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Abstract

Realizability notions in mathematical logic have a long history, which can be traced
back to the work of Stephen Kleene in the 1940s, aimed at exploring the foundations of
intuitionistic logic. Kleene’s initial realizability laid the ground for more sophisticated
notions such as Kreisel’s modified realizability and various modern approaches. In
this context, our work aligns with the lineage of realizability strategies that emphasize
the accumulation, rather than the propagation of precise witnesses. In this paper, we
introduce a new notion of realizability, namely herbrandized modified realizability.
This novel form of (cumulative) realizability, presented within the framework of semi-
intuitionistic logic is based on a recently developed star combinatory calculus, which
enables the gathering of witnesses into nonempty finite sets. We also show that the
previous analysis can be extended from logic to (Heyting) arithmetic.

Keywords Realizability - Star combinatory calculus - Finite sets - Intuitionistic
logic - Heyting arithmetic
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1 Introduction

Notions of realizability have a rich history, with the first generation dating back to the
40s, with the pioneering Kleene’s realizability [10] and Kreisel’s modified realizability
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[12]. These realizability strategies, closely connected with the Brouwer—Heyting—
Kolmogorov foundational interpretation of intuitionistic logic developed in the early
1900s, aim to explicitly reveal the constructive content of proofs, decide disjunctions,
and offer precise witnesses for existential statements. Later, a second generation of
realizability strategies emerged, shifting the focus from precise witnesses to bounds for
those witnesses. Examples of such realizability strategies include the bounded modi-
fied realizability (BMR) [7] and the confined modified realizability (CMR) [9], which
draw inspiration from earlier works of Ulrich Kohlenbach, Fernando Ferreira, and
Paulo Oliva. In 1996, Kohlenbach introduced the monotone functional interpretation
[11], and in 2005, Ferreira and Oliva introduced the bounded functional interpretation
[8]. [Although with different approaches] Both strategies differ from the well-known
Godel’s functional (Dialectica) interpretation since they do not rely on precise wit-
nesses but instead on majorizing functionals. BMR and CMR apply the concept of
majorizability in all finite types to the realizability method, also delivering bounds
instead of precise realizers.

In 2017, a new type of combinatory calculus was introduced, incorporating star
types [6] that enable the formation of sets of potential witnesses. The focus can now
shift from bounds for witnesses to finite sets of possible witnesses. Based on this
calculus, a cumulative/herbrandized functional interpretation was developed within
the framework of classical first-order predicate logic, drawing on the corresponding
Shoenfield version of the Dialectica interpretation. This cumulative interpretation fol-
lowed in the footsteps of a previous work of Benno van den Berg, Eyvind Briseid
and Pavol Safarik [18] in the context of nonstandard arithmetic. For a comparison
between this later approach and the one pursued in [6], see [2]. Another cumulative
interpretation based on (this time denumerable) sets can be found in [1].

Based on the above prior research, this paper shows how the star combinatory
calculus can serve as the basis for a novel modified realizability approach, namely the
herbrandized modified realizability, within the domains of semi-intuitionistic logic
and Heyting arithmetic.

Overview: The paper is structured as follows. In the next section we recall the star
combinatory calculus and its nice proof-theoretic properties. In Sect. 3 we introduce
the herbrandized modified realizability in the semi-intuitionistic context and establish
the corresponding soundness and characterization theorems. We finish the paper with
some final notes, including the possibility of extending the previous analysis to the
Heyting arithmetic context.

2 Background: star combinatory calculus

As the star combinatory calculus serves as the base of the realizability notion intro-
duced in this paper, we start this session by revisiting this calculus and its main
properties. For further details on the star combinatory calculus, please consult [6].

Let us fix a language £ of pure first-order logic containing at least one constant
symbol. We are going to define the language £¢, a language in all finite types (based
on a given ground type G).
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Herbrandized modified realizability

Definition 1 The types are inductively generated as follows:

(i) The ground type (G) is a type;
(ii) If o and 7 are types, 0 — Tt is a type;
(iii) If o is a type, o™ is a type (a star type).

Each type represents a class of objects. As usual, informally the type 0 — ©
represents the functionals from objects of type o to objects of type 7. The intended
meaning of o* is the type of all finite non-empty subsets of objects of type o.

Remark 1 Any type is of the form oy — (o0 — (- — (0, — p)---)) with p
the type G or a star type. We follow the convention of associating — to the right,
abbreviating the above type by o1 — --- — o, — p.

