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Abstract
We investigate the theory Peano Arithmetic with Indiscernibles (PAI). Models of PAI
are of the form (M, I ), where M is a model of PA, I is an unbounded set of order
indiscernibles over M, and (M, I ) satisfies the extended induction scheme for for-
mulae mentioning I . Our main results are Theorems A and B following. Theorem A.
Let M be a nonstandard model of PA of any cardinality. M has an expansion to a
model of PAI iff M has an inductive partial satisfaction class. Theorem A yields the
following corollary, which provides a new characterization of countable recursively
saturated models of PA: Corollary. A countable model M of PA is recursively sat-
urated iff M has an expansion to a model of PAI. Theorem B. There is a sentence
α in the language obtained by adding a unary predicate I (x) to the language of
arithmetic such that given any nonstandard model M of PA of any cardinality, M
has an expansion to a model of PAI+ α iff M has a inductive full satisfaction class.

Keywords Peano arithmetic · Indiscernibles · Satisfaction classes.

Mathematics Subject Classification Primary 03F30 · 03F25; Secondary 03C62.

1 Introduction

We investigate an extension of PA (PeanoArithmetic), denoted PAI, which is equipped
with a designated unbounded class of indiscernibles (see Sect. 3 for the precise def-
inition). The motivation to study PAI arose from the study [5] of the set-theoretic
counterpart ZFI< of PAI, where it is shown that there is an intimate relationship
betweenZFI< and large cardinals, thus indicating that the set-theoretical consequences
of ZFI< go well beyond ZFC.
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A. Enayat

In light of the results obtained in [5] it is natural to investigate PAI since it is well-
known [10] that PA is bi-interpretable with the theory ZF−∞ + TC, where ZF−∞ is
the system of set theory obtained from ZF by replacing the axiom of infinity by its
negation, and TC is the sentence asserting that every set is contained in a transitive set
(which in the presence of the other axioms implies that the transitive closure of every
set exists). The aforementioned proof of the bi-interpretability of PA and ZF−∞ +TC
can be readily extended to show the bi-interpretability of PAI and ZFI−∞ + TC; here
ZFI−∞ is the result of augmenting the theory ZF−∞ with a scheme that stipulates that
I is an unbounded subset of ordinals whose elements form a class of indiscernibles
over the ambient set-theoretic universe.

Our main results are Theorems A and B of the abstract that relate PAI to the
well-studied notions of (a) inductive partial satisfaction classes and (b) inductive full
satisfaction classes, which are intimately connected (respectively) with the axiomatic
theories of truth known as UTB and CT (see Section 2.2). After presenting prelimi-
naries in Sect. 2, we present the basic features of PAI in Sect. 3, and use them in Sect. 4
to establish (refinements of) Theorems A and B of the abstract. In Sect. 5 we examine
PAI through the lens of interpretability, and in Sect. 6 we probe the model-theoretic
behavior of fragments of PAI. Finally, in Sect. 7 we present a list of open problems
that are motivated by the results in the preceding sections.

2 Preliminaries

In this section we present the relevant notations, conventions, definitions, and results
that are needed in the subsequent sections.

2.1 Theories andmodels

2.1.1 Definition The language of arithmetic, LA, is {+, ·,S,<, 0}. We use the con-
vention of writing M , M0, N , etc. to (respectively) denote the universes of discourse
of structuresM,M0, N , etc. In (a) through (g) below, L ⊇ LA andM andN are L
-structures.

(a) �0(L) = �0(L) = �0(L) = the collection of L-formulae all of whose quantifiers
are bounded by L-terms (i.e., they are of the form ∃x ≤ t, or of the form ∀x ≤ t,
where t is anL-termnot involving x .More generally,�n+1(L) consists of formulae
of the form∃x0···∃xk−1 ϕ, whereϕ ∈ �n(L); and�n+1(L) consists of formulae of
the form∀x0···∀xk−1 ϕ, whereϕ ∈ �n (with the convention that k = 0 corresponds
to an empty block of quantifiers).We shall omit the reference toL if L = LA, e.g.,
�n := �n(LA). Also, we shall write �n(X) instead of �n(LA∪{X}), where X is
a new predicate symbol. We often conflate formal symbols with their denotations
(if there is no risk of confusion).

(b) PA (Peano Arithmetic) is the result of adding the scheme of induction for all LA-
formulae to the finitely axiomatizable theory known as (Robinson’s) Q. PA(L)

is the theory obtained by augmenting PA with the scheme of induction for all
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Indiscernibles and satisfaction classes in arithmetic

L-formulae. I�n(L) is the fragment of PA(L) with the induction scheme lim-
ited to �n(L)-formulae. Given a new predicate X , we write PA(X) and I�n(X)

(respectively) instead of PA(LA∪{X}) and I�n(LA∪{X}).
(c) If ϕ(x) is an L-formula, ϕM := {m ∈ M : M |	 ϕ(x)}. For X ⊆ M , then we say

that X isM-definable if X is first order definable (parameters allowed) inM.
(d) A subset X of M is M-finite ( or M-coded) if X = cE for some c ∈ M , where

cE = {m ∈ M : M |	 m ∈Ack c}, and m ∈Ack c is shorthand for the formula
expressing “ the m-th bit of the binary expansion of c is 1”.

(e) A subset X of M is said to be piecewise-coded (in M) if {x ∈ M : x < m and
x ∈ X} isM-finite for each m ∈ M .

(f) M is rather classless if any piecewise-coded subset of M is alreadyM-definable
(By a theorem of Kaufmann, every extension of PA has a recursively saturated
rather classless model [13, Theorem 10.1.5]).

(g) We identify the longest well-founded initial submodel of models of PA with the
ordinal ω. The following result was established by Kossak [11, Proposition 3.2]
for models M of PA; the generalization to models of I�0 + Exp appears in [6,
Lemma 4.2] (note that Exp is the axiom stating the totality of the exponential
function).

2.1.1 Theorem Let M |	 I�0 + Exp, and X ⊆ M . The following are equivalent:

(i) (M, X) |	 I�0(X).
(i i) X is piecewise-coded in M.

2.2 Satisfaction classes, truth theories, and recursive saturation

2.2.1 Definition Suppose M |	 PA, and S ⊆ M .

(a) S is said to be inductive, if (M, S) |	 PA(S).
(b) S is said to be a partial satisfaction class if S satisfies Tarski’s recursive conditions

for a satisfaction predicate for all standard formulae. Thus a typical member of S
is of the form 〈ϕ, a〉 , where ϕ ∈ FormM

m = the set of LA -formulae in M with
m free variables, where m ∈ M (note that ϕ need not be standard) and a ∈ M is
an m -tuple in the sense of M.

(c) S is said to be a full satisfaction class if S satisfies Tarski’s recursive conditions
for a satisfaction predicate for all formulae in M.

• For better readability we will often write 〈ϕ, a〉 ∈ S or ϕ(a) ∈ S instead of the
more official S(〈ϕ, a〉).Also, if ϕ is a sentence (i.e., has no free variables), we will
write ϕ ∈ S instead of 〈ϕ, ∅〉 ∈ S (where ∅ is the empty tuple).

The theories UTB (Uniform Tarski Biconditionals) and CT (Compositional Truth)
described below are well studied in the literature of axiomatic theories of truth (see,
e.g., the monographs by Cieśliński [2] and Halbach [8]).

• Note that for the purposes of this paper, satisfaction and truth are interchangeable,
but in general there are subtle differences between the two, see [3].
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A. Enayat

2.2.2 Definition In what follows T (x) is a new unary predicate, c is a new constant
symbol, Form1 is the set of (Gödel-numbers of) LA-formulae with exactly one free

variable, and
·
x is the arithmetically definable function that outputs the numeral for x

given the input x .

