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Abstract

We address some phenomena about the interaction between lower semicontinuous
submeasures on N and F, ideals. We analyze the pathology degree of a submeasure
and present a method to construct pathological F, ideals. We give a partial answers
to the question of whether every nonpathological tall F, ideal is Katétov above the
random ideal or at least has a Borel selector. Finally, we show a representation of
nonpathological F, ideals using sequences in Banach spaces.
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1 Introduction

Mazur [14] showed that every F, ideal on N is of the form FIN(¢) = {A € N :
¢(A) < oo} for some lower semicontinuous submeasure (Iscsm) ¢ on N. Mazur’s
proof may be thought as a canonical way to get a submeasure for an F, ideal, given
a representation as a countable union of closed sets. Mazur’s construction provides
integer-valued submeasures, but it hides interesting properties of both, the ideal and
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the submeasure. For example, it does not show whether the ideal is tall or how close
is the submeasure to be a measure, even in the case of summable ideals, which are
ideals induced by measures.

Farah [4] introduced the degree of pathology to quantify the closeness of a Iscsm
to be a measure. A Iscsm has degree 1, and is called nonpathological, when is the
supremum of a family of measures. We say that an F,; ideal 7 is nonpathological if
7 = FIN(¢) for some nonpathological Iscsm ¢.

We study pathological and nonpathological F, ideals from several points of view.
Pathological F, ideals are those that whenever Z = FIN(¢) for some Iscsm ¢, the
degree of pathology of ¢ is infinite. We show a family of examples of this kind of
ideals, based on an ideal defined by K. Mazur in [14], and also present a way to identify
some Iscsm ¢ whose degree of pathology is infinite. This last condition is necessary for
FIN(¢) to be pathological but it is unknown whether is sufficient. We use this criterion
to show that the degree of pathology of the usual Iscsm x inducing the Solecki’s ideal
S is equal to infinite. That complements Figueroa and Hrusak’s result showing that
S is pathological [5]. We also prove that nonpathology is preserved downward by
the Rudin—Keisler pre-order. We show that our example of a pathological ideal has a
restriction which is Rudin—Keisler above the Solecki’s ideal. Some questions about
pathology of submeasures, pathology of ideals and Rudin—Keisler and Katétov orders
are stated.

The second aspect of our study is concerned with the class of tall ideals (those
satisfying that for every infinite set A there is an infinite set B C A in the ideal). Tall
ideals have been extensively investigated (see for instance [9, 11, 18]). A very useful
tool for the study of tall ideals is the Katétov pre-order <x. Among tall Borel ideals
one which has played a pivotal role is the random ideal R generated by the cliques
and independent sets of the random graph [10]. It is known that if R <g Z, then 7
is tall. For a while it was conjectured that R was a <g-minimum among Borel tall
ideals [11], this turned out to be false [6], in fact, there are F; tall ideals which are not
<k above R. We show that if ¢ is a nonpathological 1scsm of type co and FIN(¢) is
tall, then R <k FIN(¢). The notion of a Iscsm of type co was motivated by the results
presented in the last section. It is known that R <k Z implies that 7 has a Borel
selector (i.e. the set B in the definition of tallness can be found in a Borel way from
A) [6-8]. We give a partial answer to the question of whether every nonpathological
F, tall ideal has a Borel selector.

Finally, in the last section, following the ideas introduced in [2, 3], we show how to
represent F, ideals using sequences in a Banach space. Let x = (x,),, be a sequence
in a Banach space X. We say that ) _ x, is perfectly bounded, if there is k > 0 such
that for all F C N finite, ||}, < Xn || < k. Let

Bx)={ACN: Zx,, is perfectly bounded } .

neA
We will show that an F, ideal is nonpathological if and only if it is of the form B(x)

for some x. In particular, when the space is co we get the notion of a Iscsm of type cg
mentioned before and we show that B(x) is tall iff (x,), is weakly null.
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2 Preliminaries

For an arbitrary set X and a cardinal number «, we denote by [ X ¢ (respectively [ X]=*)
the set of the subsets of X having cardinality « (resp, having cardinality smaller than
k). We say that a collection A of subsets of a countable set X is analytic (resp. Borel),
if A is analytic (resp. Borel) as a subset of the Cantor cube 2% (identifying subsets of
X with characteristic functions). The collections [ X]“, [X]=* and (X% (k € w) are
endowed with the subspace topology as subsets of 2X. We refer the reader to [12] for
all non explained descriptive set theoretic notions and notations.

An ideal Z on a set X is a collection of subsets of X such that (i) ¥ € Z and X ¢ 7,
() IfA,BeZ,then AUB € Z and (iii) If A C B and B € 7, then A € Z. Given an
ideal Z on X, the dual filter of Z, denoted Z*, is the collection of all sets X \ A with
A € T. We denote by Z* the collection of all subsets of X which do not belong to
Z. The ideal of all finite subsets of N is denoted by FIN. We write A €* B if A\ B
is finite. There is a vast literature about ideals on countable sets (see for instance the
surveys [9] and [18]). Since the collection of finite subsets of X is a dense set in 2X,
there are no ideals containing [X]<® which are closed as subsets of 2X . An ideal 7
on N is F, if there is a countable collection of closed subsets K, € 2% such that
7T =Y, K. On the other hand, there are no G, ideals containing all finite sets. Thus
the simplest Borel ideals (containing all finite sets) have complexity Fy .

A family A (not necessarily an ideal) of subsets of X is rall, if every infinite subset
of X contains an infinite subset that belongs to A. A tall family A admits a Borel
selector, if there is a Borel function S : [X]¥ — [X]® such that S(E) € E and
S(E) € Aforall E.

A coloring is a function ¢ : [X 1? — 2, where [X]? is the collection of two ele-
ments subsets of X. A set H C X is c-homogeneous, if ¢ is constant in [ H ]2. We
denote by hom(c) the collection of homogeneous sets and by Hom(c) the ideal gen-
erated by the c-homogeneous sets, that is, A € Hom(c) iff there are c-homogeneous
sets Hy,---, H, such that A € H; U --- U H,. Since the singletons are trivially
c-homogeneous sets, [X]=“ € Hom(c), for every coloring c. It is easy to check
that Hom(c) is F, and, by Ramsey’s theorem, Hom/(c) is tall. For some colorings c,
Hom(c) is trivial. For example, if ¢ satisfies that there are no infinitely many maxi-
mal 0-homogeneous sets, say Hj, - -- , H, are the maximal O-homogeneous sets, then
Hom(c) is trivial. In fact, let x, y ¢ H; U --- U H,,. Then necessarily c{x, y} = 1
(otherwise there is i such that x,y € H;). Thatis, L = N\(H; U ---U Hy) is
1-homogeneous. Hence N is the union of finitely many homogeneous sets. The col-
lection of homogeneous sets is a typical example of a tall family that has a Borel
selector (see [7]).

A function ¢ : P(N) — [0, oo] is a lower semicontinuous submeasure (lscsm) if
@) =0,9(A) < (AU B) < ¢(A) + ¢(B), p({n}) < oo for all n and p(A) =
lim, 00 p(ANA{O0, 1, -, n}).

Three ideals associated to a Iscsm are the following:

FIN(p) ={ACN:¢p(A) < o}.
Exh(p) ={A CN:lim,@p(A\{0,1,...,n}) =0}
Sum(p) ={ACN:Y  _,0(n}) < oo}
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Notice that Sum(gp) € Exh(p) C FIN(¢). These ideals have been extensively inves-
tigated. The work of Farah [4] and Solecki [16] are two of the most important early
works for the study of the ideals associated to submeasures.

Anideal 7 is a P-ideal if for every sequence (A;), of sets in Z there is A € 7 such
that A, \ A is finite for all n. The following representation of analytic P-ideals is the
most fundamental result about them. It says that any P-ideal is in a sense similar to a
density ideal.

