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Abstract
We show that we can interpret concatenation theories in arithmetical theories
without coding sequences by identifying binary strings with 2 × 2 matrices with
determinant 1.
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1 Introduction

A computably enumerable first-order theory is called essentially undecidable if any
consistent extension, in the same language, is undecidable (there is no algorithm for
deciding whether an arbitrary sentence is a theorem). A computably enumerable first-
order theory is called essentially incomplete if any recursively axiomatizable consistent
extension is incomplete. Since a decidable consistent theory can be extended to a
decidable complete consistent theory (see Chapter 1 of Tarski et al. [12]), a theory is
essentially undecidable if and only if it is essentially incomplete. Two theories that are
known to be essentially undecidable are Robinson arithmetic Q and the related theory
R (see Fig. 1 for the axioms of R and Q). The essential undecidability of R and Q is
proved in Chapter 2 of [12]. In Chapter 1 of [12], Tarski introduces interpretability
as an indirect way of showing that first-order theories are essentially undecidable.
The method is indirect because it reduces the problem of essential undecidability of a
theory T to the problemof essentially undecidability of a theory Swhich is known to be
essentially undecidable. Interpretability between theories is a reflexive and transitive
relation and thus induces a degree structure on the class of computably enumerable
essentially undecidable first-order theories.
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354 J. Murwanashyaka

Fig. 1 Non-logical axioms of the first-order theories R, Q. The axioms of R are given by axiom schemes
where n,m, k are natural numbers and n, m, k are their canonical names

Fig. 2 Non-logical axioms of
the first-order theoriesWD, D.
The axioms ofWD are given by
axiom schemes where α, β, γ

are nonempty binary strings and
α, β, γ are their canonical
names. Pref(α) is the set of all
nonempty prefixes of α

In [10], we introduce two theories of concatenation WD, D and show that they are
respectively mutually interpretable with R and Q (see Fig. 2 for the axioms ofWD and
D). The language of WD and D is {0, 1, ◦,�} where 0 and 1 are constant symbols, ◦
is a binary function symbol and � is a binary relation symbol. The intended model
of WD and D is the free semigroup generated by two letters extended with the prefix
relation. Extending finitely generated free semigroups with the prefix relation allows
us to introduce �1-formulas which are expressive enough to encode computations by
Turingmachines (see Kristiansen andMurwanashyaka [6]).�1-formulas are formulas
on negation normal formwhere universal quantifiers occur bounded, i.e., they are of the
form ∀x � t . AxiomsD4−D7 are essential for coding sequences inD since they allow
us to work with �0-formulas, formulas where all quantifiers are of the form ∃x � t ,
∀x � t . In [10], we show thatQ is interpretable inD by using especially axiomsD4−D7
to restrict the universe of D to a domain K on which the analogue of Q3 holds, that
is, the sentence Q′

3 ≡ ∀x [ x = 0 ∨ x = 1 ∨ ∃y � x [ x = y0 ∨ x = y1 ] ].
To improve readability, we use juxtaposition instead of the binary function symbol ◦
of the formal language. Due to the existential quantifier in Q′

3, we need to ensure that
�0-formulas are absolute for K .

SinceD andQ are mutually interpretable, we can identify differences between these
two theories by investigating the interpretability degrees of the theories we obtain by

123



Weak essentially undecidable theories of concatenation… 355

weakening axioms D4 − D7, Q3 which are essential for coding sequences in D and
Q. In addition to D and WD, we introduce in [10] two theories ID, ID∗ (called C, BT,
respectively, in [10]) and prove that their interpretability degrees are strictly between
the degrees ofWD and D. But we are not able to determine in [10] whether ID and ID∗
are mutually interpretable. We obtain ID and ID∗ from D by replacing axioms D4 −D7
with respectively the axiom schemas

ID4 ≡ ∀x
⎡
⎣ x � α ↔

∨
γ∈Pref(α)

x = γ

⎤
⎦ , ID∗

4 ≡ ∀x
⎡
⎣ x �s α →

∨
γ∈Sub(α)

x = γ

⎤
⎦

where α is a nonempty binary string, α is a canonical variable-free term that represents
α, Pref(α) denotes the set of all nonempty prefixes of α, Sub(α) denotes the set of all
nonempty substrings of α and x �s y is shorthand for

x = y ∨ ∃uv [ y = ux ∨ y = xv ∨ y = uxv ] .

In the standard model, x �s y holds if and only if x ∈ Sub(y). It is easy to interpret
ID in ID∗ while it is less obvious whether ID∗ is interpretable in ID since the axiom
schema ID∗

4 puts strong constraints on the concatenation operator while any model of
D1 −D3 can always be extended to a model of ID. In Sect. 3, we show that ID and ID∗
are mutually interpretable.

Given mutually interpretability of ID and ID∗, a natural question is whether the
arithmetical analogues of ID and ID∗ are also mutually interpretable. We let IQ and IQ∗
be the theories we obtain from Q by replacing axiom Q3 with respectively the axiom
schemas

IQ3 ≡ ∀x
⎡
⎣ x ≤ n ↔

∨
k≤n

x = k

⎤
⎦ , IQ∗

3 ≡ ∀x
⎡
⎣ x ≤l n →

∨
k≤n

x = k

⎤
⎦

where n is a natural number, n is a canonical variable-free term that represents n, ≤ is
a fresh binary relation symbol that is realized as the less than or equal relation in the
standard model and x ≤l y ≡ ∃z [ z + x = y ]. In Sect. 4, we show that IQ and IQ∗
are mutually interpretable.

We try to identify differences between concatenation theories and arithmetical the-
ories by investigating the comparability of ID and IQ with respect to interpretability.
In Sect. 5, we show that IQ is expressive enough to interpret the theory ID we obtain
by extending ID with the axioms

∀xy [ x �= y → ( 0x �= 0y ∧ 1x �= 1y ) ], ∀xy [ 0x �= 1y ].

Since IQ does not have enough resources for coding general sequences, the interpreta-
tion we give shows that we can think of concatenation theories as naturally contained
in arithmetical theories. In Sect. 5.2, we show that the idea behind the interpretation of
ID in IQ allows us to give a very simple interpretation ofWD in R. In Sect. 6, we show
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Fig. 3 Non-logical axioms of the first-order theory TC

that our interpretation of ID in IQ extends in a natural way to an interpretation in Q of
Grzegorczyk’s theory of concatenation TC [3] (see Fig. 3 for the axioms of TC). We
can think of D as a fragment of TC since TC proves all the axioms of D when we let
x � y ≡ x = y ∨ ∃z [ y = xz ]. The intendedmodel of TC is a finitely generated free
semigroup with at least two generators. We have not been able to determine whether
IQ is interpretable in ID and whether ID is interpretable in ID.

We summarize our results in the following theorem. We let S ≤ T mean that S
is interpretable in T . We let S < T mean S ≤ T ∧ T � S. We let S ∼= T mean
S ≤ T ∧ T ≤ S. We let ID

∗
denote the theory we obtain from ID by replacing ID4

with ID∗
4.

Theorem 1

R ∼= WD < ID ∼= ID∗ ≤ ID ∼= ID
∗ ≤ IQ ∼= IQ∗ < Q ∼= D.

It is not difficult to see that the two strict inequalitiesWD < ID, IQ < Q hold. If ID
were interpretable in WD, then ID1 − ID3 would be interpretable in a finite subtheory
ofWD. Since any model of ID1 − ID3 is infinite while any finite subtheory ofWD has
a finite model, ID is not interpretable in WD. Similarly, if Q were interpretable in IQ,
it would be interpretable in a finite subtheory of IQ. But, any finite subtheory of IQ
is interpretable in the first-order theory of the field of real numbers (R, 0, 1,+,×),
which was shown to be decidable by Tarski [11]. Since Q is essentially undecidable,
it is not interpretable in IQ.

2 Preliminaries

In this section, we clarify a number of notions that we only glossed over in the previous
section.

2.1 Notation and terminology

We consider the structures

D− = ({0, 1}+, 0, 1,� ) and D = ({0, 1}+, 0, 1,� ,�D)
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Weak essentially undecidable theories of concatenation… 357

where {0, 1}+ is the set of all finite nonempty strings over the alphabet {0, 1}, the binary
operator � concatenates elements of {0, 1}+ and �D denotes the prefix relation, i.e.,
x �D y if and only if y = x or there exists z ∈ {0, 1}+ such that y = x�z.
The structure D− is thus the free semigroup with two generators. We call elements
of {0, 1}+ bit strings. The structures D− and D are first-order structures over the
languages L−

BT = {0, 1, ◦} and LBT = {0, 1, ◦,�}, respectively.
The language of first-order arithmetic is LNT = {0,S,+,×} and we denote by

(N, 0,S,+,×) the standard first-order structure. In first-order number theory, each
natural number n is associated with a numeral n by recursion: 0 ≡ 0 and n + 1 ≡ Sn.
Each non-empty bit string α ∈ {0, 1}+ is associated by recursion with a unique L−

BT-
term α, called a biteral, as follows: 0 ≡ 0, 1 ≡ 1, α0 ≡ (α ◦ 0) and α1 ≡ (α ◦ 1). The
biterals are important if we, for example, want to show that certain sets are definable
since we then need to talk about elements of {0, 1}+ in the formal theory.

A class is a formula with at least one free variable. Given a class I with n free
variables, we write (x1, . . . , xn) ∈ I for I (x1, . . . , xn). If I has two free variables, we
also write x I y for I (x, y). We let (∃x1, . . . , xn) ∈ I [ φ ] and (∀x1, . . . , xn) ∈
I [ φ ] be shorthand for the formulas ∃x1, . . . , xn [ I (x1, . . . , xn) ∧ φ ] and
∀x1, . . . , xn [ I (x1, . . . , xn) → φ ], respectively. We let {(x1, . . . , xn) ∈ I : ψ}
be shorthand for I (x1, . . . , xn) ∧ ψ .

2.2 Translations and interpretations

We recall the method of relative interpretability introduced by Tarski [12] for showing
that first-order theories are essentially undecidable. We restrict ourselves to many-
dimensional parameter-free one-piece relative interpretations. Let L1 and L2 be
computable first-order languages. A relative translation τ from L1 to L2 is a com-
putable map given by:

1. An L2-formula δ(x1, . . . , xm) with exactly m free variable. The formula
δ(x1, . . . , xm) is called a domain.

2. For each n-ary relation symbol R of L1, an L2-formula ψR(�x1, . . . , �xn) with
exactly mn free variables. The equality symbol = is treated as a binary relation
symbol.

3. For each n-ary function symbol f of L1, an L2-formula ψ f (�x1, . . . , �xn, �y) with
exactly m(n + 1) free variables.

