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Abstract
We prove that if A is an infinite Boolean algebra in the ground model V and P is
a notion of forcing adding any of the following reals: a Cohen real, an unsplit real,
or a random real, then, in any P-generic extension V [G], A has neither the Nikodym
property nor theGrothendieck property.A similar result is also proved for a dominating
real and the Nikodym property.

Keywords Grothendieck property · Nikodym property · Convergence of measures ·
Forcing · Cohen reals · Random reals · Dominating reals

Mathematics Subject Classification Primary 03E40 · 28A33 · 46E15; Secondary
03E17 · 03E75 · 28E15

1 Introduction

LetA be aBoolean algebra.We say thatA has theNikodymproperty1 if every sequence〈
μn : n ∈ ω

〉
of measures onAwhich is pointwise null, i.e.μn(A) → 0 for every A ∈

A, is also weak* null, i.e. μn( f ) → 0 for every continuous function f ∈ C(St(A))

1 For an equivalent definition of the Nikodym property in terms of bounded sequences of measures, see
Lemma 4.1.
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136 D. Sobota, L. Zdomskyy

on the Stone space ofA, and thatA has the Grothendieck property if every weak* null
sequence

〈
μn : n ∈ ω

〉
ofmeasures onA isweakly null, i.e.μn(B) → 0 for everyBorel

B ⊆ St(A) (see Sect. 2 for all the necessary terminology). Both of the notions have
strong connections to functional analysis—the Nikodym property is closely related
to the Uniform Boundedness Principle for locally convex spaces (see [31]), while the
Grothendieck property is usually studied in a much more general sense in the context
of dual Banach spaces (see [22, 31] or [12]). Nikodym [30] andDieudonné [11] proved
that all σ -complete Boolean algebras have the Nikodym property, while Grothendieck
[22] showed that they have also the Grothendieck property. Consequently, e.g., the
algebra℘(ω)of all subsets ofω has both of the properties.On the other hand, no infinite
countable Boolean algebra (or, more generally, no Boolean algebra whose Stone space
contains a non-trivial convergent sequence) can have the Nikodym property or the
Grothendieck property.

Since the findings of Nikodym, Dieudonné, and Grothendieck, many generaliza-
tions of the σ -completeness have been found which still give at least one of the
properties, see e.g. [1, 10, 18, 23, 24, 29, 31, 32, 34]. Unfortunately, none of those
generalizations yields a necessary condition which a given Boolean algebra must sat-
isfy in order to have the Nikodym property or the Grothendieck property. One of the
reasons behind this is that, due to the result of Koszmider and Shelah [27], each of
those generalizations implies also that an infinite Boolean algebra satisfying it con-
tains an independent family of size continuum c and thus itself must be of cardinality
at least c. Brech [7] however showed that consistently there exists a Boolean algebra
of cardinality ω1 having the Grothendieck property while at the same time c ≥ ω2.
A similar result was also obtained by the first author [33] for the Nikodym property.
Those two facts imply together that the quest for an algebraic or topological char-
acterization of the Nikodym property or the Grothendieck property is much more
demanding and requires using more sophisticated assumptions than mere existence of
suprema or upper bounds of antichains in Boolean algebras.

Let us state the result of Brech [7] more precisely. She proved that if κ is a cardinal
number and S(κ) is the side-by-side Sacks forcing adding simultaneously κ many
Sacks reals to the groundmodelV , then in anyS(κ)-generic extensionV [G] the ground
model Boolean algebra℘(ω)∩V has the Grothendieck property (her argument works
in fact for any infinite ground model σ -complete Boolean algebra, not only for℘(ω)).
In [35] we showed that a similar theorem may be obtained for the Nikodym property
and in [36] we generalized both of the results by proving that if P is a proper notion of
forcing satisfying the Laver property and preserving the reals non-meager, then in any
P-generic extension V [G] every ground model σ -complete Boolean algebra has both
the Nikodym property and the Grothendieck property. Recall that the class of forcings
satisfying the assumptions of the latter theorem contains such classical notions like the
Sacks, side-by-side Sacks, Miller, or Silver(-like) forcing, as well as their countable
support iterations (see [36, Introduction] for references).

In this paper we follow the path of research described in the previous paragraph
and study the case of adding just one real to the given model of set theory, however
this time the results are mostly negative. Our main theorem reads to wit as follows.
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Convergence of measures after adding a real 137

Theorem 1.1 Let A ∈ V be an infinite Boolean algebra. Let P ∈ V be a notion of
forcing adding one of the following reals:

• a Cohen real,
• an unsplit real, or
• a random real.

Assume that G is a P-generic filter over V . Then, in V [G],A has neither the Nikodym
property nor the Grothendieck property.

We establish the above theorem in a series of partial results. First, in Theorems 3.2
and 3.4 we prove that if P adds a Cohen real or an unsplit real, then in any P-generic
extension every infinite ground model Boolean algebra A obtains a non-trivial con-
vergent sequence in its Stone space St(A), and, consequently, it can have neither the
Nikodym property nor the Grothendieck property. Theorems 3.2 and 3.4 have already
been known to experts in the area (cf. e.g. Dow–Fremlin [16, page 162] and their
reference to Koszmider [26]), however, it seems that their proofs have never been
published anywhere. Our proof of Theorem 3.2 may be seen as a forcing counter-
part of the proof of Geschke’s [19, Theorem 2.1] which states that under Martin’s
axiom every infinite compact space of weight < 2ω contains a non-trivial conver-
gent sequence or, more generally, that in ZFC every infinite compact space of weight
strictly less than the covering number cov(M) of the meager ideal M contains such
a sequence. Geschke’s argument is on the other hand a topological counterpart of
Koppelberg’s [25, Proposition 5] asserting that under Martin’s axiom every infinite
Boolean algebra of cardinality < 2ω has countable cofinality. The argument for The-
orem 3.4 is based on the idea presented in Booth [5, Theorem 2] (see also [14]) where
it is showed that every infinite compact space of weight strictly less than the splitting
number s is sequentially compact and thus contains a non-trivial convergent sequence.

The issue of adding random reals is more special. Recall that Dow and Fremlin
[16] first proved that adding any number of random reals to the ground model does not
introduce non-trivial convergent sequences to the Stone spaces of σ -complete ground
model Boolean algebras (or, more generally, to the Stone spaces of ground model
Boolean algebras whose Stone spaces in the ground model are F-spaces). Since not
containing any non-trivial convergent sequences in the Stone space is not sufficient
for an infinite Boolean algebra to have the Nikodym property or the Grothendieck
property, the result of Dow and Fremlin does not say anything about the preservation
of either of the properties by the random forcing.We address here this issue by proving
in Theorem 4.6 that if a forcing P adds a random real, then for any infinite ground
model Boolean algebraA in every P-generic extension of the ground model there are
sequences of finitely supported measures on the Stone space St(A)which witness that
A has neither the Nikodym property nor the Grothendieck property.

We also generalize partially the aforementioned result ofDowandFremlin.Namely,
we prove in Theorem 4.8 that for any ground model σ -complete Boolean algebra A
the random forcing does not add to its Stone space St(A) any weak* null sequences
of normalized measures whose supports consist of at most M points, where M ∈ ω

is a fixed number. This result complements Theorem 4.6, at least in the case of σ -
algebras—see Sect. 4.2 for more details.
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138 D. Sobota, L. Zdomskyy

As examples of forcings adding a Cohen real one can name the Hechler forcing or
finite support iterations of infinite length of non-trivial posets (see [20, Example 0.2]).
The Mathias forcing is a typical example of a notion adding an unsplit real. Finally,
random reals are added by, e.g., the amoeba forcing.

Corollary 1.2 Let A ∈ V be an infinite Boolean algebra. Let P ∈ V be one of the
following notions of forcing: Cohen, finite support iteration of infinite length of non-
trivial posets, Hechler, Mathias, random, or amoeba. Assume that G is a P-generic
filter over V . Then, in V [G],A has neither the Nikodym property nor the Grothendieck
property.

We also study the case of adding dominating reals—following the argument pre-
sented in [33, Proposition 8.8] and based on the celebrated Josefson–Nissenzweig
theorem from Banach space theory we prove in Sect. 4.3 that adding dominating reals
kills the Nikodym property of all infinite ground model Boolean algebras.

Theorem 1.3 Let A ∈ V be an infinite Boolean algebra. Let P ∈ V be a notion of
forcing adding a dominating real. Assume that G is a P-generic filter over V . Then,
in V [G], A does not have the Nikodym property.

The class of forcings adding a dominating real contains such notions as Hechler,
Laver, or Mathias. Thus, in addition to Corollary 1.2, we get the following result.

Corollary 1.4 Let A ∈ V be an infinite Boolean algebra. Let P ∈ V be the Laver
forcing. Assume that G is a P-generic filter over V . Then, in V [G], A does not have
the Nikodym property.

