combinatorial completeness) For each term tσ and variable xρ there
exists a term of type ρ → σ , denoted by λx .t , whose variables are those of t except
x, such that for all term s of type ρ:

ILω∗ � (λx .t)s =σ t[s/x]
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where t[s/x] is the term obtained replacing in t every occurrence of x by s.

Remark 3 In fact, we get (λx .t)s � t[s/x].
Definition 5 A type is said to be end-star if it is of the form ρ1 → . . . → ρn → τ ∗.

For ease of reading, we denote sx by {x}, ∪xy by x ∪ y and
⋃

xy by
⋃

w∈x yw.
Let σ be the type ρ1 → . . . → ρn → τ ∗ (with n ≥ 0) and a, b be terms of type σ .

The following abbreviations will also be useful:

a �σ b :≡ ∀xρ1
1 , . . . , xρn

n (ax1 · · · xn ⊆τ∗ bx1 · · · xn)

where a′ ⊆τ∗ b′ :≡ ∀x(x ∈ a′ → x ∈ b′) for a′, b′ of type τ ∗.

a �σ b : ≡ λxρ1
1 , . . . , xρn

n .ax1 · · · xn ∪ bx1 · · · xn
⊔

w∈F
f w : ≡ λxρ1

1 , . . . , xρn
n .

⋃

w∈F
f wx1 · · · xn

x � x ′ denotes
∧

i xi � x ′
i , where x (respectively x ′) denotes the tuple of xi

(respectively x ′
i ).

Remark 4 We have a �σ a �σ b, b �σ a �σ b and ∀z ∈ F( f z �σ

⊔
w∈F f w).

Remark 5 The relation �τ∗ is simply ⊆τ∗ .

3 The herbrandizedmodified realizability

In this section, we define the new realizability notion (the herbrandized modified
realizability) within ILω∗ and prove the corresponding soundness and characterization
theorems.

Definition 6 Given a formula A, we define AHR as a formula, with the free variables
of A, of the form:

AHR ≡ ∃x AHR(x)

where AHR is a ∃-free formula. The definition is by induction on the complexity of
A:

If A is atomic, AHR :≡ AHR :≡ A.
If AHR ≡ ∃x AHR(x) and BHR ≡ ∃u BHR(u):

(A ∨ B)HR :≡ ∃x, u(AHR(x) ∨ BHR(u))

(A ∧ B)HR :≡ ∃x, u(AHR(x) ∧ BHR(u))

(A → B)HR :≡ ∃U∀x(AHR(x) → BHR(Ux))
(∃z A(z))HR :≡ ∃Z , x∃z ∈ Z AHR(z, x)
(∀z A(z))HR :≡ ∃X∀z AHR(z, Xz)
(∃z ∈ t A(z))HR :≡ ∃x∃z ∈ t AH R(z, x)
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(∀z ∈ t A(z))HR :≡ ∃x∀z ∈ t AH R(z, x)

Remark 6 If A is an ∃-free formula, then AHR ≡ AHR ≡ A.

Remark 7 By induction on the logical structure of the formulas, it can be shown that,
for any formula A, the variables x in AHR ≡ ∃x AHR(x) are of end-star type.

Theorem 5 (Monotonicity) For any formula A with AHR ≡ ∃x AHR(x):

x � x ′ ∧ AHR(x) → AHR(x ′)

Proof The proof is by induction on the logical structure of the formula. For atomic
formulas the result is trivial. The induction step in the cases A∧ B, A∨ B, ∃z ∈ t A(z)
and ∀z ∈ t A(z) follows from the induction hypothesis.

Case A → B
We assume U � U ′ and ∀x(AHR(x) → BHR(Ux)). We need to show that
∀x(AHR(x) → BHR(U ′x)). Take x such that AHR(x). By hypothesis, we get
BHR(Ux).We note that fromU � U ′ we getUx � U ′x . By induction hypothesis,
we have that BHR(U ′x). Thus ∀x(AHR(x) → BHR(U ′x)).
Case ∀z A(z)
We assume X � X ′ and ∀z AHR(z, Xz). We need to show ∀z AHR(z, X ′z). This
follows from the induction hypothesis, noting that X � X ′ implies Xz � X ′z.
Case ∃z A(z)
We assume Z � Z ′, x � x ′ and ∃z ∈ Z AHR(z, x). We need to show
∃z ∈ Z ′ AHR(z, x ′). Take z such that z ∈ Z and AHR(z, x). Since Z � Z ′,
we have that z ∈ Z ′. From the induction hypothesis we get AHR(z, x ′). Thus
∃z ∈ Z ′ AHR(z, x ′).