4. For each constant symbol c of L1, an L2-formula ψc(�y) with exactly m free
variables.

We extend τ to a translation of atomic L1-formulas by mapping an L1-term t to an
L2-formula (t)τ, �w with free variables �w that denote the value of t :

5. For each n-ary relation symbol R of L1

(
R(t1, . . . , tn)

)τ ≡ ∃�v1 . . . �vn
⎡
⎣

n∧
i=1

δ(�vi ) ∧
n∧
j=1

(t j )
τ,�v j ∧ ψR(�v1 . . . �vn)

⎤
⎦

where �v1 . . . �vn are distinct variable symbols that do not occur in t1, . . . , tn and

123



358 J. Murwanashyaka

(a) for each variable symbol x of L1, (x)τ, �w ≡ ∧m
i=1 wi = xi

(b) for each constant symbol c of L1, (c)τ, �w ≡ ψc( �w)

(c) for each n-ary function symbol f of L1

(
f (t1, . . . , tn)

)τ, �w

≡ ∃ �w1 . . . �wn

⎡
⎣

n∧
i=1

δ( �wi ) ∧
n∧
j=1

(t j )
τ, �w j ∧ ψ f ( �w1 . . . �wn, �w)

⎤
⎦

where �w1 . . . �wn are distinct variable symbols that donot occur in
∧n

j=1(t j )
τ, �w .

We extend τ to a translation of all L1-formulas as follows:

6. (¬φ)τ ≡ ¬φτ

7. (φ � ψ)τ ≡ φτ � ψτ for � ∈ {∧,∨,→,↔}
8. (∃x φ)τ ≡ ∃�x [ δ(�x) ∧ φτ ]
9. (∀x φ)τ ≡ ∀�x [ δ(�x) → φτ ] .
Let S be an L1-theory and let T be an L2-theory. We say that S is (relatively) inter-
pretable in T if there exists a relative translation τ such that

– T � ∃x [ δ(x) ]
– For each function symbol f of L1

T �
n∧

i=1

δ(xi ) → ∃y [
δ(y) ∧ ψ f (x1, . . . , xn, y) ∧ ∀z [

δ(z) ∧ ψ f (x1, . . . , xn, z) → ψ=(y, z)
] ]

.

– For each constant symbol c of L1

T � ∃y [
δ(y) ∧ ψc(y) ∧ ∀z [

δ(z) ∧ ψc(z) → ψ=(y, z)
] ]

.

– T proves φτ for each non-logical axiom φ of S. If equality is not translated as
equality, then T must prove the translation of each equality axiom.

If S is relatively interpretable in T and T is relatively interpretable in S, we say that
S and T are mutually interpretable.

The following proposition summarizes important properties of relative inter-
pretability (see Tarski et al. [12] for the details).

Proposition 2 Let S, T and U be computably enumerable first-order theories.

1. If S is interpretable in T and T is consistent, then S is consistent.
2. If S is interpretable in T and T is interpretable in U, then S is interpretable in U.
3. If S is interpretable in T and S is essentially undecidable, then T is essentially

undecidable.
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3 Mutual interpretability of ID and ID∗

In this section, we show that ID and ID∗ are mutually interpretable (see Fig. 4 for the
axioms of ID and ID∗). It is easy to see that ID is interpretable in ID∗. We therefore
need to focus on the more difficult task of proving that ID∗ is interpretable in ID.
It is more difficult to interpret ID∗ in ID because the axiom schema ID∗

4 puts strong
constraints on the concatenation operator while it is always possible to extend any
model of ID1, ID2, ID3 to a model of ID. For example, we can have models of IDwhere
there exist infinitely many pairs x, y such that xy = α for each nonempty string α.
Indeed, consider the model where the universe is the Cartesian product

∏
i<ω{0, 1}∗,

concatenation is componentwise and each binary string β is mapped to the constant
sequence (β)i<ω.

To interpret ID∗ in ID, we need to use the axiom schema ID4 in an essential way to
define a function � that provably in ID satisfies the translation of each axiom of ID∗.
The idea is to observe that since we have the right cancellation law in the weak form
of ID2, if we had an axiom schema for the suffix relation, denoted �suff , analogues
to ID4, we could try to define � by requiring that x�y = xy only if y �suff xy. If xy
is a variable-free term and y �suff xy, then the axiom schema for the suffix relation
gives us a finite number of possibilities for the value of y. If we also knew that 0 and
1 were atoms/ indecomposable, we would be able to use ID2 and ID3 to determine that
x and y are also variable-free terms. To make this idea work, we need to ensure that
� is associative. Our solution is to show that extending ID with an axiom schema for
�suff and the axiom ∀xy [ y �suff xy ] does not change the interpretability degree.

This section is organized as follows: In Sect. 3.1, we show that we can extend ID to a
theory ID(2) with the same interpretability degree where 0 and 1 are atoms. In Sect. 3.2,
we show that we can extend ID(2) to a theory ID(3) with the same interpretability
degree where we have an axiom schema for the suffix relation �suff analogues to the
axiom schema ID4. In Sect. 3.3, we extended ID(3) to a theory ID(4) with the same
interpretability degree and where we have an axiom schema for the substring relation,
analogues to ID4. In Sect. 3.4, we use the axiom schema for the substring relation to
extend ID(4) to a theory ID(5) with the same interpretability degree and where the suffix
relation �suff satisfies additional properties. Finally, in Sect. 3.5, we show that ID∗ is
interpretable in ID(5).

Fig. 4 Non-logical axioms of the
first-order theories ID and ID∗.
ID4 and ID∗

4 are axiom schemas
where α is a nonempty binary
string, Pref(α) is the set of all
nonempty prefixes of α and
Sub(α) is the set of all nonempty
substrings of α. Furthermore,
x �s y ≡ x = y ∨ ∃uv [ y =
ux ∨ y = xv ∨ y = uxv ]
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3.1 Atoms

It will prove useful later to know that 0 and 1 are atoms. So, let ID(2) be ID extended
with the axioms

AT0 ≡ ∀xy [ xy �= 0 ], AT1 ≡ ∀xy [ xy �= 1 ].

Lemma 3 ID and ID(2) are mutually interpretable.

Proof Since ID(2) is an extension of ID, it suffices to show that ID(2) is interpretable in
ID. Since the axioms of ID are universal sentences, it suffices to relativize quantification
to a domain K on which the sentences AT0, AT1 hold. We obtain K by successively
restricting the universe to subclasses with nice properties.

Let

K1 = {x : x = 0 ∨ x = 1 ∨ ∃y [ x = y0 ∨ x = y1 ] }.

Clearly, 0, 1 ∈ K1. Since concatenation is associative, K1 is closed under concatena-
tion.

Let

K2 =
⎧⎨
⎩y ∈ K1 : ∀x ∈ K1

⎡
⎣ ∧

a∈{0,1}
xy �= a

⎤
⎦

⎫⎬
⎭ .

We show that 0, 1 ∈ K2. Let a, b ∈ {0, 1} and let x ∈ K1. We need to show xb �= a.
Assume for the sake of a contradiction that xb = a. Since x ∈ K1, let c ∈ {0, 1} be
such that x = c or x = uc for some u. Let d ∈ {0, 1}\{c}. Then, xb = a implies
ddxb = dda. By ID3 and ID2, ddx = dd, which contradicts ID3. Thus, 0, 1 ∈ K2.

We now show that K2 is closed under the maps x �→ x0, x �→ x1. Let y ∈ K2 and
let b ∈ {0, 1}. We need to show that yb ∈ K2. Since y, b ∈ K2 ⊆ K1 and K1 is closed
under concatenation, yb ∈ K1. Now, let a ∈ {0, 1} and let x ∈ K1. We need to show
xyb �= a. Assume for the sake of a contradiction that xyb = a. Then, axyb = aa. By
ID3 and ID2, we have axy = a, which contradicts y ∈ K2 since ax ∈ K1 as a, x ∈ K1
and K1 is closed under concatenation. Thus, K2 is closed under the maps x �→ x0,
x �→ x1.

The class K2 is not a domain since it may not be closed under concatenation. We
obtain K by restricting K2 to a subclass that contains 0 and 1 and is closed under
concatenation. Let

K = {w ∈ K2 : ∀z ∈ K2 [ zw ∈ K2 ] }.

We have 0, 1 ∈ K since K2 contains 0, 1 and is closed under the maps x �→ x0,
x �→ x1. We now show that K is closed under concatenation. Let w0, w1 ∈ K .
We need to show that w0w1 ∈ K . Since w0 ∈ K ⊆ K2 and w1 ∈ K , we have
w0w1 ∈ K2. Now, let z ∈ K2. We need to show that zw0w1 ∈ K2. We do not worry
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about parentheses since ID1 tells us that concatenation is associative. Since w0 ∈ K ,
we have zw0 ∈ K2. Since w1 ∈ K , we have zw0w1 ∈ K2. Hence, w0w1 ∈ K . Thus,
K is closed under concatenation. ��

3.2 Suffix relation

In this section, we show that we can extend ID(2) to a theory where we have an axiom
schema for the suffix relation, analogues to ID4, without changing the interpretability
degree. We extend the language of ID(2) with a fresh binary relation symbol �suff .
Given a nonempty binary string α, let Suff(α) denote the set of all nonempty suffixes
of α: γ ∈ Suff(α) if and only if α = γ or ∃δ ∈ {0, 1}+ [ α = δγ ∧ γ ∈ {0, 1}+ ].
Let ID(3) be ID(2) extended with the following axiom schema

∀x
⎡
⎣ x �suff α ↔

∨
γ∈Suff(α)

x = γ

⎤
⎦ .

Lemma 4 ID and ID(3) are mutually interpretable.

Proof Since ID(3) is an extension of ID, it suffices by Lemma 3 to show that the suffix
relation is definable in ID(2). We translate the suffix relation as follows: x �suff y if
and only if

(1) y = x ∨ ∃u [ y = ux ]
(2) ∀u � x

[
u = 0 ∨ u = 1 ∨ ∃v � u [ u = v0 ∨ u = v1 ] ]

(3) � is reflexive and transitive on the class Ix = {z : z � x}, x ∈ Ix and ∀z ∈
Ix ∀w � z [ w ∈ Ix ].
Given a nonempty binary string α, we need to show that

ID(2) � ∀x
⎡
⎣ x �suff α ↔

∨
γ∈Suff(α)

x = γ

⎤
⎦ .

(⇐)

We show that

ID(2) � ∀x
⎡
⎣ ( ∨

γ∈Suff(α)

x = γ
) → x �suff α

⎤
⎦ .

Let γ ∈ Suff(α). We need to show that γ �suff α holds. That is, we need to show
that γ and α satisfy (1)–(3). It is easy to prove by induction on the length of binary
strings that

ID � δ ζ = δζ for all δ, ζ ∈ {0, 1}+ . (∗)
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By (*), α = γ or α = δ γ where δ is a prefix of α. Hence, (1) holds. By (*) and the
axiom schema ID4 for the prefix relation, γ satisfies (2)–(3). Thus, γ �suff α holds.
(⇒)

We need to show that

ID(2) � ∀x
⎡
⎣ x �suff α →

∨
γ∈Suff(α)

x = γ

⎤
⎦ . (∗∗)

We prove (**) by induction on the length of α. Assume α ∈ {0, 1} and x �suff α

holds. By (1), x = α or there exist u such that α = ux . By AT0 and AT1, we have
x = α. Thus, (**) holds when α ∈ {0, 1}.