The case of the Laver forcing is particularly interesting as Dow [15, Theorem 11]
showed that adding a single Laver real does not introduce any non-trivial converging
sequences in the Stone space of the ground model Boolean algebra ℘(ω)∩ V , yet, by
Corollary 1.4, ℘(ω)∩V loses its Nikodym property. We do not know whether adding
a Laver real (or, more generally, a dominating real) kills the Grothendieck property of
ground model ℘(ω) (or any other ground model Boolean algebra)—see Sect. 6.

2 Notations

Our notations are standard—we follow the texts of Diestel [13], Kunen [28], and
Engelking [17]. We mention below only the most important issues.

V always denotes the set-theoretic universe.
By ω we denote the first infinite countable ordinal number. If A is a set, then by

℘(A), [A]ω, and [A]<ω we denote the families of all subsets of A, all infinite countable
subsets of A, and all finite subsets of A, respectively. AB denotes the family of all
functions from a set B to A. If f is a function, then by ran( f ) we denote its range. If
(L,≤) is a linear order and f , g ∈ Lω, then by writing f ≤ g ( f ≤∗ g) we mean that
for all (but finitely many) n ∈ ω we have f (n) ≤ g(n). We similarly define the strict
relations < and <∗ on Lω. idA denotes the identity function on A. If B ⊆ A, then by
χB we denote the characteristic function of B on A.
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Convergence of measures after adding a real 139

All topological spaces considered in this paper are assumed to be Tychonoff, that
is, completely regular and Hausdorff. A subset of a topological space is perfect if it
is closed and contains no isolated points. A sequence

〈
xn : n ∈ ω

〉
in a topological

space X is non-trivial if xn 
= xm for every n 
= m ∈ ω and, if the limit exists,
xm 
= limn→∞ xn for every m ∈ ω.

If A is a Boolean algebra, then St(A) denotes its Stone space (i.e. the space of
all ultrafilters on A) with the usual topology which makes it a totally disconnected
compact Hausdorff space. Recall thatA is isomorphic to the algebra of clopen subsets
of St(A). For every element A ∈ A by [A]A we denote the clopen subset of St(A)

corresponding to A.
If we say that μ is a measure on a Boolean algebra A, then we mean that μ is a

signed finitely additive function fromA to R with bounded total variation, that is, the
following holds:

‖μ‖ = sup
{|μ(A)| + |μ(B)| : A, B ∈ A, A ∧ B = 0

}
< ∞.

When we say that μ is a measure on a compact Hausdorff space K , then we mean
that μ is a signed σ -additive Radon measure defined on the Borel σ -algebra Bor(K )

of K—it follows automatically that μ has bounded total variation, that is:

‖μ‖ = sup
{|μ(A)| + |μ(B)| : A, B ∈ Bor(K ), A ∩ B = 0

}
< ∞.

Recall that if we identify a given Boolean algebra A with the subalgebra of clopen
subsets of the Borel σ -field Bor(St(A)), then every measureμ onA extends uniquely
to a measure μ̂ on St(A)—we will usually omitˆand write simply μ, too.

Let K be a compact space. For a measure μ on K and a μ-measurable function
f : K → R we write μ( f ) to denote

∫
K f dμ. By C(K ) we denote the Banach space

of all continuous real-valued functions on K endowed with the supremum norm.
Recall that by the Riesz representation theorem the dual space C(K )∗ is isometrically
isomorphic to the Banach space M(K ) of all Radon measures on K endowed with the
total variation norm—M(K ) acts on C(K ) by the formula 〈 f , μ〉 = μ( f ).

Let
〈
μn : n ∈ ω

〉
be a sequence of measures on a Boolean algebra A. If

limn→∞ μn(A) = 0 for every A ∈ A, then we say that
〈
μn : n ∈ ω

〉
is point-

wise null; if limn→∞ μn( f ) = 0 for every f ∈ C(St(A)), then it is weak* null;
and if limn→∞ μn(B) = 0 for every B ∈ Bor(St(A)), then it is weakly null (cf.
[13, Theorem 11, page 90]). Additionally, we say that

〈
μn : n ∈ ω

〉
is pointwise

bounded if supn∈ω

∣∣μn(A)
∣∣ < ∞ for every A ∈ A, and that it is uniformly bounded

if supn∈ω

∥∥μn
∥∥ < ∞.

3 Adding a convergent sequence

In this section we prove that adding a Cohen real (Theorem 3.2) or an unsplit real
(Theorem 3.4) to the ground model produces a non-trivial convergent sequence in the
Stone space of every infinite ground model Boolean algebra. Notice that using the
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140 D. Sobota, L. Zdomskyy

methods described in [16, page 162] one can generalize those results to any infinite
ground model compact space K .

As we mentioned in Introduction, both of the theorems have been already known
to some experts, but it seems that their proofs have never been published anywhere.

3.1 Cohen reals

Let us first recall the definition of a Cohen real. Let P ∈ V be a notion of forcing andG
aP-generic filter over V . Then, x ∈ 2ω∩V [G] is aCohen real over V if for every dense
subset D ⊆ Fn(ω, 2) such that D ∈ V we have D ∩ {

p ∈ Fn(ω, 2) : p ⊆ x
} 
= ∅.

Here Fn(ω, 2) is the family of all finite partial functions from ω to 2, ordered by the
reverse inclusion.

We will need the following folklore lemma.

Lemma 3.1 If K is an infinite scattered compact Hausdorff space, then K contains a
non-trivial convergent sequence.

Proof Since K is scattered and infinite, there is a countable subset A of K such that
every x ∈ A is isolated in K . A must be discrete and open in K . Since K is compact,
the boundary ∂A is non-empty and thus must contain an isolated point x (in ∂A). The
sets {x} and (∂A) \ {x} are closed subsets of K , so there are disjoint open sets V and
W such that {x} ⊆ V and (∂A) \ {x} ⊆ W . Note that V ∩ A = (V ∩ A) ∪ {x}, so
V ∩ A is a one-point compactification of V ∩ A. Enumerate V ∩ A = {xn : n ∈ ω};
then xn → x . ��

Now, we are in the position to prove the main theorem of this section.

Theorem 3.2 Let P ∈ V be a notion of forcing adding a Cohen real and A ∈ V an
infinite Boolean algebra. Then, for every P-generic filter G over V the Stone space(
St(A)

)V [G]
contains a non-trivial convergent sequence.

Proof We have two cases:
(1) In V , the Stone space St(A) of A is scattered—by Lemma 3.1 there is a non-

trivial convergent sequence in St(A). Of course, this sequence will also be convergent
in the Stone space of A in any P-generic extension V [G].

(2) In V , the Stone space St(A) is not scattered. Hence, there is a closed subset L
of St(A) and a continuous surjection f : L → 2ω. By the Kuratowski–Zorn lemma,
we may assume that f is irreducible and hence that L is perfect. The family

P = {
f −1[U ] : U 
= ∅ is a clopen in 2ω

}

is a countable π -base of L (partially ordered by the reverse inclusion⊇). Indeed, given
any non-empty open set W ⊆ L , note that f [L \ W ] 
= 2ω by the irreducibility of f ,
so for any clopen U ⊆ 2ω \ f [L \ W ] we have f −1[U ] ⊆ W .

Let B be the Boolean algebra of clopen subsets of L . Of course, P ⊆ B. By the
Stone duality, B is a homomorphic image of A. For every U ∈ B put:

DU = {
P ∈ P : P ⊆ U or P ⊆ L \U}

.
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Convergence of measures after adding a real 141

Trivially, each DU ∈ V and is dense in the poset (P,⊇).
Fix now a P-generic filter G over V and let us work in V [G]. By the assumption,

there is a Cohen real c ∈ 2ω over V . The family

G = {
f −1[[c � n]V ] : n ∈ ω

}

is a P-generic filter over V , so, in particular, G meets every DU (as DU ∈ V ). Let
x ∈ St(B) be the ultrafilter with the base G. Since the ground model (perfect) set
L had no isolated points (in V ) and it is dense in St(B), x is not isolated in St(B).
Thus, we proved that St(B) is a perfect set containing aGδ-point. In particular, St(B)

contains a non-trivial convergent sequence.
In V [G], B is still a homomorphic image of A, hence St(B) is homeomorphic to

a closed subset of St(A). By the previous paragraph, St(A) contains a non-trivial
convergent sequence (in V [G]). ��

The next corollary follows from the proof of Theorem 3.2. Recall that a point x in a
topological space X is aGδ-point if the singleton {x} is the intersection of a countable
family of open subsets of X .