Theorem 2.1 (S. Solecki [16]) Let Z be an analytic ideal on N. The following are
equivalent:

(i) I is a P-ideal.
(ii) There is a Iscsm ¢ such that T = Exh(¢). Moreover, there is such ¢ bounded.

In particular, every analytic P-ideal is Fys5. Moreover, L is an Fy P-ideal, if, and only
if, there is a Iscsm ¢ such that T = Exh(¢) = FIN(¢).

2.1 Integer valued submeasures

F, ideals are precisely the ideals of the form FIN(¢) for some Iscsm ¢. We recall this
result to point out that such ¢ can have an extra property, which we use later in our
discussion of pathology of submeasures.

We say that a Iscsm ¢ is integer-valued if it takes values in N U{oco} and ¢(N) = oo.

Theorem 2.2 (Mazur [14]) For each Fy ideal T on N, there is an integer-valued lscsm
¢ such that I = FIN(p). Moreover, there is such ¢ satisfying that ¢ ({n}) = 1 for all
neNlN.

Proof We include a sketch in order to verify the last claim. Let (KC,),, be a collection of
closed hereditary subsets of 2N such that K, € Knt1,AUB € K41 forall A, B € I,
and Z = J, K. We can assume that Ko = {/J}, and since {{n} : n € N}U{#}isa
closed subset of 2, we can assume that {n} € K; for all n € N. Then the submeasure
associated to (K,)), is given by ¢(A) = minfn e N: A € K,;},if 0 # A € Z, and
¢(A) = oo, otherwise. O

We now highlight two relevant properties of integer-valued submeasures.

Proposition 2.3 Letr ¢ be an unbounded integer-valued lscsm such that ({x}) = 1
forall x € N. Then

(i) Everyn € N belongs to the range of ¢.
(ii) For every integer k > 2, there is a finite set B such that ¢(B) = k and ¢(C) < k
forall C C B withC # B.

Proof (i) Supposenotandletn = min(N \range(g)). Since ¢(N) = oo, by the lower
semicontinuity there is a finite set A such that ¢(A) = min{e(B) : n < ¢(B)}.
Let m = ¢(A). We can also assume that A is C-minimal with that property, that
is, o(B) < nforall B C A with B # A.Letx € A, then

P(A) <A\ {xD) +o(x}) <n+1=m,
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a contradiction.
(i1) By (i) there is a C-minimal finite set B such that ¢(B) = k.

3 Pathology of submeasures

The ideal Sum(g) is also induced by a measure determined by its values on singletons.
Namely, 1, (A) = ZnGA @({n}) is a measure and Sum(g) = FIN(uy) = Exh(uy).
These ideals are the most well-behaved among F,; or P-ideals. Several good properties
of summable ideals are shared by the larger class of nonpathological ideals. We say
that u is dominated by ¢, if u(A) < @(A) for all A, in this case, we write u© < ¢.
A lscsm ¢ is nonpathological if it is the supremmum of all (o -additive) measures
dominated by ¢. A quite relevant application of this kind of submeasures was Farah’s
proof that Exh(¢) has the Radon-Nikodym property if ¢ is nonpathological [4]. So
far, nonpathology has been considered a property only about submeasures, we extend
it to ideals as follows.

Definition 3.1 We say that an F;; ideal 7 is nonpathological if there is a nonpatholog-
ical Iscsm ¢ such that Z = FIN(¢).

We show examples of ideals induced by both, a pathological and a nonpathological
submeasure. The following proposition gives us a criterion for showing that an integer-
valued submeasure is pathological.

Proposition 3.2 Let ¢ be an integer valued Iscsm on a set X. Suppose there is a finite
set A C X with |A| > 2 such that p(A \ {x}) < ¢(A) forall x € A and p(A) < |A]|.
Then ¢ is pathological.

Proof Suppose ¢ is nonpathological. Let m = |A| and x9 € A be such that ¢(A \
{xo}) = max{p(A \ {x}) : x € A}. Since ¢ takes integer values and ¢(A)/m < 1,
o(A\ {x0}) + (A)/m < ¢(A). Pick a measure u < ¢ such that

(AN {xo}) +9(A)/m < n(A) < @(A).

There is y € A such that u({y}) < ¢(A)/m. Then

(AN {y}) = n(A) — u({y) = n(Ad) —e(A)/m > p(A\ {x0}) = ¢(A\ {y}),

which contradicts that . < ¢. O

Now we present a very elementary example of a pathological lscsm.

Example 3.3 Let ¢ be the Iscsm defined on {0, 1,2} by ¢(@) = 0, p(a) = 1if 0 <
la] < 2 and ¢({0, 1,2}) = 2. Then ¢ is the minimal example of a pathological
integer-valued submeasure on a finite set, where singletons have submeasure 1.

By elementary reasons, all F,; ideals and all analytic P-ideals can be induced by a
pathological Iscsm, as the following proposition shows.
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Proposition 3.4 Let ¢ be any Iscsm on N. There is a pathological Iscsm W such that
FIN(¢) = FIN(Y¥) and Exh(¢) = Exh(y).

Proof Let ¢ be the submeasure on {0, 1, 2} defined in Example 3.3. Let
V(A) = ¢o(AN{0, 1,2}) + ¢(A\ {0, 1, 2}).

Y is pathological, as ¢ [ {0, 1,2} = ¢g. Clearly 1 works.

Now we present an example of a pathological Iscsm ¢ and a nonpathological Iscsm
Y such that FIN(¢) = FIN(y) and FIN(p) is tall.

Example 3.5 Let (By,), be a partition of N into infinite sets. The ideal £D is defined
as the ideal generated by pieces and selectors of the partition (Bj,),. Let K¢ be the set
{#} and

Kiy={H CN:HC B, forsomen} U{H C N: H is a partial selector for (B,),}
Then K is closed hereditary and £D is the ideal generated by K;. Let
Knt1 ={HU---UH,41 : Hi e K, forl <i <n+1}.

Let ¢ be the Mazur’s submeasure defined in the proof of Theorem 2.2 for this family
of closed hereditary sets. Clearly £D = FIN(¢). We use Proposition 3.2 to show that
¢ is pathological. Pick a set A = {x1, x2, x3} such that x; € By and x,x3 € Bj.
Notice that ¢(A) =2 and p(A \ {y}) = 1 forall y € A.

Consider the submeasure on N given by

Y (A) =min{m € N: (Vn > m)|AN B,| < m}.
It is easy to see that FIN(y) = £D. Now, let us consider the family
S={ul:neN Fe[B,]")

where, for each n and F, u,f is the counting measure supported on F. Note that
Y (A) = sup{u(A) : u € S}, since for every A and every m the following conditions
are equivalent:

e Foralln >m,|AN B,| <m,and
e Foralln,and all F € [B,]"*!, uf(A) <m.

Hence, v is nonpathological.

For the sake of completeness, we mention that both submeasures ¢ and v from the
previous example remain pathological and nonpathological respectively, when they
are restricted to A = | J,, Cp,, where each C, is a fixed subset of B, with cardinality
n+1.ED s, denotes the restriction of ED to A. It is immediate to see that, in general,
every restriction of a nonpathological submeasure is nonpathological, while some
restrictions of pathological submeasures are nonpathological.
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3.1 Degrees of pathology

Farah’s approach to pathology of submeasures on N includes a concept of degree of
pathology [4]. Associated to each Iscsm ¢, there is another Iscsm ¢, defined as follows.

©(A) = sup{u(A) : 1 is a measure dominated by ¢},

for all A € N. Clearly ¢ is the maximal nonpathological submeasure dominated by
®.