(a) UTB is PA(T ) + {∀x(ϕ(x) ↔ T (�ϕ(
·
x)�) : ϕ(x) ∈ Form1}.

(b) UTB(c) = UTB + {c > n : n ∈ ω}.
(c) CT = PA(T ) + θ, where θ is a single sentence that stipulates that T satisfies

Tarski’s inductive clauses for a truth predicate for arithmetical sentences.
(d) CT(c) = CT + {c > n : n ∈ ω}.
The following proposition is well-known and easy to prove; the nontrivial direction
of part (a) is the right-to-left part, which employs a routine overspill argument; part
(b) follows easily from part (a) and the definitions involved. The proofs of (c) and (d)
are routine but somewhat laborious.

2.2.3 Proposition The following holds for every model M of PA of any cardinality.

(a) M has an inductive partial satisfaction class iff M has an expansion to a model
of UTB.

(b) M is nonstandard and has an inductive partial satisfaction class iff M has an
expansion to a model of UTB(c).

(c) M has an inductive full satisfaction class iff M has an expansion to a model of
CT.

(d) M is nonstandard and has an inductive full satisfaction class iffM has an expan-
sion to a model of CT(c).

The concepts of recursive saturation and satisfaction classes are intimately tied, as
witnessed by the following classical result of Barwise and Schlipf whose proof invokes
the resplendence property of countable recursively saturated models (for a proof,
see Corollary 15.12 of [9]). Note that the right-to-left implication in the Barwise-
Schlipf theorem holds for uncountable models M as well (and is proved by a simple
overspill argument). However, by Tarski’s undefinability of truth theorem the left-to-
right direction fails for ‘Kaufmann models’ (i.e., recursively saturated rather classless
models).

2.2.4 Theorem (Barwise-Schlipf) A countable model M of PA is recursively satu-
rated iffM has an inductive partial satisfaction class.

2.3 Indiscernibles

2.3.1 Definition Given a linear order (X ,<), and nonzero n ∈ ω, we use [X ]n to
denote the set of all increasing sequences x1 < · · · < xn from X .

2.3.2 Definition Given a structure M, some linear order (I ,<) where I ⊆ M , we
say that (I ,<) is a set of order indiscernibles in M if for any L(M)-formula
ϕ(x1, . . . , xn), and any two n-tuples i and j from [I ]n , we have:

M |	 ϕ(i1, . . . , in) ↔ ϕ( j1, . . . , jn).
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2.3.3 Definition Suppose M has parameter-free definable Skolem functions, and
(I ,<I ) is a set of order indiscernibles in M, and I0 ⊆ I . We use the notation MI0
to denote the elementary submodel of M generated by I0 (via the parameter-free
definable functions of M).

• Note that the universe MI0 ofMI0 consists of the elements of M that are pointwise
definable in (M, i)i∈I0 .

2.3.4 Definition A1-type p(x) in the language of arithmetic is said to be anunbounded
indiscernible type if p(x) is a nonprincipal type satisfying: (1) there is no constant
Skolem term c such that x ≤ c is in p(x), and (2) for any model M of PA, if I ⊆ M
is a set of realizations of p(x), then I is a set of indiscernibles inM.

2.3.5 Theorem (Kossak-Schmerl [13, Theorems 3.1.4 and 3.2.10]) A type p(x) is
minimal (in the sense of Gaifman) iff p(x) is an unbounded indiscernible type.

2.3.6 Remark As indicated in the remark following [13, Theorems 3.1.2], a minimal
type p(x) can be arranged to be recursive, and therefore in light of Theorem 2.3.5
every recursively saturated model of PA realizes an unbounded indiscernible type.

2.4 Interpretability

2.4.2 Definition SupposeU andV are first order theories, and for the sake of notational
simplicity, let us assume that U and V are theories that support a definable pairing
function. We use LU and LV to respectively designate the languages of U and V .

(a) An interpretation I of U in V , written:

U �I V ,

is given by a translation τ of each LU -formula ϕ into an LV -formula ϕτ with the
requirement that V � ϕτ for each ϕ ∈ U , where τ is determined by anLV -formula
δ(x) (referred to as a domain formula), and a mapping P �→τ AP that translates
each n-ary LU -predicate P into some n-ary LV -formula AP . The translation is
then lifted to the full first order language in the obvious way bymaking it commute
with propositional connectives, and subject to the following clauses:

(∀xϕ)τ = ∀x(δ(x) → ϕτ )and (∃xϕ)τ = ∃x(δ(x) ∧ ϕτ ).

Note that each interpretation U �I V gives rise to an inner model construction
that uniformly builds a model I(M) |	 U for any M |	 V .

(b) U is interpretable in V (equivalently: V interprets U ), writtenU � V , iffU �I V
for some interpretation I.

(c) Given arithmetical theoriesU and V ,U isω-interpretable in V if the interpretation
of ‘numbers’ and the arithmetical operations of the interpreted theory U are the
same as those of the interpreting theory V .
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(d) U is locally interpretable in V , written U �loc V , if U0 � V for every finite
subtheory U0 of U .

(e) U and V are mutually interpretable when U � V and V � U .

(f) U is a retract of V iff there are interpretationsI andJ withU �I V and V �J U ,
and a binary U -formula F such that F is, U -verifiably, an isomorphism between
idU (the identity interpretation on U ) and J ◦ I . In model-theoretic terms, this
translates to the requirement that the following holds for every M |	 U :

FM : M ∼=−→ M∗ := I(J (M)).

(g) U and V are bi-interpretable iff there are interpretations I and J as above that
witness that U is a retract of V , and additionally, there is a V -formula G, such
that G is, V -verifiably, an isomorphism between the ambient model of V and the
model of V given by I ◦ J . In particular, if U and V are bi-interpretable, then
given M |	 U and N |	 V , we have

FM : M ∼=−→ M∗ := I(J (M)) and GN : N ∼=−→ N ∗ := J (I(N )).

(h) The above notions can also be localized at a pair of models; in particular suppose
N is an LU -structure and M is an LV -structure. For example, we say that N
is interpretable in M, written N � M (equivalently: M � N ) iff the universe
of discourse of N , as well as all the N -interpretations of LU -predicates are
M-definable. Similarly, we say that M and N are bi-interpretable if there are
parametric interpretations I and J , together with an M-definable F and an N
-definable map G such that:

FM : M ∼=−→ M∗ := I(J (M)) and GN : N ∼=−→ N ∗ := J (I(M)).

• Recall that a theory U (with sufficient coding apparatus) is reflexive if the formal
consistency of each finite fragment of U is provable in U .

The following results are classical. See Theorem 2.35 of [7] for an exposition of
Mostowski’s Reflection Theorem, and Theorem 5 of Chapter VI of [18] for an expo-
sition of Orey’s Compactness Theorem.

2.4.2 Theorem (Mostowski’s Reflection Theorem) For all L ⊇ LA, every extension
(in the same language) of PA (L) is reflexive.

2.4.3 Theorem (Orey’s Compactness Theorem) If U is reflexive, and V �loc U for
some recursively enumerable theory V , then V � U.