Corollary 3.3 Let P ∈ V be a notion of forcing adding a Cohen real and A ∈ V an
infinite Boolean algebra such that its Stone space St(A) is not scattered. Then, for
every P-generic filter G over V the Stone space

(
St(A)

)V [G]
contains a perfect subset

L and a point x ∈ L which is a Gδ-point in L. �

3.2 Unsplit reals

Let P ∈ V be a notion of forcing and G a P-generic filter over V . We say that a real
U ∈ ℘(ω) ∩ V [G] is unsplit if for every A ∈ ℘(ω) ∩ V the set U ∩ A is finite or the
set U \ A is finite.

The proof of the following theorem follows the idea of Booth [5, Theorem 2] (see
also [14]).

Theorem 3.4 Let P ∈ V be a notion of forcing adding an unsplit real and A ∈ V an
infinite Boolean algebra. Then, for every P-generic filter G over V the Stone space(
St(A)

)V [G]
contains a non-trivial convergent sequence.

Proof We work first in V . Let A ⊆ St(A) be an infinite countable set. Put:

D = {
A ∩ [B]A : B ∈ A, |A ∩ [B]A| = ω

}
.

Obviously, D ⊆ [A]ω.
Fix a P-generic filter G over V and let us now work in V [G]. By the assumption,

there exists U ⊆ [A]ω which is unsplit by
(
[A]ω

)V . It follows that for every D ∈ D
the set U ∩ D is finite or the set U \ D is finite. Since St(A) is compact, there is
a limit point x of U in St(A). Enumerate U = {xn : n ∈ ω}. We claim that the
sequence

〈
xn : n ∈ ω

〉
converges to x . Indeed, let B ∈ A be such that x ∈ [B]A.
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142 D. Sobota, L. Zdomskyy

Since |U ∩ [B]A| = ω and U ∈ [A]ω, we have that |A ∩ [B]A| = ω. Note that
the set A ∩ [B]A is in V , so we get that A ∩ [B]A ∈ D, which implies that the set
U \ [B]A = U \ (A ∩ [B]A) is finite. ��

4 Destroying the Nikodym property or the Grothendieck property

In this section we provide two negative results. Namely, in Theorem 4.6 we prove that
adding a random real causes that no ground model Boolean algebra has the Nikodym
property or the Grothendieck property, and in Theorem 1.3 we show that after adding
a dominating real no ground model Boolean algebra has the Nikodym property. We
do not know whether adding dominating reals kills the Grothendieck property—see
Questions 6.1 and 6.2.

We start the section recalling several auxiliary facts—the first lemma provides
an alternative definition for the Nikodym property (in fact, the one more commonly
used in the literature, however lacking the apparent similarity to the definition of the
Grothendieck property).

Lemma 4.1 LetA be a Boolean algebra. The following two conditions are equivalent:

(1) every pointwise null sequence of measures on A is weak* null;
(2) every pointwise bounded sequence of measures on A is uniformly bounded.

Proof Assume (1) and suppose that there exists a sequence
〈
μn : n ∈ ω

〉
of measures

on A which is pointwise bounded but not uniformly bounded. By going to the subse-
quence, we may assume that

∥∥μn
∥∥ > n for every n ∈ ω. For each n ∈ ω define the

measure νn on A as follows:

νn = μn
/√∥∥μn

∥∥.

It follows that
∥∥νn

∥∥ =
√∥∥μn

∥∥ >
√
n. On the other hand, for every A ∈ A we have:

∣∣νn(A)
∣∣ = ∣∣μn(A)

∣∣/
√∥∥μn

∥∥,

which converges to 0 as n → ∞ (because supn∈ω

∣∣μn(A)
∣∣ < ∞), which contradicts

(1) as weak* null sequences are always uniformly bounded (by the virtue of the
Banach–Steinhaus theorem). Hence, (2) holds.

Assume now (2) and let
〈
μn : n ∈ ω

〉
be a pointwise null sequence of measures on

A. It follows immediately that
〈
μn : n ∈ ω

〉
is pointwise bounded, hence, by (2), it is

uniformly bounded. Let M > 0 be such that supn∈ω

∥∥μn
∥∥ < M . Fix f ∈ C(St(A))

and let ε > 0. There are finite sequences A1, . . . , Ak ∈ A and α1, . . . , αk ∈ R such
that

∥∥∥ f −
k∑

i=1

αi · χ[Ai ]A

∥∥∥ < ε/(2M).
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Since
〈
μn : n ∈ ω

〉
is pointwise null, there is N ∈ ω such that for every n > N we

have:

k∑

i=1

∣∣αi
∣∣ · ∣∣μn

(
Ai

)∣∣ < ε/2.

Thus, for every n > N it holds:

∣∣μn( f )
∣∣ <

∣∣μn

(
f −

k∑

i=1

αi · χ[Ai ]A

)∣∣ + ∣∣μn

( k∑

i=1

αi · χ[Ai ]A

)∣∣ ≤

≤ ∥∥μn
∥∥ ·

∥∥∥ f −
k∑

i=1

αi · χ[Ai ]A

∥∥∥ +
k∑

i=1

∣∣αi
∣∣ · ∣∣μn

(
Ai

)∣∣ < ε.

It follows that μn( f ) → 0 as n → ∞, which proves that
〈
μn : n ∈ ω

〉
is weak* null.

Consequently, (1) holds. ��

From the proof of implication (2)⇒(1) we immediately get the following corollary.

Corollary 4.2 LetA be a Boolean algebra. If
〈
μn : n ∈ ω

〉
is a pointwise null uniformly

bounded sequence of measures on A, then
〈
μn : n ∈ ω

〉
is weak* null. �

If X is a topological space and x ∈ X , then by δx we denote the Borel one-point
measure on X concentrated at x . Recall that a measure μ on a compact space K
(a Boolean algebra A) is finitely supported or has finite support if there exist finite
sequences x1, . . . , xn of pairwise distinct points in K (in St(A)) and α1, . . . , αn ∈ R

such thatμ = ∑n
i=1 αiδxi . The set

{
x1, . . . , xn

}
is called the support ofμ and denoted

by supp(μ).
We will need the following simple lemma.

Lemma 4.3 Let A be a Boolean algebra. If there exists a sequence
〈
μn : n ∈ ω

〉
of

finitely supported measures on A which is pointwise null but not uniformly bounded,
then A has neither the Nikodym property nor the Grothendieck property.

Proof
〈
μn : n ∈ ω

〉
directly witnesses the lack of the Nikodym property. Consider

the sequence
〈
νn : n ∈ ω

〉
defined as νn = μn/

∥∥μn
∥∥ for every n ∈ ω. Since it is

pointwise null, too, and uniformly bounded, by Corollary 4.2 it is weak* null. Set
S = ⋃

n∈ω supp
(
νn

)
and note that the Banach space 
1(S) of all absolutely summable

sequences on the set S is a closed linear subspace of the dual spaceC(St(A))∗ contain-
ing every νn . Since 
1(S) has the Schur property (meaning that the weak convergence
of sequences implies their norm convergence), the sequence

〈
νn : n ∈ ω

〉
cannot

be weakly null, as
∥∥νn

∥∥ = 1 for every n ∈ ω. In particular, A does not have the
Grothendieck property. ��
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144 D. Sobota, L. Zdomskyy

4.1 Random reals: destroying the Nikodym and Grothendieck properties

In order to prove Theorem 4.6, we need to recall some basic facts concerning the
binomial distributions. Let (�,�,Pr) be a probability space. Given p ∈ (0, 1), for
every i ∈ ω let Xi be a random variable taking only two values: 0 and 1, and such that
the following two equalities hold:

Pr
({

t ∈ � : Xi (t) = 1
}) = Pr

(
X−1
i (1)

)
= p,

and

Pr
({

t ∈ � : Xi (t) = 0
}) = Pr

(
X−1
i (0)

)
= 1 − p.

Assume additionally that the sequence
〈
Xi : i ∈ ω

〉
is independent, that is, for every

n > 0 and s ∈ 2n we have

Pr
({

t ∈ � : Xi (t) = s(i) for every i < n
}) = Pr

( ⋂

i<n

X−1
i

(
s(i)

)) =
∏

i<n

pi ,

where pi = p if s(i) = 1, and pi = 1 − p otherwise. The following classical fact is
crucial for our proof of Theorem 4.6; for its proof see e.g. [4, Section 1.3]. Recall that
exp(x) = ex for x ∈ R.

Theorem 4.4 Suppose that p ∈ (0, 1/2], m ∈ ω, and ε ∈ (0, 1/12] are such that
εp(1 − p)m ≥ 12. Then,

Pr
({

t ∈ � : ∣∣
∑

i<m

Xi (t) − pm
∣∣ ≥ εpm

}) ≤ (ε2 pm)−1/2 · exp ( − ε2 pm/3
)
.