The degree of pathology, which measures how far is a submeasure from being
nonpathological, is defined by

oy

P(p) = c0(A) A0 & A €FIN} .
@ Sup{a(A) Y(A) # c }

Note that P(¢) = 1 if and only if ¢ is nonpathological. Moreover, if P(¢) = N < 0o
then FIN(¢) is equal to FIN() for some nonpathological submeasure ¥ : In fact, we
have that ¢ < ¢ < N@, thus FIN(@) 2 FIN(p) 2 FIN(N@), and clearly FIN(p) =
FIN(N@). Let us note that for every F, ideal Z and every n > 1, there is a Iscsm ¢
such that Z = FIN(¢) and P(¢) > n. In fact, if Z = FIN(¢') is nonpathological, we
can modify ¢’, as we did in the proof of Proposition 3.4, by inserting a copy of the
submeasure v, defined in Sect. 3.2.1. This proves that some nonpathological ideals
may be defined by submeasures having arbitrarily large finite degrees of pathology.
Moreover, if ¢’ is an arbitrary (in particular for nonpathological) submeasure and A is
an infinite set such that ¢’ (A) < oo, we can modify ¢’ by taking a submeasure v on A
with P () = oo and ¥ (A) = ¢'(A), and define ¢ (B) = max{y/(BN A), ¢'(B\ A)}.
Hence FIN(¢) = FIN(¢’) but P(¢) = oo. This construction proves that every F, ideal
properly containing FIN is induced by a submeasure with infinite degree of pathology.
However, this construction encapsulates the pathological part of the submeasure in a
small set, what lefts the following question open.

Question 3.6 Is there a nonpathological Fy ideal T for which there is a Iscsm ¢ such
that T = FIN(¢), P(¢) = ocoand P(¢ | A) < 00, forall A € I?

In light of the notion of degree of pathology, we can see that an F, ideal 7 is
pathological if and only if P(¢) = oo whenever ¢ is a Iscsm such that FIN(¢) = Z.
In the next section we present an example of a pathological F, ideal, as a particular
case of a general method of constructing pathological F, ideals.

3.2 Examples of pathological ideals

K. Mazur constructed an F, ideal which is not contained in any summable ideal [14].
We show in this section that a variation of Mazur’s construction produces F, ideals
which are not contained in any nonpathological ideal.

We need the concept of a covering number similar to the one defined by J. Kelley
[13]. Given a finite set K, a covering S of K and an element i € K, B(i) denotes
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the cardinality of {s € S : i € s} and m(K, S) denotes the minimum of all B(i) for
i € K. The covering number of S in K is defined by

m(K,S)

5(K,S) = S|

Lemma 3.7 Let K be a finite set and S a covering of K. If w is a probability measure
on K, then there is s € S such that t(s) > §(K, S).

Proof Let us note that

Y o) =) BOi)n(i}) =mK, 8y x(li}) =m(K,S).

seS iekK iek

Therefore, there is s € S such that 7 (s) > %ls) =4§(K,S). O

An interval partition of N is a family {I, : n € N} of intervals of N such that
min Ip = 0 and min /,,;; = max I, + 1. The next theorem is about submeasures
defined using an interval partition, but it can be stated in terms of a family of pairwise
disjoint finite sets which covers a given countable set.

Theorem 3.8 Let ¢ be a lscsm on N such that there is M > 0 and an interval partition
{1, : n € N} satisfying

e the family B={A C N: ¢p(A) < M} covers N,
e sup, ¢(I,) = oo, and
e ¢(B) =sup{e(BNI,):neN} forall B CN.

Let S, be a subfamily of P(I,) N B such that S, covers I,, €, = §(I,,S,) and
6 =infle, :n e N}L. If§ > O, then

(i) @ is bounded,

(ii) P(p) = oo,
(iii) FIN(@) is not contained in any nontrivial nonpathological Fy ideal, and
(iv) FIN(@) is a pathological Fy ideal.

Proof Note that (ii) follows immediately from (i), and (iv) follows from (iii). Let us

prove (i). Let u be a finitely supported measure dominated by ¢. Then there are:

1. afinite set F C N,
2. aprobability measure 7; on I}, for each j € F, and
3. Aj >Oforeach j € F

such that the support of  is contained in UjeF Ijandp [ Ij = Ajm;. By Lemma3.7,

there is s; in S; such that 77 (s;) > €;. Then,

O<82Aj§2kj6j§2)»jﬂj(é‘j)=,u USj <@ Usj <M.

jeF jeF jeF jeF jeF
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Hence} ;. pj < %.Since,u (UjeF Ij) =2 jer Mjmij) = 3 cp Aj,itfollows
that p is bounded by %. Since M and § do not depend on u, we are done.

For (iii), we will prove that if 1 = sup M for some family M of measures, and it
is nontrivial in the sense that FIN(y/) % P(N), then there is a set B € FIN(¢) which is
not in FIN(y). For each n > 0, define k, € N recursively: kg = 0 and

kpr1=mini j >k, : ¢ U Ii| >n

ky<i<j

Notice that k, 41 is well defined since szm I; ¢ FIN(3) for all m. Let us pick a
measure i, € R such that

knJrl_l

Hn U Ij | =n.

j:kn

By Lemma 3.7, for each k,, < j < k41, there is s; € S; such that (u, [ 1;)(sj) >
8 (1;). Let us define B, = UI;Q/:,,_I sj. Hence,

kn1—1 kny1—1
V(B = pn (By) = Y Sun(Ip) =dpn | | Ij | = on.
j:kn .i:kn

On the other hand, ¢(B,) < M. Hence B = | By, is in FIN(¢) and is not in FIN(y/).
O

3.2.1 Mazur’s example

We present an example of a pathological ideal using Theorem 3.8. Consider the fol-
lowing families of sets:

e Let K ,,Abe the set of all functions frqm ntom = 2n, and
e 5, ={i:i=0,...,m—1}wherei ={f € K, :i ¢ range(f)}.

Note that for eachn > 1, S, is a covering of K, and no subset of S,, with at most n
sets is a covering of K,,. Moreover, every f : n — m avoids at least n values in m. That
proves that m(K,, S;) = n, and since |S,,| = m, we have that ¢, = §(K,, S;) = %
Let ¢, be the subsmeasure on K, defined by

Y (A) = min {r :3be[m]"AC U; ,
ieb

forall A € K,,. By identifying the sets K,, with members of the corresponding interval
partition, we can define the Iscsm i by

¥ (A) = sup{y» (AN Ky,) :n € Nj.
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Hence, we have that ¥ (K,) = n + 1 and the family B = {A C N : ¢/(A) < l}isa
covering of N. By Theorem 3.8, M = FIN(v) is a pathological ideal. For the sake of

completeness, let us note that P (yr,) = %

3.3 Submeasures with infinite pathological degree

In this section we present a sufficient condition for a submeasure to have infinite
pathological degree.

Theorem 3.9 Let ¢ be an unbounded Iscsm on N. Suppose there is M > 0 such that
the family

B={ACN:¢(A) <M}

is a covering of N. Let {K, : n € N} be a strictly increasing sequence of finite sets
such that | J K, = N and S, a subfamily of P(K,) N B such that S, covers K,. Let
8, =8(K,,S,) and 8 = inf{s, : n € N}. If§ > 0, then @ is bounded and P (@) = cc.

Proof Note that it is enough to prove that there is a uniform bound for all measures
dominated by ¢. Let x be a finitely supported measure dominated by ¢. Then, there
are:

l.neN,
2. aprobability measure 7 on K,,, and
3.4>0

such that the support of u is contained in K,, and u = Aw. By Lemma 3.7, there is s
in S, such that 7 (s) > §,.. Thus,

0 <A =Ady < Am(s) = pu(s) < g(s) =M.

Hence A < % Since u(K,) = Ar(K,) = A, it follows that u is bounded by %. Since
M and § do not depend from n, we are done. O

We remark that the collection B mentioned above is a covering of N iff {n} € B for
all n € N. This requirement is easy to satisfy, for instance it holds if FIN(¢) is tall.

It remains open the following question:

Question 3.10 Let ¢ be a Iscsm on N and (K, Sy), and B as in the hypothesis of
Theorem 3.9. Suppose @ is bounded, is § > 0? If § = 0, is FIN(¢) nonpathological?