3 The basics of PAI

3.1 Definition PAI is the theory formulated in LA(I ) whose axioms are (1) through
(3) below. Note that we write x ∈ I instead of I (x) for better readability.
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(1) PA(I ).
(2) The sentence Ubd(I ) that expresses: “ I is unbounded”.
(3) The scheme IndisLA(I ) = {Indisϕ(I ) : ϕ is an LA-formula} stipulating that I

forms a class of order indiscernibles for the ambient model of arithmetic. More
explicitly, for each n -ary formula ϕ(v1, . . . , vn) in the language LA, Indisϕ(I ) is
the following sentence:

∀x1 ∈ I · · · ∀xn ∈ I

∀y1 ∈ I · · · ∀yn ∈ I

[(x1 < · · · < xn) ∧ (y1 < · · · < yn) → (ϕ(x1, · · ·, xn) ↔ ϕ(y1, · · ·, yn))].

PAI◦ is the weakening of PAI in which the scheme IndisLA(I ) is weakened to the
scheme Indis◦LA

(I ) = {Indis◦ϕ(I ) : ϕ is an LA-formula}, where Indis◦ϕ(I ) is the
following sentence:

∀x1 ∈ I · · · ∀xn ∈ I ∀y1 ∈ I · · · ∀yn ∈ I

[(x1 < · · · < xn) ∧ (y1 < · · · < yn) ∧ (�ϕ� < x1 ∧ �ϕ� < y1)

→ (ϕ(x1, · · ·, xn) ↔ ϕ(y1, · · ·, yn))].

3.2 Proposition Let N be the standard model of PA.

(a) N does not have an expansion to a model of PAI (equivalently: Every model of
PAI is nonstandard).

(b) N has an expansion to PAI◦.
(c) If (M, I ) is a nonstandard model of PAI◦, and c is any nonstandard element of

M, then (M, I>c) |	 PAI, where I>c = {i ∈ I : i > c}.
Proof (a) is an immediate consequence of the fact that the standard model of PA is
pointwise definable, and therefore it does not even have a distinct pair of indiscernibles.

To see that (b) holds, fix someenumeration 〈ϕn : n ∈ ω〉of all arithmetical formulae,
and use Ramsey’s theorem to construct a sequence 〈Hn : n ∈ ω〉 of subsets of ω such
that for each n ∈ ω the following three conditions hold:

(1) Hn is infinite.
(2) Hn ⊇ Hn+1.

(3) Hn is ϕn-indiscernible (i.e., Indisϕn (Hn) holds).

Then recursively define 〈in : n ∈ ω〉 by: i0 = max{min{H0}, �ϕ0�}, and in+1 is the
least i ∈ Hn+1 that is greater than both in and �ϕn�. It is easy to see that (M, I ) |	
PAI◦, where I = 〈in : n ∈ ω〉.1.

Since (c) readily follows from the definitions involved, the proof is complete. �

• In light of part (c) of Theorem 3.2, most results in this paper about PAI have a
minor variant in which PAI is replaced by PAI◦.

1 The construction of I uses similar ideas as the construction of unbounded indiscernible types in [13,
Theorem 3.1.2].

123



A. Enayat

3.3 Theorem Each finite subtheory of PAI has an ω-interpretation in PA. Conse-
quently:

(a) PAI is a conservative extension of PA.
(b) PAI is interpretable in PA, hence PA and PAI are mutually interpretable.
(c) PAI is interpretable in ACA0 ( but not vice-versa).2

Proof Theω-interpretability of any finite subtheory of PAI in PA is an immediate con-
sequence of the well-known schematic provability of Ramsey’s theorem ω → (ω)n2 in
PA for all metatheoretic n ≥ 2 [7, Theorem 1.5, Chapter II]. This makes it evident that
(a) holds, and together with Orey’s Compactness Theorem 2.4.3, yields (b).3 Finally,
(c) follows from (b) since PA is trivially interpretable in ACA0. The parenthetical
clause of (c) is an immediate consequence of (b) and the classical fact that PA is
not interpretable in ACA0 (the ingredients of whose proof are Mostowski’s reflection
theorem for PA, finite axiomatizability of ACA0, and Gödel’s second incompleteness
theorem). �

3.4 Remark As pointed out by the referee, part (a) of Theorem 3.3 can also be estab-
lished by taking advantage of some classical facts about unbounded indiscernible types
(reviewed in Subsection 2.3) and resplendent models.More specifically, using Remark
2.3.6 and [9, Theorem 15.11], one can readily verify that there is an unbounded indis-
cernible type p(x) such that every resplendent model M of PA has an expansion
(M, I ) |	 PAI with the property that every element of I realizes p(x).

• In what follows Formk is the set of LA-formulae with precisely k free variables.

3.5 Theorem The following schemes are provable in PAI:

(a) The apartness scheme:

{Apartϕ : ϕ ∈ Formn+1, n ∈ ω},

where Apartϕ is the following formula:

∀i ∈ I ∀ j ∈ I [i < j → ∀x1, . . . , xn < i (∃y ϕ(x, y) → ∃y < j ϕ(x, y))] .

(b) The diagonal indiscernibility4 scheme:

{Indis+ϕ : ϕ ∈ Formn+1+r , n, r ∈ ω, r ≥ 1},
2 ACA0 is the well-known finitely axiomatizable subsystem of second arithmetic that is conservative over
PA.
3 Standard techniques can be used to show that the proof of Theorem 3.3(a) yields a feasible reduction of
PAI in PA. In other words, there is a polynomial-time function f such that, given the (binary code) of a
proof π of an arithmetical sentence ϕ in PAI, f (π) is the (the binary code of) a proof f (π) of ϕ in PA. In
particular, PAI has at most polynomial speed-up over PA.
4 This stronger notion of indiscernibility appears often in expositions of the Paris–Harrington independence
result; the same notion is dubbed “ strong indiscernibility” in [13, Definition 3.2.8].
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where Indis+ϕ (I ) is the following formula:

∀i ∈ I ∀ j ∈ [I ]r ∀k ∈ [I ]r [(i < j1) ∧ (i < k1)]

−→ [∀x1, . . . , xn < i (ϕ(x, i, j1, . . . , jr ) ↔ ϕ(x, i, k1, . . . , kr ))] .

Proof Let (M, I ) |	 PAI. To verify that the apartness scheme holds in (M, I ), fix
some i0 ∈ I and some ϕ(x, y) ∈ Formn+1. Then, since the I is unbounded and the
collection scheme holds in (M, I ), and I is unbounded in M, there is some j0 ∈ I
with i0 < j0 such that:

(M, I ) |	 ∀x ∈ [i0]n (∃yϕ(x, y) → ∃y < j0) ϕ(x, y)) .

The above, togetherwith the indiscernibility of I inM,makes it evident that (M, I ) |	
Apartϕ.

To verify that Indis+ϕ (I ) holds in (M, I ), we will first establish a weaker form of

diagonal indiscernibility of I in which all jn < k1 (thus all the elements of j are less
than all the elements of k). Fix some ϕ ∈ Formn+1+r and i0 ∈ I . WithinM consider
the function f : [M]r → P([i0]n) defined by:

f (y) := {a ∈ [i0]n : ϕ(a, i0, y)}.

Since (M, I ) satisfies the collection scheme and I is unbounded in M, this shows
there are y1 < · · · < y2r in I such that:

f (y1, . . . , yr ) = f (yr+1, . . . , y2r ).

Thus (M, I ) satisfies:

∀x ∈ [i0]n
[
ϕ(x, i0, y1, . . . , yr ) ↔ ϕ(x, i0, yr+1, . . . , y2r )

]
.

By the indiscernibility of I in M, the above implies the following weaker form of
Indis+ϕ (I ):

∀i ∈ I ∀ j ∈ [I ]r ∀k ∈ [I ]r [(i < j1) ∧ ( jn < k1)]

−→ [∀x ∈ [i0]n (ϕ(x, i, j1, · · ·, jr ) ↔ ϕ(x, i, k1, · · ·, kr ))
]
.

