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Abstract
We provide a non-Gentzen, though fully syntactical, cut-elimination algorithm for
classical propositional logic. The designed procedure is implemented on GS4, the
one-sided version of Kleene’s sequent systemG4. The algorithm here proposed proves
to be more ‘dexterous’ than other, more traditional, Gentzen-style techniques as the
size of proofs decreases at each step of reduction. As a corollary result, we show that
analyticity always guarantees minimality of the size of GS4-proofs.
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1 Introduction

In this paper we focus attention on GS4, the one-sided version à la Tait of Kleene’s
sequent system G4 for classical propositional logic [7, 9, 13].1 The proof-system GS4
combines three specific technical features: (i) the logical rules are considered in their
context-sharing (additive) formulation, (ii) the axiom-rule comes in its generalized
version, and (iii) logical contexts are taken to be multisets of formulas. Besides, we
crucially require that only clauses—i.e. sequents displaying solely literals—can be
introduced as instances of the axiom-rule (cfr. Fig. 1).

We show that GS4 admits a non-Gentzen cut-elimination algorithm considerably
more efficient than other, more traditional, Gentzen-style reduction procedures as the
size of proofs decreases at each reduction step. The algorithm proposed here relies on
the observation that, if � � is a provable sequent, then any proof π of � �, A can be
turned into a proof π�A ending in � � (Corollary 11) simply by ‘unthreading’ from
the proof-tree π the formula A (Proposition 9 and Lemma 10). As a corollary result of

1 The system GS4 could be also presented as a slight propositional variant of GS3 as it is described in [14,
Def. 3.6.2]
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212 G. Pulcini

Fig. 1 The rules of the sequent
calculus GS4

our Hauptsatz (Theorem 12), we show that analyticity always guarantees minimality
of the size of proofs (Corollary 13).

2 Notation, terminology, and preliminary results

We consider a language à la Tait comprising only two connectives: conjunction (∧)
and disjunction (∨) [13]. Negation comes as primitive on atomic sentences

AT = {p, q, . . .} ∪ {p, q, . . .}

and it extends to compound formulas bymeans of the following standard equivalences:

A ⇔ A A ∧ B ⇔ A ∨ B A ∨ B ⇔ A ∧ B

The set F of well-formed formulas is defined according to the following grammar:

F ::= AT |F ∧ F |F ∨ F.

Logical contexts �,�, . . . are taken to be multisets of formulas from F. As usual, we
write �, A and �,� to simplify the expressions � � [A] and � � �, respectively.

The complexity C(A) of a formula A is given by the number of occurrences of
logical connectives in it. More formally: C(A) = 0, for any A ∈ AT, and C(A∧ B) =
C(A ∨ B) = C(A) + C(B) + 1. For any multiset � = [A1, A2, . . . , An], we set
C(�) = C(A1) + C(A2) + · · · + C(An). It is easy to check that C(A) = C(A), for any
A ∈ F.

Following the standard terminology, a clause is a sequent displaying only atomic
sentences [1, 3]. In particular, a clause � � is said to be an identity clause just in case
� contains at least one pair of dual atoms (� is an inconsistent multiset of literals),
otherwise � � is termed complementary (� is a consistent multiset of literals).2

We call GS4 the one-sided version of Kleene’s sequent system G4 whose rules are
displayed in Fig. 1 [6, 7, 9, 12]. It is crucial to observe that, in the specific version of
the GS4 calculus adopted here, the axiom-rule is allowed to introduce only (identity)

2 The specific terminology adopted here comes from the literature on refutation calculi in which proof-
systems sound and complete with respect to the set of non-tautological sentences are customarily termed
‘complementary’ [8, 10, 15].
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Cut elimination by unthreading 213

clauses. Hereafter,GS4 -proofs are defined by passing through the more general notion
of decomposition-tree.

Definition 1 (Decomposition-trees) Decomposition-trees are finite trees of sequents
such that:

• For any finite � ⊂ AT, � � is a decomposition-tree.
• If π1, ρ1 and ρ2 are the three decomposition-trees reported below

π1

...

� �, A, B

ρ1

...

� �, A

ρ2

...

� �, B

then the following also qualify as decomposition-trees.

π1

...

� �, A, B ∨� �, A ∨ B

ρ1

...