The calculation of § for a given submeasure may not be easy to do. In the next section
we present two examples illustrating this computation. However, we can naturally
associate sequences (K,), and (S,), to every Iscsm given by Theorem 2.2 and thus,
in principle, we can calculate the corresponding é.
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3.3.1 Solecki’s ideal

The ideal S is defined [17] on the countable set €2 of all clopen subsets of the Cantor
set 2V whose measure! is equal to % and it is generated by the sets of the form
E,={aeQ:xealforx e 2N Hrugdk’s Measure Dichotomy [10] establishes that
any pathological analytic P-ideal has a restrictions to a positive set which is Katétov
above S. Solecki’s ideal is critical for the class of analytic P-ideals but is not a P-ideal.
It is a tall F,; ideal but we do not know if it is pathological, although, we show below
that there is a Iscsm x such that S = FIN(y) with P(x) = oo.
Consider a Iscsm x on 2 given by

x(A) =min{n: Ixy, -+ ,x, €2, ACE, U---UE,}.

Itis clear that S = FIN(x). We will show that it satisfies the hypothesis of Theorem 3.9
and therefore P(x) = oo.

Let us denote by (s) the clopen set {x € 2N s C x), fors € 2<°. For everyn > 1,
we define

Qn=1{beQ: (Vs €2 ((s) Chor(s)Nb =)

Notice that €2, is an increasing sequence of sets whose union is equal to €2: Let
a € €2, since a is a compact set, select a finite covering {(c1), ... (c;)} of a with
1, ... € 2= Letn be the length of the longest c;. Then a € €,,.

For a given s € 2", lets = {b € Q, : (s) C b} and S, be the family {5 : s € 2"}.
Note that x(s) = 1 for all s. Moreover, x(A) = min{k : 3sy,...,50 € 2" : A C
UL, &), forall A € Q,.

Note that for every B € [2"]*", Usep § # Qn, while for every C € [2n2" 1+
Usec § = Q. Thus x(2,) = 2"=1 1 1. Also note that each a € Q, belongs exactly
to 27~1 many sets in S,,. Thus, §(€2,,, Sp) = % for all n.

3.3.2 Theideal £Dg,

Recall that in Example 3.5 we show that £Df;, = FIN(¢) where ¢ is defined on
A =, Cu, where C, is a subset of B, of size n + 1, and is given by ¢(A) =
sup{un(A N C,) : n € N} for u, the counting measure on C,. Consider

o K, :Uan Cy,
o S0 ={Co}and Spy1 ={sU{j}:5 €Sy & j € Cpt1}

for all n. Notice that |S,,| = (n + 1)!
In Example 3.5 we have shown that ¢ is non pathological, i.e. P(¢) = 1. On the
other hand, we show next that §, = §(K,, S,) = n+-1’ foralln > 1. Let k < n and

i, j € Cg.lItis easy to verify that B(i) = B(j) = (n+ 1)!/k, i.e. i belongs to as many

elements of S, as j does. Thus §(K,, S;) = ﬁ

! The measure considered here is the product measure of 2N where 2 is equipped with its uniform probability
measure.
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3.4 Degrees of pathology and Rudin—-Keisler order
For a given ideal 7 and a function f : N — N, an ideal f(7) is defined as follows:

f)={ACN: f7lA) e J).

An ideal 7 is said to be Rudin—Keisler below J if Z = f(J) for some f, denoted
7 <gk J and f is called a Rudin—Keisler reduction of 7 in Z. The Katétov order
is defined by Z <k J if Z C 7' for some I’ <gpg J. The analytic P-ideals have an
elegant classification in the Katétov order, given by the Hrusak’s Measure Dichotomy
(Theorem 4.1 in [10]). Such classification uses the degrees of pathology.

We now show how Rudin—Keisler order impacts on degrees of pathology.

Lemma3.11 Let I and J be Fy ideals, ¢ a lscsm such that J = FIN(¢) and f a
Rudin—Keisler reduction of J in L. Let ¢y be defined by

pr(A) =o(f1(A)

forall A C N. Then, the following hold.

1. ¢yisalscsmand 1 = FIN(¢y),

2. if ¢ is a measure then @y is also a measure,

3. if v is a measure dominated by ¢ then vy is a measure dominated by ¢,
4. forall ACN, ¢7(A) > o(f~1(A)), and

5. P(gy) = P(9).

Proof (1)—(3)areroutine. For (4),@ (A) = sup{v(A) : v is a measure dominated by ¢ 1}
> sup{u s (A) : u is a measure dominated by ¢} = sup{e(f~1(A)) : u is a measure
dominated by ¢} = @(f~'(A)), for all A C N. For (5) we use (4) to argue that for
allA CN,

or(A) _e(f71A) _
gr(A) ~ o(f 1 (A) ©

P(¢p).

Hence, P(¢yr) < P(p). O

Theorem 3.12 Let Z and J be Fy ideals suchthat T <gx J.If J is nonpathological
then T is nonpathological.

Proof 1t follows immediately from Lemma 3.11 and the fact that an ideal is non
pathological if it has a submeasure with finite pathological degree. O

Recently, Figueroa and Hrusak [5] proved that nonpathological F,; ideals (and every
restriction of them) are Katetov-below Z, the ideal of asymptotic density zero sets.
This implies that S is pathological. However we do not know if S plays a critical role
among pathological F,; ideals in Katetov or Rudin—Keisler orders.

Question 3.13 How is S related (Katétov, Rudin—Keisler) with pathological F; ide-
als?
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As we show next, Mazur’s ideal M defined in Sect. 3.2.1 confirms the critical role
played by Solecki’s ideal S in the Katétov order for the collection of pathological
ideals.

Theorem 3.14 There is an M-positive set X such that S <gx M | X

Proof Recall that K,, is the collection of all functions from n to 2n and S,, = {f :
i =0,....,m —1}. Let X, (n > 0) be the set of all one-to-one functions in K,
and X = (J, X2». Note that X is M-positive since X N K»» cannot be covered
by less or equal than 2" members of Sy», for all n. For each n, fix an enumeration
{sg. s, .... 55 _,} of 2". The Rudin-Keisler reduction f from X to € works as
follows. If r € X»n then

2"—1

) =2\ U {575y

Note that f(r) € 2.

We show first, that if A € Sthen f~1(A) € M | X.Suppose A = {a € Q : x € a}
for some x € 2. Then foralln, AN, = {a € Q, : (x [ n) C a}, but for some
jn € {0,...,2" — 1} it happens that x [ n = s . Hence f~ 1(A) N X, is the set
jn=1{r € X : jn & range(r)}, what proves that w(f LA) = 1.

On the other hand, suppose that f~!(A) € M. Then there exists N such that for
all n, there is J, e [2"1V such that r N J, = @ forall r € f~1(A) N Kau. Thus for all

n there are cj , ]2 ..,c;?N € 2" such that (¢ ) C AN, forsomei =1, ,N.
Hence, x (f~ 1(A)) < N, what proves that A e S. O

4 Tallness and Borel selectors

In this section we address the question of the tallness of FIN(¢). As a first remark, we
notice that there is a simple characterization of when Exh(g) is tall. In fact, Exh(g) is
tall iff Sum(y) is tall iff ¢ ({n}) — 0. Indeed,if weletC,, = {x e N: 27" < po({x})},
then Exh(g) is tall iff each C,, is finite. Notice also that FIN(¢) is tall, whenever Exh(¢)
istall, as Exh(¢) C FIN(¢). But the converse is not true, that is, it is possible that FIN(¢)
is tall while Sum(¢) and Exh(¢) are not (see Example 4.3).

On the other hand, Grebik and Hrusdk [6] showed that there are no simple char-
acterizations of the class of tall F, ideals, in fact, they showed that the collection of
closed subsets of 21 which generates an F, tall ideal is not Borel as a subset of the
hyperspace K (2V).