��

Consider the following Choice and Independence of Premises Principles:

ACω∗ : ∀xρ∃yσ A(x, y) → ∃ f ρ→σ ∗∀x∃y ∈ f x A(x, y)

and

IP∗
�: (B(x) → ∃y A(y)) → ∃w(B(x) → ∃y ∈ w A(y))

where B is an ∃-free formula.
The theory ILω∗ + ACω∗ + IP∗

� proves the following Collection Principle:

Lemma 2 (Collection)

ILω∗ + ACω∗ + IP∗
� � ∀x ∈ y∃z A(x, z) → ∃w∀x ∈ y∃z ∈ w A(x, z)
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Theorem 6 (Soundness) Let A be a formula with free variables a. Let T� be a set of
∃-free formulas. If

ILω∗ + ACω∗ + IP∗
� + T� � A(a)

then there exist closed terms t such that

ILω∗ + T� � AHR(a, ta)

Proof Fix AHR ≡ ∃x AHR(x), BHR ≡ ∃u BHR(u) and CHR ≡ ∃p CHR(p).
We use the tuple notation combined with the lambda notation as per the following

example: if x denotes the tuple of xi , then λx, y.x denotes the tuple of λx, y.xi .
The proof is by induction on the deduction of the formula.

Case A → A ∧ A
We need terms t X ′ , t X ′′ such that:

∀x(AHR(x) → AHR(t X ′x) ∧ AHR(t X ′′x))

We take t X ′ := t X ′′ := λx .x .
Case A ∨ A → A
We need terms t X ′′ such that:

∀x, x ′(AHR(x) ∨ AHR(x ′) → AHR(t X ′′xx ′))

We take t X ′′ := λx, x ′.x � x ′.
Case A ∧ B → A
We need terms t X ′ such that:

∀x, u(AHR(x) ∧ BHR(u) → AHR(t X ′xu))

We take t X ′ := λx, u.x .
Case A → A ∨ B
We need terms t X ′ , tU such that:

∀x(AHR(x) → AHR(t X ′x) ∨ BHR(tU x))

We take t X ′ := λx .x . For tU we take an arbitrary closed term of adequate type,
which exists due to combinatorial completeness and the existence of a constant of
type G.
Case A ∧ B → B ∧ A
We need terms t X ′ , tU ′ such that:

∀x, u(AHR(x) ∧ BHR(u) → BHR(tU ′xu) ∧ AHR(t X ′xu))

We take t X ′ := λx, u.x, tU ′ := λx, u.u.

123



Herbrandized modified realizability

The case A ∨ B → B ∨ A is analogous to the above.
Case ⊥ → A
We need terms t x such that:

⊥ → AHR(t x )

We take arbitrary closed t x .
Case ∀z A → A(t)
We need terms t X ′′ such that:

∀X ′(∀z AHR(z, X ′z) → AHR(t, t X ′′ X ′))

We take t X ′′ := λX ′.X ′t .
Case A(t) → ∃z A
We need terms tZ ′, t X ′ such that:

∀x(AHR(t, x) → ∃z ∈ tZ ′x AHR(z, t X ′x))

We take tZ ′ := λx .{t}, t X ′ := λx .x .

Case
A, A → B

B
By induction hypothesis, we obtain closed terms t x , tU such that:

AHR(t x )

∀x(AHR(x) → BHR(tU x))

We need terms tu such that

BHR(tu)

We take tu := tU t x .

Case
A → B, B → C

A → C
By induction, we have closed terms tU , t P such that:

∀x(AHR(x) → BHR(tU x))

∀u(BHR(u) → CHR(t Pu))

We need terms sP such that:

∀x(AHR(x) → CHR(sP x))

We take sP := λx .t P (tU x).
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Cases
A ∧ B → C

A → (B → C)
,

A → (B → C)

A ∧ B → C
To realize A ∧ B → C we need

closed terms t P such that:

∀x, u(AHR(x) ∧ BHR(u) → CHR(t P xu))

To realize A → (B → C) we need closed terms t P such that:

∀x(AHR(x) → ∀u(BHR(u) → CHR(t P xu)))

These two formulas are equivalent in ILω∗ , therefore the terms which realize A ∧
B → C are exactly those which realize A → (B → C).

