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Abstract
We study the theory of K -vector spaces with a predicate for the union X of an infinite
family of independent subspaces. We show that if K is infinite then the theory is
complete and admits quantifier elimination in the language of K -vector spaces with
predicates for the n-fold sums of X with itself. If K is finite this is no longer true, but
we still have that a natural completion is near-model-complete.
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1 Introduction

We study the theory TK of vector spaces over a field K with a predicate X for the
union of an infinite family of independent subspaces.

We show (Theorem 3.12) that, if K is infinite, then TK is complete and admits
quantifier elimination in the expansion of the language of vector spaces by predicates
for the n-fold sums Xn of X with itself. From this, we deduce its total transcendence
(Corollary 3.13).We also investigate (Sect. 4) the case of finite K , where completeness
fails and there are completions which do not eliminate quantifiers in the language
described above, although they are still near-model-complete in the language of vector
spaces together with a predicate for X (Remark 4.2).
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We were led to the study of this theory while considering the following question
from [4, 5]. Let G be a locally definable connected abelian group in an o-minimal
structure, and assume that G is generated by a definable subset. Is G a cover of a
definable group? Recall that a group is locally definable iff both its domain and the
graph of its multiplication are countable unions of definable sets. A subset A of a
locally definable set Z is discrete iff, for every definable Y ⊆ Z , the intersection
A ∩ Y is finite. In the cited papers it is shown that the answer is positive if and only if
the following two conditions hold.

1. There is a maximal k ∈ ω such that G has a discrete subgroup isomorphic to Z
k .

2. If G is not already definable, then k �= 0.

By [1] condition 1 is always satisfied, but it remains open whether 2 holds. In fact,
outside the o-minimal context, condition 2might fail: in everymodel of TK , the locally
definable group (

⋃
n∈ω Xn,+) is definably generated, but it contains no discrete copy

of Z. The case of R
ω, made into a model of TK as in Example 2.3 below, appears as

Example 1.11 in [2]. It follows from our results that its theory is totally transcendental.

2 The theory

Definition 2.1 Let K be an infinite field. Let LK be the union of the language LK -vs :=
{+, 0, λ· | λ ∈ K } of K -vector spaces with the family of unary predicates {Xn | n ∈
ω}. Let TK be the theory axiomatised as follows.

1. The reduct to LK -vs is a K -vector space.
2. The predicate X := X1 is closed under multiplication by every λ ∈ K . In other

words, it is a union of subspaces.
3. The predicates Xn are interpreted as the n-fold sums {x0 + . . . + xn−1 | x j ∈ X}

of X with itself, with the convention that X0 = {0}.
4. The parallelism relation x ‖ y := x + y ∈ X is an equivalence relation on X \ {0};

we call the union of an equivalence class with {0} an axis.
5. There are infinitely many axes.
6. The axes are linearly independent: if Y0, . . . ,Yn are pairwise distinct axes and

ai ∈ Yi \ {0}, then a0, . . . , an are linearly independent.

Observe that, by axioms 2 and 4, each axis is a subspace.

Remark 2.2 If V is a K -vector space and {Vi | i ∈ I } is an infinite family of inde-
pendent subspaces, then (V ,

⋃
i∈I Vi ) is a model of TK , where X is interpreted as⋃

i∈I Vi . Conversely, every model of TK is of this form, by setting {Vi | i ∈ I } to be
the family of the axes.

Proof Left to right: independence ensures that if x, y, x + y ∈ ⋃
i∈I Vi , then there

must be i ∈ I such that x, y, x + y ∈ Vi . From this, it is easily inferred that ‖ is an
equivalence relation on X \ {0}, and that the set of axes is precisely {Vi | i ∈ I }; the
remaining axioms are easily checked to hold. Right to left is immediate. ��
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Vector spaces with a union of independent subspaces 501

Example 2.3 The K -vector space Kω may be turned into amodel of TK by interpreting
X as the set of elements with support of size at most 1; in other words, f ∈ X iff
there is at most one n ∈ ω such that f (n) �= 0. The axes are precisely the sets
Vi = { f ∈ Kω | ∀ j ∈ ω f ( j) �= 0 → j = i}. Observe that the subspace ⋃

n∈ω Xn

of finite support elements is the direct sum of the Vi , while Kω is their direct product.