� �, A

ρ2

...

� �, B ∧� �, A ∧ B

• Nothing else is a decomposition-tree.

Definition 2 (GS4-proofs, direct subproofs) A decomposition-tree π qualifies as a
GS4-proof just in case each of π ’s top-sequents turns out to be an instance of the
axiom-rule, i.e., an identity clause. A subproof ρ of a GS4-proof π is said to be direct
if it delivers one of the premises of π ’s last rule. We say that GS4 proves the sequent
� � to mean that there is at least one GS4 -proof ending in � �.

Proposition 1 Any multiset of formulas � admits a decomposition-tree ending in � �.

Proof It suffices to start from � � and keep decomposing it by applying upwards the
logical rules till the leaves of the tree are all clauses (i.e. not further decomposable
sequents). 
�

We denote with top(π) the multiset of clauses occurring as top-sequents in a de-
composition-tree π . The size h × w of a decomposition-tree π is measured by means
of two parameters expressing π ’s height and width. The height h(π) of π is given
by the number of sequents occurring in one of its longest branches. The width w(π)

counts the number of π ’s top-sequents, that is w(π) = #top(π).

Example 1 We report below a decomposition-tree π for the sequent
�(p∧t)∨q, (p∨q)∧t .

� p, q, p, q ∨� p, q, p ∨ q � p, q, t ∧� p, q, (p ∨ q) ∧ t

� t, q, p, q ∨� t, q, p ∨ q � t, q, t ∧� t, q, (p ∨ q) ∧ t ∧� p ∧ t, q, (p ∨ q) ∧ t ∨� (p ∧ t) ∨ q, (p ∨ q) ∧ t
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214 G. Pulcini

In this case, top(π) = [ � p, q, p, q, � p, q, t, � t, q, p, q, � t, q, t
]
, h(π) = 5,

and w(π) = 4.

The following lemma gathers some (already known) very important properties
characterizing Kleene’s systems G4 and GS4 with respect to other equivalent sequent
formulations for classical propositional logic [3, 9].

Lemma 2 (Size preserving permutability of the rules) Consider a decomposition-tree
π for � �, A with C(A) > 0. There is a decomposition-tree ρ ending in the same
sequent as π and such that: (i) the formula A occurs as principal in ρ’s last inference,
(ii) π and ρ have the same size, and (iii) top(π) = top(ρ).

Proof Let A ≡ B ◦C , with ◦ ∈ {∧,∨}. The argument goes by induction on the height
h(π) of π and it consists in showing that the specific instance of the ◦-rule forming the
compound B ◦ C can be freely permuted downwards along π till it becomes the very
last inference step. Then, it suffices to notice that the size of the decomposition-tree
as well as the multiset of its top-sequents is not affected by such permutations. (The
reader can find all the missing details in [9, Lemma 3]). 
�

Invertibility of the logical rules is an immediate consequence of the previous lemma.

Corollary 3 (Invertibility of the logical rules) The logical rules of GS4 are both
invertible:

(i) If GS4 proves � �, A ∧ B, then it also proves both � �, A and � �, B;
(ii) If GS4 proves � �, A ∨ B, then � �, A, B is provable too.

Proof As for point (i), by Lemma 2, the sequent � �, A ∧ B admits a proof ρ whose
last inference is the specific instance of the ∧-rule introducing the formula A ∧ B.
Then, it suffices to consider the two direct subproofs of ρ ending in� �, A and� �, B
to get the desired conclusion. Point (ii) can be handled likewise. 
�
Remark 1 Proposition 1 is enough to prove completeness. Since GS4’s logical rules
are both invertible, validity is always preserved upwards, from the conclusion to the
premise(s). This fact guarantees that each top-sequent in every decomposition-tree π

associated with a valid sequent � � will be an identity clause, that is, an instance of
the ax-rule. Hence, π qualifies as a GS4-proof for � �.

The following theorem presents a strengthened version of some key results already
obtained in [8, 9].

Theorem 4 If π and ρ are two decomposition-trees ending in the same sequent � �,
then they have equal size and, notably, top(π) = top(ρ).