In what follows we fix p = 1/2. Put � = 2ω and let � denote the standard Borel
σ -field on � and λ the standard product measure on �. We will now work in the
probability space (�,�, λ). For every i ∈ ω and x ∈ � set Xi (x) = x(i), i.e., the
function Xi is simply the projection onto the i-th coordinate. Obviously, the sequence〈
Xi : i ∈ ω

〉
of random variables is as described in the paragraph before Theorem 4.4.

Lemma 4.5 For every n ∈ ω set In = {
2n + 1, 2n + 2, . . . , 2n+1

}
. Suppose that

for some infinite J ⊂ ω and for every n ∈ J there is a subset Yn ⊆ In such that
η = inf

{
ηn : n ∈ J

}
> 0, where ηn = ∣∣Yn

∣∣/2n for each n ∈ ω. For each n ∈ J let
mn = ∣∣Yn

∣∣ (= ηn2n) and εn = √
n/2n, and assume that εn ≤ 1/12 and εn p2mn =

1
4ηn

√
n2n ≥ 12. For every n ∈ J put:

An =
{
x ∈ 2ω :

∣∣∣
∑

i∈Yn
x(i) − 1

2
· ηn2

n
∣∣∣ ≥ 1

2
· ηn

√
n2n

}
.
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Then,

λ
( ⋃

n∈J

⋂

k∈J
k≥n

Ac
k

)
= λ

({
x ∈ 2ω : x /∈ An for almost all n ∈ J

}) = 1. (†)

Proof Applying Theorem 4.4 (for m = mn and ε = εn), for every n ∈ J we get:

λ
({

x ∈ 2ω :
∣∣∣
∑

i∈Yn
x(i) − 1

2
· ηn2

n
∣∣∣ ≥ √

n/2n · 1
2

· ηn2
n
})

≤

≤
( n

2n
· 1
2

· ηn2
n
)−1/2 · exp

(
− n

2n
· 1
2

· ηn2
n · 1

3

)
,

which after simplification reduces to:

λ
(
An

) = λ
({

x ∈ 2ω :
∣∣∣
∑

i∈Yn
x(i) − 1

2
· ηn2

n
∣∣∣ ≥ 1

2
· ηn

√
n2n

})
≤

√
2

nηn
· exp ( − nηn/6

)
.

(∗)

Observe that (∗) actually implies that
∑

n∈J λ(An) < ∞ (because η > 0), and
hence by the Borel–Cantelli lemma we get (†):

λ
( ⋃

n∈J

⋂

k∈J
k≥n

Ac
k

)
= λ

({
x ∈ 2ω : x /∈ An for almost all n ∈ J

}) = 1.

��
We are now in the position to present the proof of the main theorem of this section.

We will use the following definition of a random real: Given a (forcing) extension V ′
of V , a real r ∈ 2ω is a random real over V if for every Borel subset B of 2ω, coded
in V and such that

(
λ(B) = 0

)V , the real r does not belong to the interpretation of B
in V ′. (We will abuse the notation and denote this interpretation by B, too.)

Theorem 4.6 Let P ∈ V be a notion of forcing adding a random real and A ∈ V an
infinite Boolean algebra. Assume that G is a P-generic filter over V . Then, in V [G],
A has neither the Nikodym property nor the Grothendieck property.

Proof In V , let
〈
xi : i ∈ ω

〉
be a sequence of ultrafilters in St(A) such that xi 
= x j

for i 
= j ∈ ω.
From now on we work exclusively in V [G]. Let ϕ : ω → St(A) be such that

ϕ(i) = xi for every i ∈ ω. Let r ∈ 2ω ∩ V [G] be a random real over V . Set
ω+ = ω \ {0}. For every n ∈ ω+ consider the measure μn on A defined as follows:

μn(A) = αn ·
∑

i∈In
(−1)r(i)+1 · δxi

(
[A]A

)
,
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where αn = 1/
(
n
√
2n

)
and In = {

2n + 1, 2n + 2, . . . , 2n+1
}
. It follows that μn is

finitely supported, supp
(
μn

) = ϕ
[
In

]
, and

∥∥μn
∥∥ = αn · 2n = √

2n/n,

so limn→∞
∥∥μn

∥∥ = ∞.
We claim that

〈
μn : n ∈ ω

〉
is pointwise null. Let us fix A ∈ A and for every n ∈ ω+

set

Yn = {
i ∈ In : A ∈ xi

}
.

Of course, Yn ∈ V . Put:

J = {
n ∈ ω+ : ∣∣Yn

∣∣/2n ≥ 1/2
}

and J c = ω+ \ J = {
n ∈ ω+ : ∣∣Yn

∣∣/2n < 1/2
}
.

Again, J , J c ∈ V .
Assume first that J is infinite. We will prove that μn(A) → 0 as n → ∞, n ∈ J .

For every n ∈ J set also ηn = ∣∣Yn
∣∣/2n and let An be the clopen subset of 2ω such as

defined in Lemma 4.5. By the definition of J , we get that

η = inf
{
ηn : n ∈ J

} ≥ 1/2 > 0,

hence equation (†) of Lemma 4.5 together with the definition of a random real imply
that r /∈ An for all but finitely many n ∈ J , which means that

∣∣∣
∑

i∈Yn
r(i) − 1

2
· ηn2

n
∣∣∣ <

1

2
· ηn

√
n2n

for all but finitely many n ∈ J , and thus there is n0 ∈ ω+ such that for all n ∈ J ,
n ≥ n0 we have (note that ηn ≤ 1):

∣∣∣
∑

i∈Yn
r(i) − ∣∣Yn

∣∣/2
∣∣∣ <

1

2
· √

n2n,

which in turns implies that for all n ∈ J , n ≥ n0, and s ∈ {0, 1} it holds:

∣∣∣
∣∣{i ∈ Yn : r(i) = s

}∣∣ − ∣∣Yn
∣∣/2

∣∣∣ <
1

2
· √

n2n .
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(Just note that the values on the left hand sides of the latter two inequalities are the
same.) As a result, for every n ∈ J , n ≥ n0, we have:

∣∣μn(A)
∣∣ = ∣∣μn

(
ϕ
[
Yn

])∣∣ = ∣∣αn ·
∑

i∈Yn
(−1)r(i)+1

∣∣

= αn ·
∣∣∣
∣∣{i ∈ Yn : r(i) = 1

}∣∣ − ∣∣{i ∈ Yn : r(i) = 0
}∣∣

∣∣∣

≤ αn ·
(∣∣∣

∣∣{i ∈ Yn : r(i) = 1
}∣∣ − ∣∣Yn

∣∣/2
∣∣∣ +

∣∣∣
∣∣{i ∈ Yn : r(i) = 0

}∣∣ − ∣∣Yn
∣∣/2

∣∣∣
)

< αn ·
(1
2

· √
n2n + 1

2
· √

n2n
)

= αn · √
n2n = 1

n
√
2n

· √
n2n = 1√

n
,

which yields that

lim
n→∞
n∈J

μn(A) = 0.

If J c is finite, then we are immediately done, so assume that it is infinite. Notice
that since for the unit element 1A of the Boolean algebra A and all i ∈ ω we have
1A ∈ xi , exactly the same reasoning as above shows that limn→∞ μn

(
1A

) = 0, so in
particular we have:

lim
n→∞
n∈J c

μn
(
1A

) = 0.

For each n ∈ ω+ define the set Y ′
n in V similarly as Yn :

Y ′
n = {

i ∈ In : 1A \ A ∈ xi
}
,

and put:

J ′ = {
n ∈ ω+ : ∣∣Y ′

n

∣∣/2n ≥ 1/2
}
.

Since Y ′
n = In \ Yn , we have:

J c = {
n ∈ ω+ : ∣∣Yn

∣∣/2n < 1/2
} = {

n ∈ ω+ : ∣∣In \ Yn
∣∣/2n > 1/2

} ⊆
⊆ {

n ∈ ω+ : ∣∣In \ Yn
∣∣/2n ≥ 1/2

} = {
n ∈ ω+ : ∣∣Y ′

n

∣∣/2n ≥ 1/2
} = J ′,

so J ′ is infinite. Using again the same argument as above, we show that

lim
n→∞
n∈J ′

μn
(
1A \ A

) = 0,

so in particular we get that

lim
n→∞
n∈J c

μn
(
1A \ A

) = 0.
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Finally, we have:

lim
n→∞
n∈J c

μn(A) = lim
n→∞
n∈J c

μn
(
1A

) − lim
n→∞
n∈J c

μn
(
1A \ A

) = 0,

which ultimately implies that

lim
n→∞ μn(A) = 0.

Wehave just showed that the sequence
〈
μn : n ∈ ω+

〉
of finitely supportedmeasures

on A is pointwise null but not uniformly bounded, so, by Lemma 4.3, A has neither
the Nikodym property nor the Grothendieck property. The proof is thus finished. ��

Note that, normalizing measures μn from the above proof (that is, considering the
measures μn/

∥∥μn
∥∥), by Corollary 4.2 we obtain the following result.