4.1 Property A and ideals generated by homogeneous sets of a coloring
In this section we are going to examine two very different conditions implying tallness

of an F, ideal. We introduce a property weaker than requiring that lim, ¢({rn}) = 0
but which suffices to get that FIN(¢) is tall.
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Definition 4.1 A lscsm ¢ on Nhas property A, if p(N) = coand p({n € N : ¢({n}) >
e}) <ooforalle > 0.

Property A can be seen as a condition about the convergence of (¢({n})), to 0, but
in a weak sense. In fact, let us recall that for a given filter F on N, a sequence (r;,),, of
real numbers F-converges to 0, if {n € N : |r,| < ¢} € F for all ¢ > 0. Let F be the
dual filter of FIN(¢). Then ¢ has property A iff (¢({n})), F-converges to 0.

On the other hand, property A has also a different interpretation. We recall that an
ideal Z over N is weakly selective [11], if given a positive set A € Z* and a partition
(A,), of A into sets in Z, there is S € Z7 such that S N A, has at most one point
for each n. A submeasure ¢ has property A, if FIN(¢) fails to be weakly selective
in the following partition of N: 4,11 = {x € N : 1/2"*! < ¢({x}) < 1/2"} and
Ag={x e N: 1 < @p({x})}. In fact, any selector for {A, : n € N} belongs to Exh(¢)
and thus to FIN(¢).

Proposition 4.2 FIN(y) is tall for all Iscsm ¢ with property A.

Proof Let A C N be an infinite set. If there is ¢ > O such that A € {n € N :
¢({n}) > €}, then A € FIN(¢p) as ¢ has property A. Otherwise, pick n; € A such that
o({ng}) <2 ¥ forallk € N.Let B = {ny : k € N}. Then ¢(B) < > e({n}) < oo.

O

Note that any integer valued Iscsm fails to have the property A. Thus, every F, tall
ideal Z is induced by a Iscsm ¢ without the property A (for example, the one given
by the proof of Mazur’s theorem applied to 7).

Now we present a natural construction of submeasures with property A. In partic-
ular, it provides a Iscsm ¢ such that FIN(¢) is tall but ¢({rn}) /4 0.

Example 4.3 Let {B,, : n € N} be a partition of N into infinite sets and {B,’f 1k € N}
be a partition of B,, satisfying:

° B,? consists of the first 2" (n + 1) elements of B),.
e min B¥*! = min{x € B, : x > max BX}.
e |By'[ =Byl

Let vX be the measure on B¥ given by vk ({x}) = % for all x € BX. Let

k
¢n = SUpVy,
k

and
=) ¢n
n

Then ¢ is a nonpathological Iscsm. We list some useful facts about this construction.

1. ¢(By) = ¢(B*) = n+ 1 for all n and k.
2. Let (n;); and (k;); two sequences in N. Suppose (n;); is increasing. Then

o(U; Bi) = oc.
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3. ¢ has property A. Let ¢ > Oand M, = {x € N : ¢({x}) > ¢}. Notice that
u,’i({x}) < zln for all x € B,’;. Let N be such that 27V < ¢, then M, is disjoint
from By, for all m > N and thus My C By U --- U By belongs to FIN(¢).

4. FIN(¢) is not a P-ideal. In fact, the P-property fails at (B,),. Indeed, let us suppose
that B,, C* X for all n. Then for each n there is k,, such that B,]f" C X, and thus
U, Bi" € X.By (2). X ¢ FIN(¢).

5. Every selector of the B,,’s belongs to Sum(¢).

6. B, € FIN(¢) \ Exh(¢) for all n.

Now we present two particular examples of the previous general construction.

(a) Suppose |B,/f+1| = |B,’,‘| for all n and k. Notice that v,’i({x}) = % = 1/2" for all
x € By. Thus ¢({x}) = 1/2" for all x € B,, and lim,, ¢({n}) does not exist. Then
Sum(gp) and Exh(p) are not tall, but FIN(¢) is tall since it has the property A.

(b) Suppose |BX!| = |BX| +n+1 = (n+1)(2" +k). Then v¥({x}) = ﬁ = g
forall x € Bﬁ. We show that ¢({m}) — 0, when m — oo. Given ¢ > 0, we have
seen that M, = {x € N : ¢({x}) > ¢} is disjoint from B,, for all m > N when
2=N < ¢, and it is also disjoint from B,’f when k~! < ¢. Hence M, is finite.

We claim that Sum(¢) # Exh(¢) # FIN(¢). By (4) and (6), it is sufficient to prove
that there is X € Exh(g) \ Sum(g). For a fixed n, let X = {x; : k € N} be such

that x; € Bf. Since ¢({xt}) = 5 for all k, X ¢ Sum(g). On the other hand,
o({xx : k = m}) = 5— — 0 whenm — oo.

In both examples (a) and (b), ¢ is a nonpathological submeasure since it can be
expressed as sup{us : s € N=“}, where p; is defined by

us() =y v (DB

j<ls|
fors e N*“ and D € N.

Now we present some examples of tall ideals which do not contain FIN(¢) for any
¢ with property A. Our examples are motivated by Ramsey’s theorem. We refer the
reader to Sect. 2 where the notation is explained and to [7] for more information about
this type of ideals

We say that a coloring ¢ : [X]> — 2 favors color i, if there are no infinite
(1 — i)-homogeneous sets and in every set belonging to Hom/(c)* there are (1 — i)-
homogeneous sets of any finite cardinality.

Proposition 4.4 Let ¢ : [X]*> — 2 be a coloring that favors a color. Then, Hom(c)
does not contain FIN(¢) for any Iscsm ¢ with property A.

Proof Suppose ¢ favors color 0. Let ¢ be an arbitrary Iscsm on X with property A
and suppose that FIN(p) € Hom(c). We will construct a set A in Hom(c)* with
¢(A) < oo, which is a contradiction. Let B, = {x € N: 27" < ¢({x})} for each
n € N. As ¢ has property A, B, € FIN(¢) and N\B,, € Hom(c)*. By hypothesis,
for each n € N, there is a I-homogeneous finite set A, with n elements and such that
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Ay, N B, = . Since p(Ap) < 57, A = U, An € FIN(p). As FIN(9) € Hom(c),
there is a finite union of 0-homogeneous sets C = C{ U --- U Cy such that A C* C.
As A is infinite, there is I > k such that A; C C. Since A; has [ elements, there are
i <kandx # y € A; N C; which is imposible as A; is 1-homogeneous and C; is

0-homogeneous. A contradiction. O

We present two examples of colorings satisfying the hypothesis of the previous
proposition.

Example 4.5 Let (P,), be a partition of N such that | P,| = n. Let ¢ be the coloring
given by c{x, y} = 0iff x, y € P, for some n. This coloring favors color 1. Notice
that £D f;,, is the ideal generated by the c-homogeneous sets.

Example 4.6 Let QQ be the rational numbers in [0, 1]. Let {r, : n € N} be an enumera-
tion of Q. The Sierpinski coloring, ¢ : [Q]? — 2, is defined by c{rp, rm} =0ifn < m
iff r, < rp,. Denote by S7 the ideal generated by the c-homogeneous sets. Observe
that the homogeneous sets are exactly the monotone subsequences of {r, : n € N}.
For each n, pick X;, € (n,n + 1) an infinite homogeneous set of color 0 and let
X =, X,.Then X € Hom (c)T. Itis easy to check that ¢ | X favors color 0.

To see that Proposition 4.4 is not an equivalence, we notice that £D is the ideal
generated by the homogeneous sets of a coloring not favoring any color, nevertheless,
by an argument similar to that used in the proof of Proposition 4.4, it can be shown
that £D does not contain FIN(¢) for any Iscsm ¢ with property A.

4.2 Katetov reductionto R

Recall that R denotes the random ideal which is generated by the collection of cliques
and independent sets of the random graph. It is easy to check that if R <x Z, then Z
is tall. As we said before, for a while it was conjecture that any Borel tall ideal was
Katetov above R. This was shown to be false in [6]. In fact, they proved that there are
F, tall ideals which are not Katetov above the random ideal. In this section we present
a partial answer to the question of whether R <k 7 for a nonpathological tall ideal Z.