Notation 2.4 We denote by M a model of TK . For A ⊆ M, we will write F(A) for
the intersection of A with the

∨
-definable subspace

⋃
n∈ω Xn(M). The subspace

generated by a subset B of a vector space will be denoted by 〈B〉. If a is a tuple, for
instance a ∈ Mn, we denote its coordinates by using subscripts, starting at 0, so a =
(a0, . . . , an−1), and its length (in this example, n) by |a|. In order to avoid confusion,
we write indices of a sequence of tuples as superscripts, as in a0, . . . , a� ∈ Mn. If a
is a tuple, by 〈a〉 we mean 〈{ai | i < |a|}〉. All tuples we consider have finite length.

Observe that X(M) is the union of the axes of M , and that each axis is definable
with parameters. We sometimes write X , Xn in place of X(M), Xn(M) if M is clear
from context. While theories of pure vector spaces are known to be strongly minimal,
and in particular stable, expanding them by an arbitrary unary predicate may destroy
stability, and in fact even result in a theory with the independence property, see [3].
Nevertheless, this is not the case for TK , whose models are in fact easily classified.

Theorem 2.5 For every ordinal α such that |K | ≤ ℵα , there are at most 2ℵ0+|α| models
of TK of size ℵα . In particular, (every completion of) TK is superstable.

Proof Each M � TK of size ℵα is determined up to isomorphism by codim(F(M))

and, for each positive cardinal κ ≤ ℵα , the number of κ-dimensional axes of M . This
information can be coded by a function from ω+α to itself, and superstability follows
by [6, Theorem VIII.2.1]. ��

3 Infinite fields

In this section, K is an infinite field. We prove quantifier elimination for TK , from
which completeness and total transcendence will readily follow.

Remark 3.1 If a ∈ Xn \ Xn−1, there is a unique n-element set supp(a) :=
{m0, . . . ,mn−1} of pairwise nonparallel elements of X \{0}with a = m0+. . .+mn−1.
Call it the support of a.

Definition 3.2 Fix M � TK .

1. The collection of axes of M is denoted by axes(M).
2. If a ∈ F(M) and Y ∈ axes(M), we define the projection πY (a) to be the unique

element of supp(a) in Y if one exists, and 0 otherwise.
3. If a ∈ F(M), we define axes(a) to be {Y ∈ axes(M) | πY (a) �= 0}.
4. If a ∈ F(M), we define the weight w(a) of a to be the cardinality |axes(a)| =

|supp(a)|.
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502 A. Berarducci et al.

5. Similarly, for A ⊆ F(M), we define axes(A) to be the set
⋃

a∈A axes(a) = {Y ∈
axes(M) | πY (A) �= {0}} and define the weight w(A) of A as the cardinality
|axes(A)|.

6. If A ⊆ F(M) we define Â := 〈{πY (A) | Y ∈ axes(A)}〉.
Remark 3.3 The following facts will be used without explicit mention.

1. If a ∈ Xn there are at most n axes Y with πY (a) �= 0. In other words, w(a) ≤ n.
2. For a ∈ M and λ ∈ K \ {0}, we have axes(a) = axes(λa).
3. We have axes(λ0a0 + · · · + λnan) ⊆ ⋃

i≤n axes(ai ), and the equality holds if the
supports of λ0a0, . . . , λnan are disjoint.

4. For every a, b ∈ F(M) \ {0}, there can be at most w(b) many λ ∈ K such that
supp(a) ∩ supp(λb) �= ∅. It follows that, if K is infinite, a ∈ F(M), and S ⊆ X
is a finite set, then there is λ ∈ K such that the support of λa is disjoint from S.