Proof The proof is led by induction on C(�). (Base) For C(�) = 0, we clearly have
π = ρ = � �, therefore h(π) = h(ρ) = 1, w(π) = w(ρ) = 1, and top(π) =
top(ρ) = [ � � ]. (Step) When C(�) > 0, we need to proceed by cases depending
on π ’s last rule.

• (∧-rule) Let � = �′, B ∧ C and assume that π has this shape
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Cut elimination by unthreading 215

π1

...

� �′, B

π2

...

� �′,C ∧� �′, B ∧ C

Now we apply Lemma 2 to transform ρ into a decomposition-tree ρ′:

ρ′
1

...

� �′, B

ρ′
2

...

� �′,C ∧� �′, B ∧ C

and such that h(ρ) = max(h(ρ′
1), h(ρ′

2))+1, w(ρ) = w(ρ′
1)+w(ρ′

2), and top(ρ) =
top(ρ′

1) � top(ρ′
2). By inductive hypothesis, we get the six equalities:

h(π1) = h(ρ′
1) h(π2) = h(ρ′

2)

w(π1) = w(ρ′
1) w(π2) = w(ρ′

2)

top(π1) = top(ρ′
1) top(π2) = top(ρ′

2)

Now, it suffices to observe that h(π) = max(h(π1), h(π2)) + 1, w(π) = w(π1) +
w(π2), and top(π) = top(π1) � top(π2) to get the desired conclusion.

• (∨-rule) Let � = �′, B ∨ C and assume that π comes as follows.

π1

...

� �′, B,C ∨� �′, B ∨ C

As for the previous item, we use Lemma 2 to transform ρ into the decomposition-tree
ρ′:

ρ′
1

...

� �′, B,C ∨� �′, B ∨ C

and such that h(ρ) = h(ρ′), w(ρ) = w(ρ′), and top(ρ) = top(ρ′). By inductive
hypothesis we have that h(π1) = w(ρ′

1), w(π1) = w(ρ′
1), and top(π1) = top(ρ′

1).
These facts allow us to conclude that π and ρ have the same size and, in particular,
top(π) = top(ρ). 
�

We observe that Theorem 4 brings us two important facts. First of all, it allows
us to push our notation and write, if convenient, top(�) to directly refer to the set
of top-sequents induced by any decomposition-tree ending in � �. Second, such a
result guarantees that whatsoever decomposition (proof-search) strategy starting from
a provable sequent will always prove successful in the sense that:
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216 G. Pulcini

Corollary 5 The sequent � � is provable in GS4 if, and only if, every decomposition-
tree π ending in � � turns out to be a GS4-proof for � �.

Proof Assume that � � admits both a GS4-proof π and a decomposition-tree ρ which
does not qualify as a GS4-proof. In this case we would have top(π) �= top(ρ), against
what established by Theorem 4. The opposite direction of the biconditional is trivial.


�
Remark 2 When sequent derivations are considered modulo permutations of the log-
ical rules, the combination of Theorem 4 and Corollary 5 actually amounts to show
that GS4 admits exactly one proof for any derivable sequent.

The following is another straightforward consequence of Theorem 4 which will
find application in the next section.

Proposition 6 For any multiset of formulas � and any atomic sentence p, if top(�) =[ � �1,� �2, . . . ,� �n
]
, then top(�, p) = [ � �1, p,� �2, p, . . . ,� �n, p

]
.

Proof Any decomposition-tree π for � � can be turned into a decomposition-tree ρ

for � �, p simply by replacing each sequent � � occurring in π with the sequent
� �, p.We apply Theorem 4 to conclude that top(�, p) = [ � �1, p,� �2, p, . . . ,�
�n, p

]
. 
�

We conclude this section by recalling a well-known result which proves a key
ingredient in several cut-elimination procedures [9, 11, 13], including the one we
shall be presenting in the next section.

Theorem 7 (Weakening admissibility) If GS4 proves � �, then it also proves � �, A,
for any formula A.

Proof The proof is by induction on C(A). (Base) For A ∈ AT, it suffices to observe
that any proof π of � � can be turned into a proof ρ of � �, p simply by replacing
each sequent � � occurring in π with the sequent � �, p. (Step) We consider two
cases.