By the universal property of the random graph the following well known fact is
straightforward.

Proposition 4.7 Let 7 be an ideal on N. Then, R <k 7 if and only if there is c :
[N]?2 — 2 such that hom(c) C T.

The next fact illustrates the previous observation.
Proposition 4.8 R <k FIN(¢) for all Iscsm ¢ with property A.
Proof Let

Bipi={neN: 2751 <g(np <279

fork e N, By ={n € N: ¢({n}) > 1} and B_; = {n € N : ¢({n}) = 0}. Let
¢ : [N]*> = {0, 1} be the coloring associated to the partition {B; : k € NU{—1}},
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that is to say, c({n, m}) = 1 if, and only if, there is k such that n,m € Bi. Then
A € hom(c) iff A C By, for some k € NU{—1} or |A N By| < 1 for all k. Notice
that B_1 € FIN(¢) and the argument used in the proof of Proposition 4.2 shows that
hom(c) € FIN(p). O

The next definition was motivated by the results presented in the last section about
a representation of F; ideals in Banach spaces.

Definition 4.9 A sequence of measures (uy)r on N is of type ¢ if limg ux({n}) =0
for all n.

The main result of this section is the following:

Theorem 4.10 Let ¢ = sup;, i be a nonpathological Iscsm where (jui )k is a sequence
of measures on N of type co. The following are equivalent.

(i) R =k FIN(p).

(ii) FIN(@) is tall.
(iii) lim, pux({n}) = O for all k and sup,, ¢({n}) < oo.

For the proof we need some auxiliary results. Let (u)x be a sequence of measures
on N such that pux({n}) < 1forall n and k. For n,i € N, let

AP = {k eN: 27 <)) < 2*"} and A", = {k e N: p({n}) = 0}.
(D

Each P, = {A} : i € NU{oo}} is a partition of N (allowing that some pieces of a
partition are empty). Let L, = {i € N: A # (}. We now show that, without loss of
generality, we can assume that each L, is finite.

Lemma4.11 Let ¢ = sup; i be a nonpathological lscsm where (juy )k is a sequence
of measures on N such that uy({n}) < 1 for all n and k. There is another sequence of
measures (Ay)r on N such that

(i) Ak < g forall k.

(ii) FIN(¢) = FIN(y) where Y = sup;, A.
(iii) If (Py)n is the sequence of partitions associated to (Ay)i, then each Ly, is finite.

Proof Let Ay ({n}) =i/2",ifi/2" < ur({n}) < (i +1)/2" for some 0 < i < 2", and
Ak ({n}) = 0 otherwise. Let ¥ = supy, Ax. Clearly Ay < pug. Thus FIN(¢) € FIN(y).
Notice that |ur({n}) — Ax({n})| < 1/2" for all n and k. Let F C N be a finite set.
Then

i (F) = (i (F) = A (F)) + A (F) =< Z 172" + ¢ (F).

neF

Thus FIN(¥) € FIN(p). Let {A? : i € NU{oo}} be the sequence of partitions
associate to (Ax)g. It is immediate that AY # @, only if i < n. O
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Lemma 4.12 Let ¢ = supy, i be a nonpathological Iscsm where each i is a measure
on N. If FIN(g) is tall, then lim, ux({n}) = 0 for all k and sup,, p({n}) < oo.

Proof For the first claim, fix k € N and consider B; = {n € N: uz({n}) > 1/i} for
i > 1. Suppose the conclusion is false. Then B; is infinite for some i. Since FIN(¢) is
tall, there is B € B; infinite such that ¢ (B) < oco. However, for every F C B finite
we have that |F|/i < ux(F) < ¢(F) < ¢(B), which contradicts that ¢ (B) < o0.
For the second claim, suppose it is false and let (ny); be an increasing sequence
in N such that k£ < ¢({ny}). Clearly every infinite subset of {n; : k € N} does not
belong to FIN(¢), which contradicts the tallness of FIN(¢). O

To each sequence of partitions P, = {A} : i € NU{oo}} of N we associate a
coloring ¢ : [N]? — 2 as follows: forn < m

o0
c{n,m) = 1iff (vi e N) | A" € A" U U ATl )
j=i41

Lemma 4.13 Let ¢ = sup; ux be a nonpathological Iscsm where (juy )k is a sequence
of measures on N such that ux({n}) < 1 for all n and k. Let {A} : i € NU{oo}},
for n € N, be the sequence of partitions associated to (i) and c be the associate
coloring. Every c-homogeneous infinite set of color 1 belongs to FIN(p).

Proof Let H = {n; : i € N} be the increasing enumeration of an infinite homoge-
neous set of color 1. We claim that for all k£ and m

e((no, -+ onwd) = {ni}) <2,

i=0

which implies that ¢(H) < 2. In fact, fix k and m. We can assume without loss of
generality that g ({n;}) # Oforalli < m.Foreachi < m,let j; be such thatk € A;l,'

Since H is 1-homogeneous and k € A'}g and k € A;'.I‘, we have jo < j;. In general,
we conclude that jo < j; < --- < jy. Thus

m o0 1
guk({ni}) <> o

i=0
O

Proof of Theorem 4.10 Clearly (i) implies (ii). Lemma 4.12 shows that (ii) implies (iii).

Suppose (iii) holds. Let M = sup,, ¢({n}). Using ur/M instead of px we can
assume that ux({n}) < 1 for all n and k. By Lemma 4.11, we can also assume that
the partition {A? : i € NU{oo}} associated to (u)x satisfies that L, = {i € N :
Al # (0} is finite for all n. Let ¢ be the coloring given by (2). We will show that
hom(c) € FIN(g), then (i) follows by Proposition 4.7. By Lemma 4.13, it suffices to
show that every infinite c-homogeneous set is of color 1. That is, we have to show that
for all n, there is m > n such that c¢{n, [} = 1 for all ] > m.
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Fix n € N. Since (u)i is of type cp, A} is finite for all i € N. Consider the
following set:

S={keN: w(n}) #0} = JIA] i € Ly).

As L, is finite, S is also finite. So, let iy be such that 279 < p({n}) for all k € S.
Since lim,, ux({m}) = 0 for all k, there is m > n such that

V1 > m)(Vk € S)( (1)) <2770).

That is to say, for all k € S and all [ > m, there j > ip so that k € Alj. Thus
c{n,l} = 1. O

4.3 Borel selectors

Recall that a tall family Z admits a Borel selector, if there is a Borel function F :
[N]® — [N]® such that F(A) € A and F(A) € Z for all A. This notion was studied
in [6-8]. In this section we analyze Borel selectors for nonpathological tall F,, ideals.

The typical examples of families with Borel selectors are the collection of homo-
geneous sets. For instance, R admits a Borel selector and thus if R <k Z, then Z has
a Borel selector. More generally, notice that if 7 <g J and Z has a Borel selector,
then so does 7. The collection of all K € K (2V) such that the ideal generated by K
has a Borel selector is a E; (see [7]), so it has the same complexity as the collection
of codes for F,, ideals which are Katétov above R [6]. We do not know an example
of an F, ideal admitting a Borel selector which is not Katétov above R. For concrete
examples of F, tall ideals without Borel selectors see [8].

Let Q,,, for each n € N, be a collection of pairwise disjoint subsets N, say Q,, =
{B}' : i € N}. The sequence (Q,), is eventually disjoint, if there is p € N such that
forall n #m

B! N B" =@, foralli > p. 3)

Theorem 4.14 Let ¢ = supy, pux where each iy is a measure on N such that i ({n}) <
1 for all n and k. Suppose the sequence of partitions associate to (L )k is eventually
disjoint. If FIN(g) is tall, then it has a Borel selector.