Case
A → B

C ∨ A → C ∨ B
By induction we have terms tU such that

∀x(AHR(x) → BHR(tU x))

We need terms t P ′ , tU ′ such that

∀p, x(CHR(p) ∨ AHR(x) → CHR(t P ′ px) ∨ BHR(tU ′ px)

We take t P ′ := λp, x .p, tU ′ := λp, x .tU x .

Case
B → A

B → ∀z A where z is not free in B

By induction, we have terms t X such that

∀u(BHR(u) → AHR(z, t X zu))

We need sX such that

∀u(BHR(u) → ∀z AHR(z, sXuz))

We take sX := λu, z.t X zu.

Case
A → B

∃z A → B
where z is not free in B

By induction we have terms tU such that

∀x(AHR(z, x) → BHR(tU zx))

We need terms sU such that

∀z′, x(∃z ∈ z′ AHR(z, x) → BHR(sU z
′x))

We take sU := λz′, u.
⊔

z∈z′ tU zx .
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The axioms for =, � and �, as well as the axioms for the star types, are ∃-free
formulas and therefore don’t need terms.
Case ∀z ∈ t A(z) → ∀z(z ∈ t → A(z))
We need terms t X ′ such that

∀x(∀z ∈ t AH R(z, x) → ∀z(z ∈ t → AHR(z, t X ′xz)))

We take t X ′ := λx, z.x .
Case ∀z ∈ t A(z) ← ∀z(z ∈ t → A(z))
We need terms t X such that

∀X ′(∀z(z ∈ t → AHR(z, X ′z)) → ∀z ∈ t AH R(z, t X X
′))

We take t X := λX ′.
⊔

z∈t X ′z.
Case ∃z ∈ t A(z) → ∃z(z ∈ t ∧ A(z))

We need terms t X and tZ such that

∀x(∃z ∈ t AH R(z, x) → ∃z ∈ tZ x(z ∈ t ∧ AHR(z, Xx)))

We take tZ := λx .t, t X := λx .x .
Case ∃z ∈ t A(z) ← ∃z(z ∈ t ∧ A(z))
We need terms t X such that

∀z′, x(∃z ∈ z′(z ∈ t ∧ AHR(z, x)) → ∃z ∈ t AH R(z, t X z
′x))

We take t X := λz′, x .x .
Case ACω∗ : ∀z∃w A(z, w) → ∃W∀z∃w ∈ Wz A(z, w)

We need terms tW ′′ , t X ′′ such that:

∀W ′, X ′(∀z∃w ∈ W ′z AHR(z, w, X ′z) →
∃W ∈ tW ′′W ′X ′∀z′∃w′ ∈ Wz′ AHR(z′, w′, t X ′′W ′X ′z′))

We take tW ′′ := λW ′, X ′.{W ′}, t X ′′ := λW ′, X ′.X ′.
Case IP∗

�: (A → ∃w B(w)) → ∃z(A → ∃w ∈ z B(w)) where A is an ∃-free
formula.
We need terms tZ ′, tU such that

∀w′, u((A → ∃w ∈ w′ BHR(w, u)) → ∃z ∈ tZ ′w′u(A → ∃w ∈ z BHR(w, tUw′u)))

We take tZ ′ := λw′, u.{w′}, tU := λw′, u.u.
The formulas in T� verify themselves.

��
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Theorem 7 (Characterisation theorem) For any formula A:

ILω∗ + ACω∗ + IP∗
� � A ↔ AHR

Proof The proof is by induction on the logical structure of the formula. The result is
immediate for ∃-free formulas. For the induction step, we use the induction hypothesis
immediately, for instance, in order to show A ∧ B ↔ (A ∧ B)HR we show that
AHR ∧ BHR ↔ (A ∧ B)HR .

The equivalence for the cases A∧ B, A∨ B, ∃z A(z) and ∃z ∈ t A(z) is evidently a
consequence of the logical rules; for instance, for A ∧ B, we just drag the quantifiers
inside and outside.

For the remaining cases, the right to left implication is also consequence of the
logical rules.

We focus on the reciprocal.