• A ≡ B ∧ C . We observe that C(B),C(C) < C(B ∧ C) and apply our inductive
hypothesis twice so as to get two proofs π1 and π2 ending in � �, B and � �,C ,
respectively. Then, we can easily get a proof π for � �, A ∧ B by connecting π1
and π2 through an application of the ∧-rule.

• A ≡ B ∨ C . This case can be handled likewise. 
�

3 Reduction Lemma

We call GS4+ the sequent system obtained from GS4 by adding the cut-rule in its
context-sharing (additive) formulation:

� �, A � �, A
cut� �
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Cut elimination by unthreading 217

We indicate with |π | the number of cut-applications occurring in a GS4+-proof π .
Clearly, π turns out to be a GS4 -proof whenever |π | = 0. According to the standard
terminology, proofs displaying no cut-applications are called analytic.

Having settled these matters, we can now turn to the following quick version of the
Reduction Lemma.

Lemma 8 (Reduction Lemma) If GS4 proves both � �, A and � �, A, then it also
proves the sequent � �.

Proof We proceed by induction on C(A).
(Base) Let A ≡ p and assume, by contradiction, that � � is not provable. By

Definition 2 and Corollary 5, there is at least one clause � �i ∈ top(�) which
proves complementary. We apply Proposition 6, to derive � �i , p ∈ top(�, p) and
� �i , p ∈ top(�, p). Since � �, p and � �, p are both provable in GS4, again by
Corollary 5, � �i , p and � �i , p must be both identity clauses (i.e. instances of the
axiom rule). To sum up, we have that� �i is a complementary clause, whereas� �i , p
and � �i , p are both identity clauses. Hence, it must be p ∈ �i and p ∈ �i . This
latter conclusion is patently incompatible with our initial assumption that � �i is a
complementary clause.

(Step) As for C(A) > 0, let A ≡ B ∧ C and A ≡ B ∨ C . We apply Lemma 2 to
get the (cut-free) provability of the three sequents � �, B, � �,C , and � �, B,C . By
Theorem 7, we have that the sequent � �, B,C is also provable in GS4. Let’s now
observe that

C(B) = C(B) < C(B ∧ C) = C(B ∨ C)

C(C) = C(C) < C(B ∧ C) = C(B ∨ C)

and apply our inductive hypothesis twice. First, we combine the provability of
� �, B,C and that of � �, B,C so as to get the provability of � �,C . Then, we
combine the provability of � �,C and � �,C to finally achieve the provability of
� �. 
�

4 A non-Gentzen cut-elimination algorithm

Before going into detail of our cut-elimination procedure, we need to draw up the
‘unthreading’ operation (�). In particular, given a decomposition-tree π for � �, A,
we want to produce another decomposition-tree π�A ending in � � and obtained by
‘unthreading’ from π the formula A together with all the occurrences of its subfor-
mulas. The ‘unthreading’ operation is formally defined in two steps: Proposition 9
considers the case in which A is atomic, whilst Lemma 10 deals with formulas having
non-zero complexity.

Proposition 9 If π is a decomposition-tree for � �, p with � �= ∅, then there is a
decomposition-tree π�p ending in � � having exactly the same size as π .
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218 G. Pulcini

Proof Since � �= ∅, each sequent occurring in π will be of the form � �, p with
� �= ∅. Therefore, the decomposition-tree ρ can be obtained from π simply by
removing exactly one occurrence of p from each of the sequents displayed by π .
Moreover, we observe that π�p has exactly the same graph-theoretic structure as π ,
thus we immediately get h(π�p) = h(π) and w(π�p) = w(π). 
�
Example 2 We report below a decomposition-tree π associated with the sequent
� p ∨ (p ∧ (t ∨ q)), t together with its ‘unthreaded’ version π � t ending in
� p ∨ (p ∧ (t ∨ q)). In particular, π�t is obtained by applying the simple procedure
illustrated in the proof of Proposition 9, namely by removing exactly one occurrence
of the atom t from each of π ’s sequents. The two decomposition-trees have the same
size 4 × 2.

� p, p, t

� p, t, q, t ∨� p, t ∨ q, t ∧� p, p ∧ (t ∨ q), t ∨� p ∨ (p ∧ (t ∨ q)), t

� p, p
� p, t, q ∨� p, t ∨ q ∧� p, p ∧ (t ∨ q) ∨� p ∨ (p ∧ (t ∨ q))

Lemma 10 Letπ beadecomposition-tree for� �, Awith� �= ∅andC(A) > 0. There
is a decomposition-tree π�A for � � such that h(π�A) < h(π) and w(π�A) ≤ w(π).

