
Archive for Mathematical Logic (2024) 63:225–238
https://doi.org/10.1007/s00153-023-00886-2 Mathematical Logic

Effective weak and vague convergence of measures on the
real line

Diego A. Rojas1,2

Received: 4 November 2021 / Accepted: 19 June 2023 / Published online: 27 September 2023
© The Author(s) 2023

Abstract
We expand our effective framework for weak convergence of measures on the real
line by showing that effective convergence in the Prokhorov metric is equivalent to
effective weak convergence. In addition, we establish a framework for the study of the
effective theory of vague convergence of measures.We introduce a uniform notion and
a non-uniform notion of vague convergence, and we show that both these notions are
equivalent. However, limits under effective vague convergencemay not be computable
even when they are finite. We give an example of a finite incomputable effective vague
limit measure, and we provide a necessary and sufficient condition so that effective
vague convergence produces a computable limit. Finally, we determine a sufficient
condition for which effective weak and vague convergence of measures coincide. As
a corollary, we obtain an effective version of the equivalence between classical weak
and vague convergence of sequences of probability measures.

Keywords Computable analysis · Computable measure theory · Effective weak
convergence · Effective vague convergence

Mathematics Subject Classification 03D78

1 Introduction

Recently, McNicholl and Rojas [9] developed a framework to study the effective
theory of weak convergence of measures on R. Recall that a sequence of finite Borel
measures {μn}n∈N on a separable metric space X weakly converges to a measure μ if,
for every bounded continuous real-valued function f on X , limn

∫
X f dμn = ∫

X f dμ.
Weak convergence is used extensively in probability theory, particularly in the study of
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optimization problems in stochastic dynamic programming [2] and controlledMarkov
processes [3]. This paper partially serves as a continuation of [9].

As seen in [8], the space M(X) of finite Borel measures on a computable metric
space X forms a computable metric space when equipped with the Prokhorov metric.
It is well known that the Prokhorov metric, introduced by Prokhorov [11] in 1956,
metrizes the topology of weak convergence of measures. Thus, if a uniformly com-
putable sequence in M(X) converges effectively in the Prokhorov metric, then the
limit is a computable measure. This leads us to the following.

Question 1.1 Are effective weak convergence and effective convergence in the
Prokhorov metric equivalent?

In this paper, we provide a positive answer to this question in the case of M(R).
In the classical theory, the equivalence between weak convergence and convergence
in the Prokhorov metric uses the Portmanteau Theorem, a characterization theorem
for weak convergence originally due to Alexandroff [1]. Thus, the key to answering
Question 1.1 is the effective Portmanteau Theorem (Theorem 5.1 in [9]).

Although not as commonly studied, another notion of convergence for sequences
of measures in analysis and probability theory is vague convergence. A sequence of
(not necessarily finite) Borel measures {μn}n∈N on a separable metric space X vaguely
converges to a measure μ if, for every compactly-supported continuous real-valued
function f on X , limn

∫
X f dμn = ∫

X f dμ. If {μn}n∈N is a sequence of probability
measures, then {μn}n∈N converges vaguely if and only if it converges weakly (see
[5]). This fact is used in Mori et al. [10] to define an effective notion of convergence
for probability measures onM(R). However, this definition is not a suitable effective
analogue to classical vague convergence for non-probability measures onM(R). We
are thus led to the following.

Question 1.2 What is a suitable definition of effective vague convergence?

Following McNicholl and Rojas [9], we propose two answers to this question, one
of which is uniform (Definition 5.2) and one of which is not (Definition 5.1). As in
the case of effective weak convergence, we show that these definitions are equivalent
(Theorem 5.3). In contrast to effective weak convergence, we also show that effective
vague convergence does not guarantee a computable limit even when the limit is
finite. Nevertheless, it is possible to obtain a computable limit under effective vague
convergence.

As previously stated, classical weak and vague convergence coincide at sequences
of probabilitymeasures.Along the samevein,wedetermine the point atwhich effective
weak and vague convergence coincide (Theorem 5.8). This yields an effective version
of the correspondence between classical weak and vague convergence for probability
measures (Corollary 5.12).

This paper is divided as follows. Section2 consists of the necessary background
in both classical and computable analysis and measure theory. Section3 covers some
preliminary material used in later sections to state and prove the main results of this
paper. In Sect. 4, we prove the equivalence between effective weak convergence and
effective convergence in the Prokhorov metric inM(R). In Sect. 5, we define effective

123



Effective weak and vague convergence measures… 227

notions of vague convergence inM(R) and analyze the aforementioned consequences.
We conclude in Sect. 6 with a discussion of the results and implications for future
research in this direction.

2 Background

2.1 Background from classical analysis

In this paper, we denote the set of all continuous functions onR by C(R), the set of all
bounded continuous functions on R by Cb(R), and the set of all compactly-supported
continuous functions on R by CK (R). We define the support of a function f ∈ C(R)

to be the set supp f = R \ f −1({0}).
For x ∈ R and A ⊆ R, let d(x, A) = infa∈A |x−a|. For ε > 0, we denote the open

ε-neighborhood of a ∈ R by B(a, ε). For ε > 0 and A ⊆ R, B(A, ε) = ⋃
a∈A B(a, ε)

is called the open ε-neighborhood of A. We denote the Borel σ -algebra ofR by B(R).
The Prokhorov metric ρ is defined as follows: for any μ, ν ∈ M(R),

ρ(μ, ν) = inf{ε > 0 : (∀A ∈ B(R))[μ(A) ≤ ν(B(A, ε))

+ε ∧ ν(A) ≤ μ(B(A, ε)) + ε]}.