Case A → B
We are going to show that (∃x AHR(x) → ∃u BHR(u)) → (∃U ′′′∀x(AHR(x) →
BHR(U ′′′x))).
From ∃x AHR(x) → ∃u BHR(u) we have ∀x(AHR(x) → ∃u BHR(u)). Using
IP∗

� we obtain ∀x∃u′(AHR(x) → ∃u ∈ u′ BHR(u)). By monotonicity, we
get ∀x∃u′(AHR(x) → BHR(

⊔
u∈u′ u)), i.e., ∀x∃u′′(AHR(x) → BHR(u′′)).

Applying ACω∗ , we get ∃U ′′∀x∃u′′ ∈ U ′′x(AHR(x) → BHR(u′′)). By mono-
tonicity, we obtain ∃U ′′∀x(AHR(x) → BHR(

⊔
u′′∈U ′′x u

′′)), and therefore
∃U ′′′∀x(AHR(x) → BHR(U ′′′x)).
Case ∀z A(z)
We are going to show that ∀z∃x AHR(z, x) → ∃X ′∀z AHR(z, X ′z).
From ∀z∃x AHR(z, x), applying ACω∗ we obtain ∃X∀z∃x ∈ Xz AHR(z, x). By
monotonicity we have ∃X∀z AHR(z,

⊔
x∈Xz x). Thus ∃X ′∀z AHR(z, X ′z).

Case ∀z ∈ t A(z)
We are going to show that ∀z ∈ t∃x AHR(z, x) → ∃x∀z ∈ t AH R(z, x).
Using collection (Lemma 2, involving ACω∗ and IP∗

�), we get ∃w∀z ∈ t∃x ∈
w AHR(z, x). Take x ′ := ⊔

x∈w x . Then, by monotonicity, we get AHR(z, x ′) for
all z ∈ t .

��
Corollary 1 If

ILω∗ + ACω∗ + IP∗
� + T� � ∀z∃w A(z, w)

where z, w are the only free variables of A, then there exist closed terms r such that

ILω∗ + ACω∗ + IP∗
� + T� � ∀z∃w ∈ r z A(z, w)

Proof We have:

(∀z∃w A(z, w))HR ≡ ∃W ′, X ′∀z∃w ∈ W ′z AHR(z, w, X ′z)
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Using Soundness, we get terms t, r such that, for arbitrary z

∃w ∈ r z AHR(z, w, t z)

thus

∃x∃w ∈ r z AHR(z, w, x)

which is just (∃w ∈ r z A(z, w))HR . By the Characterization Theorem, we obtain
∃w ∈ r z A(z, w) for arbitrary z. ��
Corollary 2 If

ILω∗ + ACω∗ + IP∗
� + T� � ∀z∃w A(z, w)

where A is an ∃-free formula whose only free variables are z, w, then there exist closed
terms r such that

ILω∗ + T� � ∀z∃w ∈ r z A(z, w)

Proof We have:

(∀z∃w A(z, w))HR ≡ ∃W ′∀z∃w ∈ W ′z A(z, w)

Using Soundness, we get terms r such that

ILω∗ + T� � ∀z∃w ∈ r z A(z, w)

��
Remark 8 We also have the previous results in the absence of the variables z. Due to
Lemma 1, we conclude the following:

Corollary 3 If

ILω∗ + ACω∗ + IP∗
� + T� � ∃x A(x)

where x is the only free variable of A, then there exist closed terms t1, . . . , tn such
that

ILω∗ + ACω∗ + IP∗
� + T� � A(t1) ∨ . . . ∨ A(tn)

Corollary 4 If

ILω∗ + ACω∗ + IP∗
� + T� � ∃x A(x)

123



G. Ferreira, P. Firmino

where A is an ∃-free formula whose only free variable is x, then there exist closed
terms t1, . . . , tn such that

ILω∗ + T� � A(t1) ∨ . . . ∨ A(tn)

4 Final notes

4.1 Atomic versus ∃-free

The axiom scheme for equality, on page 5, was formulated with A an atomic formula.
As is well known, this atomic formulation is enough to ensure we have the result for
any formula A within the system. Instead of using atomic formulas, we could have
presented the scheme with A an ∃-free formula. From our interpretation perspective,
the ∃-free formulas are still computationally empty.