For each functional symbol f of £, with arity n (n > 0), f denotes a constant of
LY, oftype G — --- — G — G with n arrows.
Additionally, we have the logical constants or combinators:

— Iy, of type 0 — T — o, for each pair of types o, T;
- X .0,c0ftype (0 - 0 — 1) = (p — 0) — p — T, for each triple of types p,
0,T;

and the star constants:

— 55 of type 0 — o*, for each type o
— Ug of type 0* — o™ — o*, for each type o}
- U(m of type 0* — (0 — 1*) — t*, for each pair of types o, 7.

Definition 2 The terms of £ are inductively generated as follows:

(i) Constants are terms;
(i) For each type o, there exists a countable infinite number of variables of type o
(usually denoted by x, y, z...). Variables are terms;
(iii) If ¢ is aterm of type 0 — 7 and ¢ is a term of type o, then t¢ is a term of type 7.

The fact that the term ¢ has type o is sometimes denoted by 1” or ¢ : 0.

Concerning the intended meaning of the star constants above: s,¢ represents a set
with a unique element ¢; U, tg represents the union of the sets t and ¢ and Umt tq for
t:0%and g : 0 — T* represents the union | J,,., qw.

The star combinatory calculus has the following conversions:

Ypoctqr ~tr(qr)(tip—>0—>T,q:p—>0,1:p)

My tg~~t({:0,q:1)

Us.c(st)q ~qt (t 10, q:0 — %)

U(”(U(,tq)r ~ UT(UU,‘[ tr)(U(” qr)(t:o*, q:0%, r:o0 —> 1%

Given two terms ¢ and g of the same type, we say that we have a one-step reduction,
which we denote by ¢ > ¢, if ¢ is obtained from ¢ applying one of the above
conversions to a subterm of . We write ¢ > g, and say that ¢ reduces to g (or we have
a reduction from t to q) if g is obtained from ¢ by an arbitrary number (possibly zero)
of one-step reductions.
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A term is said to be normal if it is not possible to apply any one-step reduction on
the term. A term ¢ is said to be strongly normalizable if there is no infinite chain of
one-step reductions starting from .

The star combinatory calculus has the following three key properties, whose proofs
can be found on [6].

Theorem 1 The star combinatory calculus has the strong normalization property.

Theorem 2 The star combinatory calculus has the Church—Rosser property, that is,
each term has a unique normal form.

Definition 3 A term 7 of star type is said to be set-like if it is constructed from terms
of the form sg and the constant U.

Theorem 3 Ift is a normal closed term of star type, then t is set-like.

For each type p, we have an equality symbol =, and a membership symbol €.
An atomic formula is a formula of the form L, t* =, ¢”, t” €, q”" or
R(tlc e tf ) where R is a relational symbol of L.

Definition 4 The formulas of L2 are inductively generated as follows:

(i) Atomic formulas are formulas;
(i) If A and B are formulas and x is a variable, then AV B,AAB,A — B,Vx A
and dx A are formulas.
(iii) If A and B are formulas, x is a variable of type p and ¢ is a term of type p* where
xP does not occur, then Vx € t A, Ix € t A are formulas. [Vx € ¢t and Ix € ¢ are
called bounded quantifications.]

A formula is said to be 3-free if it does not contain any unbounded existential
quantifiers 3x.
We use the following abbreviations:

—A=A—> L
A< B:=(A— B)A(B— A)

The theory ILY that we are about to introduce is intuitionistic logic in all finite
types. First we start by listing what we call the IL axioms and rules.
Axioms of IL:

AVA— A A—> ANA

A— AVB,AANB — A

AANB—->BANAAVB— BVA

11— A

Vx A — Alt/x], Alt/x] — Ix A, where ¢t is a term free for x in A and A[z/x]
denotes the formula obtained from A after replacing each instance of x by .

Rules of 1L:
A,A— B A— B,B—>C A— B
B A—C CVA—-CVB
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AAB —C A— (B—>CO)
A— (B— C) AANB — C
In the following rules, x does not occur free in B.
B— A A— B

B— VxA dxA — B
The theory ILY is an extension of IL (in the language of all finite types) with the
following axioms and axiom schemes:

(i) Axioms for =:

X=px
X=pYNA— A’, where A is an atomic formula and A’ is obtained from A
replacing some instances of x by y.

(i) Vx et A(x) < Vx(x et > A(x)),Ix € t A(x) < Ix(x €t A A(x))
(i) Xxyz =xz(yz), [Ixy =x
(iv) Axioms for star types:

WESK < w=2x
welUxy<wexVwey
ZEXAWE Yz > we | Jxy
Usx)y = yx
UUxy)z = uUx2) (U y2)

Remark2 From the equalities of the conversions and the axioms for equality, we
conclude that reduction implies equality.