We consider the inductive case. Assume α = βa where a ∈ {0, 1}, β ∈ {0, 1}+
and

ID(2) � ∀x
⎡
⎣ x �suff β →

∨
γ∈Suff(β)

x = γ

⎤
⎦ . (∗ ∗ ∗)

By definition, α = βa = β a. Assume x �suff α holds. By (1), x = α or there exist u
such that α = ux . If x = α, we are done. So, assume α = ux . By (3), we have x � x .
Then, by (2), we have one of the following cases: (i) there exists b ∈ {0, 1} such that
b = x , (ii) there exist w � x and c ∈ {0, 1} such that x = wc. Assume (i) holds.
We have β a = α = ux = ub. By ID3, we have a = b = x . Thus, x = γ where
γ ∈ Suff(α).

Assume (ii) holds. Then, β a = α = ux = uwc. By ID3, we have a = c. By ID2,
we have β = uw. Furthermore

– ∀u � w
[
u = 0 ∨ u = 1 ∨ ∃v � u [ u = v0 ∨ u = v1 ] ]

since
u � w ∧ w � x implies u � x by (3)

– since w � x and (3) holds, � is reflexive and transitive on the class Iw = {z : z �
w}, w ∈ Iw and ∀z ∈ Iw ∀w � z [ w ∈ Iw ].

Thus, w �suff β holds. By (***), w = δ where δ is a suffix of β. Then, x = wa =
δ a = δa and δa is a suffix of α. Thus, α satisfies (**).

Thus, by induction, (**) holds for all nonempty binary strings α. ��

3.3 Substring relation

In this section, we show that we can extend ID(3) to a theory where we have an axiom
schema for the substring relation, analogues to ID4, without changing the interpretabil-
ity degree. We extend the language of ID(3) with a fresh binary relation symbol �sub.
Given a nonempty binary string α, let Sub(α) denote the set of all nonempty sub-
strings of α: β ∈ Sub(α) if and only if α = β or there exist γ, δ ∈ {0, 1}+ such that
β ∈ {0, 1}+ and α = γβ ∨ α = βδ ∨ α = γβδ. Let ID(4) be ID(3) extended with
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the following axiom schema

∀x
⎡
⎣ x �sub α ↔

∨
γ∈Sub(α)

x = γ

⎤
⎦ .

Lemma 5 ID and ID(4) are mutually interpretable.

Proof By Lemma 4, it suffices to show that the substring relation is definable in ID(3).
We translate the substring relation as follows

x �sub y ≡ x � y ∨ x �suff y ∨ ∃u � y [ x �suff u ].

By the axiom schema for the prefix relation and the axiom schema for the suffix
relation, it is easy to see that ID(3) proves ∀x [ x �sub α ↔ ∨

γ∈Sub(α) x = γ ] for
each nonempty binary string α. ��

3.4 Suffix relation II

We are finally ready to equip the suffix relation with two very important properties.
Let ID(5) be ID(4) extended with the following axioms

∀x
⎡
⎣ ∧

a∈{0,1}
a �suff xa

⎤
⎦ , ∀xy

⎡
⎣ x �suff y →

∧
a∈{0,1}

xa �suff ya

⎤
⎦ .

To show that ID(5) and ID are mutually interpretable, we need the following lemma.
Recall that a class is a formula with at least one free variable and that if I is a class
with one free variable we occasionally write x ∈ I for I (x).

Lemma 6 There exists a class J with the following properties:

(1) ID(4) � t ∈ J for each variable-free term t
(2) ID(4) � ∀x ∀z ∈ J

[ ∧
a∈{0,1}( z = xa → a �suff z )

]
(3) ID(4) � ∀xy ∀z ∈ J

[ ∧
a∈{0,1}

(
( z = ya ∧ x �suff y ) → ( xa �suff z )

)]
(4) ID(4) � ∀z ∈ J

[
z = 0 ∨ z = 1 ∨ ∃u �sub z [ z = u0 ∨ z = u1 ] ]

(5) ID(4) � ∀z ∈ J ∀u [
u �sub z → u ∈ J

]
.

Proof We define J as follows: u ∈ J if and only if

(i) u �sub u
(ii) ∀w �sub u [ w �sub w ]
(iii) ∀w �sub u ∀v0 �sub w ∀v1 �sub v0 [ v1 �sub w ]

(A) ∀w �sub u [ w = 0 ∨ w = 1 ∨ ∃v �sub w [ w = v0 ∨ w = v1 ] ] .
(B) ∀w �sub u ∀x [ w = x0 → 0 �suff w ]
(C) ∀w �sub u ∀x [ w = x1 → 1 �suff w ]
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(D) ∀w �sub u ∀xy [ ( w = y0 ∧ x �suff y ) → x0 �sub w ]
(E) ∀w �sub u ∀xy [ ( w = y1 ∧ x �suff y ) → x1 �sub w ] .
It follows straight from the definition that J satisfies clauses (2)–(4). By the axiom

schema for the substring relation, the axiom schema for the suffix relation, AT0, AT1,
ID2 and ID3, J satisfies Clause (1). It remains to show that J also satisfies Clause
(5). That is, we need to show that J is downward closed under �sub. So, assume
u′ �sub u ∈ J . We need to show that u′ ∈ J . That is, we need to show that u′ satisfies
(i)–(iii) and (A)–(E). We show that u′ satisfies (i). Since u satisfies (ii), u′ �sub u
implies u′ �sub u′. Thus, u′ satisfies (i).

We show that u′ satisfies (ii)–(iii) and (A)–(E). Consider one of these clauses. It is
of the form ∀w �sub u′ φ(w). We need to show that ∀w �sub u′ φ(w) holds. Since
u ∈ J , we know that ∀w �sub u φ(w) holds. Let w �sub u′. We need to show that
φ(w) holds. Since ∀w �sub u φ(w) holds, it suffices to show that w �sub u holds.
By assumption

w �sub u′ �sub u.

Since u satisfies (i)

w �sub u′ �sub u �sub u.

Then, w �sub u since u satisfies (iii). Hence, ∀w �sub u′ φ(w) holds. Thus, u′
satisfies clauses (ii)–(iii), (A)–(E).

Since u′ satisfies (i)–(iii) and (A)–(E), u′ ∈ J . Thus, J is downward closed under
�sub. ��

Lemma 7 ID and ID(5) are mutually interpretable.

Proof By Lemma 5, it suffices to show that ID(5) is interpretable in ID(4). Let J be the
class given by Lemma 6. To interpret ID(5) in ID(4) it suffices to translate the suffix
relation as follows

x �τ
suff y ≡ ( y ∈ J ∧ x �suff y ) ∨ ( y /∈ J ∧ x = x ).

We need show that the translation of each instance of the axiom schema for the
suffix relation is a theorem of ID(4). Let α be a nonempty binary string. We need to
show that

∀x
⎡
⎣ x �τ

suff α ↔
∨

γ∈Suff(α)

x = γ

⎤
⎦ (A)

holds. By Clause (1) of Lemma 6, α ∈ J . Hence, by the definition of �τ
suff , (A) holds

if and only if
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∀x
⎡
⎣ x �suff α ↔

∨
γ∈Suff(α)

x = γ

⎤
⎦ (B)

holds. Observe that (B) is an instance of the axiom schema for the suffix relation.
Thus, the translation of each instance of the axiom schema for the suffix relation is a
theorem of ID(4).

We need to show that the translation of the axiom

∀x
⎡
⎣ ∧

a∈{0,1}
a �suff xa

⎤
⎦ (C)

is a theorem of ID(4). Let x be arbitrary and let a ∈ {0, 1}. We need to show that
a �τ

suff xa holds. Assume xa ∈ J . Then, a �τ
suff xa holds if and only if a �suff xa

holds. By Clause (2) of Lemma 6, a �suff xa holds. Hence, a �τ
suff xa holds when

xa ∈ J . Assume now xa /∈ J . Then, a �τ
suff xa holds by the second disjunct in the

definition of �τ
suff . Thus, the translation of (C) is a theorem of ID(4).

We need to show that the translation of the axiom

∀xy
⎡
⎣ x �suff y →

∧
a∈{0,1}

xa �suff ya

⎤
⎦ (D)

is a theorem of ID(4). Let a ∈ {0, 1} and assume x �τ
suff y. We need to show that

xa �τ
suff ya holds. Assume first ya /∈ J . Then, xa �τ

suff ya holds by the second
disjunct in the definition of �τ

suff . Assume next ya ∈ J . Then, by Clause (4) of
Lemma 6, ya ∈ {0, 1} or there exist u �sub ya and b ∈ {0, 1} such that ya = ub.
By AT0, AT1 and ID3, we have ya = ua where u �sub ya. By ID2, we have y = u.
Hence, y �sub ya. By Clause (5) of Lemma 6, y ∈ J . Thus, since x �τ

suff y holds and
y ∈ J , we have x �suff y by the definition of �τ

suff . Then, by Clause (3) of Lemma
6, xa �suff ya holds. Thus, the translation of (D) is a theorem of ID(4). ��

3.5 Interpretation of ID∗ in ID

We are finally ready to show that ID∗ and ID are mutually interpretable.

Theorem 8 The theories ID, ID∗ are mutually interpretable.

Proof To interpret ID in ID∗, it suffices to translate � as follows

x � y ≡ y = x ∨ ∃z [ y = xz ].
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Given a nonempty binary string α, we have

x � α ⇔ α = x ∨ ∃z [ α = xz ]
⇔ α = x ∨
∃z [ x �s α ∧ z �s α ∧ α = xz ] (def. of �s )

⇔ α = x ∨∨
β,γ∈Sub(α)

( x = β ∧ z = γ ∧ β γ = α ) (ID∗
4)

⇔
∨

β∈Pref(α)

x = β (ID1 − ID3).

This shows that the translation of each instance of the axiom schema ID4 is a theorem
of ID∗. Thus, ID is interpretable in ID∗.

Next, we show that ID∗ is interpretable in ID. By Lemma 7, it suffices to show
that ID∗ is interpretable in ID(5). Since the axioms of ID∗ are universal sentences or
sentences where existential quantifiers occur in the antecedent (instances of ID∗

4), to
interpret ID∗ in ID(5) it suffices to relativize quantification to a suitable domain K .

We start by defining an auxiliary class K1 (this is why we extended ID(4) to ID(5)).
Let

K1 = {u : ∀x [ u �suff xu ] }.

By the axiom ∀x [ ∧a∈{0,1} a �suff xa ], we have 0, 1 ∈ J . We show that K1 is closed
under the maps u �→ u0, u �→ u1. Let b ∈ {0, 1} and let u ∈ K1. We need to show
that ub ∈ K1. That is, we need to show that ub �suff xub for all x . Since u ∈ K1, we
know that

∀x [ u �suff xu ] (∗)

holds. Then, by (*) and the axiom

∀xy
⎡
⎣ x �suff y →

∧
a∈{0,1}

xa �suff ya

⎤
⎦

we have

∀x [ ub �suff xub ].