Corollary 4.7 Let P ∈ V be a notion of forcing adding a random real and A ∈ V an
infinite Boolean algebra. Assume that G is a P-generic filter over V . Then, in V [G],
St(A) carries a weak* null sequence

〈
μn : n ∈ ω

〉
of finitely supported measures

with pairwise disjoint supports such that
∥∥μn

∥∥ = 1 and
∣∣ supp

(
μn

)∣∣ = 2n for every
n ∈ ω. �

4.2 Random reals: generalization of Dow–Fremlin’s result

Let κ be an infinite cardinal number. By μκ denote the standard product probability
measure on the space 2κ and let B(κ) = Bor

(
2κ

)/{
A ∈ Bor

(
2κ

) : μκ(A) = 0
}
be

its measure algebra. B(κ) is a well-known ωω-bounding poset adding κ many random
reals (see [2, Section 3.1]).2 (A forcing P is ωω-bounding if for every P-generic filter
G over V and a function f ∈ ωω ∩ V [G] there is a function g ∈ ωω ∩ V such that
f (n) < g(n) for every n ∈ ω.)
Recall again that Dow and Fremlin [16] proved that forcing with B(κ) does not

introduce non-trivial convergent sequences to the Stone spaces of σ -complete ground
model Boolean algebras. In this subsection we will generalize their result in the fol-
lowing way.

Theorem 4.8 Let A ∈ V be an infinite σ -complete Boolean algebra. Assume that G
is a B(κ)-generic filter over V . Then, in V [G], St(A) does not carry any weak* null
sequence

〈
μn : n ∈ ω

〉
of finitely supported measures such that

∥∥μn
∥∥ = 1 for every

n ∈ ω and for which there exists M ∈ ω such that
∣∣ supp

(
μn

)∣∣ ≤ M for every n ∈ ω.

The theorem really generalizes the result of Dow and Fremlin, since if a compact
space K contains a non-trivial convergent sequence

〈
xn : n ∈ ω

〉
, then the sequence〈

μn : n ∈ ω
〉
of measures defined as μn = 1

2

(
δx2n − δx2n+1

)
is weak* null and such

that
∥∥μn

∥∥ = 1 and
∣∣ supp

(
μn

)∣∣ = 2 for every n ∈ ω. Note however that the existence
of a weak* null sequence

〈
νn : n ∈ ω

〉
of measures on a totally disconnected compact

2 Or, formally, B(κ) \ {0}, but for simplicity we will keep writing just B(κ).
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space K such that
∣∣ supp

(
νn

)∣∣ = 2 for every n ∈ ω does not imply the existence of
non-trivial convergent sequences in K (cf. [31, Example 4.10]).

Let us stress that Corollary 4.7 and Theorem 4.8 are complementary: the corollary
states that the existence of a random real yields the existence of a weak* null sequence〈
μn : n ∈ ω

〉
of finitely supported normalized measures on the Stone space of a given

infinite groundmodel Boolean algebra such that limn→∞
∣∣ supp

(
μn

)∣∣ = ∞, while the
theorem asserts that, in the case of σ -complete Boolean algebras, this is optimal—we
cannot get any weak* null sequence

〈
μn : n ∈ ω

〉
of normalized measures such that

supn∈ω

∣∣ supp
(
μn

)∣∣ < ∞.
In order to prove Theorem 4.8, we first need to recall several auxiliary results. The

first one implies that in fact we only need to deal with the case of M = 2.

Lemma 4.9 Let A be an infinite Boolean algebra. If there are a weak* null sequence〈
μn : n ∈ ω

〉
of finitely supported measures on St(A) and a number M ∈ ω such

that
∥∥μn

∥∥ = 1 and
∣∣ supp

(
μn

)∣∣ ≤ M for every n ∈ ω, then M ≥ 2 and there is a
weak* null sequence

〈
νn : n ∈ ω

〉
of finitely supported measures on St(A) such that∥∥νn

∥∥ = 1 and
∣∣ supp

(
νn

)∣∣ = 2.

Proof Let
〈
μn : n ∈ ω

〉
be a weak* null sequence of finitely supported measures on

St(A) for which there exists M ∈ ω such that
∥∥μn

∥∥ = 1 and
∣∣ supp

(
μn

)∣∣ ≤ M for
every n ∈ ω. If there is a subsequence

〈
μnk : k ∈ ω

〉
such that

∣∣ supp
(
μnk

)∣∣ = 1 for
every k ∈ ω, then every μnk is simply of the form αk · δxk for some αk ∈ {−1, 1}
and xk ∈ St(A). Consequently, for the constant unit function 1 ∈ C(St(A)) we have∣∣μnk (1)

∣∣ = ∣∣αk
∣∣ = 1 for every k ∈ ω, which contradicts the fact that

〈
μn : n ∈ ω

〉

converges weak* to 0. It follows that for almost all n ∈ ω we have
∣∣ supp

(
μn

)∣∣ ≥ 2
and so M ≥ 2.

We now prove the second part of the lemma. Letm ∈ ω be theminimal number such
that there exists a weak* null sequence

〈
μn : n ∈ ω

〉
of finitely supported measures

on St(A) such that
∥∥μn

∥∥ = 1 and
∣∣ supp

(
μn

)∣∣ = m for every n ∈ ω. By the previous
paragraph, m ≥ 2. We will prove that in fact m = 2.

First note that if there are a clopen set U ⊆ St(A) and an increasing sequence〈
nk : k ∈ ω

〉
such that μnk � U 
= 0 and μnk � (St(A) \ U ) 
= 0 for every k ∈ ω,

then there is an increasing sequence
〈
kl : l ∈ ω

〉
such that at least one of the sequences〈

μ1
l : l ∈ ω

〉
and

〈
μ2
l : l ∈ ω

〉
, defined for every l ∈ ω as

μ1
l = (

μnkl
� (St(A) \U )

)/∥∥μnkl
� (St(A) \U )

∥∥

and

μ2
l = (

μnkl
� U

)/∥∥μnkl
� U

∥∥,

isweak* null. Since for every l ∈ ω and i ∈ {1, 2} it holds∥∥μi
l

∥∥ = 1 and
∣∣ supp

(
μi
l

)∣∣ <

m, we get a contradiction with the minimality of m. It follows that for every clopen
U ⊆ St(A) and almost alln ∈ ωwehave either supp

(
μn

) ⊆ U , or supp
(
μn

)∩U = ∅.
For every n ∈ ω pick two distinct points xn, yn ∈ supp

(
μn

)
and define the measure

νn simply as follows νn = 1
2

(
δxn − δyn

)
. Of course,

∥∥νn
∥∥ = 1. To finish the proof,
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we only need to show that
〈
νn : n ∈ ω

〉
is weak* null. But this is trivial, since for

every clopen subset U of St(A) and almost all n ∈ ω we have either xn, yn ∈ U , or
xn, yn /∈ U ; in either case it holds νn(U ) = 0, so

〈
νn : n ∈ ω

〉
is pointwise null. Since〈

νn : n ∈ ω
〉
is also uniformly bounded, by Corollary 4.2 it is weak* null (and so, by

the minimality of m, we also have m = 2). ��
Remark 4.10 For a Boolean algebraA, if there exists a weak* null sequence

〈
μn : n ∈

ω
〉
of measures on St(A) such that

∥∥μn
∥∥ = 1 and

∣∣ supp
(
μn

)∣∣ = 2 for every n ∈ ω,
then one can also easily get such a sequence but with pairwise disjoint supports.
Thus, from the above proof it basically follows that for every Boolean algebra A the
following two conditions are equivalent:

(1) there are a weak* null sequence
〈
μn : n ∈ ω

〉
of finitely supported measures on

St(A) and M ∈ ω such that
∥∥μn

∥∥ = 1 and
∣∣ supp

(
μn

)∣∣ ≤ M for every n ∈ ω,
(2) there are two disjoint sequences

〈
xn : n ∈ ω

〉
and

〈
yn : n ∈ ω

〉
of distinct points in

St(A) such that for every clopen set U and almost all n ∈ ω we have: xn ∈ U if
and only if yn ∈ U .

The following lemma was the main tool used by Dow and Fremlin to obtain their
result. We will need it, too.

Lemma 4.11 (Dow–Fremlin [16, Lemma 2.2]) Let A ∈ V be a Boolean algebra.
Assume that

〈
ẋn : n ∈ ω

〉
is a sequence of B(κ)-names for distinct ultrafilters on A.