5. If A0, A1 are subspaces of F(M), then axes(A0 + A1) = axes(A0) ∪ axes(A1).
6. Clearly, A ⊆ Â always holds.
7. If A ⊆ F(M) is a subspace, then Â = ⊕

Y∈axes(A) πY (A).

Lemma 3.4 Let K be an infinite field. For every finite-dimensional subspace A ⊆
F(M) there is a† ∈ A such that axes(A) = axes(a†). In particular, w(A) =
maxa∈A w(a), and w(A) = n ∈ ω if and only if A ⊆ Xn and A �⊆ Xn−1.

Proof Since K is infinite, point 4 of Remark 3.3 above tells us that for every a, b ∈ A
there is λ �= 0 such that supp(a) ∩ supp(λb) = ∅, from which we deduce that
axes(a − λb) = axes(a) ∪ axes(b) = axes(〈{a, b}〉). The conclusion then follows by
induction on dim A. ��
The assumption that K is infinite cannot be removed, see Proposition 4.1.

Lemma 3.5 The following statements hold.

1. Every finite-dimensional subspace of F(M) is contained in some Xn(M).
2. If A is a finite-dimensional subspace of F(M), then so is Â, and axes(A) =

axes( Â). Moreover, for all axes Y , we have πY (A) = πY ( Â).

Proof If A ⊆ M is a finite dimensional subspace, then A has nonzero projection
only on finitely many axes Y0, . . . ,Yn−1, and πYi (A) has finite dimension for each
i < n, so also Â = ⊕

i<n πYi (A) has finite dimension. Moreover, πYi (A) ⊆ X , so
A ⊆ Â ⊆ Xn . The rest is clear. ��
Below,we consider the bilinearmap · : Kn×Mn → M defined asλ·a := ∑

i<|a| λi ai .

Definition 3.6 Let a = (a0, . . . , a|a|−1) be a tuple from M .

1. We set a∗ : K |a| → M to be the linear function λ �→ λ · a.
2. If W ⊆ K |a|, let W · a := {λ · a | λ ∈ W } = a∗(W ).
3. If 〈a〉 ⊆ F(M), let ga be the function from the family of subspaces of K |a| to ω

with

ga(W ) = ∣
∣{Y ∈ axes(〈a〉) | W = ker πY ◦ a∗}∣∣
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Vector spaces with a union of independent subspaces 503

Observe that, by definition, ga(W ) is at most w(〈a〉).
Remark 3.7 We haveW ⊆ ker πY ◦a∗ if and only if Y /∈ axes(W ·a). If we also have,
for all λ ∈ K |a| \ W , that Y ∈ axes(λ · a), then W = ker πY ◦ a∗. Finally, note that
if Y /∈ axes(〈a〉), then ker πY ◦ a∗ = K |a|, so ker πY ◦ a∗ is interesting only when
Y ∈ axes(〈a〉).
Lemma 3.8 Suppose that a is a tuple with 〈a〉 ⊆ F(M), and let W be a subspace of
K |a|. Then ga(W ) ≥ r if and only, if for every finite set {λ0, . . . , λ�} ⊆ K |a| \ W,

∣
∣
∣
∣
∣
∣

⎛

⎝
⋂

i≤�

axes(λi · a)

⎞

⎠ \ axes(W · a)

∣
∣
∣
∣
∣
∣
≥ r (∗)

In other words, (∗) says there are at least r axes Y0, . . . ,Yr−1 such that for each
j < r we have W ⊆ ker(πY j ◦ a∗) and for every i ≤ � we have λi /∈ ker(πY j ◦ a∗).