Hence, ub ∈ K1. Thus, K1 is closed under the maps u �→ u0, u �→ u1.
The class K1 is not a domain since it may not be closed under concatenation. We

let

K = {u ∈ K1 : ∀v ∈ K1 [ vu ∈ K1 ] }.
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Since K1 contains 0 and 1 and is closed under the maps x �→ x0, x �→ x1, we have
0, 1 ∈ K . We show that K is closed under concatenation. Let u0, u1 ∈ K . We need to
show that u0u1 ∈ K . We start by showing that u0u1 ∈ K1. We have u0 ∈ K ⊆ K1.
Hence, u0u1 ∈ K1 since u1 ∈ K . Next, we need to show that ∀v ∈ K1[ vu0u1 ∈ K1 ].
We do not need to worry about parentheses since ID1 tells us that concatenation is
associative. Let v ∈ K1. We need to show that vu0u1 ∈ K1. Since u0 ∈ K , we have
vu0 ∈ K1. Since u1 ∈ K , we have vu0u1 ∈ K1. Hence, u0u1 ∈ K . Thus, K is closed
under concatenation and therefore satisfies the domain conditions.

Since the axioms ID1, ID2, ID3 are universal sentences, their restrictions to K are
theorems of ID(5). It remains to show that the restriction to K of each instance of

ID∗
4 ≡ ∀x

⎡
⎣ x �s α →

∨
γ∈Sub(α)

x = γ

⎤
⎦

is a theorem of ID(5). It suffices to show that for each nonempty binary string α

∀x, y ∈ K
[
xy = α →

∨
β,γ∈Sub(α)

( x = γ ∧ y = β )
]
. (∗∗)

So, let x, y ∈ K and assume xy = α. Since y ∈ K ⊆ K1, we know that y �suff
xy = α. By the axiom schema for the suffix relation, y = β where β is a nonempty
suffix of α. So, xβ = α . By ID1, ID2, ID3, AT0, AT1, we have that x = γ where γ

is a nonempty prefix of α such that α = γβ. Thus, (**) hols for all nonempty binary
strings α. Thus, the translation of each instance of ID∗

4 is a theorem of ID(5). ��

3.6 The theories ID, ID
∗

The axioms ID1, ID2, ID3 describe a right cancellative semigroup. It is also natural to
consider semigroups that are also left cancellative, for example ({0, 1}+, 0, 1,� ). Let
ID and ID

∗
be ID and ID∗, respectively, extended with the axioms

∀xy [ x �= y → ( 0x �= 0y ∧ 1x �= 1y ) ], ∀xy [ 0x �= 1y ].

It is not difficult to see that TC proves each axiom of ID
∗
. It is easily seen that our

interpretation of ID∗ in ID is also an interpretation of ID
∗
in ID. Thus, ID and ID

∗
are

mutually interpretable. We have not been able to determine whether ID is interpretable
in ID.

Theorem 9 ID and ID
∗
are mutually interpretable.

Open Problem 10 Is ID interpretable in ID?
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4 Mutual interpretability of IQ and IQ∗

In this section, we show that IQ and IQ∗ are also mutually interpretable. Recall that
IQ∗ is the theory we obtain from IQ by removing ≤ from the language and replacing
the axiom schema IQ3 with the axiom schema

IQ∗
3 ≡ ∀x [

x ≤l n →
∨
k≤n

x = k
]

where x ≤l y ≡ ∃z [ z + x = y ].
Theorem 11 IQ and IQ∗ are mutually interpretable.

The proof strategy is similar to the one we used to interpret ID∗ in ID. Since we
obtain an interpretation of IQ in IQ∗ by translating ≤ as ≤l, we just need to focus on
proving that IQ∗ is interpretable in IQ. The proof is structured as follows: In Sect. 4.1,
we extend IQ to a theory IQ+ which proves that for each inductive class there exists
a an inductive subclass that is closed under addition and multiplication. A class is
inductive if it contains 0 and is closed under the successor function. In Sect. 4.2, we
extend IQ+ to a theory IQ++ with the same interpretability degree as IQ+ and where
the ordering relation ≤ satisfies additional properties. In Sect. 4.3, we show that IQ∗
is interpretable in IQ+. Finally, in Sect. 7, we show that IQ is mutually interpretable
with a theory IQ(2) that is an extension of IQ+.

4.1 Closure under addition andmultiplication

A class X is called inductive if 0 ∈ X and ∀x ∈ X [ Sx ∈ X ]. A class X is called a cut
if it is inductive and ∀x ∈ X ∀y [ y ≤l x → y ∈ X ]. Let IQ+ and Q+ be respectively
IQ and Q extended with the following axioms

– Associativity of addition ∀xyz [ (x + y) + z = x + (y + z) ]
– Left distributive law ∀xyz [ x(y + z) = xy + xz ]
– Associativity of multiplication ∀xyz [ (xy)z = x(yz) ] .

Lemma V.5.10 of Hajek and Pudlak [4] says that Q+ proves that any inductive class
has a subclass that is a cut and is closed under + and ×. The proof of that lemma
shows that IQ+ proves that any inductive class has an inductive subclass that is closed
under + and × (see also Sect. 7).

Lemma 12 Let X be an inductive class. Then, IQ+ proves that there exists an inductive
subclass Y that is closed under + and ×.

4.2 Ordering relation

Let IQ++ be IQ+ extended with the following axioms

∀x [ 0 ≤ x ], ∀xy [ x ≤ y → Sx ≤ Sy ]

Using the ideas of Sect. 3.4, we prove the following lemma.
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Lemma 13 IQ+ and IQ++ are mutually interpretable.

Proof Since IQ++ is an extension of IQ+, it suffices to show that IQ++ is interpretable
in IQ+. Furthermore, it suffices to show that we can translate ≤ in such a way that IQ+
proves the translation of each instance of IQ3 and the translation of ∀x [ 0 ≤ x ] and
∀xy [ x ≤ y → Sx ≤ Sy ].

Let u ∈ G if and only if

(1) u ≤ u
(2) ∀w ≤ u [ w ≤ w ]
(3) ∀w ≤ u ∀v0 ≤ w ∀v1 ≤ v0 [ v1 ≤ w ]

(A) ∀w ≤ u [ w = 0 ∨ ∃v ≤ w [ w = Sv ]
(B) ∀w ≤ u ∀x [ w = Sx → 0 ≤ w ]
(C) ∀w ≤ u ∀xy [ ( w = Sy ∧ x ≤ y ) → Sx ≤ w ].

It can be verified that IQ proves that t ∈ G for each variable-free term t and that G is
downward closed under ≤.

We translate ≤ as follows

x ≤τ y ≡ ( y ∈ G ∧ x ≤ y ) ∨ ( y /∈ G ∧ x = x ).

Since t ∈ G for each variable-free term t , the translation of each instance of the axiom
schema IQ3 is a theorem of IQ+.

We show that IQ+ proves the translation of ∀x [ 0 ≤ x ]. Choose an arbitrary x . If
x /∈ G, then 0 ≤τ x holds by the second disjunct in the definition of ≤τ . Otherwise,
x ∈ G. We need to show that 0 ≤ x holds. If x = 0, then 0 ≤ x holds by IQ3.
Otherwise, by (A), there exists v ≤ x such that x = Sv. Then, by (B), 0 ≤ x holds.
Thus, IQ+ � ∀x [ 0 ≤τ x ].

We show that IQ+ proves the translation of ∀xy [ x ≤ y → Sx ≤ Sy ]. Assume
x ≤ y holds. If Sy /∈ G, then Sx ≤τ Sy holds by the second disjunct in the definition
of ≤τ . Otherwise, Sy ∈ G. We need to show that Sx ≤ Sy holds. By Q2, Sy �= 0.
Hence, by (A), there exists v ≤ Sy such that Sy = Sv. By Q1, y = v. Hence, y ≤ Sy.
Since G is downward closed under ≤, we have y ∈ G. Then, by (C), Sx ≤ Sy holds.
Thus, IQ+ � ∀xy [ x ≤τ y → Sx ≤τ Sy ]. ��

4.3 Interpretation of IQ∗ in IQ+

Lemma 14 IQ∗ is interpretable in IQ+.
Proof By Lemma 13, it suffices to show that IQ∗ is interpretable in IQ++. We interpret
IQ∗ in IQ++ by simply restricting the universe of IQ++ to an inductive subclass K that
is closed under+,× and which is such that IQ++ proves that ∀x, u ∈ K [ u ≤ x+u ].

Let

K1 = {u : ∀x [ u ≤ x + u ] }
We have 0 ∈ K1 by the axiom ∀x [ 0 ≤ x ] and Q4. We show that K1 is closed
under S. Let u ∈ K1. We need to show that Su ∈ K1. That is, we need to show that

123



370 J. Murwanashyaka

Su ≤ x + Su. Since u ∈ K1, we have u ≤ x + u. Then, Su ≤ S(x + u) by the axiom
∀xy [ x ≤ y → Sx ≤ Sy ]. By Q5, we have

Su ≤ S(x + u) = x + Su.

Hence, Su ∈ K1. Thus, K1 contains 0 and is closed under S. By Lemma 12, there
exists an inductive subclass K of K1 that is closed under + and ×.

We interpret IQ∗ in IQ++ by relativizing quantification to K . The translation of each
one of the axioms Q1 − Q2, Q4 − Q7 is a theorem of IQ++ since universal sentences
are absolute for K . It remains to show that each instance of IQ∗

3 is a theorem of IQ++.
Choose a natural number n. We need to show that

IQ++ � ∀x, y ∈ K

⎡
⎣ x + y = n →

∨
k≤n

y = k

⎤
⎦ .

Assume x, y ∈ K and x + y = n. Since y ∈ K ⊆ K1, we have y ≤ n. By the axiom
schema IQ3, there exists k ≤ n such that y = k. Thus, IQ++ proves the translation of
each instance of IQ∗

3. ��

5 Interpretability of ID in IQ

In this section, we show that ID is interpretable in IQ (see Fig. 5 for the axioms of ID and
IQ). The most intuitive way to interpret concatenation theories in arithmetical theories
is to construct a formula φ◦(x, y, z) that given x and y defines an object that encodes a

Fig. 5 Non-logical axioms of
the first-order theories ID and IQ
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computation of x ◦ y. Unfortunately, IQ does not have the resources necessary to prove
that we can find a domain I on which φ◦(x, y, z) defines a function that satisfies ID1,
ID2, ID3, ID5, ID6. To prove correctness of recursive definition in Robinson Arithmetic
Q, we rely on the axiom Q3 ≡ ∀x [ x = 0 ∨ ∃y [ x = Sy ] ]. The axiom schema
IQ3 ≡ ∀x [ x ≤ n ↔ ∨

k≤n x = k ] can only allow us to verify that φ◦(x, y, z) gives a
correct value z when x and y represent variable-free terms. Thus, to interpret ID in IQ,
we need a conception of strings as numbers that allows us to translate concatenation
without coding sequences. The translation needs to also be simple enough that we can
prove its correctness in IQ. In Lemma 4 of [2], Ganea explains how we can translate
concatenation as a �0-formula in strong theories such as Peano Arithmetic PA and
I�0.