Proof We show how to manufacture π �A for any decomposition-tree π ending in
� �, A. The proof is led by induction on C(�, A).

(Base) For C(�, A) = 1, since C(A) > 0, we have that � ⊂ AT and so A is either
the disjunction or the conjunction of two atomic sentences. Let’s consider these two
cases separately.

• If A ≡ p ∨ q, then π is the decomposition-tree
� �, p, q ∨� �, p ∨ q

and so we

can simply set π � A = � �. Since � ⊂ AT, the single-point tree � � turns
out to be a decomposition-tree. Moreover, we clearly have h(π �A) < h(π) and
w(π�A) = w(π) = 1.

• If A ≡ p ∧ q, then π = � �, p � �, q ∧ .� �, p ∧ q
As in the previous case, we

put π � A =� � and observe that � � is still a decomposition-tree. Besides,
h(π�A) < h(π) and w(π�A) < w(π).

(Step) For C(�, A) > 1, we need to consider the following four cases separately.

• A ≡ B ∨ C and A occurs as the principal formula in π ’s last inference. In other
words, π comes with this shape:

π1

...

� �, B,C ∨� �, B ∨ C

Now we can set π �A = (π1 �B) �C (or, equivalently, π �A = (π1 �C) �B). The
fact that C(�,C) < C(�, B,C) < C(�, B ∨ C) guarantees that: (i) the operation
(π �B) �C is inductively well-defined, (i i) the tree of sequents (π �B) �C is still a
decomposition-tree, and (i i i) h(π�A) < h(π) and w(π�A) ≤ w(π).
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Cut elimination by unthreading 219

• π ’s last inference is an application of the∨-rule, but A is not the principal formula.
In this case, we can write π as follows:

π1

...

� �′, D, E, A ∨� �′, D ∨ E, A

Weobtainπ�A by computingπ1�A and then extending it bymeans of a final application
of the ∨-rule as indicated below:

π1�A
...

� �′, D, E ∨� �′, D ∨ E

Since C(�, D, E, A) < C(�, D∨E, A) the operation π1�A turns out to be inductively
well-defined and this guarantees that π1 � A actually qualifies as a decomposition-
tree. Moreover, by inductive hypothesis, we have both h(π1 � A) < h(π1) and
w(π1�A) ≤ w(π1). From these latter facts we can easily conclude that h(π�A) < h(π)

and w(π�A) ≤ w(π).

• A ≡ B ∧ C and A occurs as the principal formula in π ’s last inference. Then, we
can write π as follows:

π1

...

� �, B

π2

...

� �,C ∧� �, B ∧ C

In this case, there are two possible ways to define π �A as we can put either π �A =
π1�B or π �A=π2�C . Since C(�, B)<C(�, B ∧ C) and C(�,C)<C(�, B ∧ C), the
decomposition-trees π1 �B and π2 �C prove both inductively well-defined. Still by
inductive hypothesis, we can derive the four inequalities h(π1�B)<h(π1), h(π2�C)

<h(π2), w(π1�B) ≤ w(π1), and w(π2�C) ≤ w(π2). Thence, h(π �A) < h(π) and
w(π �A) ≤ w(π). (In this latter inequality, w(π �A) is actually strictly smaller than
w(π), since w(π1) < w(π) and w(π2) < w(π).)

• π ’s last rule is an instance of the ∧-rule, but A does not occur as the principal
formula. In this case, π comes shaped as follows:

π1

...

� �′, D, A

π2

...

� �′, E, A ∧� �′, D ∧ E, A

The decomposition-tree π�A is obtained by combining π1�A and π2�A in this way:

123
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π1�A
...

� �′, D

π2�A
...

� �′, E ∧� �′, D ∧ E

Again, since C(�′, D, A),C(�′, E, A) < C(�′, D ∧ E, A), the two decomposition-
trees π1�A and π2�A prove both inductively well-defined. By inductive hypothesis,
we also have h(π1 � A) < h(π1), h(π2 � A) < h(π2), w(π1 � A) ≤ w(π1), and
w(π2 � A) ≤ h(π2). These facts allow us to conclude that h(π � A) < h(π) and
w(π�A) ≤ w(π). 
�
Corollary 11 Let π be a GS4 -proof ending in � �, A and � � a provable sequent.
Then π�A is a GS4 -proof for � �.