Wewill now show that the above weaker form of Indis+ϕ (I ) already implies Indis+ϕ (I ).

Given i ∈ I , a ∈ [I ]r and b ∈ [I ]r , with i < a1 and i < b1, choose y ∈ [I ]r with
y1 > max {an, bn} . Then by the above we have:

M |	 [∀x ∈ [i0]n (ϕ(x, i, a1, . . . , ar ) ↔ ϕ(x, i, y1, . . . , yr ))
]
,
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and

M |	 [∀x ∈ [i0]n (ϕ(x, i, b1, . . . , br ) ↔ ϕ(x, i, y1, . . . , yr ))
]
,

which together imply:

M |	 [∀x ∈ [i0]n (ϕ(x, i, a1, · · ·, ar ) ↔ ϕ(x, i, b1, · · ·, br ))
]
.

�

• Note that the diagonal indiscernibility scheme for LA-formulae ensures that if
(M, I ) |	 PAI and i ∈ I , then I≥i is a set of indiscernibles over the expanded
structure (M,m)m<i , where I≥i = {x ∈ I : x ≥ i}.

4 Main results

In this section we prove refinements of Theorems A and B of the abstract (as in
Theorems 4.6 and 4.12).

4.1 Theorem There is a formula σ(x) in the language LA(I ) such that S = σM is
an inductive partial satisfaction class on M for all models (M, I ) |	 PAI.

Proof Wefirst define a recursive function that transforms each formula ϕ(x) ∈ Formn

into a �0-formula ϕ∗(x, z1, . . . , zk), where {zi : 1 ≤ i ∈ ω} is a fresh supply of
variables added to the syntax of first order logic. In what follows x and y range over
the set of variables before the addition of the fresh stock of zi s. We assume that the
only logical constants used in ϕ are {¬,∨, ∃} and none of the fresh variables zi occurs
in ϕ. The definition of ϕ∗ below will make it clear that k is the ∃-depth of ϕ.
(1) If ϕ is an atomic LA -formula, then ϕ∗ = ϕ.
(2) (¬ϕ)∗ = ¬ϕ∗.
(3) (ϕ1 ∨ ϕ2)

∗ = ϕ∗
1 ∨ ϕ∗

2 .

(4) (∃y ϕ)∗ = ∃y < z1 ϕ̃∗, where ϕ∗ = ϕ∗(x, y, z1, . . . , zk), and ϕ̃∗ is the result of
replacing zi with zi+1 in ϕ∗ for each 1 ≤ i ≤ k.

Claim (∇). Suppose ϕ = ϕ(x) ∈ Formn, and ϕ∗ = ϕ∗(x, z1, . . . , zk), (M, I ) |	
PAI, a ∈ Mn, and (i1, . . . , ik) ∈ [I ]k such that there is some j ∈ I with j < i1 and
as < j for each 1 ≤ s ≤ n. Then M satisfies:

ϕ(a) ↔ ϕ∗(a, i1, . . . , ik).

Proof Weuse inductionof the complexity ofϕ.Theonly case that needs an explanation
is the existential case, the others go through trivially. Thus, it suffices to verify that
if (i1, . . . , ik+1) ∈ [I ]k and there is some j ∈ I with j < i1 and as < j for each
1 ≤ s ≤ k, then:
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(∇) M |	 (∃y ϕ(a, y) ↔ ∃y < i1 ϕ∗(a, y, i2, · · ·, ik+1)),
where (ϕ(x, y))∗ = ϕ∗(x, y, z1, · · ·, zk). To establish the left-to-right direction of
(∇), suppose M |	 ∃y ϕ(a, y). By the veracity of the apartness scheme and the
assumption that as < j for each 1 ≤ s ≤ n, there is b < i1 such that M |	 ϕ(a, b).
Thus since b, as well as a1, . . . , an are all below i1, i1 can serve as the element “
j” of the inductive assumption, hence allowing us to conclude that M |	 ϕ(a, b)
iff ϕ∗(a, b, i2, . . . , ik+1), therefore M |	 ∃y < i1 ϕ∗(a, y, i2, . . . , ik+1), as desired.
The right-to-left direction of (∇) is trivial. This concludes the proof of the claim (∇).

We are now ready to show that there is an (M, I )-definable S ⊆ M such that S is an
inductive satisfaction class over M. The following procedure takes place in (M, I ),
in particular, the variables n and k in (P) range over M and need not be standard:
(P) Given any ϕ(x) ∈ Formn and any n-tuple a, calculate (ϕ(x))∗ =
ϕ∗(x, z1, . . . , zk), and let j ∈ I be the first element of I such that �ϕ(x)� < j
and as < j for each 1 ≤ s ≤ n, and then let and i1, . . . , ik to be the first k elements
of I that are above j . Then define S by:

〈ϕ, a〉 ∈ S iff [ϕ∗(a, i1, . . . , ik) ∈ Sat�0 ],

where Sat�0 is the canonical �1-definable satisfaction predicate for �0 formulae of
arithmetic.
Thus the desired formula σ is given by

σ(〈ϕ, a〉) := [ϕ∗(a, i1, . . . , ik) ∈ Sat�0 ].

�4.2 Remark Three remarks are in order concerning the proof of Theorem 4.1.
(a) If ϕ(x) is a standard formula, (M, I ) |	 PAI, and j ∈ I , then the condition
�ϕ(x)� < j in the procedure (P) is automatically satisfied since every element of I
is nonstandard. The role of the condition �ϕ(x)� < j will become clear in the proof
of Lemma 4.10 and Theorem 4.11.
(b) If I ′ is a cofinal subset of I such that (M, I ′) |	 PAI and S′ is the partial satisfaction
class on M as defined by σ in (M, I ′), then thanks to the diagonal indiscernibility
property of I , S = S′. This fact comes handy in the proof of Theorem 5.5.
(c) The transformation ϕ �→ ϕ∗ given in the proof of Theorem 4.1 can be reformulated
in the following more intuitive way: Given ϕ(x) ∈ Formn , find an equivalent formula
ϕpnf(x) in the prenex normal form:

ϕpnf(x) = ∀v1∃w1 · · · δ(v1, w1 · ··, vk, wk, x),

and then define (ϕ(x))∗ to be:

∀v1 < z1 ∃w1 < z2 · · · δ(v1, w1, · · ·, vk, wk, x).

A similar transformation is found in the proof of the Paris-Harrington Theorem [19].

4.3 Corollary The following hold for every model M of PA of any cardinality.
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(a) There is no M- definable subset I of M such that (M, I ) |	 PAI ( therefore no
rather classless recursively saturated model of PA has an expansion to a model of
PAI).

(b) If M has an expansion to a model of PAI, then M is recursively saturated; and
the converse holds ifM is countable.

(c) If M has an expansion (M, I ) |	 PAI, then M �= MI , where MI consists of
elements of M that are definable in (M, i)i∈I . Thus (MI , I ) � PAI, where MI

is the submodel ofM whose universe is MI .

Proof (a) follows by putting Theorem 4.1 together with Tarski’s theorem on unde-
finability of truth.5 Alternatively, as pointed out by the referee, the undefinability of
I in M follows from the unboundedness of I and the apartness scheme. To see this,
suppose that I is defined by a formula with a parameter m in M. Together with the
unboundedness of I , this implies that for any every elementary cut K ofM that con-
tains m, K ∩ I is cofinal in K . Thanks to the definability assumption of I , we can
choose a pair i < j in I above m such that there is no element of I that is strictly
between i and j . By the appartness scheme, there is an elementary cut K of M that
contains i (and therefore m as well) such that K < j . But the choice of i and j makes
it impossible for K ∩ I to be cofinal in K , contradiction.