Let G be a B(κ)-generic filter over V . Then, for every condition q ∈ B(κ) there are
a condition p ≤ q and a sequence

〈
An : n ∈ ω

〉 ∈ V of pairwise disjoint elements of
A such that p � [An]A ∩ {

ẋk : k ∈ ω
} 
= ∅ for every n ∈ ω. �

In [6] Borodulin-Nadzieja and the first author proved that, for every B(κ)-names
u̇ and v̇ for ultrafilters on a given ground model Boolean algebra A, if �B(κ) u̇ 
= v̇,
then for every ε > 0 there are a condition p ∈ B(κ) and an element C ∈ A such that
μκ(p) > 1/4 − ε and p � C ∈ u̇�v̇. By exactly the same proof, mutatis mutandis,
we obtain the following formally stronger result.

Lemma 4.12 (Cf. [6, Section 6.2]) Let A ∈ V be a Boolean algebra. Let u̇ and v̇

be B(κ)-names for ultrafilters on A. For every condition q ∈ B(κ), if q � u̇ 
= v̇,
then for every ε > 0 there are a condition p ≤ q and an element C ∈ A such that
μκ(p) > μκ(q)/4 − ε and p � C ∈ u̇�v̇. �

The next lemma is folklore.

Lemma 4.13 Let P be an ωω-bounding forcing notion and G a P-generic filter over
V . Let X ∈ [ω]ω ∩ V [G]. Then, in V , there is an uncountable almost disjoint family
H ⊆ [ω]ω such that for every Z ∈ H the intersection X ∩ Z is infinite.

Proof In V [G] let 〈
xn : n ∈ ω

〉
be the strictly increasing enumeration of elements of

X . Since P is ωω-bounding, there is a strictly increasing function g ∈ ωω ∩ V such
that for every k ∈ ω there is nk ∈ ω for which the following inequalities are satisfied:

g(2k) ≤ xnk ≤ g(2k + 1) (∗)
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(cf. the proof of [33, Corollary 2.5]). In V , let F ⊆ [ω]ω be an uncountable almost
disjoint family. For every Y ∈ F set:

ZY =
⋃

n∈Y

{
g(2k), g(2k) + 1, . . . , g(2k + 1)

}
.

Put H = {
ZY : Y ∈ F}

. Of course, for every Y 
= Y ′ ∈ F the intersection ZY ∩ ZY ′
is finite, soH is an uncountable almost disjoint family. Also, by (∗), for every Y ∈ F
the intersection X ∩ ZY is infinite. ��

We are in the position to prove the main result of this section.

Proof of Theorem 4.8 Assume towards the contradiction that, in V [G], there are a
weak* null sequence

〈
μn : n ∈ ω

〉
of finitely supported measures on St(A) and a

number M ∈ ω such that
∥∥μn

∥∥ = 1 and
∣∣ supp

(
μn

)∣∣ ≤ M for every n ∈ ω. By
Remark 4.10, we may assume that, in V , there are two sequences

〈
ẋi : i ∈ ω

〉
and〈

ẏi : i ∈ ω
〉
of B(κ)-names for ultrafilters onA and a condition q ∈ B(κ) forcing that:

(a) ẋi 
= ẋ j and ẏi 
= ẏ j for every i 
= j ∈ ω,
(b) ẋi 
= ẏ j for every i, j ∈ ω,
(c) for every A ∈ A and almost all i ∈ ω we have: ẋi ∈ [A]A if and only if ẏi ∈ [A]A.

By Lemma 4.11, there are a condition p ≤ q and a sequence
〈
An : n ∈ ω

〉
(in

V !) of pairwise disjoint elements of A such that for every n ∈ ω we have p �
[An]A ∩ {

ẋi : i ∈ ω
} 
= ∅. For each n ∈ ω by Ḟn denote a B(κ)-name such that p

forces that

Ḟn = {
i ∈ ω : ∣∣ [An]A ∩ {

ẋi , ẏi
}∣∣ = 1

}
.

Note that, by property (c), p forces that each Ḟn is at most finite.

We need to consider two cases.
(1) p forces that for almost all n ∈ ω the set Ḟn is empty. Let r ≤ p and N ∈ ω be

such that for every n ≥ N we have r � Ḟn = ∅. The last formula simply means that
for every n ≥ N and i ∈ ω the following holds:

r � ẋi ∈ [An]A ⇔ ẏi ∈ [An]A .

For each n ≥ N , let α̇n be a B(κ)-name such that

r � α̇n = min
{
i ∈ ω : ẋi ∈ [An]A

}
,

and let u̇n and v̇n be B(κ)-names for ultrafilters on A such that

r � u̇n = ẋα̇n and v̇n = ẏα̇n .

Of course, for n 
= m ≥ N we have r � α̇n 
= α̇m .
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For every n ≥ N , since r � u̇n 
= v̇n , by Lemma 4.12, we get a condition rn ≤ r
and an element Cn ∈ A such that μκ

(
rn

)
> μκ(r)/5 and rn � Cn ∈ u̇n�v̇n .

Since rn � u̇n, v̇n ∈ [An]A, we may actually assume that Cn ≤ An . In particular,
Cn ∧ Cm = 0 for every n 
= m ≥ N . Set:

s =
∧

n≥N

∨

k≥n

rk;

then, μκ(s) ≥ μκ(r)/5, so s ∈ B(κ) and s ≤ r . It follows that s forces that Cn ∈
u̇n�v̇n for infinitely many n ≥ N , or, in other words, that

∣∣ [Cn]A ∩ {
u̇n, v̇n

}∣∣ = 1 (+)

for infinitely many n ≥ N . Since the sequence
〈
Cn : n ≥ N

〉
is in V , its supremum

exists in A, so set

C =
∨

n≥N

Cn,

and note that for every n ≥ N we have C ∧ An = Cn (since
〈
An : n ∈ ω

〉
is pairwise

disjoint).
We claim that s forces that

∣∣ [C]A ∩ {
ẋi , ẏi

}∣∣ = 1 for infinitely many i ∈ ω,
contradicting condition (c). Indeed, observe that for every n ≥ N we have:

s � [C]A ∩ {
ẋα̇n , ẏα̇n

} ⊆ [C]A ∩ [An]A ∩ {
ẋα̇n , ẏα̇n

} =
= [C ∧ An]A ∩ {

ẋα̇n , ẏα̇n
} = [Cn]A ∩ {

ẋα̇n , ẏα̇n
}
,

and so, since Cn ≤ C ,

s � [C]A ∩ {
ẋα̇n , ẏα̇n

} = [Cn]A ∩ {
ẋα̇n , ẏα̇n

}
.

By (+), it follows that

s �
∣∣ [C]A ∩ {

ẋα̇n , ẏα̇n
}∣∣ = ∣∣ [Cn]A ∩ {

ẋα̇n , ẏα̇n
}∣∣ = 1

for infinitely many n ≥ N .
(2) There is a condition r ≤ p forcing that for infinitely many n ∈ ω the set Ḟn

is non-empty. Let then ḟ be a B(κ)-name for a function ω → ω such that for every
n ∈ ω we have:

r � ḟ (n) =
{
max

{
m ≥ n : Ḟn ∩ Ḟm 
= ∅}

, if Ḟn 
= ∅,

n, if Ḟn = ∅.
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Since r forces that Ḟn is finite for every n ∈ ω and that each i ∈ ω belongs to at most
two different Ḟn’s, the above definition is valid. For every n,m ∈ ω we also have
r � ḟ (n) ≥ n and

r �
(
m > ḟ (n) ⇒ Ḟn ∩ Ḟm = ∅)

. (∗)

Since B(κ) is ωω-bounding, there are a strictly increasing function g : ω → ω such
that g(0) > 0 and a condition s ≤ r such that s � ḟ (n) < g(n) for every n ∈ ω. Define
the function h : ω → ω for every n ∈ ω as: h(n) = gn+1(0) = (g ◦ g ◦ . . . ◦ g)(0),
where the composition is taken n + 1 times.

We have two subcases of case (2).
(2a) There is a condition t ≤ s forcing that for infinitely many n ∈ ω the set Ḟh(n) is

non-empty. Let H be a B(κ)-generic filter over V containing t . For every B(κ)-name
σ by σ H we denote its evaluation in V [H ].

We now work in V [H ]. For every n < m ∈ ω we have:

h(m) = gm+1(0) = gm−n(gn+1(0)
) = gm−n(h(n)) ≥ g(h(n)) > ḟ H (h(n)),

so, by (∗), it holds that

Ḟ H
h(n) ∩ Ḟ H

h(m) = ∅. (∗∗)

Since A is σ -complete in V and h ∈ V , the supremum

A =
∨

n∈ω

Ah(n)

exists in A. Let X ∈ [ω]ω be any set such that for every n ∈ X it holds Ḟ H
h(n) 
= ∅, so

we may pick in ∈ Ḟ H
h(n). Note that, by condition (c), there is no X ′ ∈ [X ]ω such that∣∣{ẋ Hin , ẏHin

} ∩ [A]A
∣∣ = 1 for every n ∈ X ′. It follows that—removing a finite number

of elements of X if necessary—for every n ∈ X we have
{
ẋ Hin , ẏHin

} ⊆ [A]A. Property
(∗∗) implies that for every n ∈ X we have:

∣∣∣
{
ẋ Hin , ẏHin

} ∩ (
[A]A \

⋃

n∈ω

[
Ah(n)

]
A

)∣∣∣ = 1,

that is, there is a unique point in
{
ẋ Hin , ẏHin

}
which belongs to the boundary (in St(A))

of the open set
⋃

n∈ω

[
Ah(n)

]
A.