Proof IfW = ker πY ◦a∗ and λ ∈ K |a| \W , then Y is an axis of λ ·a but not ofW ·a.
It follows that ga(W ) ≥ r �⇒ (∗). For the opposite implication we observe that, since
|axes(〈a〉)| is finite, there are λ0, . . . , λ� ∈ K |a| \ W such that

⋂
i≤� axes(λ

i · a) =⋂
λ∈K |a|\W axes(λ · a). It follows that (∗) implies the existence of pairwise distinct

axes Y0, . . . ,Yr−1 /∈ axes(W · a) such that Yi ∈ ⋂
λ∈K |a|\W axes(λ · a), hence such

that W = ker πYi ◦ a∗. ��
Lemma 3.9 If 〈a〉 ⊆ F(M), then the quantifier-free type qftp(a) of a determines ga.

Proof An inspection of the language LK shows that knowing qftp(a) amounts pre-
cisely to knowing which linear combinations λ · a lie in which Xn . Because we are
assuming 〈a〉 ⊆ F(M), this is the same as knowing all weights w(λ · a). Now let
W ⊆ K |a| be a subspace. Since K is infinite, by Lemma 3.4 there is λ ∈ W such
that w(W · a) = w(λ · a). If a ≡qf b, then w(λ · a) = w(λ · b) ≤ w(W · b), so
w(W · a) ≤ w(W · b) and by symmetry w(W · a) = w(W · b). We have thus proved
that qftp(a) determines the function sending a subspace W ⊆ K |a| to w(W · a).

If W0,W1 are subspaces of K |a|, then axes((W0 + W1) · a) = axes(W0 · a) ∪
axes(W1 · a). Therefore, for every W ⊆ K |a| and every λ0, . . . , λ� ∈ K |a| \ W , we
have

∣
∣
∣
∣
∣
∣

⎛

⎝
⋃

i≤�

axes(λi · a)

⎞

⎠ \ axes(W · a)

∣
∣
∣
∣
∣
∣
= w(〈W ∪ {λ0, . . . , λ�}〉 · a) − w(W · a)

By using induction and the inclusion–exclusion principle, it follows that qftp(a) also
determines, for every subspace W ⊆ K |a|, every finite {λ0, . . . , λ�} ⊆ K |a| \ W , and
every r ∈ ω, whether condition (∗) in Lemma 3.8 holds or not. By the aforementioned
lemma, this information in turn determines ga . ��
Proposition 3.10 Let a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) be tuples of the
same length from M, N � TK respectively, and denote by A and B the respective
generated subspaces. Assume a ≡qf b, A ⊆ F(M), and B ⊆ F(N ). Then the map
ai �→ bi extends to an isomorphism Â → B̂.
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504 A. Berarducci et al.

Proof Since a ≡qf b, by Lemma 3.4 we have w(A) = w(B). Observe that

Â := 〈{πY (λ · a) | Y ∈ axes(A), λ ∈ K |a|}〉

and similarly for B̂. By Lemma 3.9 we have ga = gb, hence for each subspace W of
K |a| there is a bijection between the set of axes Y of A with ker πY ◦ a∗ = W and the
set of axes Z of B with ker πZ ◦b∗ = W . Putting together these bijections asW varies,
we obtain a bijection σ : axes(A) → axes(B) with ker πY ◦a∗ = ker πσ(Y ) ◦b∗. This
implies that the map πY (λ · a) �→ πσ(Y )(λ · b) is well-defined; let h : Â → B̂ be its
linear extension. By construction, each restriction h � πY ( Â) is an isomorphism onto
πσ(Y )(B̂), and since Â = ⊕

Y∈axes(A) πY ( Â) and B̂ = ⊕
Y∈axes(A) πσ(Y )(B̂), the map

h is an isomorphism. Moreover, each coordinate ai of a is the sum of its projections
on the axes of A, and analogously for B. Let us also observe that if λ ∈ K |a| is the i-th
vector of the standard base, then ai = λ · a and bi = λ · b. Hence h extends ai �→ bi
and we are done. ��
Lemma 3.11 In every ω-saturated N � TK , every axis is infinite-dimensional, and the
codimension of F(N ) is infinite.

Proof Both statements are proven by easy compactness arguments, the first one using
that every axis is infinite, and the second one using that there are infinitely many axes.

��
Theorem 3.12 For every infinite K , the theory TK eliminates quantifiers in LK and is
complete.