(b) follows directly by putting Theorem 4.1 with the Barwise-Schlipf Theorem
2.2.4. As pointed out by the referee, the recursive saturation ofM can also be derived
from the unboundedness of I together with (M, I ) |	 Apart; this follows from a
theorem of Smory ński and Stavi [22]. More specifically, using the apartness ter-
minology, the theorem proved by Smoryński and Stavi says that if I is unbounded,
(M, I ) |	 Apart, and I is coded in an elementary end extension of M, then M is
recursively saturated.

To verify (c) suppose MI = M for (M, I ) |	 PAI. Recall that M is nonstandard
by Proposition 3.2(a). By Theorem 4.1 there is an inductive partial satisfaction class
S on M that is definable in (M, I ). Consider the function

h : M → M,

where h is defined in (M, I ) by h(m) := the (Gödel number of) the least LA-formula
ϕ(x, y) such that, as deemedby S,m is definedbyϕ(x, i) for some tuple i of parameters
from I , i.e., S contains the sentences ϕ(m, i) and ∃!x ϕ(x, i). Note that the set of
standard elements of M is definable in (M, I ) as the set of i such that i < j for
some j in the range of h. Thus (M, I ) is a nonstandard model of PAI, in which the
standard cut ω is definable, which is impossible. This concludes the proof of (c). �

5 Analternative,more direct proof of (a) invokes diagonal indiscernibility and unboundedness of I . Suppose
to the contrary that (M, I ) |	 PAI and I is definable in M by a formula ϕ(x,m) for some m ∈ M . Let
i1 < i2 < i3 be the first three elements of I above m. Note that i2 and i3 is each pointwise definable
in (M,m, I ). Hence i2 and i3 are discernible in (M,m, I ), and therefore they are also discernible in
(M,m) (since I is definable inM with parameter m ). On the other hand, by the diagonal indiscernibility
property of I , for any arithmetical formula θ(x, y),M satisfies θ(m, i1) ↔ θ(m, i2). We have arrived at a
contradiction.
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4.4 Remark As shown by Schmerl [20], every countable recursively saturated model
M of PA carries a set of indiscernibles I such thatMI = M .Thus, in light of part (c) of
Corollary 4.3, such a set of indiscernibles I never has the property that (M, I ) |	 PAI.
Also, as pointed out by the referee, in part (c) of Corollary 4.3, if all elements of I
realize an indiscernible type, then it follows from the properties of indiscernible types
that (M, MI ) is not recursively saturated. Moreover, part (c) of Corollary 4.3 should
be contrasted with the fact that in any model M of PA, the Skolem hull of every
unbounded definable set isM (see [13, Lemma 2.1.10]).

4.5 Remark In contrast to part (c) of Corollary 4.3, the proof technique of the Kossak-
Schmerl construction of prime inductive partial satisfaction classes (as in Theorem
10.5.2 of [13]) canbe readily adapted to show that every countable recursively saturated
model M of PA has a pointwise definable expansion (M, I ) |	 PAI.

4.6 Theorem The following are equivalent for a model M of PA of any cardinality:
(i) M has an expansion to a model of UTB(c).
(i i) M has an expansion to a model of PAI.
Consequently, M has an expansion to a model of UTB iff M has an expansion to a
model of PAI◦.
Proof Since (i i) ⇒ (i) is justifiedbyTheorem4.1, it suffices to show that (i) ⇒ (i i)..6

ByProposition 2.2.3(b) there is an inductive partial satisfaction class S onM.Consider
the LA(S)-formula ψ(x) that expresses:

“there is a definable (in the sense of S) unbounded set of indiscernible for

LA-formulae of Gödel-number at most x”.

More specifically, ψ(x) is the formula ∃θ ∈ Form1 (U (θ) ∧ H(θ, x)), whereU (θ) is
the following LA(S)-sentence:

[∀x∃y(x < y ∧ θ(x))] ∈ S,

and H(θ, x) is the following LA(S) -sentence:

∀ϕ ∈ Form(ϕ ≤ x → Indisϕ(θ) ∈ S),

where Indisϕ(θ) is the following LA-sentence:

∀x1 . . . ∀x2n
[(x1 < . . . < xn) ∧ (xn+1 < · · · < x2n) ∧

∧

1≤i≤2n

θ(xi )] →

(ϕ(x1, . . . , xn) ↔ ϕ(xn+1, . . . , x2n))].
6 As pointed out by Roman Kossak, (i) ⇒ (i i) was first noted in [12, Proposition 4.5].
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By the schematic provability of Ramsey’s theorem in PA, (M, S) |	 ψ(n) for each
n ∈ ω, so by overspill, (M, S) |	 ψ(c) holds for some nonstandard c ∈ M . Hence
there is some θ0 ∈ FormM

1 such that (M, S) |	 H(θ, c), and thus (M, I ) |	 PAI,
where:

I := {m ∈ M : (M, S) |	 θ(m) ∈ S}.

This concludes the proof of the equivalence of (i) and (i i). The ‘consequently’ clause
readily follows from Proposition 3.2 and the equivalence of (i) and (i i). �
• Going back to Theorem 4.1, one might wonder if it is possible for σM to be a full
satisfaction class onM. There are certainly many models (M, I ) of PA for which
σM is not a full satisfaction class since the existence of a full inductive satisfaction
class on a model M implies that Con(PA) holds in M (and much more, see the
remarks following Theorem 4.9). The results of the rest of this section are informed
by this question.

4.7 Definition α is theLA(I )-sentence expressing “ σ defines a full satisfaction class”,
where σ(x) is the formula given in the proof of Theorem 4.1.

4.8 Definition Given a recursively axiomatized theory T extending I�0 + Exp, the
uniform reflection scheme over T , denoted RFN(T ), is defined via:

RFN(T ) := {∀x(ProvT (�ϕ(
·
x)�) → ϕ(x)) : ϕ(x) ∈ Form1}.

The sequence of schemes RFNα(T ), where α is recursive ordinal α, is defined as
follows:
RFN0(T ) = T ;
RFNα+1(T ) = RFN(RFNα+1(T ));
RFNγ (T ) = ⋃

α<γ

RFNα(T ).

4.9 Theorem (Folklore) The arithmetical consequences of CTare axiomatized byPA+
RFNε0(PA).

Proof It is well-known [8, Section 8.6] that the arithmetical consequences of CT
coincide with the arithmetical consequences of ACA (the extension of ACA0 by the
full induction scheme). It has long been known that the arithmetical consequences of
ACA can be axiomatized by PA+RFNε0(PA), a result which has been recently given
a new proof in the work of Beklemishev and Pakhomov [1, Sec. 8.3].7 �

The following lemma, which will come handy at the end of the proof of Theorem
4.11, shows that if (M, I ) |	 PAI + α, and ϕ ∈ FormM (note that ϕ is allowed to be
nonstandard), then as viewed by S, a tail of I satisfies diagonal ϕ-indiscernibility. In
what follows FS(S) is the sentence asserting that S is a full satisfaction class.

7 It is also known that PA+RFNε0 (PA) can be axiomatized by PA+TI(εε0 ), where TI(εε0 ) is the scheme
of transfinite induction for ordinals less than εε0 (εα is the α-th ε-number, i.e., the α-th fixed point of the
map γ �→ ωγ ).