By Lemma 4.13, there is an uncountable almost disjoint family H ⊆ [ω]ω in V
such that the intersection X ∩ Z is infinite for every Z ∈ H. Since every Z ∈ H is in
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V , the supremum

AZ =
∨

n∈Z
Ah(n)

exists in A. For every Z ∈ H set:

BZ = [AZ ]A \
⋃

n∈Z

[
Ah(n)

]
A .

For every Z1 
= Z2 ∈ H we have:

[
AZ1

]
A ∩ [

AZ2

]
A =

⋃

n∈Z1∩Z2

[
Ah(n)

]
A ,

and hence BZ1 ∩ BZ2 = ∅. Since H is uncountable and X is countable, it follows
that there is Z ∈ H such that

{
ẋ Hin , ẏHin

} ∩ BZ = ∅ for every n ∈ X ∩ Z , and hence∣∣{ẋ Hin , ẏHin
}∩ [AZ ]A

∣∣ = 1 for infinitely many n ∈ X , which contradicts condition (c).

(2b) s forces that for almost all n ∈ ω the set Ḟh(n) is empty. We proceed exactly in
the same way as in case (1), that is, using Lemma 4.12 we obtain N ∈ ω, an antichain〈
Cn : n ≥ N

〉
in V such that Cn ≤ Ah(n) for every n ≥ N , and a condition t ≤ s

forcing that
∣∣ [∨

n∈ω Cn
]
A ∩ {

ẋi , ẏi
}∣∣ = 1 for infinitely many i ∈ ω, which again

contradicts condition (c). ��

4.3 Dominating reals

Let P ∈ V be a notion of forcing and G a P-generic filter over V . Recall that a real
f ∈ ωω ∩ V [G] is dominating over V if g ≤∗ f for every g ∈ ωω ∩ V . By (ωω)∞
we denote the family of all those functions f ∈ ωω which are increasing, that is,
f (n) ≤ f (n+1) for every n ∈ ω, and limn→∞ f (n) = ∞. Let us then also say that a
real h ∈ (ωω)∞∩V [G] is anti-dominating over V if h ≤∗ g for every g ∈ (ωω)∞∩V .

It appears that adding a dominating real is equivalent to adding an anti-dominating
real. To prove it, we need to introduce the following auxiliary operator � : (ωω)∞ →
(ωω)∞. It seems that the idea standing behind �, and hence also behind Propositions
4.14 and 4.15, is standard (cf. e.g. Canjar [9, Sections 1.5 and 3.6]).

Let f ∈ (ωω)∞ and write ran( f ) = {
n f
1 < n f

2 < n f
3 < . . .

}
. Set also n f

0 = −1,

so always n f
0 < n f

1 . Note that for every n ∈ ω there is unique i ∈ ω such that

n f
i ≤ n < n f

i+1. Put:

�( f )(n) = min f −1(n f
i+1

)
.

It is immediate that �( f ) ∈ (ωω)∞. Note that �(idω)(n) = n + 1 for every n ∈ ω.
The next proposition lists most basic properties of �.

Proposition 4.14 For every f , g ∈ (ωω)∞ the following conditions hold:
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(1)
(
f ◦ �( f )

)
> idω,

(2)
(
�( f ) ◦ f

)
> idω,

(3) �(�( f )) = f ,
(4) if f ≤∗ g, then �(g) ≤∗ �( f ).

Proof Let f , g ∈ (ωω)∞. Enumerate:

ran( f ) = {
n f
1 < n f

2 < n f
3 < . . .

}
and ran(g) = {

ng1 < ng2 < ng3 < . . .
}
,

and set n f
0 = −1 and ng0 = −1.

We first prove (1) and (2). Fix n ∈ ω and let i, j ∈ ω be such that n f
i ≤ n < n f

i+1

and n f
j = f (n). We have:

(
f ◦ �( f )

)
(n) = f

(
min f −1(n f

i+1

)) = n f
i+1 > n,

which proves (1). To see (2), note that the monotonicity of f implies that
min f −1

(
n f
j+1

)
> n and thus we have:

(
�( f ) ◦ f

)
(n) = �( f )( f (n)) = min f −1(n f

j+1

)
> n.

Let us now prove (3). For every i ≥ 1 set n′
i = min f −1

(
n f
i

)
. By the monotonicity

of f , n′
i+1 > n′

i for every i ≥ 1. Note that n′
1 = 0 and

(�( f ))−1(n′
1

) = {
0, 1, 2, . . . , n f

1 − 1
}
,

so (�( f ))−1
(
n′
1

) = ∅ if n f
1 = 0, as well as for each i ≥ 1 we have:

(�( f ))−1(n′
i+1

) = {
n f
i , n f

i + 1, n f
i + 2, . . . , n f

i+1 − 1
}
.

Fix n ∈ ω and let i ≥ 1 be such that n′
i ≤ n < n′

i+1. It means that

min f −1(n f
i

) ≤ n < min f −1(n f
i+1

)
,

so f (n) = n f
i . It holds:

(�(�( f ))(n) = min
(
(�( f ))−1(n′

i+1

)) = n f
i = f (n),

which implies (3).
Finally, we shall prove (4). Assume that f ≤∗ g. There exists N ∈ ω such that

f (n) ≤ g(n) for every n ≥ N . Let n > f (N ). There are i, j, k ∈ ω such that
n f
i ≤ n < n f

i+1, n
g
j ≤ n < ngj+1, and n

f
k = f (N ). Note that k ≤ i , so n f

k ≤ n f
i . Set:

l = �( f )(n) = min f −1(n f
i+1

)
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and

m = �(g)(n) = min g−1(ngj+1

)
.

We claim that m ≤ l, so for the sake of contradiction let us assume that l < m. We
then have:

g(l) ≤ ngj ≤ n < n f
i+1 = f (l),

so g(l) < f (l). But since f is increasing, it holds:

l = min f −1(n f
i+1

)
> max f −1(n f

i

) ≥ max f −1(n f
k

) ≥ N ,

so f (l) ≤ g(l), which is a contradiction. ��
Proposition 4.15 Let P ∈ V be a notion of forcing. Then, P adds a dominating real if
and only if it adds an anti-dominating real.

Proof Let G be a P-generic filter over V . We work in V [G]. Assume that there is a
dominating real f ∈ ωω over V and define an auxiliary function g ∈ ωω as follows:

g(n) = n + max{ f (m) : m ≤ n},

where n ∈ ω. Obviously, g ∈ (ωω)∞ and it is also a dominating real over V , so for
every h ∈ (ωω)∞ ∩ V we have h ≤∗ g.

For every h ∈ (ωω)∞∩V , we have�(h) ∈ (ωω)∞∩V and, by Proposition 4.14.(3),
h = �(�(h)). It follows that

�
[
(ωω)∞ ∩ V ] = (ωω)∞ ∩ V . (∗)

Since g ∈ ωω and g is dominating every h ∈ (ωω)∞ ∩ V , we get by (∗) and
Proposition 4.14.(4) that �(g) ≤∗ h for every h ∈ (ωω)∞ ∩ V . In other words, we
get that �(g) is an anti-dominating real over V .

The proof in the other direction is similar. ��
We are ready to prove the main result of this section.

Theorem 1.3 Let A ∈ V be an infinite Boolean algebra. Let P ∈ V be a notion of
forcing adding a dominating real. Assume that G is a P-generic filter over V . Then,
in V [G], A does not have the Nikodym property.

Proof We first work in V . By the Josefson–Nissenzweig theorem (see [13, Chapter
XII]) and theRiesz representation theorem, there is aweak* null sequence

〈
μn : n ∈ ω

〉
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of measures on the Boolean algebraA such that
∥∥μn

∥∥ = 1 for every n ∈ ω. For every
A ∈ A define the sequences cA, dA ∈ R

ω as follows:

cA(n) = min
{∣∣μn(A)

∣∣ + 1/n, 1
}
,

dA(n) = min
{
1/m : m ∈ ω, cA(k) ≤ 1/m for all k ≥ n

}
,

where n ∈ ω. Then, cA(n) > 0 and

0 ≤ ∣∣μn(A)
∣∣ ≤ cA(n) ≤ dA(n) ≤ 1

for every n ∈ ω, and

lim
n→∞ dA(n) = lim

n→∞ cA(n) = 0.