Although we show that ID is interpretable in IQ, we have not been able to determine
whether the converse holds.

Open Problem 15 Is IQ interpretable in ID?

As mentioned, the main result of this section is the following theorem.

Theorem 16 ID is interpretable in IQ.

The proof of the theorem is structured as follows: In Sect. 5.1, we explain how we
intend to interpret ID in IQ. In Sect. 5.2, we use this idea to give a simple interpretation
ofWD inR. In Sect. 5.3, we show thatwe can interpret ID in an extension of IQwhichwe
denote IQ(2). Finally, in Sect. 7, we show that IQ and IQ(2) are mutually interpretable.

5.1 Strings as matrices

The idea is to think of strings as 2 × 2 matrices and to translate concatenation as
matrix multiplication. Let us first see how we can use this idea to give a 4-dimensional
interpretation of ({0, 1}∗, ε, 0, 1,� ) in (N, 0, 1,+,×), where ε denotes the empty
string and {0, 1}∗ = {0, 1}+ ∪ {ε}. Let

ετ :=
(
1 0
0 1

)
, 0τ :=

(
1 0
1 1

)
, 1τ :=

(
1 1
0 1

)
.

Let SL2(N) denote the monoid generated by 0τ and 1τ under matrix multiplication.
Themonoid SL2(N) is a substructure of the special linear group SL2(Z) of 2×2matri-
ces with integer coefficients and determinant 1; the two matrices 0τ and 1τ generate
SL2(Z). Let × denote matrix multiplication. Then, ({0, 1}∗, ε, 0, 1,� ) is isomorphic
to (SL2(N), ετ , 0τ , 1τ ,×). Since SL2(N) is the set of 2 × 2 matrices with natural
number coefficients and determinant 1, the isomorphism defines a 4-dimensional
interpretation of ({0, 1}∗, ε, 0, 1,� ) in (N, 0, 1,+,×). The idea is to specify an
interpretation of ID in IQ by building on this interpretation of ({0, 1}∗, ε, 0, 1,� )

in (N, 0, 1,+,×). But we need to be careful since the axioms IQ1 − IQ2, IQ4 − IQ7
have many models.

In Lemma 11 of [10], we use this idea of associating strings with matrices to
prove that ID1 − ID3 has a decidable model. We prove this result by giving a 4-
dimensional interpretation of ID1 − ID3 in the first-order theory of the real closed
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Fig. 6 Algebraic properties we need in order to interpret ID in IQ

field (R, 0, 1,+,×,≤), which is decidable (see Tarski [11]). At the time, we were
investigating whether it is possible to remove some of the axioms of D and obtain a
theory that is essentially undecidable. The possibility of interpreting ID in IQ resulted
from a careful investigation of the algebraic properties of (R, 0, 1,+,×,≤) we need
to interpret ID1 − ID3. Properties (I)–(VIII) in Fig. 6 are sufficient to interpret ID in
IQ. Extending IQ with (I)–(VIII) allows us to reason about natural numbers in the
standard way. In the rest of the paper, we use the Roman numerals (I)–(VIII) to refer
exclusively to axioms (I)–(VIII) in Fig. 6.

The 4-dimensional interpretation of ({0, 1}∗, ε, 0, 1,� ) in (N, 0, 1,+,×) we
described is a many-to-one reduction that maps existential sentences to existen-
tial sentences. This means that unsolvability of equations over ({0, 1}∗, ε, 0, 1,� )

implies unsolvability of equations over (N, 0, 1,+,×). The idea of associating
({0, 1}∗, ε, 0, 1,� ) with SL2(N) dates back to Markov [9]. According to Lothaire
[7] (see p. 387), in the 1950s, A. A. Markov hoped that Hilbert‘s 10th Problem could
be solved by proving unsolvability of word equations, that is, equations over finitely
generated free semigroups. In 1970, Yuri Matiyasevich proved that Hilbert‘s 10th
Problem is undecidable using a completely different method (see for example Davis
[1]). In 1977, Makanin [8] proved that the existential theory of a finitely generated
free semigroup is decidable.

5.2 Interpretation of WD in R

In this section,we show that the isomorphismbetween ({0, 1}∗, ε, 0, 1,� ) andSL2(N)

defines a very simple interpretation of WD in R.

Lemma 17 Let τ be the 4-dimensional translation of {0, 1, ◦} in {0,S,+,×} defined
as follows
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– 0 and 1 are translated as

(
1 0
1 1

)
,

(
1 1
0 1

)
, respectively

– ◦ is translated as matrix multiplication

– the domain is the class of all 2 × 2 matrices

(
x y
z w

)
.

Then, τ extends to a translation of {0, 1, ◦,�} in {0,S,+,×,≤} that defines a 4-
dimensional interpretation ofWD in R.

Proof By the axiom schemas R1 ≡ n +m = n + m, R2 ≡ n ×m = n × m, R proves
the translation of each instance of WD1 ≡ α β = αβ. By the axiom schema R3, R
proves the translation of each instance of WD2. It remains to give a translation of �
that provably satisfies the axiom schema

WD3 ≡ ∀x
⎡
⎣ x � α ↔

∨
γ∈Pref(α)

x = γ

⎤
⎦ .

This is where we use the axiom schema IQ3 ≡ ∀x [ x ≤ n ↔ ∨
k≤n x = k ], which

is a theorem of R.
Let

K =
{(

x y
z w

)
:

(
x y
z w

)
�=

(
1 0
0 1

)
∧ xw = 1 + yz

}
.

Let

A =
(
a1 a2
a3 a4

)
and B =

(
b1 b2
b3 b4

)
.

Let A � B if and only if A, B ∈ K and there exists a largest element m(B) ∈
{b1, b2, b3, b4} with respect to ≤ such that

(1) A = B or
(2) there exists C ∈ K such that ai , ci ≤ m(B) for all 1 ≤ i ≤ 4 and AC = B .

Let SL2(N)+ denote SL2(N) minus the identity matrix. Assume B is the translation
of a variable-free LBT-term. Then, B ∈ SL2(N)+. The bound in (2) tells that A,C ∈
SL2(N)+. It is straightforward to verify that if A, B,C ∈ SL2(N)+ are such that
AC = B, then a bound such as the one in (2) holds. It is then clear that (1)–(2) capture
what it means for a finite string to be a prefix of another string. Thus, R proves the
translation of each instance of WD3. ��

5.3 Interpretation of ID in IQ(2)

Let IQ(2) be IQ extended with axioms (I)–(VIII) in Fig. 6. We can reason in IQ(2) about
natural numbers in the standardway andwill therefore occasionally not refer explicitly
to the axioms of IQ(2) we use. In this section, we show that ID is interpretable in IQ(2).

We start by making a few simple observations:
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• Axiom (IV) tells us that addition is commutative. Hence, by Q4, 0 is an additive
identity. That is, IQ(2) � ∀x [ 0 + x = x ∧ x + 0 = x ].

• Recall that 1 = S0. By Q7 and Q6

x1 = x0 + x = 0 + x = x .

Since axiom (V) tells us that multiplication is commutative, 1 is a multiplicative
identity. That is, IQ(2) � ∀x [ 1x = x ∧ x1 = x ].

• Axiom (VI) tells us that addition is right-cancellative. Since addition is commu-
tative, it is also left-cancellative. That is

IQ(2) � ∀xyz [ z + x = z + y → x = y ].

• By Q6 and (V), IQ(2) � ∀x [ x0 = 0 ∧ 0x = 0 ].
Lemma 18 Let τ be the 4-dimensional translation of {0, 1, ◦} in {0,S,+,×} defined
as follows

– 0 and 1 are translated as

(
1 0
1 1

)
,

(
1 1
0 1

)
, respectively

– ◦ is translated as matrix multiplication

– the domain J is the class of all 2 × 2 matrices

(
x y
z w

)
where x �= 0.

Then, τ extends to a translation of {0, 1, ◦,�} in {0,S,+,×,≤} that defines a 4-
dimensional interpretation of ID in IQ(2).

Proof We verify that J satisfies the domain condition. It is clear that 0τ , 1τ ∈ J . It
remains to verify that J is closed under matrix multiplication. Let

A =
(
a1 a2
a3 a4

)
, B =

(
b1 b2
b3 b4

)
, AB =

(
a1b1 + a2b3 a1b2 + a2b4
a3b1 + a4b3 a3b2 + a4b4

)

where a1, b1 �= 0. We need to show that a1b1 + a2b3 �= 0. Axiom (VIII) tells us that
models of IQ(2) do not have zero divisors. Hence, a1b1 �= 0. Axiom (VII) tells us that
0 is the only element with an additive inverse. Hence, a1b1 +a2b3 �= 0, which implies
AB ∈ J . Thus, J is closed under matrix multiplication.

It is straightforward to verify that (I)–(V) suffice to prove that matrix multiplication
is associative. Thus, IQ(2) proves the translation of ID1.

Next, we show that the translation of ID2 and ID5 are theorems of IQ(2). We need
to show that

(1) ∀A, B ∈ J [ ( A0τ = B0τ ∨ 0τ A = 0τ B ) → A = B ]
(2) ∀A, B ∈ J [ ( A1τ = B1τ ∨ 1τ A = 1τ B ) → A = B ].
We verify (1). First, we show that ∀A, B ∈ J [ A0τ = B0τ → A = B ]. Assume
x, a �= 0 and

(
x + y y
z + w w

)
=

(
x y
z w

)
0τ =

(
a b
c d

)
0τ =

(
a + b b
c + d d

)
.
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We need to show that x = a and z = c. We have

x + b = x + y = a + b ∧ z + d = z + w = c + d.

Since addition is right-cancellative, x = a and z = c. Thus, for all A, B ∈ J , if
A0τ = B0τ , then A = B.

We show that ∀A, B ∈ J [ 0τ A = 0τ B → A = B ]. Assume x, a �= 0 and

(
x y

x + z y + w

)
= 0τ

(
x y
z w

)
= 0τ

(
a b
c d

)
=

(
a b

a + c b + d

)
.

We need to show that z = c and w = d. We have

a + z = x + z = a + c ∧ b + w = y + w = b + d.

Since addition is left-cancellative, z = c and w = d. Thus, for all A, B ∈ J , if
0τ A = 0τ B, then A = B. Hence, (1) holds. By similar reasoning, (2) holds. Thus,
IQ(2) proves the translation of ID2 and ID5.

We show that the translation of ID3 is a theorem of IQ(2). We need to show that
∀A, B ∈ J [ A0τ �= B1τ ]. Assume for the sake of a contradiction x, a �= 0 and

(
x + y y
z + w w

)
=

(
x y
z w

)
0τ =

(
a b
c d

)
1τ =

(
a a + b
c c + d

)
.

Then

a = x + y = x + a + b

where we have omitted parentheses since addition is associative. Since 0 is an additive
identity and addition is commutative, 0 + a = x + b + a. Since addition is right-
cancellative, 0 = x + b. Since 0 is the only element with an addititive inverse, x = 0,
which contradicts the assumption that x �= 0. Thus, IQ(2) proves the translation of ID3.