Lemma 1 Lett be a closed term of type p*. Then there are closed terms q1, . . . , gn of
type p such that

LY Fwet<w=q V...Vw =gy

Proof Since reduction implies equality and due to the axioms of equality, we only
need to show the case when ¢ is in normal form, that is, when ¢ is set-like. The proof
follows by induction on the complexity of 7. If ¢ is sq, by the axiom for 5, we can take
the term ¢. If ¢ is Urs, we apply the induction hypothesis. Let rq, . .., r;;, be the terms
associated to r and s1, . .., 57 be the terms associated to s. Then, by the axiom for U:

LY FweUrs<w=rV..Vu=rpVw=sV..Vw=sy

O

Given that terms are derived solely from constants and variables through the opera-
tion of application, we naturally achieve what is commonly referred to as combinatorial
completeness.

Theorem 4 (Combinatorial completeness) For each term t° and variable x” there
exists a term of type p — o, denoted by Ax.t, whose variables are those of t except
X, such that for all term s of type p:

ILY - (Ax.t)s =4 t[s/x]
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where t[s/x] is the term obtained replacing in t every occurrence of x by s.
Remark 3 1In fact, we get (Ax.t)s > t[s/x].
Definition 5 A type is said to be end-star if it is of the form p; — ... — p, — *.

For ease of reading, we denote sx by {x}, Uxy by x Uy and |Jxy by (J,,c, yw.
Let o be the type p; — ... — p, — ™ (withn > 0) and a, b be terms of type o.
The following abbreviations will also be useful:

P
aCo b:=Vx', ..o xf(axy -+ xy Sox bxy -+ Xy,)

where a’ Cp+ b :=Vx(x € d’ — x € b') fora’, b’ of type t*.

al_lgb:Ekxf',...,x,f”.ax1~-~xn Ubxy---xp
I_l fw:=ax{ o xf U Swxy - xp
weF weF

x C x’ denotes /\; x; E x;, where x (respectively x’) denotes the tuple of x;
(respectively x7).

Remark4 We have a 5, a U, b,b Ey a s band Vz € F(fz Sy | |yep fw).

Remark 5 The relation =+ is simply Cx.

3 The herbrandized modified realizability

In this section, we define the new realizability notion (the herbrandized modified
realizability) within ILY and prove the corresponding soundness and characterization
theorems.

Definition 6 Given a formula A, we define AZR as a formula, with the free variables
of A, of the form:

AR = 3x Apgr(x)

where Apg is a 3-free formula. The definition is by induction on the complexity of
A:

If A is atomic, AR .= Ay = A.

If AR = 3x Ayr(x) and BYR = Ju Byr(u):

(Av B)HR :=3x, u(Agr(x) vV Bur ()
(AABHR :=3x, u(Agr(x) A Bur(w))

(A — B)HR := 3UVx(Apg(x) > Bug(Ux))
(Fz AR =37, x3z € Z Agr(z, x)

(Vz A(2)IR :=3XVz Apr(z, X2)

Fz et AR :=3xTz et Apr(z, x)
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(Vz et A(x)AR :=AxVz et Agr(z, x)
Remark 6 If A is an 3-free formula, then A7R = App = A.

Remark 7 By induction on the logical structure of the formulas, it can be shown that,
for any formula A, the variables x in A”R = 3x Ay r(x) are of end-star type.

Theorem 5 (Monotonicity) For any formula A with AR = 3x Ay p(x):
x X' AApr(x) - Apr(x)

Proof The proof is by induction on the logical structure of the formula. For atomic
formulas the result is trivial. The induction step in the cases AAB, AV B,3z € t A(2)
and Vz € t A(z) follows from the induction hypothesis.

Case A — B

We assume U = U’ and Vx(Aggr(x) — Bpgr(Ux)). We need to show that
Vx(Aggr(x) — Byr(U’x)). Take x such that Agg(x). By hypothesis, we get
Brr(Ux). Wenote that from U C U’ we get Ux C U’x. By induction hypothesis,
we have that By g(U’'x). Thus Vx(Agg(x) — Byr(U'x)).

Case Vz A(2)

We assume X C X" and Vz Ay r(z, Xz). We need to show Vz A r(z, X'z). This
follows from the induction hypothesis, noting that X C X’ implies Xz C X'z.
Case 7 A(z)

We assume Z C Z',x © x' and 3z € Z Agg(z,x). We need to show
3z € Z' Aggr(z, x). Take z such that z € Z and Agyg(z, x). Since Z C Z/,
we have that z € Z’. From the induction hypothesis we get Agg(z, x'). Thus
3z € Z' Apgr(z, x).