123



Indiscernibles and satisfaction classes in arithmetic

4.10 Lemma Suppose (M, S, I ) |	 PAI + PA(S, I ) + FS(S). If ϕ ∈ FormM
n+r+1

(where n, r ∈ M), then:

(M, S, I ) |	 ∀i ∈ I (ϕ < i −→ θ(S, i, ϕ)) ,

where θ(S, i, ϕ) is the following LA(S, I )- formula:

∀ j ∈ [I ]r ∀k ∈ [I ]r [(i < j1) ∧ (i < k1)]

−→ [∀x1, · · ·, xn < i (ϕ(x, i, j1, · · ·, jr ) ∈ S ↔ ϕ(x, i, k1, · · ·, kr ) ∈ S)] .

Proof The strategy of establishing the diagonal indiscernibility of I in the proof of
Theorem 3.5(b) can be readily carried out in this context, thanks to the fact that
(M, S, I ) |	 PA(S, I ). �

4.11 Theorem There is a formula ι(x) in the language LA(T , c) such that for all
models (M, T , c) of CT(c), (M, I ) |	 PAI + α for I = ι(M,T ,c).

Proof Wewill describe the formula ι(x)byworking in an arbitrarymodel (M, T , c) |	
CT(c). Since PA(S) + FS(S) and CT are well-known to be bi-interpretable, we will
do most of our work with the model (M, S) |	 PA(S) + FS(S), and at the end will
take advantage of the nonstandard element c. The basic idea is that PA can verify that
the formalized (infinite) Ramsey theorem is provable in PA, so using the inductive full
satisfaction class S we can follow the strategy of the proof of part (b) of Theorem 3.2
to define a set I in (M, S) such that (M, I ) |	 PAI+ α. More specifically, Ramsey’s
theorem’s can be fine-tuned by asserting that if an arithmetically definable coloring f
of m-tuples is of complexity �n , then there is an arithmetical infinite monochromatic
subset for f of complexity �n+m+1 [7]. Therefore

PA � ∀r ≥ 2 ∀ϕ ∈ Formr ∃θ ∈ Form1 ProvPA(Indiscϕ(θ)),

where Indiscϕ(θ) is as in the proof of Theorem 4.6. On the other hand, it is well-known
that PA(S) + FS(S) proves the global reflection principle:8

∀ϕ(ProvPA(ϕ) → S(ϕ)).

Hence
(∗) (M, S) |	 ∀r ≥ 2 ∀ϕ ∈ Formr ∃θ ∈ Form1 Indiscϕ(θ) ∈ S.

Reasoning in (M, S), fix some enumeration 〈ϕm : m ∈ M〉 of all arithmetical formu-
lae, and use (∗) to construct a sequence 〈θm : m ∈ M〉 of elements of FormM

1 defined
via an internal recursion in (M, S) such that the following three conditions hold:

(1) (M, S) |	 ∀m∀x ∃y > x θm(
·
y) ∈ S.

(2) (M, S) |	 ∀m∀x(θm+1(
·
x) ∈ S → θm(

·
x) ∈ S).

8 Indeed, as shown in Łełyk’s dissertation [16], the global reflection principle can be proved in the fragment
CT0 of CT.
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(3) (M, S) |	 ∀m Indiscϕm (θm) ∈ S.

Let Hm = {x ∈ M : (M, S) |	 θm(
·
x) ∈ S}, and within (M, S) recursively define

〈im : m ∈ M〉 by: i0 = max{min{H0}, �ϕ0�}, and im+1 is the least i ∈ Hm+1 that
is greater than both im and �ϕm�. It is easy to see that (M, I ) |	 PAI◦, where
I = 〈im : m ∈ M〉 , and therefore as noted in Proposition 3.2(c) (M, I>c) |	 PAI.
The procedure described for constructing I makes it clear that I is definable by an
LA(T , c)-formula ι(x).

It remains to show that (M, I ) |	 PAI + α. Note that (M, S, I ) |	 PA(S, I ), this
is precisely where Lemma 4.10 comes to the rescue, since together with the veracity
of PAI+PA(S, I )+FS(S) in (M, S, I ) it allows us verify the following nonstandard
analogue (∇∗) of (∇) from the proof of Theorem 4.1 (in what follows themap ϕ �→ ϕ∗
is defined as in the proof of Theorem 4.1 withinM).
(∇∗). Suppose ϕ = ϕ(x) ∈ FormM

r for some r ∈ M (NB: r need not be standard),
ϕ∗ = ϕ∗(x, z1, . . . , zk−1), where k ∈ M, a ∈ Mr , and (i1, . . . , ik) ∈ [I ]k such that
there is some j ∈ I with j < i1 and as < j for each 1 ≤ s ≤ r . Then (M, S, I )
satisfies the following:

ϕ(a) ∈ S ↔ [ϕ∗(a, i1, . . . , ik) ∈ Sat�0 ].

Recall that σ(〈ϕ, a〉) := [ϕ∗(a, i1, . . . , ik) ∈ Sat�0 ]. (∇∗) assures us that σM coin-
cides with S, and thus (M, I ) |	 PAI + α. �

4.12 Theorem The following hold for any model M of PA of any cardinality:

(a) M has an expansion to CT(c) iff M has an expansion to PAI + α.

(b) M has an expansion to CT iffM has an expansion to PAI◦ + α.

Proof Weonly verify (a) since the argument for (b) is similar. The left-to-right direction
of (a) is justified by Theorem 4.11. The other direction is evident thanks to the axiom
α. �

4.13 Corollary The arithmetical consequences of PAI◦ + α and PAI + α are axiom-
atized by PA + RFNε0(PA).

Proof This follows from putting the completeness theorem of first order logic together
with Theorems 4.9 and 4.12. �

4.14 Remark In contrast to Theorem 4.6, in Theorem 4.12 CT(c) cannot be weakened
to CT0(c), where CT0(c) is the fragment of CT(c) in which the extended induction
scheme is limited to �0(T )-formulae. This is because the arithmetical consequences
of CT0 form a tiny fragment of the arithmetical consequences of CT. More explicitly,
it has been long known by the cognoscenti that by combining results of Kotlarski
[14] and Smoryński [21], the arithmetical consequences of CT0 can be shown to
be axiomatized by RFNω(PA). The recent work of Łełyk [17] provides a model-
theoretic proof of this axiomatizability result, and culminates earlier results obtained
in Kotlarski’s aforementioned paper, Wcisło and Łełyk’s [24], and Łełyk’s doctoral
dissertation [16].
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4.15 Corollary The following are equivalent for every countable model M of PA:

(i) M has an expansion to a model of PAI + α.

(i i) M is recursively saturated and satisfies RFNε0(PA).

Proof This is an immediate consequence of Theorems 4.9 and 4.12, together with the
resplendence property of countable recursively saturated models. �
4.16 Remark The proof of Corollary 4.15 makes it clear that the countability restric-
tion on M can be dropped for (i) ⇒ (i i). However, the existence of Kaufmann
models together with Tarski’s undefinability of truth theorem makes it evident that the
countability restriction cannot be dropped for (i i i) ⇒ (i).

5 Interpretability analysis of PAI

In this section we examine PAI through the lens of interpretability theory, a lens
that brings both the semantic and syntactic features of the theories under its scope
into a finer focus. Recall that UTB(c) was introduced in Definition 2.2.2(b), and ω-
interpretability was introduced in Definition 2.4.1(c). In what follows UTB0(c) is the
obtained from UTB(c) by weakening PA(T ) to PA + I�0(T ) in the definition of
UTB(c).

5.1 Theorem (mutual ω-interpretability results).

(a) PAI, UTB0(c), and UTB(c) are pairwise mutually ω-interpretable.
(b) PAI + α and CT(c) are pairwise mutually ω-interpretable.
(c) PAI◦ + α and CT are pairwise mutually ω-interpretable.