We show that the translation of ID6 is a theorem of IQ(2). We need to show that
∀A, B ∈ J [ 0τ A �= 1τ B ]. Assume for the sake of a contradiction x, a �= 0 and

(
x y

x + z y + w

)
= 0τ

(
x y
z w

)
= 1τ

(
a b
c d

)
=

(
a + c b + d
c d

)
.

Then, x = a + c = a + x + z. Hence, 0 = a + z. Since 0 is the only element with
an addititive inverse, a = 0, which contradicts the assumption that a �= 0. Thus, IQ(2)

proves the translation of ID6.
Finally, we translate � as in the proof of Lemma 17. ��
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6 Interpretation of TC in Q

In this section, we show that our interpretation of ID in IQ extends in a natural way to
an interpretation of TC in Q. Instead of interpreting TC, we interpret the variant TCε

where we extend the language of TCwith a constant symbol ε for the identity element.
See Fig. 7 for the axioms of TCε. We choose to work with TCε because the identity
matrix is naturally present in our interpretation of ID in IQ and because we get a more
compact form of the editor axiom (TC2 and TCε

3). The interpretation we give can be
turned into an interpretation of TC by simply removing the identity matrix from the
domain (see Appendix A of Visser [13] for mutual interpretability of TC and TCε).

Recall that x ≤l y ≡ ∃r [ r + x = y ]. Let x <l y ≡ ∃r [ r �= 0 ∧ r + x = y ].
Let Q(2) be Q extended with axioms (I)–(VI) in Fig. 6 and the trichotomy law

∀xy [ x <l y ∨ x = y ∨ y <l x ].

We make a few simple observations:

– Axiom (VII) ∀xy [ x + y = 0 → ( x = 0 ∧ y = 0 ) ] is a theorem of Q(2).
Indeed, assume x + y = 0. If y = 0, then x = 0 by Q4. Thus, it suffices to show
that y = 0. Assume for the sake of a contradiction that y �= 0. Then, by Q3, there
exists v such that y = Sv. By Q5

0 = x + y = x + Sv = S(x + v)

which contradicts Q2. Thus, x + y = 0 implies x = y = 0.
– Axiom (VIII) ∀xy [ xy = 0 → ( x = 0 ∨ y = 0 ) ] is a theorem of Q(2). Indeed,
assume xy = 0 and y �= 0. By Q3, there exists v such that y = Sv. By Q7

0 = xy = xv + x

which implies x = 0. Thus, xy = 0 implies x = 0 ∨ y = 0.
– Q(2) proves that 1 is the only element with a multiplicative inverse. Indeed, assume

xy = 1. By commutativity of multiplication, Q2 and Q5, we have x, y �= 0.

Fig. 7 Non-logical axioms of the first-order theory TCε
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Hence, by Q3, there exist u, v such that x = Su and y = Sv. By commutativity of
multiplication, Q7 and Q5

1 = xy = xv + x = S(xv + u) ∧ 1 = yx = yu + y = S(yu + v).

By Q1

0 = xv + u ∧ 0 = yu + v

which implies u = v = 0. Hence, x = y = 1. Thus, xy = 1 implies x = y = 1.

This section as structured as follows: In Sect. 6.1, we show that that if we modify
our interpretation of ID in IQ(2) by choosing as the domain the class K of all 2 × 2
matrices with determinant 1, we obtain an interpretation in Q(2) of the theory we
obtain from TCε by replacing the editor axiom TCε

2 with the axioms D2, D3, ID5, ID6,
∀x [ x = ε ∨ ∃y [ x = y0 ∨ x = y1 ]. In Sect. 6.2, we extend our interpretation of
ID in IQ(2) to an interpretation of TCε in Q(2) by restricting K to a subclass on which
the editor axiom holds. Finally, in Sect. 8, we show that we can interpret Q(2) in Q by
restricting the universe of Q to a suitable subclass.

6.1 Atoms and predecessors

Let K denote the class all 2 × 2 matrices with determinant 1. That is

K =
{(

x y
z w

)
: xw = 1 + yz

}
.

It is not difficult to verify thatQ(2) proves that det(AB) = 1 if det(A) = det(B) = 1.
We thus have the following lemma.

Lemma 19 Q(2) proves that K is closed under

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
and matrix

multiplication.

Let us say that A ∈ K is an atom in K if for all B,C ∈ K , A = BC implies that one
of B andC is the identity matrix. The proof of the following lemma is straightforward.

Lemma 20 Q(2) proves that

(
1 0
0 1

)
,

(
1 0
1 1

)
and

(
1 1
0 1

)
are atoms in K .

In [10], we introduce a theory BTQ and show that D interprets Q by showing that
it interprets BTQ. We obtain BTQ from ID by replacing ID4 with the axiom ∀x [ x =
0 ∨ x = 1 ∨ ∃y [ x = y0 ∨ x = y1 ]. The next lemma shows that if we modify
the translation in Lemma 18 by choosing as the domain the class of all elements in K
distinct from the identity matrix, we obtain an interpretation of BTQ in Q(2).

Lemma 21 Let A ∈ K. Then, Q(2) proves that A is the identity matrix or that there

exist B,C ∈ K such that A = BC and C is one of

(
1 0
1 1

)
,

(
1 1
0 1

)
.
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Proof Let K � A =
(
a b
c d

)
. By the trichotomy law, we have the following cases

– (1a) a = b ∧ c <l d, (1b) a = b ∧ c = d, (1c) a = b ∧ d <l c
– (2a) a <l b ∧ c = d, (2b) b <l a ∧ c = d
– (3a) b <l a ∧ c <l d, (3b) a <l b ∧ d <l c, (3c) b <l a ∧ d <l c, (3d)
a <l b ∧ c <l d .

We consider Case (1a). Since a = b ∧ c <l d, let d = r + c where r �= 0. Since
ad = 1 + bc as A ∈ K , we have

ar + ac = a(r + c) = ad = 1 + bc = 1 + ac

Since addition is right-cancellative, ar = 1, which implies a = r = 1. Thus

A =
(
1 1
c 1 + c

)
=

(
1 0
c 1

)(
1 1
0 1

)
.

We consider Case (1b). Since a = b ∧ c = d and A ∈ K , we have

ad = 1 + bc = 1 + ad.

Since 0 is an additive identity and addition is right-cancellative, 0 = 1 which contra-
dicts Q2.

We consider Case (1c). Since a = b ∧ d <l c, let c = s + d where s �= 0. We
have

ad = 1 + bc = 1 + a(s + d) = 1 + as + ad.

Hence, 0 = 1 + as. Since addition is commutative, 0 = S(as + 0) by Q5, which
contradicts Q2.

We consider Case (2a). Since a <l b ∧ c = d, let b = r + a where r �= 0. We
have

ad = 1 + bc = 1 + (r + a)d = 1 + rd + ad.

Hence, 0 = 1 + rd which contradicts Q2.
We consider Case (2b). Since b <l a ∧ c = d, let a = s + b where s �= 0. We

have

sd + bd = (s + b)d = ad = 1 + bc = 1 + bd.

Hence, sd = 1 which implies s = d = 1. Thus

A =
(
1 + b b
1 1

)
=

(
1 b
0 1

)(
1 0
1 1

)
.
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We consider Case (3a). Since b <l a ∧ c <l d, there exist r , s �= 0 such that
a = r + b and d = s + c. Since ad = 1 + bc, we have

rs + rc + bs + bc = (r + b)(s + c) = ad = 1 + bc

which implies

rs + rc + bs = 1.

Since r , s �= 0, we conclude that r = s = 1 and b = c = 0. Thus, A =
(
1 0
0 1

)
.

We consider Case (3b). Since a <l b ∧ d <l c, there exist p, q �= 0 such that
b = p + a and c = q + d. Since ad = 1 + bc, we have

ad = 1 + bc = 1 + (p + a)(q + d) = 1 + pq + pd + aq + ad.

Hence, 0 = 1 + pq + pd + aq which contradicts Q2.
We consider Case (3c). Since b <l a ∧ d <l c,

A =
(
a b
c d

)
= E

(
1 0
1 1

)
where E =

(
a − b b
c − d d

)
.

Since addition is right-cancellative in Q(2), we write a − b and c − d for the unique
elements r , s such that a = r + b and c = s + d. We need to show that E ∈ K . That
is, we need to show that det(E) = 1. First, observe that

(x − y)z = xy − yz and (1 + xz) − yz = 1 + (xz − yz)

since

(x − y)z + yz = (
(x − y) + y

)
z = xz and 1 + (xz − yz) + yz = 1 + xz.

Since det(A) = 1, we have

(a − b)d = ad − bd = (1 + bc) − bd = 1 + b(c − d).

Thus, E ∈ K .
We consider Case (3d). Since a <l b ∧ c <l d

A =
(
a b
c d

)
= G

(
1 1
0 1

)
where G =

(
a b − a
c d − c

)
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We need to show that G ∈ K . That is, we need to show that det(G) = 1. Since
det(A) = 1, we have

a(d − c) = ad − ac = 1 + bc − ac = 1 + (b − a)c.

Thus, G ∈ K . ��
By similar reasoning, Q(2) proves that left predecessors also exist: if A ∈ K is

not the identity, then there exist B,C ∈ K such that A = CB and C is one of(
1 0
1 1

)
,

(
1 1
0 1

)
. Since modified subtraction makes sense in Q(2), we also get that

the cancellation laws hold: if A, B,C ∈ K and AC = BC ∨ CA = CB, then A = B.
In particular, in any model of Q(2), K defines a model of the theory F of Szmielew and
Tarski (see Tarski et al. [12, p. 86]). The theory F is given by the following non-logical
axioms: concatenation is associative, every element is both left cancellative and right
cancellative, the two maps x �→ x0 and y �→ y1 have disjoint images, every element
different from 0 and 1 is in the image of one of the two maps x �→ x0 and y �→ y1.
The intended model is the free semigroup with two generators.

6.2 Interpretation of TC"

We are finally ready to extend our interpretation of ID in IQ(2) to an interpretation of
TCε in Q(2). All we need to do is to restrict the class K to a subclass on which the
editor axiom holds.

Theorem 22 There exists a class I such that the 4-dimensional translation of
{ε, 0, 1, ◦} in {0, 1, S,+,×} defined by

– ε, 0 and 1 are translated as

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
, respectively

– ◦ is translated as matrix multiplication
– the domain is I

defines a 4-dimensional interpretation of TCε in Q(2).

Proof Let

K =
{(

x y
z w

)
: xw = 1 + yz

}
.