Consider the following Choice and Independence of Premises Principles:
AC?: VxP3y” A(x,y) — P77 Vxdy € fx A(x,y)
and
IP%: (B(x) — 3y A(y)) = Jw(B(x) — Iy € w A(Y))

where B is an 3-free formula.
The theory ILY + ACY + IP% proves the following Collection Principle:

Lemma 2 (Collection)

ILY + ACY + 1P} - Vx € yIz A(x, 2) — FwVx € yIz € w A(x, 2)
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Theorem 6 (Soundness) Let A be a formula with free variables a. Let T3 be a set of
3-free formulas. If

ILY + ACY + 1P} + T3 - A(a)
then there exist closed terms t such that
ILY + T3 = Anr(a, ta)

Proof Fix AR =3x Ayp(x), BYR = 3u Byr(u) and CHR =3p Cyr(p).

We use the tuple notation combined with the lambda notation as per the following
example: if x denotes the tuple of x;, then Ax, y.x denotes the tuple of Ax, y.x;.

The proof is by induction on the deduction of the formula. B

Case A > ANA
We need terms ¢ y/, ¢ y» such that:

Vx(Apr(X) = Apr(tyX) NApR(txrX))

We take ty/ 1= tyr = AX.X.
Case AVA— A
We need terms ¢ y» such that:

Vx, X' (Apr(x) V Agr(x)) — Apgr(tyrxx’))
We take £y := Ax, x’ . x LI x'.
Case ANB — A
We need terms 7y such that:

Vx, u(AgRr(x) A Bur(w) — Apg(tyxu))

We take £y 1= AX, u.X.

Case A— AV B
We need terms ¢/, t;; such that:

Vx(Agr(x) > Anr(tyX) V Br(tyx))

We take ¢y := Ax.x. For t;;, we take an arbitrary closed term of adequate type,
which exists due to combinatorial completeness and the existence of a constant of
type G.

Case ANB— BAA
We need terms £y, £, such that:

Vx, u(Agr(x) N ByrW) — Brr(tyxu) N Apr(tyxu))
Wetake 1y 1= Ax, u.x, Iy = Ax,u.u.
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The case A vV B — B V A is analogous to the above.
Case L — A
We need terms 7, such that:

L — Anr(,)
We take arbitrary closed 7.

CaseVz A — A(1)
We need terms 7y~ such that:

VX'(Vz Angr(z, X'2) = Augr(t, 130 X))

We take £y := AX". X't
Case A(t) — Az A
We need terms 77/, t X’ such that:

Vx(Apgr(t,x) — 3z € tz7Xx Apr(z, LX)

We take 17/ := Ax.{t}, 1y :=2x.x.
A,A— B

Case B

By induction hypothesis, we obtain closed terms ¢, t;; such that:

AHR(,)

Vx(Apr(X) = Brr(tyx))
We need terms 7, such that
Byr(t,)

We take 7, :==1,¢,.
A— B,B— C

A—C
By induction, we have closed terms t;, ¢ p such that:

Case

Vx(Apr(x) = Brr(tyx))
Vu(Burw) — Cur(tpu))

We need terms s p such that:
Vx(Apgr(x) = CHr(spx))

We take s p := Ax.1p(tyx).
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c AAB = C A= (B— C)
BS A S B>C) 0 AABSC

closed terms ¢ p such that:

To realize A A B — C we need

Vx, u(Agr(x) A Bur(w) — Crpr(tpxu))

To realize A — (B — C) we need closed terms ¢ P such that:
Vx(ApRr(x) = Yu(BurW) — Cur(tpxu)))

These two formulas are equivalent in ILY, therefore the terms which realize A A
B — C are exactly those which realize A — (B — C).
A— B
CvVA—-CVB
By induction we have terms ¢, such that

Case

Vx(ApRr(X) = BHRr(1yX))
We need terms £ p, £, such that
Vp, x(CHr(p) V Aur(x) = CHr(tppx) vV BHr(ty px)
Wetake p := Ap,x.p, Ly :=Ap, X.IyX.
B— A

Case BoViA where z is not free in B

By induction, we have terms ¢ X such that
VYu(Brru) — Agr(z, tyzu))
We need s y such that
Vu(Bpr(u) — V2 Apr(z, sxuz))
We take s y := Au, z.tyzu.
A— B

Case AS B where z is not free in B

By induction we have terms £, such that
Vx(Apr(z, x) > Brr(tyzx))
We need terms s, such that
VZ',x(3z € ' Anr(z, X) — Bur(syz'x))

We take sy, 1= Az, u. | |, oo tyzx.
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The axioms for =, IT and %, as well as the axioms for the star types, are 3-free
formulas and therefore don’t need terms.