Proof The vector space {0}, with 0 in every Xn , is a substructure embedding in every
M � TK , hence completeness is a consequence of quantifier elimination and it suffices
to prove the latter. To this end, we show that if M, N � TK are ω-saturated, then the
family of partial isomorphisms between finitely generated substructures A of M and
B of N has the back-and-forth property.

Let f : A → B be a partial isomorphism as above, and let a ∈ M \ A. We need to
extend f to an isomorphism of finitely generated substructures which includes a in
its domain.

To this aim fix a complement I(A) ofF(A) in A, observe that I(A)∩F(M) = {0},
and let I(M) be a complement of F(M) which includes I(A). Then let I(B) :=
f (I(A)) and let I(N ) be a complement of F(N ) which includes I(B).
It suffices to deal with the cases a ∈ I(M) and a ∈ F(M).
Suppose first that a ∈ I(M). By Lemma 3.11 the codimension of F(N ) in N is

infinite, so we can choose b ∈ I(N ) \ I(B) and extend f : A → B to a linear map
which sends a to b. This yields the required isomorphism sinceF(〈A∪{a}〉) = F(A)

and F(〈B ∪ {b}〉) = F(B).
Now suppose that a ∈ F(M). By Proposition 3.10, we may extend f to an isomor-

phism

f̂ : F̂(A) ⊕ I(A) → F̂(B) ⊕ I(B)
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Vector spaces with a union of independent subspaces 505

so we can assume that a ∈ F(M) \ F̂(A). Write a as the sum of the elements of its
support, that is a = ∑

i<w(a) mi , with each mi ∈ X(M) and mi � ‖ m j if i �= j . It

is enough to extend the isomorphism f̂ to the elements mi , so we may assume that
a ∈ X(M) and a /∈ F̂(A). Since a ∈ X(M)\{0}, the set axes(a) has a unique element;
call it Y . We distinguish two cases.

Suppose Y ∈ axes(F(A)). Then there is c ∈ X(M) ∩ F̂(A) such that a ‖ c. By
Lemma 3.11 each axis of N has infinite dimension, so we may find b ∈ X(N ) \ F̂(B)

such that b ‖ f̂ (c) and we extend the isomorphism by sending a to b.
Suppose now that Y /∈ axes(F(A)). The axioms of TK ensure that N has infinitely

many axes, hence we may find b ∈ X(N ) such that b /∈ axes(F(B)) and we extend
the isomorphism by sending a to b. ��

Corollary 3.13 For every infinite field K , the theory TK is totally transcendental.

Proof It is well-known that a theory is totally transcendental if and only if each of
its reducts to a countable sublanguage is ω-stable. Therefore, it suffices to prove that,
if K is countably infinite and M � TK is countable, then so is S1(M). By quantifier
elimination and the axioms of TK , every p(x) ∈ S1(M) is determined by boolean
combinations of formulas of the form x − m ∈ Xn , for m ∈ M and n ∈ ω (when
n = 0, this is the same as x − m = 0).

Clearly, there is a unique 1-type extending {x − m /∈ Xn | n ∈ ω,m ∈ M}. It
is therefore enough to count those p(x) containing, for some n ∈ ω and m ∈ M ,
the formula x − m ∈ Xn . Since each hm := y �→ y − m is a definable bijection,
and because there are only countably many hm , up to translating we may assume that
p(x) � x ∈ Xn and that n is minimal such, that is, for all m ∈ M and n0 < n we have
p(x) � x −m /∈ Xn0 . In other words, it suffices to show that, for each n ∈ ω, there are
only countablymany types p(x) such that p(x) � {x ∈ Xn}∪{x−m /∈ Xn0 | n0 < n}.