Lemmas 18 and 20 tell us that the restriction of axioms TCε
1 − TCε

2, TC
ε
4 − TCε

8 to K
are theorems of Q(2). Since TCε

1 − TCε
2, TC

ε
4 − TCε

8 are universal sentences, to interpret
TCε in Q(2), it suffices to restrict the class K to a subclass I on which the editor axiom
TCε

2 holds. We need the following three properties that are given by Lemmas 18 and
21
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DJ ∀A, B ∈ K
[
A

(
1 0
1 1

)
�= B

(
1 1
0 1

) ]

RC ∀A, B ∈ K

[
A �= B →

(
A

(
1 0
1 1

)
�= B

(
1 0
1 1

)
∧ A

(
1 1
0 1

)
�= B

(
1 1
0 1

)) ]

PD ∀A ∈ K
[
A =

(
1 0
0 1

)
∨

∃B ∈ K

[
A = B

(
1 0
1 1

)
∨ A = B

(
1 1
0 1

) ] ]

Let

H =
{
W ∈ K : ∀X Z ∀Y ∈ K

[
XY = ZW → ∃U ∈ K [

( Z = XU ∧ UW = Y ) ∨ ( X = ZU ∧ UY = W ) ] ]
}
.

It follows from DJ, RC, PD and associativity of matrix multiplication that

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
are elements of H . We show that H is closed under matrix mul-

tiplication. So, assume W0,W1 ∈ H . We need to show that W0W1 ∈ H . First, we
observe that W0W1 ∈ K since K is closed under matrix multiplication and H ⊆ K .
Now, let X ,Y , Z be such that XY = ZW0W1 and Y ∈ K . Since W1 ∈ H , we have
the following two cases for some U1 ∈ K

(1) X = ZW0U1 ∧ U1Y = W1, (2) ZW0 = XU1 ∧ U1W1 = Y .

We consider (1). Since K is closed under matrix multiplication and H ⊆ K , we have

X = ZW0U1 ∧ W0U1Y = W0W1 ∧ W0U1 ∈ K . (∗)

We consider (2). Since W0 ∈ H and U1 ∈ K , we have one of the following two cases
for some U0 ∈ K

(2a) Z = XU0 ∧ U0W0 = U1 ∧ U1W1 = Y ,

(2b) X = ZU0 ∧ U0U1 = W0 ∧ U1W1 = Y .

In case of (2a), we have

Z = XU0 ∧ U0W0W1 = U1W1 = Y ∧ U0 ∈ K . (∗∗)
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In case of (2b), we have

X = ZU0 ∧ W0W1 = U0U1W1 = U0Y ∧ U0 ∈ K . (∗∗∗)

By (*), (**) and (***), we have W0W1 ∈ H . Thus, H is closed under matrix multi-
plication.

We are finally ready to specify the class I . Let

I = {A ∈ H : ∀B [ B �K A → B ∈ H ] }

where

B �K A ≡ ∃C ∈ K [ A = BC ].

It follows from Lemma 20 that

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
are elements of I . To

show that I defines a model of TCε, it suffices to show that I is closed under matrix
multiplication and downward closed under�K , where the latter ensures that the editor
axiom holds restricted to I .

We show that I is closed under matrix multiplication. Assume A0, A1 ∈ I . We
need to show that A0A1 ∈ I . So, assume BC = A0A1 where C ∈ K . We need to
show that B ∈ H . Since A1 ∈ I ⊆ H and C ∈ K , we have one of the following cases
for some U ∈ K

(i) A0 = BU ∧ U A1 = C , (ii) B = A0U ∧ UC = A1.

In case of (i) we have B �K A0 which implies B ∈ H since A0 ∈ I . In case of (ii) we
have U �K A1 which implies U ∈ H since A1 ∈ I . Since H is closed under matrix
multiplication and A0 ∈ I ⊆ H , we have B = A0U ∈ H . Hence, A0A1 ∈ I . Thus, I
is closed under matrix multiplication.

We show that I is downward closed under �K . So, assume B �K A where A ∈ I .
We need to show that B ∈ I . That is, we need to show that B ∈ H and ∀D �K

B [ D ∈ H ]. Since A ∈ I and B �K A, it follows from the definition of I that
B ∈ H . Assume now B = DC where C ∈ K . We need to show that D ∈ H . Since
B �K A, there exists E ∈ K such that A = BE . Hence, DCE = BE = A. Since
C, E ∈ K and K is closed under matrix multiplication, CE ∈ K . Hence, D �K A.
Then, D ∈ H since A ∈ I . Thus, I is downward closed under �K . ��

7 Commutative semirings I

We complete our proof of interpretability of ID in IQ by showing that IQ and IQ(2) are
mutually interpretable.

Theorem 23 IQ and IQ(2) are mutually interpretable.
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Proof Since IQ(2) is an extension of IQ, we only need to show that IQ(2) is interpretable
in IQ. Our strategy is to first restrict the universe of IQ to an inductive class N2 which
is such that each of the axioms (I)–(VIII) in Fig. 6 holds on N2 when we restrict
quantification to N2 and treat addition and multiplication as partial functions. Recall
that a class X is inductive if 0 ∈ X and ∀x ∈ X [ Sx ∈ X ]. Now, since the axioms
of IQ(2) are all universal sentences, to interpret IQ(2) in IQ, it suffices to relativize
quantification to a subclass N of N2 that is closed under 0,S,+,×.

We start by restricting the universe of IQ to a subclass N0 where 0 is the only
element with an additive inverse, and addition is associative and right-cancellative.
Let u ∈ N0 if and only if

(1) 0 + u = u
(2) ∀x [ x + u = 0 → ( x = 0 ∧ u = 0) ]
(3) ∀x [ Sx + u = S(x + u) ]
(4) ∀xy [ (x + y) + u = x + (y + u) ]
(5) ∀xy [ x + u = y + u → x = y ]
(6) 0u = 0 .

We verify that 0 ∈ N0. We need to show that 0 satisfies (1)–(6). By Q4 ≡ ∀x [ x +
0 = x ], 0 satisfies (1)–(5). By Q6 ≡ ∀x [ x0 = 0 ], 0 satisfies (6). Thus, 0 ∈ N0.

We verify that N0 is closed under S. Let u ∈ N0. We need to show that Su ∈ N0.
That is, we need to show that Su satisfies (1)–(6). We have

0 + Su = S(0 + u) = Su = Su + 0

where the first equality holds byQ5 ≡ ∀xy [ x+Sy = S(x+ y) ], the second equality
holds since u satisfies (1) and the last equality holds by Q4. Thus, Su satisfies (1).

By Q5 and Q2 ≡ ∀x [ Sx �= 0 ]

x + Su = S(x + u) �= 0.

Thus, Su satisfies (2).
We have

Sx + Su = S(Sx + u) = SS(x + u) = S(x + Su)

where the first equality holds by Q5, the second equality holds since u satisfies (3) and
the last equality holds by Q5. Thus, Su satisfies (3).

We have

(x + y) + Su = S((x + y) + u) = S(x + (y + u)) = x + (y + Su)

where the first equality holds by Q5, the second equality holds since u satisfies (4),
and the last equality holds by Q5. Thus, Su satisfies (4).

We have

S(x + u) = x + Su = y + Su = S(y + u) ⇒ x + u = y + u ⇒ x + y
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where the first implication follows from Q1 ≡ ∀xy [ Sx = Sy → x = y ], and the
last implication follows from the assumption that u satisfies (5). Thus, Su satisfies (5).

By Q7 ≡ ∀xy [ x × Sy = x × y + x ]

0 × Su = 0u + 0 = 0 + 0 = 0

where the second equality follows from the assumption that u satisfies (6) and the last
equality holds by Q4. Thus, Su satisfies (6).

Since Su satisfies (1)–(6), Su ∈ N0. Thus, N0 is closed under S. Since N0 contains
0 and is closed under S, the class N0 is inductive.

We restrict N0 to a subclass N1 where addition is commutative, the left distributive
law holds, and there are no zero divisors. Let u ∈ N1 if and only if u ∈ N0 and

(7) ∀x ∈ N0 [ x + u = u + x ]
(8) ∀x ∈ N0 ∀y [ x(y + u) = xy + xu ]
(9) ∀x ∈ N0 [ xu = 0 → ( x = 0 ∨ u = 0) ]

(10) ∀x ∈ N0 [ Sx × u = xu + u ] .

Verify that N1 contains 0.We need to show that 0 ∈ N0 and that 0 satisfies (7)–(10).
Since N0 is inductive, 0 ∈ N0. By Q4 and (1), 0 satisfies (7). By Q4 and Q6, 0 satisfies
(8). It is obvious that 0 satisfies (9). By Q6 and Q4, 0 satisfies (10). Since 0 is an
element of N0 and satisfies (7)–(10), 0 ∈ N1.

We verify that N1 is closed under S. Let u ∈ N1. We need to show that Su ∈ N0
and that Su satisfies (7)–(10). Since N0 is inductive and u ∈ N1 ⊆ N0, Su ∈ N0. We
verify that Su satisfies (7). Let x ∈ N0. Then

x + Su = S(x + u) = S(u + x) = Su + x

where the first equality holds by Q5, the second equality holds since u satisfies (7),
and the last equality holds since x satisfies (3). Thus, Su satisfies (7).

We verify that Su satisfies (8). Let x ∈ N0. We have

x(y + Su) = x × S(y + u) (Q5)

= x(y + u) + x (Q7)

= (xy + xu) + x (u satisfies (8))

= xy + (xu + x) (x satisfies (4))

= xy + (x × Su) (Q7).

Thus, Su satisfies (8).
We verify that Su satisfies (9). Let x ∈ N0 and assume x × Su = 0. By Q7,

xu + x = 0. Since x satisfies (2), x = 0. Thus, Su satisfies (9).
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Finally, we verify that Su satisfies (10). Let x ∈ N0. We have

Sx × Su = (Sx × u) + Sx (Q7)

= (xu + u) + Sx (u satisfies (10))

= xu + (u + Sx) (Sx ∈ N0 satisfies (4))

= xu + S(u + x) (Q5)

= xu + S(x + u) (x ∈ N0 and u satisfies (7))

= xu + (x + Su) (Q5)

= (xu + x) + Su (Su ∈ N0 satisfies (4))

= (x × Su) + Su (Q7).

Thus, Su satisfies (10).
Since Su is an element of N0 and satisfies (7)–(10), Su ∈ N1. Thus, N1 is closed

under S. Since N1 contains 0 and is closed under S, the class N1 is inductive.
We restrict N1 to a subclass N2 wheremultiplication is associative and commutative.

Let u ∈ N2 if and only if u ∈ N1 and

(11) ∀x, y ∈ N1 [ (xy)u = x(yu) ]
(12) ∀x ∈ N1 [ xu = ux ] .

We verify that 0 ∈ N2. We need to show that 0 ∈ N1 and that 0 satisfies (11)–(12).
Since N1 is inductive, 0 ∈ N1. By Q6, 0 satisfies (11). By Q6 and (6), 0 satisfies (12).
Thus, 0 ∈ N2.

We verify that N2 is closed under S. Let u ∈ N2. We need to show that Su ∈ N1
and that Su satisfies (11)–(12). Since N2 ⊆ N1 and N1 is inductive, Su ∈ N1. We
verify that Su satisfies (11). Let x, y ∈ N1. We have

(xy) × Su = (xy)u + xy (Q7)

= x(yu) + xy (u satisfies (11))

= x(yu + y) (x ∈ N0 and y ∈ N1 satisfies (8))

= x(y × Su) (Q7).