CaseVz €t A(z) > Vz(z €t — A(2))

We need terms t - such that

Vx(Vz €t Apr(z,x) = Vz(z €t = Apr(z, Lyx2)))
We take ¢y := Ax, z.X.

CaseVz €t A(z) < Vz(z €t — A(2))
We need terms 7y such that

VX'(Vz(z €t — Anr(z, X'2)) — Vz € t Aur(z, 13 X))

We take £y 1= 2X".| |, X'z.
Casedz €t A(z) — Jz(z €t A A(2))

We need terms 7y and ¢z such that
Vx(3z € 1t Apgr(z,x) —> Jz e tzx(z € t AN Apgr(z, Xx)))
We take 17 := Ax.t, ty 1= Ax.X.

Case Iz € 1 A(z) < Fz(z € 1 A A(2))
We need terms 7y such that

V', x(Fz € (z€t ANArR( X)) > Tz €t Apr(z, 1x2'x))

We take 1y := A7, x.x.
Case ACY: Vz3w A(z, w) — IWVzIw € Wz A(z, w)
We need terms tyr, t X" such that:

VW', X' (Vz3w € Wz Agr(z, w, X'7) —
AW ety W X'V € Wl Agr(Z, w/’Lg'W/X/Z/))
We take tyyr := AW/, X' (W'}, tyn:=2W XX
Case IP’%: (A - Jw B(w)) — 3z(A — Jw € z B(w)) where A is an 3-free

formula.
We need terms 7/, t;; such that

Vu', u((A — 3w € w' Byr(w, w)) — 3z € tzw'u(A — Jw € z Byr(w, tyw'n)))

We take 17/ := Aw’, u{w'}, 1, =10 u.u.
The formulas in T% verify themselves.

O
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Theorem 7 (Characterisation theorem) For any formula A:
ILY + ACY +1P5 - A < AMR

Proof The proof is by induction on the logical structure of the formula. The result is
immediate for 3-free formulas. For the induction step, we use the induction hypothesis
immediately, for instance, in order to show A A B <> (A A B)R we show that
AHR A BHR , (A A B)HR,

The equivalence for the cases AA B, AV B,3z7 A(z) and 3z € t A(z) is evidently a
consequence of the logical rules; for instance, for A A B, we just drag the quantifiers
inside and outside.

For the remaining cases, the right to left implication is also consequence of the
logical rules.

We focus on the reciprocal.

Case A > B

We are going to show that (3x Agr(x) — Ju Burw)) — QU Vx(Agr(x) —
Brr(U"x))).

From 3x Agr(x) — Ju Bygr(u) we have V)_C(AHR@) — Ju Byg(w)). Using
IP% we obtain VxJu'(Agr(x) — Ju € u BHR(_)) By monotonicity, we
get VxJu'(Apr(x) — Bur(,cpy W), ie., Va3 (Aur(x) — Bur@")).
Applying AC?, we get 3U"VxIu" € U"x(Agr(x) — Bpr(’)). By mono-
tonicity, we 0bta1n IU'Vx(Agr(x) — Bur(,cyrc”)), and therefore
3U"Vx(Augr(x) = Bar(U"x)).

Case Vz A(2)

We are going to show that VzAx Agr(z, x) — IX'Vz Agr(z, X'72).

From Vz3x Ayr(z, x), applying ACY we obtain 3XVzIx € Xz Aygr(z, x). By
monotonicity we have 3XVz Agr(z, || x). Thus AX'Vz Agr(z, X'72).

Case Vz € t A(z)

We are going to show that Vz € t3x Ayr(z,x) — IxVz € t Agr(z, x).