Proof By Definition 2, the sequent � � is provable in GS4 just in case it admits a
decomposition-tree ρ whose top-sequents are all identity clauses. By Lemma 10, π�A
turns out to be a decomposition-tree for� �. Furthermore, by Theorem 4, we have that
top(ρ) = top(π �A), namely all the sequents in top(π �A) must be identity clauses.
Thereby, π�A actually qualifies as a GS4-proof ending in � �. 
�
Example 3 Here below the reader can see a decomposition-tree π for the sequent
� p ∨ (q ∨ p), (p ∨ q) ∧ t together with its ‘unthreaded’ version π �(p ∨ q) ∧ t
ending in � p ∨ (q ∨ p). It this case, we unthread the formula (p ∨ q) ∧ t from our
decomposition-tree by discarding the subproof of π delivering the right-premise of
the ∧-rule. Notice that π and π�(p ∨ q) ∧ t have size 5 × 2 and 3 × 1, respectively.
According to Corollary 11, π�(p ∨ q) ∧ t is actually a GS4-proof for � p ∨ (q ∨ p).

ax� p, q, p, p , q
∨� p, q, p, p ∨ q
∨� p, q ∨ p, p ∨ q

ax� p, q, p, t ∨� p, q ∨ p, t
∧

� p, q ∨ p, (p ∨ q) ∧ t
∨

� p ∨ (q ∨ p), (p ∨ q) ∧ t

ax� p, q, p ∨� p, q ∨ p ∨� p ∨ (q ∨ p)

The cut-elimination algorithmwe shall be furnishing in a moment takes shape from
the combination of our Reduction Lemma (Lemma 8) and the ‘unthreading’ procedure
described in the proofs of Proposition 9 and Lemma 10.

Theorem 12 (Hauptsatz) Any GS4+-proof π of � � can be turned into a GS4-proof ρ
ending in the same sequent, such that h(ρ) ≤ h(π) and w(ρ) < w(π).

Proof The procedure is implemented by always applying the same reduction step.
At each step, we need to focus attention on a subproof λ of π such that: (i) λ’s last
inference-step is an application of the cut-rule, and (i i) at least one of λ’s direct
subproofs is cut-free. In particular, we can assume without any loss of generality that
λ comes shaped as follows, with λ1 cut-free:
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Cut elimination by unthreading 221

λ1

...

� �, A

λ2

...

� �, A
cut� �

Lemma 8 guarantees the provability of � � and, in particular, by Corollary 11, λ1�A
turns out to be a GS4-proof ending in � �.

Consider now theGS4+-proofπ ′ obtained fromπ by replacingλwithλ1�A. Clearly,
|π ′| < |π |. Moreover, by Proposition 9 and Lemma 10, we have that h(λ1�A) ≤ h(λ1)

and w(λ1 �A) ≤ w(λ1). We can also notice that w(λ1) < w(λ). By combining all
these facts, we conclude that h(π ′) ≤ h(π) and w(π ′) < w(π). 
�
Example 4 We apply the just designated procedure to ‘extract’ from the GS4+-proof
π reported below one of its cut-free versions.

ax� p, p, q, q ∨� p, p ∨ q, q ∨� p ∨ (p ∨ q), q

ax� p, p, q, t ∨� p, p ∨ q, t ∨� p ∨ (p ∨ q), t ∧� p ∨ (p ∨ q), q ∧ t

ax� p, p, q, q, t, t ∨� p, p, q, q ∨ t, t ∨� p, p ∨ q, q ∨ t, t

ax� p, p, q, q, t, t ∨� p, p, q, q ∨ t, t ∨� p, p ∨ q, q ∨ t, t
cut� p, p ∨ q, q ∨ t ∨� p ∨ (p ∨ q), q ∨ t

cut� p ∨ (p ∨ q)

We follow the optimal strategy by selecting the direct cut-free subproof π1 of π deliv-
ering the left-premise of π ’s lowermost cut-application. Then it suffices to compute
π1�q ∧ t to get one of the final cut-free versions of π .