4.2 The translation of the universal quantification

Note that, in the case of the bounded modified realizability (·)br [7], the translation of
the universal quantification needs to be more evolved, namely

(∀zA(z))br :≡ ∃̃X ∀̃a∀z ≤∗ aAbr (z, Xa)

Monotonicity explains this need, because one has to ensure that

X ≤∗ Y → Xz ≤∗ Y z

which is the case if z is monotone, i.e., if z ≤∗ z, thus the need to consider monotone
majorants a such that z ≤∗ a. In the case of the herbrand modified realizability we
can deal with z itself since

X � Y → Xz � Y z

4.3 Herbrand realizability for nonstandard arithmetic

The paper [18] of Benno van den Berg, Eyvind Briseid and Pavol Safarik significantly
influenced thework in [6]where the star combinatory calculus (as formulated here)was
introduced, alongside a Herbrandized functional interpretation of classical first-order
logic. In [18], two functional interpretations for nonstandard arithmetic (intuitionistic
and classical) were presented, based on the idea that realizing an external existential
quantifier involves exhibiting a finite list of candidates, being the realizer among the
elements of such list. Technically, the setting of higher type was extended with types
for finite sequences, carrying a structure of preorder (with x � y if every element in
the list coded by x also occurs in the list coded by y). The novelty of [6] was that such
functional interpretations stillwork in theories of standard arithmetic and even, for pure
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logic. Identical parallelism is done in the current work concerning realizability. In [18],
a Herbrand realizability was introduced, in the context of nonstandard arithmetic with
types for finite lists. Despite the nonstandard setting of [18], the Herbrand realizability
makes perfect sense for theories of standard arithmetic and can be developed even in the
context of pure logic. Note the challenge that emerges with herbrandized realizability
notions or herbrandized functional interpretations in the context of pure logic (as
opposed to arithmetic). How to address finite sets when the concept of finiteness itself
is not a logical notion? The way out of this situation is the star combinatory calculus.
Note also that the way the existential witnesses are accumulated in the present paper
differs slightly from the manner they are treated in [18]. For instance, [18] identifies
elements of (σ → ρ	)	 with elements ofσ → ρ	, whichwedonot.Another difference
between the Herbrand realizability in [18] and the present herbrandized modified
realizability is that the existentially quantified variables in our context are of end-star
type while in [18] are of star type. Further elaboration on the distinction between the
formulation in [18] and the treatment based on the star combinatory calculus can be
found in [2].

4.4 The star calculus on arithmetic

The possibility of extending the star calculus to the arithmetic setting keeping the
strong normalization and the Church–Rosser properties was already discussed in [4]
but without proofs of such results. We present here such proofs.

We denote the ground type as N , intending it to represent natural numbers; and we
consider the following constants from the language of arithmetic: 0 of type N , S of
type N → N and Rσ of type N → σ → (σ → N → σ) → σ . Note that σ can be
of star type.

We assign the following conversions to the new constants above:

Rσ0qr � q (q : σ, r : σ → N → σ )
Rσ (St)qr � r(Rtqr , t) (t : N , q : σ, r : σ → N → σ )

We are going to show, adapting the proof in [6] based onTait’s reducibility technique
[14, 15], that the star calculus in the extended (arithmetical) context remains strongly
normalizable. First some definitions.

Definition 7 Given a term t of type σ ∗, we define a finite set of terms of type σ , the
surface elements of t , which we denote by SM(t), by induction on the complexity of
t as follows:

(i) If t is of the form s(q) then SM(t) is {q};
(ii) If t is of the form ∪qr , then SM(t) is SM(q) ∪ SM(r);
(iii) In any other case, SM(t) is ∅.
Definition 8 The set Redσ of the reducible terms of type σ is defined recursively in
the complexity of the type σ as follows:

(i) t ∈ RedN :≡ t is strongly normalizable;
(ii) t ∈ Redσ→τ :≡ for all q, if q ∈ Redσ then tq ∈ Redτ ;
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(iii) t ∈ Redσ ∗ :≡ t is strongly normalizable and if, for any termobtained by reduction
of t , its surface elements are reducible.

The proofs of lemmas 1, 2, 3 and 4 presented in [6] on pages 526–527, are already
applicable in the new context. We just recall here the statement of two of those results:

Lemma 3 If t ∈ Redσ , then t is strongly normalizable;

Lemma 4 If t is a reducible term and t � q, then q is reducible.