Using collection (Lemma 2, involving ACY and IPﬂ) we get JwVz € rdx €
w Agr(z, x). Take x’ |_|wa x. Then, by monotonicity, we get Agg(z, x") for
allz ez

xeXz

Corollary 1 If
ILY + ACY + IP% + T3 - Vz3w Az, w)
where z, w are the only free variables of A, then there exist closed terms r such that
ILY + ACY + IP% + T Vzaw erz A(z, w)
Proof We have:

(Vz3w A(z, w) R =3W', X'Vz3w € Wz Apr(z, w, X'2)
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Using Soundness, we get terms ¢, r such that, for arbitrary z
Jw € rz Agr(z, w, t2)
thus
IxJw € rz Anr(z, w, x)

which is just (Gw € rz A(z, w))”R. By the Characterization Theorem, we obtain
Jw € rz A(z, w) for arbitrary z. O

Corollary 2 If
ILY + ACY + 1P} + T3 - Vz3w Az, w)

where A is an 3-free formula whose only free variables are z, w, then there exist closed
terms r such that

ILY + T3 - Vz3w € rz A(z, w)
Proof We have:
(V23w Az, w) " = 3IW'VzIw € Wz Az, w)
Using Soundness, we get terms » such that
ILY + T3 B Vz3w € rz Az, w)
(]

Remark 8 We also have the previous results in the absence of the variables z. Due to
Lemma 1, we conclude the following:

Corollary 3 If
ILY + ACY + 1P} + T4 - 3x A(x)

where x is the only free variable of A, then there exist closed terms t1, ..., t, such
that

ILY + ACY + IP’% + T At V...V A(ty)
Corollary 4 If
ILY + ACY + 1P} + T3 - 3x A(x)
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where A is an I-free formula whose only free variable is x, then there exist closed
terms ty, ..., t, such that

ILY +ThF A1) V...V A(ty)

4 Final notes
4.1 Atomic versus 3-free

The axiom scheme for equality, on page 5, was formulated with A an atomic formula.
As is well known, this atomic formulation is enough to ensure we have the result for
any formula A within the system. Instead of using atomic formulas, we could have
presented the scheme with A an 3-free formula. From our interpretation perspective,
the 3-free formulas are still computationally empty.

4.2 The translation of the universal quantification

Note that, in the case of the bounded modified realizability (-)b’ [7], the translation of
the universal quantification needs to be more evolved, namely

(V2A@)" :=3XVaVz <* aAp (2, Xa)
Monotonicity explains this need, because one has to ensure that
X<*Y > Xz<*Yz

which is the case if z is monotone, i.e., if z <* z, thus the need to consider monotone
majorants a such that 7 <* a. In the case of the herbrand modified realizability we
can deal with z itself since

XCY— XzC Yz

4.3 Herbrand realizability for nonstandard arithmetic

The paper [18] of Benno van den Berg, Eyvind Briseid and Pavol Safarik significantly
influenced the work in [6] where the star combinatory calculus (as formulated here) was
introduced, alongside a Herbrandized functional interpretation of classical first-order
logic. In [18], two functional interpretations for nonstandard arithmetic (intuitionistic
and classical) were presented, based on the idea that realizing an external existential
quantifier involves exhibiting a finite list of candidates, being the realizer among the
elements of such list. Technically, the setting of higher type was extended with types
for finite sequences, carrying a structure of preorder (with x < y if every element in
the list coded by x also occurs in the list coded by y). The novelty of [6] was that such
functional interpretations still work in theories of standard arithmetic and even, for pure
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logic. Identical parallelism is done in the current work concerning realizability. In [18],
a Herbrand realizability was introduced, in the context of nonstandard arithmetic with
types for finite lists. Despite the nonstandard setting of [ 18], the Herbrand realizability
makes perfect sense for theories of standard arithmetic and can be developed even in the
context of pure logic. Note the challenge that emerges with herbrandized realizability
notions or herbrandized functional interpretations in the context of pure logic (as
opposed to arithmetic). How to address finite sets when the concept of finiteness itself
is not a logical notion? The way out of this situation is the star combinatory calculus.
Note also that the way the existential witnesses are accumulated in the present paper
differs slightly from the manner they are treated in [18]. For instance, [18] identifies
elements of (0 — p*)* withelementsof o — p*, which we do not. Another difference
between the Herbrand realizability in [18] and the present herbrandized modified
realizability is that the existentially quantified variables in our context are of end-star
type while in [18] are of star type. Further elaboration on the distinction between the
formulation in [18] and the treatment based on the star combinatory calculus can be
found in [2].

4.4 The star calculus on arithmetic

The possibility of extending the star calculus to the arithmetic setting keeping the
strong normalization and the Church—Rosser properties was already discussed in [4]
but without proofs of such results. We present here such proofs.

We denote the ground type as N, intending it to represent natural numbers; and we
consider the following constants from the language of arithmetic: O of type N, S of
type N — N and R, of type N - 0 — (0 - N — o) — o. Note that o can be
of star type.