ax� p, p, q, q
∨� p, p ∨ q, q

∨� p ∨ (p ∨ q), q

ax� p, p, q, t ∨� p, p ∨ q, t ∨� p ∨ (p ∨ q), t
∧� p ∨ (p ∨ q), q ∧ t

�⇒
ax� p, p, q ∨� p, p ∨ q ∨� p ∨ (p ∨ q)

Remark 3 The property established by Theorem 12 cannot be imported in multiplica-
tive settings in which the cut-rule comes as a context-mixing inference pattern. The
simplest counterexample is illustrated below.

ax� p, p
ax� p, p
cut� p, p

ax
� p, p � p

In the following corollary we draw an immediate consequence of our Hauptsatz,
namely that fact that, in the specific proof-theoretic setting offered by GS4, analytic
proofs always express the optimal deductive strategy.

Corollary 13 Let π and ρ be two proofs of the same sequent, such that |π | > 0 and
|ρ| = 0. Then we have, h(ρ) ≤ h(π) and w(ρ) < w(π).

Proof Consider the GS4 -proof λ of � � obtained from π by applying the cut-
elimination algorithm illustrated in the proof of Theorem 12. Theorem 12 also
guarantees that h(λ) ≤ h(π) and w(λ) < w(π). Since |λ| = |ρ| = 0, by Theo-
rem 4, we have both h(λ) = h(ρ) and w(λ) = w(ρ). This latter fact allows us to
conclude that h(ρ) ≤ h(π) and w(ρ) < w(π). 
�
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Remark 4 (Use-check) Given a provable sequent � �, A, the problem of checking
whether � � remains provable — i.e. the problem of checking A’s dispensability
from the point of view of the provability of � �, A — is known in the proof-search
literature as use-check [5]. In the present case, a very simple use-check algorithm can
be straightforwardly obtained from the technical results established in this section.

In particular, given a GS4-proof π for � �, A, we simply need to follow, from
the root up, the decomposition-tree π so as to back trace each of A’s atomic com-
ponents and then remove it from the top-sequents in which it occurs. When such a
removal procedure is completed, if no identity axiom from top(�, A) is turned into a
complementary clause, then � � is provable and, therefore, A proves to be actually
dispensable. This is an immediate consequence of the fact that top(π�A) = top(�),
for any decomposition-tree π ending in � �, A.

5 Concluding observations

One could wonder whether the algorithm proposed in the previous section actually
seizes the simplest possible cut-elimination procedure forGS4. In particular, one could
go one step further by switching directly to proof-search. The interlacing between cut-
elimination and proof-search have been already investigated, especially in the context
of modal logic [2, 4]. In the case of GS4, such a relation proves to be quite a trivial
issue: given a GS4+-proof π , we could just retain from π its end-sequent and then
keep decomposing it till a GS4-proof is fully accomplished. Proposition 1 guarantees
termination; Corollary 5 keeps out the possibility to run into unsuccessful proof-search
strategies. However, two warnings should be put forward.

First, the locution ‘cut-elimination’ standardly indicates a purely syntactical pro-
cedure that allows the user of a certain proof-system to rewrite a proof π with cuts
into a cut-free proof π ′ of the same sequent. The fact that π ′ is obtained by applying
a series of syntactical transformations to π is a key feature that distinguishes cut-
elimination from mere cut-admissibility, namely the fact that dropping the cut-rule no
theorem is lost. Having clarified this issue, proof-search leads to a syntactical proof
of cut-admissibility, but it can hardly qualify as a cut-elimination procedure.

Second, as already observed, the logical rules ofGS4 are all invertible and, in addic-
tion, the complexity of sequents (measured as the number of occurrences of the logical
connectives) decreases as we move upwards along proofs. The combination of these
two features brings about the fact that, inGS4, proof-search simply parallels complete-
ness to the extant that the very inductive procedure employed to prove completeness
can be also read as a proof-search algorithm and vice versa (cf. Remark 1). That casts
doubt upon the genuine syntactical nature of the procedure based on proof-search and
shows that the method given in Sect. 4 represents the syntactical threshold beyond
which cut-admissibility collapses into completeness itself.
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