Proof (a) is easy to show using the proofs of Theorem 4.1 and the (i i) ⇒ (i i i)
direction of Theorem 4.6 (note that the ‘infinite constant’ c in UTB0(c) and in UTB(c)
can be readily defined in a model of PAI as “ the least element of I” ). Clearly (b)
follows from Theorem 4.12. The proof of (c) is similar to the proof of (b). �

We need some general definitions and results before presenting other results about
PAI. The following definition is motivated by the work of Albert Visser [23]; it was
introduced in [4].

5.2 Definition Suppose U is a first order theory.

(a) U is solid iff the following property (S) holds for all models M, M∗, and N of
U :
(S) IfM � N � M∗ and there is anM-definable isomorphism i0 : M → M∗,
then there is an M-definable isomorphism i : M → N .

(b) U is nowhere solid if (S) is false at every model M of U , i.e., for every model
M ofU there exist modelsM∗, andN ofU such thatM � N � M∗ and there
is an M-definable isomorphism i0 : M → M∗, but there is no M-definable
isomorphism i : M → N .

Visser showed that PA is a solid theory. The following proposition can be readily
established using the definitions involved (the proof is straightforward, but notationally
complicated). Recall that the notion of a retract was defined in Definition 2.4.1(f).
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5.3 Proposition If U is a solid theory and V is a retract of U, then V is also solid. In
particular, solidity is preserved by bi-interpretations.
The proof of solidity of PA shows the more general theorem below that will be useful;
the proof of Theorem 5.4 is a slight variant of the proof of solidity of PA presented in
[4]; we present it for the convenience of the reader.

5.4 Theorem Suppose M1, M2, and M3 are models of PA, and that M+
i is an Li -

structure that is an expansion ofMi andM+
i |	 PA(Li ) (for i = 1, 2, 3). Then (S+)

below holds:
(S+) IfM+

1 � M+
2 � M+

3 and there is anM+
1 -definable isomorphism i0 : M1 →

M3, then there is an M+
1 -definable isomorphism i : M1 → M2.9

Consequently, an isomorphic copy of M+
2 is ω-interpretable in M+

1 (moreover, the
isomorphism at work isM+

1 - definable).

Proof SupposeM+
1 ,M+

2 , andM+
3 are as in the assumption of the theorem. Further,

assume that:

M+
1 � M+

2 � M+
3 ,

and suppose there is anM+
1 -definable isomorphism i0 : M1 → M3. A key property

of PA(L) is that if M+ |	 PA(L) and N is a model of the fragment Q (Robinson’s
arithmetic) of PA, then as soon as M+ � N , there is an M+ -definable initial
embedding j : M → N , i.e., an embedding j such that the image j(M) ofM is an
initial submodel of N (where M is the LA-reduct of M+). Hence there is an M+

1 -
definable initial embedding j0 : M1 → M3 and anM+

2 -definable initial embedding
j1 : M1 → M3.
We claim that both j0 and j1 are surjective. To see this, suppose not. Then j(M1) is

a proper initial segment ofM3, where j is theM+
1 -definable embedding j : M1 →

M3 given by j := j1 ◦ j0. But then i−1
0 ( j(M1)) is a proper M+

1 -definable initial
segment of M with no last element. This is a contradiction since M+

1 is a model
of PA(L1), and therefore no proper initial segment of M1 is M+

1 -definable. Hence
j0 and j1 are both surjective; in particular j0 serves as the desired M+

1 -definable
isomorphism between M1 and M2.

Since by assumption M+
1 � M+

2 , the M+
1 -definable isomorphism j0 allows us

to construct, definably in M+
1 , an isomorphic copy of M+

2 whose LA-reduct is M1.
Consequently, an isomorphic copy of M+

2 is ω -interpretable in M+
1 . More specifi-

cally, the ω-interpretation I at work has the same universe and arithmetical operations
asM1, and for each n-ary relation symbol R ∈ L2\L1, the I-interpretation RI of R
is given by (x1, · · ·, xn) ∈ RI iffM+

2 |	 R( j0(x1), · · ·, j0(xn)) (the I-interpretation
of function symbols is analogously defined). �

5.5 Theorem If U ∈ {PAI◦, PAI, PAI + α}, then U is nowhere solid (a fortiori: U is
not solid).

9 Note that the conclusion i : M1 → M2 cannot in general be strengthened to i : M+
1 → M+

2 , e.g., let

M+
1 = (M, D1) andM+

1 = (M, D2), where D1 and D2 are distinct M-definable subsets of M .
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Proof We present the argument for U = PAI, similar arguments work for PAI◦, and
PAI + α. Suppose (M, I ) |	 PAI, and let 2I = {2i : i ∈ I }. The diagonal indis-
cernibility property of I makes it evident that (M, 2I ) is also a model of PAI. Note
that:

(M, I ) � (M, 2I ) � (M, I ).

Clearly the identity map serves as an (M, I1) -definable isomorphism i0 : (M, I1) →
(M, I1). However, there is no (M, I )-definable isomorphism f between (M, I ) and
(M, 2I ) since any model of PA(I ) is definably rigid, i.e., no automorphism of (M, I )
is (M, I )-definable. Thus any such purported f is the identity function, which makes
it impossible for f to be an isomorphism between (M, I ) and (M, 2I ). This shows
that PAI is not solid. �

5.6 Theorem If U ∈ {PAI◦, PAI and PAI+α}, then PA and U are not retracts of each
other (a fortiori: PA and U are not bi-interpretable).

Proof Again, we present the argument forU = PAI, similar arguments work for PAI◦
and PAI+α. Proposition 5.4 together with Theorem 5.5 show that PAI is not a retract
of PA. To see that PA is not a retract of PAI, it suffices to observe that if some model
M of PA is a retract of a model of PAI, then by Theorem 5.4, M can parametrically
define a class I of indiscernibles for itself. This contradicts Corollary 4.3(a). �

5.6 Theorem CT is solid.

Proof The solidity of CT can be established with the help of Theorem 5.4 and the fact
that if (M, T1, T2) |	 PA(T1, T2), where (M, T1) and (M, T2) are both models of
CT, then T1 = T2 (the proof is based on a simple induction, taking advantage of the
assumption that both T1 and T2 satisfy Tarski’s recursive clauses for all arithmetical
formulae in M). �

5.8 Remark It is not hard to see that the none of the theories CT(c),UTB, and UTB(c)
are solid. However, CT(c) has consistent solid extensions. For example, consider the
extension of CT(c) given by CT(c) + “ CT is inconsistent” + “ c is the length of the
shortest proof of inconsistency of CT”. By Gödel’s second incompleteness this theory
is consistent, and by a reasoning very similar to the proof of Theorem 5.6 it is also
solid.

5.9 Theorem CT is a retract of PAI◦ + α, and CT(c) is a retract of PAI + α.

Proof ByTheorem 4.14, there is a (uniform)ω -interpretation Ic of amodel (M, I>c)

of PAI + α within any model (M, T , c) of CT(c). On the other hand, the definition
of PAI + α makes it clear that there is a (uniform) ω-interpretation J of (M, T )

within (M, I>c). A slight variant of this argument (without the use of the constant c)
shows that CT is a retract of PAI◦ + α, but we need a variation of the interpretation
Ic in order to show that CT(c) is a retract of PAI + α because it not clear that the
element c is definable in (M, I>c). We can get around this problem by modifying the
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interpretation I as follows: Given any model (M, T , c) of CT(c), we first define I>c

as in the interpretation I, and then we define the modified interpretation Ic given by:

Ic(M, T , c) = (M, Ic, J ),where Ic = {〈c, i〉 : i ∈ I>c}.