We assign the following conversions to the new constants above:

R,0gr ~q(q:0,r:0 > N — 0)
Ry (St)gr ~>r(Rtqr,t)(t : N, g:0, 1r:0 > N — 0)

We are going to show, adapting the proofin [6] based on Tait’s reducibility technique
[14, 15], that the star calculus in the extended (arithmetical) context remains strongly
normalizable. First some definitions.

Definition 7 Given a term ¢ of type o *, we define a finite set of terms of type o, the
surface elements of t, which we denote by SM(#), by induction on the complexity of
t as follows:

(i) If ¢ is of the form s(g) then SM(?) is {¢};
(1) If ¢ is of the form Ugr, then SM(¢) is SM(g) U SM(r);
(iii) In any other case, SM(¢) is @.

Definition 8 The set Red,, of the reducible terms of type o is defined recursively in
the complexity of the type o as follows:

(i) t € Redy :=1 is strongly normalizable;
(i) t € Red,_.; :=forall g, if ¢ € Red,, then tq € Red;;
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(iii) ¢t € Redy+ :=tis strongly normalizable and if, for any term obtained by reduction
of ¢, its surface elements are reducible.

The proofs of lemmas 1, 2, 3 and 4 presented in [6] on pages 526-527, are already
applicable in the new context. We just recall here the statement of two of those results:

Lemma3 Ift € Red,, then t is strongly normalizable;
Lemma4 Ift is a reducible term and t > q, then q is reducible.
Theorem 8 All terms in the star combinatory calculus for arithmetic are reducible.

Proof Following the proof in [6], we only need to show that the arithmetical constants
are reducible. It is clear that 0 € Redy. We have that if ¢ is a reducible term of type
N (i.e., strongly normalizable), then St € Redy. Thus S € Redy_, y.

Following Remark 1, we assume that o is o1 — --- — 0, — p, with p star type
or N. We just need to prove that R, is reducible.

Letr € Redy, g € Red,, r € Redy s y—o and 1y, ..., 1, with?; € Red,,. We show
that Rtqrty ---t, € Red,. Since ¢ is strongly normalizable, there exist finite normal
forms of , which we here denote (U . . ., t® Each t@ is of the form S - - - St* with
;i (r) instances of S at the beginning of the term, where ¢* is not of the form St™*. We
define (1(f) := max; p;(t). The proof is by induction on (7).

For Rtgrt; - - - t, with u(z) = 0, we have that any ¢’ obtained by reduction of 7 is
not of the form St'*, therefore we can only apply the conversion of R, if ' is 0. Thus,
in a sequence of one-step reductions of Rtqgrt; - - - t, we have two cases:

e We do not apply a conversion on R, therefore, as the terms involved are strongly
normalizable, Rtgrt; - - - t, also is;

e we reach the form ROq'r't|---t, with ¢ > ¢'.r > r',t; > t/. We have
ROq'r't] -+ -1, =1 q't] - - -1, € Red, (using Lemma 4).

Thus Rtgrty - - - t, with u(¢) = 0 is strongly normalizable.

We have SM(Rt'q'r't] ---1;,) = . As q't] - - - 1; € Red,, the surface elements of
terms obtained by reduction of ¢’t] - - - ,, are reducible. Thus the surface elements of
terms obtained by reduction of Rtqrt - - - t, with u(t) = 0 are reducible.

We assume that Rrqr € Red, for all + € Redy with u(f) < m and for all
q € Red,,r € Redy_, y—o. In a sequence of one-step reductions of Rtgrty---1t,
with () = m + 1 we have 3 cases (here,q = ¢',r = ', t; = t):

e We do not apply a conversion on R, therefore, as the terms involved are strongly
normalizable, Rtqgrt; - - - t,, also is;

e we reach the form ROq'r't| - - - 1, case analogous to u(1) = 0

e we reach the form R(St))q'r't]---t;,. We have R(St)q'r't]---t, >
r'(Rt'q'r' tt| - - -1, € Red,, since u(t') < m (using lemma 4).

Thus Rtgrty---t, with u(t) = m + 1 is strongly normalizable. We have
SM(Rt'q'r't] ---1;) = 0. As r'(R'q'r', 1))t} ---1;, € Red,, the surface elements
of terms obtained by reduction of '(Rt'q'r’, t')t] - - - t;, are reducible. Thus the sur-
face elements of terms obtained by reduction of Rtgrt; - - - t, with u(¢) = m + 1 are

reducible. Therefore Rtgrt; - --t, € Red,. We conclude that R is reducible. O
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Corollary 5 The star combinatory calculus on arithmetic has the property of strong
normalization.