Proof We recall that the Schreier barrier is the following collection of finite subsets
of N:

S ={s € FIN: |s| = min(s) + 1}.
By the well known theorem of Nash-Williams [15], any coloring ¢ : & — 2 has
homogeneous sets. More precisely, for any N C N infinite, there is M € N infinite

such that for some i € {0, 1}, c(s) = i forevery s € [M]=? N S. As usual, we denote
by hom(c) the collection of all c-homogeneous sets. Moreover, hom(c) admits a Borel
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selector ([7, Corollary 3.8]). We will find a coloring ¢ of S such thathom(c) € FIN(¢)
and thus FIN(¢) also has a Borel selector.
Let p € N as in (3). Consider the following coloring S:

c({g,ny, - ,ng}) =1 iff thereis k € N such that ug({n;}) > 27P~lforall 1 < j<q.

We will show that hom(c) € FIN(¢p).

We first show that every infinite homogeneous set is of color 0. In fact, let A be
an infinite set. It suffices to find s € A with s € S of color 0. Since FIN(p) is tall,
we also assume that (A) < oo. Let ¢ € A be such that g277~! > ¢(A). Let
g <ny <---<ngin A, we claim that c({q, n1, - - - , ng}) = 0. In fact, suppose not,
and let k be such that u({n;}) > 27P=lforalll < Jj < q.Thus

q
@(A) = wrfn, -+ ng)) =Y unh) = 27771 > (A),
j=1

a contradiction.

To finish the proof, it suffices to show that every infinite homogeneous set H of
color 0 belongs to FIN(¢). Recall the definition of the partition P, associated to (uy)x:
Pn ={A} : i € NU{oo}} where each piece A is defined by (1).

Letg = min(H) and F € H \ {¢} be a finite set. For each k € N, let

Fr=1{neF: w(n)=2"""}.

Fix k € N. Since H is homogeneous of color 0, |Fi| < ¢g. Letn,m € F \ Fj with
n # m. Then ur({n}) < 277~ and px({m}) <277~ Thus k € AN AT for some
i, j > p and by (3), we have thati # j. Thus

Y minh) <D 1/2%

neF\Fy i>p

Then

e (Fy =Y () = Y un) + Y ulnd) <g+2.

neF neFy neF\Fy

As this holds for every k, we have that ¢ (H \ {¢}) < g + 2. Thus H € FIN(p). O

Proposition 4.15 Let Q,, for each n € N, be a collection of pairwise disjoint subsets
of N, say Q, = {B}' : i e N}. Let L, = {i € N: B' # (}. Suppose there is| € N
such that |L,| <l for every n. Then, there is an infinite set A C N such that (Qp)nea
is eventually disjoint.

Proof By induction on /. Suppose [ = 1. For each n let i, be such that Q, = {B]' }.
We consider two cases: (a) There is A C N infinite such that (i), <4 is constant. Then
(Qn)nea is eventually disjoint. (b) There is A € N such thati € A — i, is 1-1, then
(Qn)nea is eventually disjoint.
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Suppose it holds for any sequence of pairwise disjoint sets with at most / non empty
sets. Let @, = {B!' : i € N} be such that |L,| <[+ 1. Let i, = min(L,). There
are two cases to be considered. (a) Suppose sup,, i, = oo. Pick A = {ny : k € N}
such that max(L,,) < min(L,, ). Then (9, )ken is eventually disjoint. (b) There
is B C N infinite such that (i,),ep is constant. Let Q, = Q, \ {B;Z }. Then, we can
apply the inductive hypothesis to (Q),),ep and find A C B infinite such that (Q),),ea
is eventually disjoint. Then (Q,,),c4 is also eventually disjoint. O

From the previous result and Theorem 4.14 we have

Corollary 4.16 Let ¢ = supy, jux where each iy is a measure on N such that i ({n}) <
1 for all n and k. Let {A : i € N} U {AL } be the associated partitions and L, =
{i e N: A # @). Suppose there is | such that |L,| < [ for all n. If FIN(¢) is tall, then
it has a Borel selector.

The main open questions we have left are the following:

Question 4.17 Let I be nonpathological Fy tall ideal. Does R <k Z? Does I have
a Borel selector?

5 B-representable ideals

In this section we show how to represent F, ideals in a Banach space following the
ideas introduced in [2, 3]. We first start with the representation in Polish abelian groups
and later in Banach spaces.

Let (G, +, d) be a Polish abelian group. We emphasis that the metric d is part of
the definition. In fact the ideal associated to the group depends on the metric used.
Let x = (x,), be a sequence in G. We say that ), x, is unconditionally convergent,
if there is @ € G such that x5 ) + Xz (1) + - - + Xzu) — a for every permutation
m of N. We say that x is perfectly bounded, if there exists k > 0 such that for every
F € FIN

d (0, > xn> <k.
neF

We introduce two ideals. Given x = (x,), a sequence in G, let

C(x) = {A CN: Z Xp is unconditionally convergent}

neA
and
Bx) = {A CN: an is perfectly bounded } .
neA
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We observe that the ideal 3(x) depends on the metric of the group, not just on the
topology, as is the case for C(x).

An ideal 7 is Polish B-representable (resp. Polish C-representable) if there exists
a Polish abelian group G and a sequence X = (x,), in G such that Z = B(x) (resp.
7 = C(x)). Polish C-representable ideals were studied in [2]. As a consequence of
Solecki’s Theorem 2.1 they proved the following.

Theorem 5.1 (Borodulin et al [2]) An ideal T is Polish C-representable iff it is an
analytic P-ideal.

5.1 B-representability in Polish groups

Let G be a Polish abelian group, d a complete, translation invariant metric on G and
X = (x,), a sequence in G. We associate to x a Iscsm ¢y as follows: ¢x(2) = 0 and
if A # @ we let

ox(A) = sup {d (o, an) O £F € [A]<‘”} )

neF

We show that ¢y is indeed a Iscsm. From its definition, it is clear that ¢x(A) =
lim, oo ox(A N {0, 1,--- ,n}) for every A € N. Let A and B be finite disjoint
subsets of N. Then, by the translation invariance of d, we have

d(O, > x,,) =d(0,2xn+2xn) §d(0,2xn)—l—d(an,an—l—ZXn)

neAUB neA neB neA neA neA neB
=d (0, Zx) +d (0, Zx) :
neA neB

Let A, B be arbitrary subsets of N, and ¢ > 0. Take a finite subset F' of AU B such

that d(0, ), xn) = ¢x(AU B) — . Since d(0, )", g Xxn) < d(0,),cpnaXn) +
d(o, ZneF\A Xn) < ¢x(A) + ¢x(B), it follows that ¢y is subadditive and thus is a
Iscsm.

Lemma5.2 Let G be a Polish abelian group and x = (x,), a sequence in G. Then
B(x ) = FIN(¢y) and B(x) is F,.

Proof Let A € B(x). Then there exists k > 0 such that for every @ # F € [A]=?,

d (0, an> <k

neF

By the definition of ¢y, we have px(A) < k. Hence A € FIN(¢x). Conversely, assume
that A € FIN(gx), then there exists k > O such that ¢x(A) < k. By the definition of
¢x, we clearly have that A € B(x ). Thus B(x ) = FIN(¢x). Finally, since FIN(gyx) is
F; (see Theorem 2.2), so is B(x). O
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Theorem 5.3 The following statements are equivalent for any ideal T on N.

(i) Lis Fy.
(ii) T is B-representable in (FIN, d) for some compatible metric d on FIN (as discrete
topological group).
(iii) T is Polish B-representable.