Theorem 8 All terms in the star combinatory calculus for arithmetic are reducible.

Proof Following the proof in [6], we only need to show that the arithmetical constants
are reducible. It is clear that 0 ∈ RedN . We have that if t is a reducible term of type
N (i.e., strongly normalizable), then St ∈ RedN . Thus S ∈ RedN→N .

Following Remark 1, we assume that σ is σ1 → · · · → σn → ρ, with ρ star type
or N . We just need to prove that Rσ is reducible.

Let t ∈ RedN , q ∈ Redσ , r ∈ Redσ→N→σ and t1, . . . , tn with ti ∈ Redσi .We show
that Rtqrt1 · · · tn ∈ Redρ . Since t is strongly normalizable, there exist finite normal
forms of t , which we here denote t (1), . . . , t (k). Each t (i) is of the form S · · · St∗ with
μi (t) instances of S at the beginning of the term, where t∗ is not of the form St ′∗. We
define μ(t) := maxi μi (t). The proof is by induction on μ(t).

For Rtqrt1 · · · tn with μ(t) = 0, we have that any t ′ obtained by reduction of t is
not of the form St ′∗, therefore we can only apply the conversion of Rσ if t ′ is 0. Thus,
in a sequence of one-step reductions of Rtqrt1 · · · tn we have two cases:
• We do not apply a conversion on R, therefore, as the terms involved are strongly
normalizable, Rtqrt1 · · · tn also is;

• we reach the form R0q ′r ′t ′1 · · · t ′n with q � q ′, r � r ′, ti � t ′i . We have
R0q ′r ′t ′1 · · · t ′n �1 q ′t ′1 · · · t ′n ∈ Redρ (using Lemma 4).

Thus Rtqrt1 · · · tn with μ(t) = 0 is strongly normalizable.
We have SM(Rt ′q ′r ′t ′1 · · · t ′n) = ∅. As q ′t ′1 · · · t ′n ∈ Redρ , the surface elements of

terms obtained by reduction of q ′t ′1 · · · t ′n are reducible. Thus the surface elements of
terms obtained by reduction of Rtqrt1 · · · tn with μ(t) = 0 are reducible.

We assume that Rtqr ∈ Redσ for all t ∈ RedN with μ(t) ≤ m and for all
q ∈ Redσ , r ∈ Redσ→N→σ . In a sequence of one-step reductions of Rtqrt1 · · · tn
with μ(t) = m + 1 we have 3 cases (here, q � q ′, r � r ′, ti � t ′i ):
• We do not apply a conversion on R, therefore, as the terms involved are strongly
normalizable, Rtqrt1 · · · tn also is;

• we reach the form R0q ′r ′t ′1 · · · t ′n , case analogous to μ(t) = 0
• we reach the form R(St ′)q ′r ′t ′1 · · · t ′n . We have R(St ′)q ′r ′t ′1 · · · t ′n �1
r ′(Rt ′q ′r ′, t ′)t ′1 · · · t ′n ∈ Redρ since μ(t ′) ≤ m (using lemma 4).

Thus Rtqrt1 · · · tn with μ(t) = m + 1 is strongly normalizable. We have
SM(Rt ′q ′r ′t ′1 · · · t ′n) = ∅. As r ′(Rt ′q ′r ′, t ′)t ′1 · · · t ′n ∈ Redρ , the surface elements
of terms obtained by reduction of r ′(Rt ′q ′r ′, t ′)t ′1 · · · t ′n are reducible. Thus the sur-
face elements of terms obtained by reduction of Rtqrt1 · · · tn with μ(t) = m + 1 are
reducible. Therefore Rtqrt1 · · · tn ∈ Redρ . We conclude that Rσ is reducible. ��
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Corollary 5 The star combinatory calculus on arithmetic has the property of strong
normalization.

Theorem 9 The star combinatory calculus on arithmetic has the Church–Rosser prop-
erty, that is, each term has a unique normal form.

Proof Since we have the strong normalization property, by Newman’s lemma [16], it
is enough to show that if t0 �1 t1 and t0 �1 t2, there exists a term t3 such that t1 � t3
and t2 � t3 (that is, the calculus is weakly confluent). If the reductions from t0 to t1
and from t0 to t2 involve subterms which do not intersect, we obtain t3 from t0 by
applying both conversions.