Finally, for every A ∈ A and n ∈ ω set eA(n) = 1/dA(n). It follows that eA ∈ (ωω)∞.
Let us now go to V [G]. P adds a dominating real, so by Proposition 4.15 there is

an anti-dominating real g ∈ (ωω)∞ ∩ V [G] over V . By taking the function max(g, 1)
instead of g, we may assume that g(n) > 0 for every n ∈ ω. For every A ∈ A we
have g ≤∗ eA, so if we define the sequence c ∈ R

ω by the formula c(n) = 1/g(n),
where n ∈ ω, then we get that dA ≤∗ c for every A ∈ A. Of course, c(n) > 0 for
every n ∈ ω and limn→∞ c(n) = 0.

For every n ∈ ω define the measure νn on A as follows:

νn(A) = μn(A)/c(n),

where A ∈ A. Note that
∥∥μn

∥∥ = 1 yields that

∥∥νn
∥∥ = ∥∥μn

∥∥/c(n) = 1/c(n) = g(n),

so supn∈ω

∥∥νn
∥∥ = ∞, as g ∈ (ωω)∞. On the other hand, for every A ∈ A we have

∣∣νn(A)
∣∣ = ∣∣μn(A)

∣∣/c(n) ≤ dA(n)/c(n) ≤ 1

for sufficiently large n ∈ ω, so supn∈ω

∣∣νn(A)
∣∣ < ∞ for every A ∈ A. It follows that

the sequence
〈
νn : n ∈ ω

〉
is pointwise bounded but not uniformly bounded, hence, by

Lemma 4.1, A does not have the Nikodym property in V [G]. ��

5 Cardinal characteristics of the continuum

In this section we provide several consequences of Theorem 4.6 to cardinal character-
istics of the continuum. For basic information concerning various standard cardinal
characteristics, we refer the reader to Blass [3].
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We start with the definitions of two characteristics nik and gr which we call the
Nikodym number and the Grothendieck number, respectively:

nik = min
{|A| : A is an infinite Boolean algebra with the Nikodym property

}
,

and

gr = min
{|A| : A is an infinite Boolean algebra with the Grothendieck property

}
.

A detailed discussion on the estimations of nik and gr in terms of standard cardinal
characteristics of the continuum occurring in Cichoń’s and van Douwen’s diagrams
as well as on miscellaneous consistency results one can find in the survey paper [34].
In [36] the authors proved that in the Miller model the inequality nik = gr < d holds.
We now show that the proof of Theorem 4.6 easily implies that the converse inequality
may also consistently hold.

Similarly as inSect. 4.2, for an infinite set I letμI denote the standardproduct proba-
bility measure on the space 2I and letB(I ) = Bor

(
2I

)/{
A ∈ Bor

(
2I

) : μI (A) = 0
}

be itsmeasure algebra.Again, it iswell-known thatB(I ) is aωω-boundingposet adding
|I | many random reals (see [2, Section 3.1]).

Corollary 5.1 Let κ be an infinite cardinal number. Let G be a B(κ)-generic filter over
V . Then, in V [G], there is no infinite Boolean algebra of size < κ with the Nikodym
property or the Grothendieck property.

Consequently, in the random model every infinite Boolean algebra of size ≤ d has
neither the Nikodym property nor the Grothendieck property.

Proof We work in V [G]. Let A be an infinite Boolean algebra of size < κ and
F = {

xn : n ∈ ω
}
be a countable subset of its Stone space such that xn 
= xm

for n 
= m ∈ ω. By the standard argument based on B(κ) being c.c.c., there is I ⊂ κ

such that |I | = |A| < κ and

{[A]A ∩ F : A ∈ A} ∈ V [G � I ].

In V [G] there is a random real r ∈ 2ω over V [G � I ]. Now it suffices to consider the
sequence

〈
μn : n ∈ ω

〉
of measures on St(A), defined for every n ∈ ω by the formula:

νn = αn ·
∑

i∈In
(−1)r(i)+1δxi ,

where αn and In are as previously, and repeat the proof of Theorem 4.6. ��
Remark 5.2 Note that the same argument as in the above proof works, e.g., for finite
support iterations of B(ω) of length κ for regular uncountable κ .

Corollary 5.3 d < nik = gr holds in the random model. �

Corollary 5.3, together with the aforementioned fact that in the Miller model we
have d > nik = gr, yields the following independence result.
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Corollary 5.4 Let x ∈ {nik, gr}. Neither of the inequalities x ≤ d and x ≥ d is provable
in ZFC. �

A close relative to the numbers nik and gr is the convergence number z defined as
follows:

z = min
{
w(K ) : K is an infinite compact space

with no non-trivial convergent sequences
}
.

Here w(K ) denotes the weight of K . The number zwas studied e.g. in Brian and Dow
[8]. It is immediate that z ≤ nik and z ≤ gr. By the result of Dow and Fremlin [16]
stating that in any random extension V [G], for every σ -complete Boolean algebra
A ∈ V , its Stone space St(A) does not contain any non-trivial convergent sequences,
we have that z = ω1 < c in the randommodel. Thus, by Corollary 5.3, we immediately
get also the following fact.

Corollary 5.5 ω1 = z < nik = gr = c holds in the random model. �

Dow [15] proved that in the Laver model there are (totally disconnected) compact
spaces of weight ω1 containing no non-trivial convergent sequences, so z = ω1 holds
in this model. On the other hand, it is well known that the bounding number b has
value ω2 in the Laver model, and it was proved by the first author in [33, Proposition
3.2] that b ≤ nik holds in ZFC. We thus get the following corollary.

Corollary 5.6 ω1 = z < nik = ω2 holds in the Laver model. �

We do not know the value of gr in the Laver model (cf. Question 6.1).

6 Open questions

6.1 Dominating reals and the Grothendieck property

In the introductory section we admitted that, contrary to the case of the Nikodym
property, we do not know whether adding dominating reals kills the Grothendieck
property of ground model σ -complete Boolean algebras.

Question 6.1 LetA ∈ V be an infinite σ -complete Boolean algebra. Assume that G is
a generic filter for the Laver forcing over V . Does A have the Grothendieck property
in V [G]?
Question 6.2 Does there exist a notion of forcing P adding dominating reals and such
that in any P-generic extension V [G] any ground model σ -complete Boolean algebra
has the Grothendieck property?

An affirmative answer to Question 6.1 would yield a new consistent example of a
Boolean algebra with the Grothendieck property but without the Nikodym property.
Recall that while there are many consistent or even ZFC examples of Boolean algebras
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with the Nikodym property but without the Grothendieck property, see e.g. [31], [21],
[37], so far only one example of an algebrawith theGrothendieck property andwithout
the Nikodym property has been found—the construction was obtained by Talagrand
[38] under the assumption of the Continuum Hypothesis.

6.2 Eventually different reals

Let V [G] be a P-generic extension of the ground model V for some forcing notion
P. If f ∈ ωω ∩ V [G] is a dominating real, then obviously it is an eventually different
real, that is, for every g ∈ ωω ∩ V the set

{
n ∈ ω : f (n) = g(n)

}
is finite. The

converse does not hold, as e.g. the random forcing or the eventually different forcing
both add eventually different reals but not dominating reals. Since the latter forcing
adds Cohen reals, too, by Theorems 3.2 and 4.6 both notions kill the Nikodym and
Grothendieck properties of infinite groundmodel Boolean algebras. Thus, it seems that
all the standard classical notions adding eventually different reals kill at least one of the
properties. It is also a folklore fact that a forcing adds an eventually different real if and
only if it makes the ground model reals meager, hence, trivially by the assumption, the
notions of forcing considered in [36] (cf. the third paragraph of Introduction),which are
proved therein to preserve both the Nikodym property and the Grothendieck property
of ground model σ -complete Boolean algebras, do not add eventually different reals.
So it seems reasonable to ask whether adding an eventually different real is solely a
reason that ground model Boolean algebras lose their Nikodym property (and, in the
view of Question 6.2, possibly also the Grothendieck property).

Question 6.3 Does there exist a notion of forcing P adding eventually different reals
and such that in anyP-generic extension V [G] any groundmodel σ -complete Boolean
algebra has the Nikodym property?

Question 6.4 Does there exist a notion of forcing P adding eventually different reals
and such that in anyP-generic extension V [G] any groundmodel σ -complete Boolean
algebra has the Grothendieck property?

6.3 Cardinal characteristics nik and gr

We are not aware of any model in which the numbers nik and gr have different values.
Thus, we pose the following question.

Question 6.5 Is it consistent that nik < gr or nik > gr?

Note that an affirmative answer toQuestion 6.1would imply thatω1 = gr < nik = c
holds in the Laver model (cf. Corollary 5.6).
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