Theorem 9 The star combinatory calculus on arithmetic has the Church—Rosser prop-
erty, that is, each term has a unique normal form.

Proof Since we have the strong normalization property, by Newman’s lemma [16], it
is enough to show that if 7y > #] and #y > 12, there exists a term #3 such that 1| > 13
and , > 13 (that is, the calculus is weakly confluent). If the reductions from #( to #
and from f( to £, involve subterms which do not intersect, we obtain #3 from #y by
applying both conversions.

We focus then on the case where one of the subterms to reduce is included in the
other. We note that, for any of the conversions (including the new conversions for the
recursor), the resulting terms depend on subterms of the original term, which are not
altered. Thus, if 71 is obtained from fg by the conversion, any other reduction #; is
obtained from #y by reduction of one of the subterms g. We obtain #3 taking #; and
applying the same reductions for every instances of ¢ in the subterm resulting from
the conversion. Then 73 is obtained from #, applying the same conversion as from #
to f;.

We illustrate with the following two cases involving R:

If 19 = R(St)qr, ty = r(Rtqr, 1), t» = R(St)qr’ then we take t3 = r'(Rtqr’, t)
If 19 = ROgr, t; = q, t; = ROq'r then we take 13 = q’.

m}

Theorem 10 If ¢t is a closed normal term of type N then t is a numeral n, i.e., it is of
the form S - - - SO.

Proof Closed terms are of the form at; - - - t,, where ¢; are closed terms and a is a
constant. After the proof in [6], we only need to verify if Ry? - - - t,, can be a closed
normal term of type N. The only possibility would be R tqrt;---t, (where o is
oy —> ---— o, —> N).

By an inductive argument we may suppose that ¢ is a numeral. Therefore
Rytqrty - - - t, 1s not normal.

Thus, the recursor does not contribute for the closed normal terms of type N, being
those the terms S - - - SO with a finite (possible zero) number of S’s. O

Theorem 11 Ift is a closed normal term of star type p*, then t is set-like and SM(t)
is a finite non-empty set of closed normal terms of type p.

Proof The proof, by induction on the term ¢, that 7 is set-like, i.e., ¢ is of the form sr
or Ut 1p, can be found in [4]. The last assertion of the theorem follows immediately,
noticing that: i) SM(sr) = {r}, and being sr a closed normal term of type p*, then r
has to be a closed normal term of type p, ii) SM(Ut ;) = SM(#1) USM(t»), following
the result by induction hypothesis.

O

The star combinatory calculus within the arithmetic framework was also used in [3,
5] in the context of herbrandized functional interpretations for (respectively classical
and semi-intuitionistic) second-order arithmetic.
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4.5 Heyting arithmetic HA?

Although the herbrandized modified realizability was introduced in Sect. 3 within the
realm of logic, specifically semi-intuitionistic logic, it can also be applied within the
Heyting arithmetic context.

With that in view, consider the star combinatory calculus in the language of arith-
metic described in Sect. 4.4. Consider also the universal axioms for the successor S
and the recursor R (as in [17] or [13]) and the (unrestricted) induction axiom scheme:

A0) AVn(A(n) — A(Sn)) — Vn A(n).

We denote by HAY the theory consisting of ILY (in the language of arithmetic)
with the above arithmetical axioms.
The soundness theorem has an arithmetical extension.

Theorem 12 (Soundness, arithmetical extension) Let A be a formula with free vari-
ables a. Let T4 be a set of 3-free formulas. If

HAY + ACY + IP% + T3 Aa)
then there exist closed terms t such that
HAY + T3 - Agr(a, ta)
Proof The axioms for S and R are 3-free formulas and do not require terms.

Consider the axiom scheme A(0) A Vn(A(n) — A(Sn)) — Vn A(n).
We need terms r x+ such that:

Vx, X(Aggr(0,x) AVn, X' (Agr(n, x') — Agr(Sn, Xnx")) — Vn Aggr(n, ryxXn))
Take ry  := Ax, X, n.Rn&X where X := Ax, n.Xnx. Take x, X such that
AR, ) AVn, X' (Agr(n, x') = Axr(Sn, Xnx"))

We show that Vn Agg(n,ryxXn) using the induction axiom. First note that
ryxX0 = x. Now assume Apg(n,ryxXn). By the assumption we have
Apr(Sn, Xn(ry:xXn)). Furthermore, we have:

ryxX(Sn) = R(Sm)xX = X(RnxX.n) = X(ryxXn,n) = Xn(ryxXn)

which gives us the result. O
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