Proof By Lemma 5.2, (i) follows from (iii) and clearly (ii) implies (iii). To see that (i)
implies (ii), let Z be a F;; ideal on N. By Theorem 2.2, there is a Iscsm ¢ taking values
on N U{oo} such that Z = FIN(¢). Then Exh(¢) = FIN. From the proof of Solecki’s
theorem 2.1 we know that the complete metric on FIN given by d(A, B) = ¢(AAB)
is compatible with the group structure of FIN. Let x,, = {n} and x = (x,,),,. We claim
that Z = B(x) in the Polish group (FIN, d). First note that for every  # F € FIN,
F =3, crXn. Thus

d (@, Zx,,) = o(F).

neF

By the lower semicontinuity of ¢, we conclude that ¢ = ¢x. Therefore, by Lemma 5.2,
FIN(¢) = B(x). O

Notice that the proof of previous result shows that what matter for this type of
representation is the translation invariant metric used on FIN, the topology is irrelevant
as it can be assumed to be the discrete topology.

5.2 B-representability in Banach spaces

The motivating example of Polish representability is when the group is a Banach space.
We rephrase the definitions of C(x) and B(x) for the context of a Banach space. Let
X = (x,), be a sequence in X.

e ) x, converges unconditionally, if ) x(,) converges for all permutation 7 :
N — N.
e > x, is perfectly bounded, if there is k > 0 such that for all F C N finite,

[Xner ol <&
e The Iscsm associated to x is given by ¢x(¥) = 0 and for A € N non empty, we

put

ox(A) =sup 1 |l Z Xpl|l : F C A is finite non empty . (@)

neF

A motivation for studying B(x) comes from the next result (part (iii) was not
explicitly included but follows from the proof Theorem 1.3 of [3]).

Theorem 5.4 (Drewnowski-Labuda [3]) Let X be a Banach space. The following state-
ments are equivalent:
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(i) X does not contain an isomorphic copy of co.
(ii) C(x) is Fy in oN for each sequence x in X.
(iii) C(x) = B(x) for each sequence x in X.

When working in Banach spaces, Theorem 5.1 is strengthened as follows.

Theorem 5.5 (Borodulinetal [2]) LetZ be anideal on N. The following are equivalent:

(i) I = Exh(g) for a nonpathological lscsm .
(ii) T = C(x) for some sequence x = (x,), in a Banach space.

The proof of the previous result also provides a characterization of B-representability
on Banach spaces, as we show below. Since /, contains isometric copies of all sepa-
rable Banach spaces, we have the following (already used in [2] for C(X)).

Proposition 5.6 Letx = (x,), be a sequence in a Banach space X. Thereisy = (yu)n
in ls such that B(x) = B(y).

From now on, we only work with I, (or cp), this assumption implies that gy has
the important extra feature of being nonpathological.

It is convenient to have that the vectors x;,, € Il used in the representation of an
ideal are of non negative terms. The following result was proved in [2] for C(x), a
similar argument works also for 5(x).

Lemma 5.7 Letx = (x,), be a sequence inlo. Let x* = (x],), where x,,(k) = |x, (k)|
foreachn, k € N, then B(x) = B(x’).

Now we recall why the Iscsm ¢y given by (4) is nonpathological when working on
Is. Let x = (x,), be a sequence in /, and assume that x, (k) > O for all n, k € N.
Define a sequence of measures as follows. For A € Nand k € N, let

pi(A) =Y (k).

neA

Let ¢ = sup,, u, thus ¥ is a nonpathological Iscsm. Notice that ¥ ({n}) = [|x, |l
for all n and, more generally, for each F' C N finite we have

>

neF

V(F) =

o
Since ¥ is monotone, ¥ (F) = ¢x(F) for every finite set F. Therefore ¥ = ¢x.

Theorem 5.8 Let x = (x,,),, be a sequence in ls, with x,, > 0 for all n. Then ¢ is a
nonpathological and

(i) C(x) = Exh(gx).
(ii) B(x) = FIN(¢x).
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Proof (i) follows from the proof of Theorem 4.4 of [2]. (ii) Follows from Lemma 5.2.
O

Conversely, given a nonpathological Iscsm ¢, say ¢ = sup, pk, where puy is a
measure for each k, we associate to it a sequence X, = (x,), of elements of [, as
follows: Given n € N, let

Xp = (mo({n}), ..., m({n}), ...

Notice that ||x;|lcc = @({n}) for all n. For each F' € FIN, we have

@(F) = sup{ui(F) : k € N}=sup {Zuk({n}) c ke N} =sup {an(k) cke N}

neF neF

>

nel

oo

In other words, ¢ = ®x,- Part (i) of the following result is [2, Theorem 4.4] and (ii)
follows from the above discussion.

Theorem 5.9 Let ¢ be a nonpathological Iscsm. Then

(i) C(xy) = Exh(p).
(ii) B(xy) = FIN(p).

The following theorem is analogous to Theorem 5.5 but for B-representability.

Theorem 5.10 An ideal T is B-representable in a Banach space if, and only if, there
is a nonpathological Iscsm ¢ such that T = FIN(p).

Proof Suppose 7 is a B-representable ideal in a Banach space. By Lemma 5.6, we can
assume that 7 is B-representable in /. Let X = (x,,),, be a sequence in /o, such that
7 = B(x). By Lemma 5.7 we assume that x;, > 0 for all n. Now the result follows from

the previous considerations where we have shown that B(x) = FIN(¢x). Conversely,
if ¢ is nonpathological, we have shown above that FIN(¢) = B(X,). O

To end this section, we present an example of an ideal which is B-representable in
co and is not a P-ideal, in particular, is not C-representable in any Polish group.

Example 5.11 FIN x{@} is B-representable on cq. Recall that FIN x{@} is defined by
letting A € FIN x{@} iff there is k such that A € By U - -- U By, where (B,), is a
partition of N into infinitely many infinite sets. It is well known, and easy to verify,
that FIN x{@} is not a P-ideal. Let x = (x,), be given by x,, = me,, forn € B,
where (e;,), is the usual base for cg. It is easy to verify that FIN x{&} = B(x).

5.3 Tallness of B(x)
It is easy to check that C(x) is tall iff ||x,|| — 0. We show that the tallness of B(x)

is related to the weak topology. A classical characterization of perfect boundedness is
as follows (see, for instance, [1, Lemma 2.4.6]).
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Proposition 5.12 A series ), x, in a Banach space is perfectly bounded iff
Y on X (xp)| < oo for all x* € X*.

From this we get the following.

Proposition 5.13 Let x = (x,),, be a sequence in a Banach space X. If B(x) is tall,
then x = (xp,), is weakly null.

Proof Suppose B(x) is tall and (x,), is not weakly null. Then there is A C N infinite
and x* € X* such that inf,c4 x*(x,) > 0. Let B C A infinite such that ), _p x,, is
perfectly bounded. This contradicts proposition 5.12. O

Thus, for a sequence x = (x,),, we have the following implications:
(xp)p is || - |]-null = B(x) is tall = (x,), is weakly null.

This implications are, in general, strict. However, for c( the last one is an equivalence,
as we show next.

The following result was originally proved using the classical Bessaga-Pelczynski’s
selection theorem and it was the motivation for Theorem 4.10.

Theorem 5.14 Letx = (xp,), be a sequence in co. Then R <g B(x) iff (x,,)n is weakly
null.

Proof If R <g B(x), then B(x) is tall and thus x = (x,), is weakly null by Propo-
sition 5.13. Conversely, let (x,), be a weakly null sequence in cy. By Lemma 5.7,
we can assume that x, (k) > 0 for all n and k. The corresponding measures are given
by ur({n}) = x,(k). Since each x,, € cp, (ux)x is of type co (see definition 4.9).
Notice that ¢x = sup; ux and thus B(x) = FIN(¢x). Condition (iii) in Theorem 4.10
(namely, lim,, ;. ({n}) = O for all k) is the translation of being weakly null in ¢¢. Thus
R <k FIN(px). o

The previous result naturally suggests the following.

Question 5.15 Which Banach spaces satisfies that R <g B(x) for every weakly null
sequence X = (x,)n?

In relation to the previous question. Let x = (x,), be the usual unit basis of I,

(which is weakly null). Since /; does not contain copies of ¢, B(x) = FIN. Moreover,
the same happens in [/, as this space contains isomorphic copies of every separable
Banach space.
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