Let p, n be as above. If n = 0, then p(x) � x = 0. For n = 1, we argue as follows.
Let m ∈ X(M) \ {0}, and let Y be the corresponding axis; view it as a definable set,
defined by (x ∈ X) ∧ (x + m ∈ X). Again by quantifier elimination, the structure
induced on Y is that of a pure K -vector space, and Y is stably embedded because TK
is stable by Theorem 2.5. Hence, Y is a strongly minimal set, and there is a unique
nonrealised type concentrating on Y , call it pY . Since M is countable, there are only
countably many axes in M , hence only countably many such pY . Now, for a type p(x)
satisfying the assumptions above with n = 1, there are only two possibilities: either
there is Y ∈ axes(M) such that p = pY , or p is the uniquely determined type of an
element of X in a new axis; more precisely, this is the unique type as above which
furthermore satisfies p(x) � {x + m /∈ X | m ∈ X(M)}; call it pna.

For n ≥ 2, in somemonster modelU � TK , fix a � p, andwrite a = a0+. . .+an−1
as the sum of the elements in its support. Minimality of n implies that, for each i < n,
either there is Yi ∈ axes(M) such that ai � pYi , or ai � pna. Up to a permutation of the
coordinates we may assume that, for a suitable k < n, the first case happens for i < k,
and the second one for k ≤ i < n. Again by quantifier elimination, there is a unique
n-type q(y) such that q(y) � ⋃

i<k pYi (yi ) ∪ ⋃
k≤i<n pna(yi ) ∪ {∧k≤i< j<n yi � ‖ y j }.

Because there are only countably many axes in M , there are only countably many
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choices for such a q(y). Since p(x) is the pushforward of q(y) along the definable
function y �→ ∑

i<n yi , it is uniquely determined by q. ��

4 The finite field case

If K is finite, then the number of axes of a given dimension becomes first-order
expressible, hence TK is incomplete. Since there is a structure that embeds in every
model of TK , namely the vector space {0} with 0 belonging to every Xn , it follows
that TK cannot eliminate quantifiers in LK . A natural completion to consider is TK ,∞,
obtained by requiring that every axis is infinite-dimensional. Even TK ,∞ does not
eliminate quantifiers in LK , since the conclusion of Lemma 3.4 fails, as shown below.

Proposition 4.1 If K is finite and M � TK ,∞, there are a, b ∈ M2 with a ≡qf b, with
both subspaces 〈a〉 and 〈b〉 included in X |K |(M), but withw(〈a〉) = |K | < |K |+1 =
w(〈b〉).
Proof For every i < |K |, choose linearly independentmi ‖ m′

i in X in such a way that
if i �= j thenmi � ‖ m j . Choosem ∈ X withm � ‖ mi , fix an enumeration (λi )1≤i≤|K |−1
of K \ {0}, and set

a0 :=
∑

i<|K |
mi a1 :=

∑

i<|K |
m′

i b0 := a0 b1 := m +
∑

1≤i<|K |−1

λimi

Let a = (a0, a1) and b = (b0, b1). By definition, for x ∈ {a, b}, we have w(x0) =
w(x1) = |K |. Moreover, an easy computation shows that, for every λ,μ ∈ K \ {0},
we havew(λx0+μx1) = |K |, and it follows that 〈a〉, 〈b〉 ⊆ X |K |, hence that a ≡qf b.
Nevertheless, by construction axes(〈a〉) = {axes(mi ) | i < |K |}, while axes(〈b〉) =
axes(〈a〉) ∪ axes(m), and since m and the mi are all in X we have w(〈a〉) = |K | <

|K | + 1 = w(〈b〉). ��
Remark 4.2 For finite K , the proof of Theorem 3.12may be adapted to prove quantifier
elimination for TK ,∞ in the expansion of LK by predicates Pk,n,i (a0, . . . , ak) such
that, if A := 〈a0, . . . , ak〉 ⊆ Xn , then Pk,n,i codes the isomorphism type of Â (with
i ranging over the possible isomorphism types). These predicates are ∃-definable in
LK , and in fact already in LK -vs ∪ {X} hence, in this language, TK ,∞ is near-model-
complete, that is, every formula is equivalent to a boolean combination of existential
ones.
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