Thus, Su satisfies (11).
We verify that Su satisfies (12). Let x ∈ N1. We have

x × Su = xu + x (Q7)

= ux + x (u satisfies (12) )

= Su × x (u ∈ N0 and x ∈ N1 satisfies (10)).

Thus, Su satisfies (12).
Since Su is an element of N1 and satisfies (11)–(12), Su ∈ N2. Thus, N2 is closed

under S. Since N2 contains 0 and is closed under S, the class N2 is inductive.
We are almost done. All that remains is to restrict N2 to an inductive class that is

closed under addition and multiplication. We start by ensuring closure under addition.
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Let

N3 = {u ∈ N2 : ∀x ∈ N2 [ x + u ∈ N2 ] }.

By Q4, 0 ∈ N3. We show that that N3 is closed under S. Let u ∈ N3. Since N2 is
inductive and u ∈ N3 ⊆ N2, Su ∈ N2. By Q5, given x ∈ N2, we have x + Su =
S(x + u). Since u ∈ N3, x + u ∈ N2. Since N2 is inductive, S(x + u) ∈ N2. Hence,
Su ∈ N3. Thus, N3 is closed under S.

We verify that N3 is closed under+. Let u, v ∈ N3.We need to show that u+v ∈ N2
and ∀x ∈ N2[ x + (u + v) ∈ N2 ]. Since u ∈ N2 and v ∈ N3, u + v ∈ N2. Now,
let x ∈ N2. Since u ∈ N3, x + u ∈ N2. Since v ∈ N3, (x + u) + v ∈ N2. Since
v ∈ N2 ⊆ N0 satisfies (4), (x + u) + v = x + (u + v). Hence, u + v ∈ N3 Thus, N3
is closed under +.

Let

N = {u ∈ N3 : ∀x ∈ N3 [ xu ∈ N3 ] }.

We show that N is an inductive class that is closed under + and ×. We show that
0 ∈ N . Since N3 is inductive, 0 ∈ N3. Let x ∈ N3. By Q6, x0 = 0 ∈ N3. Thus,
0 ∈ N .

We show that N is closed under S. Let u ∈ N . We need to show that Su ∈ N . Since
u ∈ N3 and N3 is inductive, Su ∈ N3. Let x ∈ N3. By Q7, x × Su = xu + x . Since
u ∈ N , xu ∈ N . Since N3 is closed under addition, xu + x ∈ N3. Hence, Su ∈ N .
Thus, N is closed under S.

We show that N is closed under +. Let u, v ∈ N ⊆ N3. Since N3 is closed under
addition, u + v ∈ N3. Let x ∈ N3. Since u, v ∈ N , xu, xv ∈ N3. Since N3 is
closed under addition, xu + xv ∈ N3. Since x ∈ N3 ⊆ N0 and v ∈ N3 ⊆ N1,
xu + xv = x(u + v). Hence, u + v ∈ N . Thus, N is closed under +.

We show that N is closed under ×. Let u, v ∈ N ⊆ N3. Since u ∈ N3 and v ∈ N ,
uv ∈ N3. Let x ∈ N3. Since u ∈ N , xu ∈ N3. Since v ∈ N , (xu)v ∈ N3. Since
x, u ∈ N3 ⊆ N1 and v ∈ N3 ⊆ N2 satisfies (11), (xu)v = x(uv). Hence, uv ∈ N .
Thus, N is closed under ×.

Since N satisfies the domain conditions and all the axioms of IQ(2) hold restricted
to N as they are universal sentences, IQ(2) is interpretable in IQ. Since IQ(2) is an
extension of IQ, it follows that IQ and IQ(2) are mutually interpretable. ��

8 Commutative semirings II

It is clear that Q(2) is interpretable in Q since each axiom of Q(2) is provable in
I�0, which is Q extended with an induction schema for �0-formulas, and I�0 is
interpretable in Q (see Section V.5c of Hájek and Pudlák [4]). Lemma V.5.11 of [4]
shows that we can interpret any finite subtheory of I�0 inQ by restricting the universe
of Q to a suitable subclass. It then follows that our interpretation of TCε in Q(2) really
extends to a recursion-free interpretation of TCε in Q. For the benefit of the reader, we
show that we can also prove this by building on the proof of Theorem 23.

123



Weak essentially undecidable theories of concatenation… 387

Given a sentenceφ and a classM , letφM denote the sentenceweobtain by restricting
quantification to M .

Theorem 24 There exists a class M such that Q � φM for each axiom φ of Q(2).

Proof Let N be the class in the proof of Theorem 23. Let

u ≤N v ≡ ∃r ∈ N [ u + r = v ].

We restrict N to an inductive subclass M0 that is downward closed under ≤N . Let

M0 = {
u ∈ N : ∀v ≤N u [ v ∈ N ] ∧ ∀x, y ≤N u [ x ≤N y ∨ y ≤N x ] }.

We show that 0 ∈ M0. Assume v + r = 0. If r = 0, then v = 0 by Q4. If r �= 0, then
byQ3 there exists t such r = St . Then, byQ5, 0 = v+r = S(v+ t)which contradicts
Q2. Thus, since 0 ∈ N and 0 + 0 = 0, we have 0 ∈ M0.

We show that M0 is closed under S. Let u ∈ M0. We need to show that Su ∈ M0.
Since u ∈ M0 ⊆ N and N is inductive, Su ∈ N . We show that ∀v ≤N Su [ v ∈ N ].
Assume r ∈ N and v + r = Su. We need to show that v ∈ N . If v = 0, then v ∈ N
since N is an inductive class. Otherwise, by Q3, there exists w such that Sw = v. By
Clause (3) in the proof of Theorem 23

Su = v + r = Sw + r = S(w + r).

By Q1, w + r = u. Hence, w ≤N u. Since u ∈ M0, we have w ∈ N . Since N is an
inductive class, v = Sw ∈ N . Thus, ∀v ≤N Su [ v ∈ N ].

We show that ∀x, y ≤N Su [ x ≤N y ∨ y ≤N x ]. Assume x, y ≤N Su. By what
we have just shown, x, y ∈ N . If x = Su or y = Su, then x and y are comparable
with respect to ≤N since x, y ≤N Su. Otherwise, by Q4

Su = x + r ∧ Su = y + t where r , t ∈ N \ {0}.

Since x, y, r , t ∈ N , we have

Su = x + r = r + x ∧ Su = y + t = t + y

by Clause (7) in the proof of Theorem 23. By Q3, there exist r0, t0 such that r = Sr0
and t = St0. Hence

Su = Sr0 + x = S(r0 + x) ∧ Su = St0 + y = S(t0 + y)

by Clause (3) in the proof of Theorem 23. By Q1, u = r0 + x and u = t0 + y. Hence,
r0, t0 ≤N u which implies r0, t0 ∈ N since u ∈ M0. Then

u = r0 + x = x + r0 ∧ u = t0 + y = y + t0

123



388 J. Murwanashyaka

by Clause (7) in the proof of Theorem 23. Hence, x, y ≤N u which implies that x
and y are comparable with respect to ≤N since u ∈ M0. Thus, we have ∀x, y ≤N

Su [ x ≤N y ∨ y ≤N x ]. It then follows that Su ∈ M0.
Since ≤N is transitive, M0 is downward closed under ≤N . Indeed, assume w ≤N v

and v ≤N u. Then, there exist r , t ∈ N such that v = w + r and u = v + t . Hence,
u = (w + r) + t . Since t ∈ N ⊆ N0, we have

u = (w + r) + t = w + (r + t)

by Clause (4) in the proof of Theorem 23. Since r , t ∈ N and N is closed under
addition, r + t ∈ N . Hence, w ≤N u. Thus, ≤N is transitive.

We restrict M0 to a subclass M1 that is closed under addition. Let

M1 = {
u ∈ M0 : ∀x ∈ M0 [ x + u ∈ M0 ] }.

The classM1 is shown to be closed under 0,S and+ just as in the proof of Theorem 23.
We show that M1 is downward closed under ≤N . Assume u ∈ M1 and u = v + r
where r ∈ N . We need to show that v ∈ M1. So, let x ∈ M0. We need to show that
x + v ∈ M0. We have

M0 � x + u = x + (v + r) = (x + v) + r

by Clause (4) in the proof of Theorem 23. Then

x + v ≤N x + u ∈ M0.

Since M0 is downward closed under ≤N , we have x + v ∈ M0. Hence, v ∈ M1. Thus,
M1 is downward closed under ≤N .

Finally, we restrict M1 to a domain M . Let

M = {
u ∈ M1 : ∀x ∈ M1 [ xu ∈ M1 ] }.

The class M is shown to be closed under 0,S,+,× just as in the proof of Theorem 23.
We show that M1 is downward closed under≤N . Assume u ∈ M and u = v+r where
r ∈ N . We need to show that v ∈ M . So, let x ∈ M1. We need to show that xv ∈ M1.
We have

M1 � xu = x(v + r) = xv + xr

by Clause (8) in the proof of Theorem 23. Since v ≤N u, u ∈ M ⊆ M1 and M1 is
downward closed under ≤N , we have v ∈ M1. Then, by Clause (7) in the proof of
Theorem 23

u = v + r = r + v.
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Hence, r ≤N u which implies r ∈ M1. Since x, r ∈ M1 and M1 is closed under ×,
we have xr ∈ M1 ⊆ N . Then, xu = xv + xr implies xv ≤N xu. Since xu ∈ M1
and M1 is downward closed under ≤N , we have xv ∈ M1. Hence, v ∈ M . Thus, M is
downward closed under ≤N .

Axioms (I)–(VIII) in Fig. 6 and the axioms of Q that are universal sentences hold
on M when we restrict quantification to M since they hold on N when we restrict
quantification to N . We show that Q3 ≡ ∀x [

x = 0 ∨ ∃y [ x = Sy ] ] holds on M .
Assume x ∈ M\{0}. By Q3, there exists y such that x = Sy. We need to show that
y ∈ M . By Q4 and Q5, we have

x = Sy = Sy + 0 = S(y + 0) = y + S0.

Since M is an inductive class, S0 ∈ M ⊆ N . Hence, y ≤N x . Since M is downward
closed under ≤N , we have y ∈ M . Thus, Q3 holds restricted to M .

Finally, we show the trichotomy law ∀xy [ x <l y ∨ x = y ∨ y <l x ] holds
restricted to M . Recall that x <l y ≡ ∃r [ r �= 0 ∧ r + x = y ]. Let x, y ∈ M . Since
M is closed under addition and addition on M is commutative

y + x = x + y ∈ M .

Then, x, y ≤N x + y. Since M ⊆ M0, we have

x ≤N y ∨ y ≤N x .

Assume y = x + r where r ∈ N . By Clause (7) in the proof of Theorem 23, y =
x + r = r + x . Hence, r ≤N y which implies r ∈ M . Similarly, if x = y + t where
t ∈ N , then t ∈ M . Hence, since x ≤N y ∨ y ≤N x holds

∃r , t ∈ M [ y = x + r ∨ x = y + t ].

Thus, the trichotomy law holds restricted to M . ��
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