We focus then on the case where one of the subterms to reduce is included in the
other. We note that, for any of the conversions (including the new conversions for the
recursor), the resulting terms depend on subterms of the original term, which are not
altered. Thus, if t1 is obtained from t0 by the conversion, any other reduction t2 is
obtained from t0 by reduction of one of the subterms q. We obtain t3 taking t1 and
applying the same reductions for every instances of q in the subterm resulting from
the conversion. Then t3 is obtained from t2 applying the same conversion as from t0
to t1.

We illustrate with the following two cases involving R:

If t0 ≡ R(St)qr , t1 ≡ r(Rtqr , t), t2 ≡ R(St)qr ′ then we take t3 ≡ r ′(Rtqr ′, t)
If t0 ≡ R0qr , t1 ≡ q, t2 ≡ R0q ′r then we take t3 ≡ q ′.

��
Theorem 10 If t is a closed normal term of type N then t is a numeral n, i.e., it is of
the form S · · · S0.
Proof Closed terms are of the form at1 · · · tm where ti are closed terms and a is a
constant. After the proof in [6], we only need to verify if Rσ t1 · · · tm can be a closed
normal term of type N . The only possibility would be Rσ tqr t1 · · · tn (where σ is
σ1 → · · · → σn → N ).

By an inductive argument we may suppose that t is a numeral. Therefore
Rσ tqr t1 · · · tn is not normal.

Thus, the recursor does not contribute for the closed normal terms of type N , being
those the terms S · · · S0 with a finite (possible zero) number of S’s. ��
Theorem 11 If t is a closed normal term of star type ρ∗, then t is set-like and SM(t)
is a finite non-empty set of closed normal terms of type ρ.

Proof The proof, by induction on the term t , that t is set-like, i.e., t is of the form sr
or ∪t1t2, can be found in [4]. The last assertion of the theorem follows immediately,
noticing that: i) SM(sr) = {r}, and being sr a closed normal term of type ρ∗, then r
has to be a closed normal term of type ρ, ii) SM(∪t1t2) = SM(t1)∪SM(t2), following
the result by induction hypothesis.

��
The star combinatory calculus within the arithmetic framework was also used in [3,

5] in the context of herbrandized functional interpretations for (respectively classical
and semi-intuitionistic) second-order arithmetic.
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4.5 Heyting arithmetic HA!∗

Although the herbrandized modified realizability was introduced in Sect. 3 within the
realm of logic, specifically semi-intuitionistic logic, it can also be applied within the
Heyting arithmetic context.

With that in view, consider the star combinatory calculus in the language of arith-
metic described in Sect. 4.4. Consider also the universal axioms for the successor S
and the recursor R (as in [17] or [13]) and the (unrestricted) induction axiom scheme:

A(0) ∧ ∀n(A(n) → A(Sn)) → ∀n A(n).

We denote by HAω∗ the theory consisting of ILω∗ (in the language of arithmetic)
with the above arithmetical axioms.

The soundness theorem has an arithmetical extension.

Theorem 12 (Soundness, arithmetical extension) Let A be a formula with free vari-
ables a. Let T� be a set of ∃-free formulas. If

HAω∗ + ACω∗ + IP∗
� + T� � A(a)

then there exist closed terms t such that

HAω∗ + T� � AHR(a, ta)

Proof The axioms for S and R are ∃-free formulas and do not require terms.
Consider the axiom scheme A(0) ∧ ∀n(A(n) → A(Sn)) → ∀n A(n).
We need terms r X ′ such that:

∀x, X(AHR(0, x) ∧ ∀n, x ′(AHR(n, x ′) → AHR(Sn, Xnx ′)) → ∀n AHR(n, r X ′x Xn))

Take r X ′ := λx, X , n.Rnx X̃ where X̃ := λx, n.Xnx . Take x, X such that

AHR(0, x) ∧ ∀n, x ′(AHR(n, x ′) → AHR(Sn, Xnx ′))

We show that ∀n AHR(n, r X ′x Xn) using the induction axiom. First note that
r X ′x X0 = x . Now assume AHR(n, r X ′x Xn). By the assumption we have
AHR(Sn, Xn(r X ′x Xn)). Furthermore, we have:

r X ′x X(Sn) = R(Sn)x X̃ = X̃(Rnx X̃ , n) = X̃(r X ′x Xn, n) = Xn(r X ′x Xn)

which gives us the result. ��
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