Thanks to the diagonal indiscernibility property of I>c, (M, Ic) is a model of PAI.
Moreover, (M, Ic) can be shown to be a model of PAI + α with the same argument
used in the proof of Theorem 4.14 (relying on Lemma 4.11). We can now readily
define an interpretation J ′ that inverts Ic by letting J ′(M, Ic) = (M, T , c), where
T is the unique truth predicate corresponding to the partial satisfaction class given by
the formula σ (of Theorem 4.1), and c is defined as “ the first coordinate of the ordered
pair canonically coded by any member of Ic”. Thus CT(c) is a retract of PAI + α.

5.10 Theorem PAI◦ + α is not a retract of CT.

Proof We begin with observing that Proposition 5.3 and Theorem 5.5 show that the
ω-interpretation Iσ of CT in PAI◦ given by the formula σ of Theorem 4.1 is not
‘invertible’, in the sense that there is no interpretation of PAI in CT such that Iσ and
J witness that PAI is retract of CT. We next note that if there are interpretations I
and J that witness that PAI + α is a retract of CT, then Theorem 5.4 assures us that
verifiably in PAI◦, the interpretation I is the same as Iσ up to a definable permutation
of universe. This shows that I is not invertible either, thus concluding the proof. �

6 Fragments of PAI

In this section we briefly examine the model-theoretic behavior of subsystems PAIn
(n ∈ ω) and PAI− of PAI.

5.3 Definition For n ∈ ω, PAIn is the subsystem of PAI in which the extended induc-
tion scheme involving I is limited to �n(I )-formulae, i.e., the axioms of PAIn consist
of PA plus the fragment I�n(I ) of PA(I ), plus axioms (2) and (3) of Definition 3.1
asserting the unboundedness and indiscernibility of I . PAI− is the subsystem of PAI0
with no extended induction scheme involving I , so the axioms of PAI− consist of PA
plus axioms (2) and (3) of Definition 3.1.

• Given M |	 PA, it is evident that (M, I ) |	 PAI− iff I is an unbounded set of
indiscernibles in M; and by Theorem 2.1.2, (M, I ) |	 PAI0 iff I is a piecewise-
coded unbounded set of indiscernibles inM.

6.2 Theorem Every model of PA has an elementary end extension that has an expan-
sion to a model of PAI0, but not to a model of PAI.

Proof Fix a minimal type p(x) and any model M0 of PA, and let M be an ω-
canonical extension of M0 using p(x) as in section 3.3 of [13]. Thus M is obtained
by an ω-iteration of the process of adjoining an element satisfying p(x). By Theorem
2.3.5 p(x) is an unbounded indiscernible type, which makes it clear that M carries
an unbounded indiscernible subset I , and additionally the order-type of I is ω. The
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latter feature makes it clear that I is piecewise-coded inM, and thus (M, I ) |	 PAI0
in light of Theorem 2.1.1.

It remains to show thatM does not have an expansion to PAI. Suppose not, and let
(M, I ) |	 PAI. It is easy to see that from the point of view of (M, I ), the order-type
of (I ,<) is the same as the order-type of (M,<) (where< is the ordering on M given
by M). Recall that M can be written as the union of elementary initial submodels
Mn of M (as n ranges in ω), where Mn is obtained by n-repetitions of the process
of adjoining an element satisfying p(x). By minimality of p(x) this assures us that:
(∗) For each n ∈ ω, and each choice of cn ∈ Mn+1\Mn , (Mn, c1, . . . , cn) is pointwise
definable.
The existence of the above isomorphism f makes it clear that there is some k ≥ 1
such that I ∩ (Mk\Mk−1) is infinite. In particular we can pick distinct i1 and i2 in
I ∩ (Mk\Mk−1), together with elements {cs : 1 ≤ s ≤ k} such that cs ∈ Ms+1\Ms

for each s, and moreover ck is below both i1 and i2 (since Mk\Mk−1 has no least
element). By the diagonal indiscernibility property of I , this implies that i1 and i2
are indiscernible in the structure (Mk, c1, . . . , ck,m)m∈M0 . But this indiscernibility
contradicts (∗), and thereby completes the proof. �

6.3 Theorem If M is a model of PA of countable cofinality that is expandable to a
model of PAI−, thenM is expandable to a model of PAI0. However, every countable
model of PA has an uncountable elementary end extension that is expandable to a
model of PAI−, but not to PAI0.

Proof Suppose (M, I ) |	 PAI−, where M has countable cofinality. The countable
cofinality of M allows us to construct an unbounded subset I0 of I of order type
ω. Since every subset of M of order-type ω is piecewise-coded, by Theorem 2.1.1,
(M, I0) |	 PAI0. To demonstrate the second assertion of the theorem, let M0 be
a countable model of PA and M be an ω1-canonical extension of M0 using some
minimal type p(x), i.e.,M is obtained by an ω1-iteration of the process of adjoining
an element satisfying p(x) (as in [13, Section 3.3]). By Theorem 2.2.14 of [13], M
is rather classless, i.e., every piecewise-coded subset of M is definable in M. Thus
if (M, I ) |	 PAI0, then (M, I ) |	 PAI, and I is M-definable, which contradicts
Corollary 4.3(a). �

6.4 Remark As pointed out by the referee, recursively saturated models of PA of
countable cofinality are expandable to models of PAI. To see this, suppose M is a
recursively saturated model of PA of countable cofinality. Then M has a countable
recursively saturated cofinal submodelK. By Theorems 2.2.4 and 4.6.K has an expan-
sion (K, J ) to a model of PAI. By a theorem of Kotlarski and Schmerl [13, Theorem
3.1.7], there is a unique I such that (M, I ) is an elementary extension of (K, J ), and
the result follows.

7 Open questions

The following question is inspired by Theorems 4.6 and 4.12.
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7.1 Question Is there a set of sentences� in the language of PAI that has the property:
A nonstandard model M of PA (of any cardinality) has an expansion to a model of
PAI+� iffM has an expansion to a full satisfaction class?

The following question was suggested by the referee; it is motivated by Remark 3.4.

7.2 Question Are there models (M, I ) |	 PAI such that the elements of I do not
realize an unbounded indiscernible type?

Questions 7.3 through 7.4 below arise from the results obtained in Section 5. We have
not succeeded in ruling out that PAI and UTB(c) are not bi-interpretable; ditto for
PAI+α and CT(c).We conjecture that the questions below all have negative answers.
As partial evidence for our conjecture, let us observe that Theorem 5.2 and 5.5 show
that the ω-interpretation Iσ of UTB(c) in PAI, and CT(c) in PAI + α, given by the
formula σ of Theorem 4.1 is not ‘invertible’, in the sense that there is no interpretation
of PAI in UTB(c) such that Iσ and J witness that PAI is retract of UTB(c).

7.3 Question Is PAI + α is a retract of CT(c)?

7.4 Question Is either of the pair of theories {PAI, UTB(c)} a retract of the other
one?

7.5 Question Is either of the pair of theories {PAI + α, CT(c)} a retract of the other
one?

Questions 7.3 through 7.4 below are motivated by the results in Section 6.

7.6 Question Does Theorem 6.2 lend itself to a hierarchical generalization? In other
words, is it true that for every n ∈ ω, every model of PA has an elementary end
extension that has an expansion to a model of PAIn, but not to a model of PAIn+1?
(It is not even clear how to build a model of PAIn for n ∈ ω that is not a model of
PAIn+1.)

7.7 Question Is there a model M of PA such that M has an expansion to a model
of PAIn for each n ∈ ω, but M has no expansion to a model of PAI?
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