For x ∈ R, denote by δx the Dirac measure on x : for any A ∈ B(R),

δx (A) =
{
1 if x ∈ A,

0 if x /∈ A.

2.2 Background from computable analysis and computable measure theory

We presume familiarity with the fundamentals of computability theory as expounded
in Cooper [6]. For a more expansive treatment of computable analysis, see [4, 14].

We say that a bounded interval I ⊆ R is rational if each of its endpoints is rational.
Fix an effective enumeration {Ii }i∈N of the set of all rational open intervals.

If I ⊆ R is compact, let PQ(I ) denote the space of polygonal (i.e. continuous
piecewise linear) functions on I with rational vertices; we will refer to these functions
as rational polygonal functions on I . When p ∈ PQ[a, b], we extend p to all of R by
letting p(x) = p(a) for x < a and p(x) = p(b) for x > b. We may also extend p to
be supported on a computably compact set.

Fix a real number x . A (Cauchy) name of x is a sequence {qn}n∈N of rational
numbers so that limn qn = x and so that |qn − qn+1| < 2−n for all n ∈ N. x is
computable if it has a computable name. An index of such a name is also said to be
an index of x . x is left-c.e. (right-c.e.) if its left (right) Dedekind cut is c.e. It follows
that x is computable if and only if it is left-c.e. and right-c.e.

A sequence {xn}n∈N in R is computable if xn is computable uniformly in n. Sup-
pose {an}n∈N is a convergent sequence of reals, and let a = limn an . A modulus of
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convergence of {an}n∈N is a function g : N → N so that |an − a| < 2−k whenever
k ≥ g(n).

The following example of an incomputable left-c.e. real number is due to Specker
[13]. Let A be an incomputable c.e. set, and let {an}n∈N be an effective enumeration of
A. Then, {∑n

i=0 2
−(ai+1)}n∈N is a computable increasing sequence of rationals called

a Specker sequence. Let x = limn
∑n

i=0 2
−(ai+1) = ∑∞

i=0 2
−(ai+1). Since x is the

limit of a computable increasing sequence of rationals, it follows that x is left-c.e.
Moreover, x is incomputable since A is an incomputable set.

A function f :⊆ R → R is computable if there is a Turing functional F so
that F(ρ) is a Cauchy name of f (x) whenever ρ is a Cauchy name of x . An index
of such a functional F is also said to be an index of f . We denote the set of all
bounded computable functions on R by Cc

b(R). A function f :⊆ R → R is lower
semicomputable if there is a Turing functional F so that F(ρ) enumerates the left
Dedekind cut of f (x) whenever ρ is a Cauchy name of x . A function f :⊆ R → R

is upper semicomputable if − f is lower semicomputable.
When I ⊆ R is a compact rational interval and J ⊆ R is a rational open interval, we

let NI ,J = { f ∈ C(R) : f [I ] ⊆ J }. A (compact-open) name of a function f ∈ C(R)

is an enumeration of {NI ,J : f ∈ NI ,J }. If f ∈ C(R), then f is computable if and
only f has a computable name.

A function F :⊆ C(R) → R is computable if there is a Turing functional � so
that �(ρ) is a Cauchy name of F( f ) whenever ρ is a name of f . An index of such a
functional � is also said to be an index of F .

An open set U ⊆ R is �0
1 if U = ⋃

i∈E Ii for some c.e. set E ⊆ N. Equivalently,
U ⊆ R is �0

1 if {i ∈ N : I i ⊆ U } is c.e. We denote the set of �0
1 subsets of R by

�0
1(R). We say that e ∈ N indexes U ∈ �0

1(R) if U = ⋃
i∈We

Ii , where We denotes
the eth c.e. set.

A closed set C ⊆ R is 	0
1 if R \ C is �0

1 . We denote the set of 	0
1 subsets of R by

	0
1(R). Indices of sets in 	0

1(R) are defined analogously.
For a compact set K ⊆ R, a (minimal cover) name for K is an enumeration of all

minimal finite covers of K . We say K is computably compact if it has a computable
name. An index of K is defined to be an index of a name of K .

A measure μ ∈ M(R) is computable if μ(R) is a computable real and μ(U ) is
left-c.e. uniformly in an index ofU ∈ �0

1(R); i.e. it is possible to compute an index of
the left Dedekind cut of μ(U ) from an index of U . A sequence of measures {μn}n∈N
inM(R) is uniformly computable if μn is a computable measure uniformly in n.

Suppose μ ∈ M(R) is computable. A pair (U , V ) of �0
1 subsets of R is μ-almost

decidable if U ∩ V = ∅, μ(U ∪ V ) = μ(R), and U ∪ V = R. If, in addition,
U ⊆ A ⊆ R \ V , then we say that (U , V ) is a μ-almost decidable pair of A. We then
say A is μ-almost decidable if it has a μ-almost decidable pair. Suppose (U , V ) is a
μ-almost decidable pair of A. Then, e indexes A if e = 〈i, j〉 for some index i of U
and some index j of V . We note that μ-almost decidable sets are effective analogues
of μ-continuity sets. The definition of μ-almost decidable set is from [12].

123
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3 Preliminaries

The following effective notions of weak convergence of measures appear in [9].

Definition 3.1 We say {μn}n∈N effectively weakly converges to μ if for every f ∈
Cc
b(R), limn

∫
R
f dμn = ∫

R
f dμ and it is possible to compute an index of a modulus

of convergence of {∫
R
f dμn}n∈N from an index of f and a bound B ∈ N on | f |.

Definition 3.2 Wesay {μn}n∈N uniformly effectivelyweakly converges toμ if it weakly
converges to μ and there is a uniform procedure that, for any f ∈ Cb(R), computes a
modulus of convergence of {∫

R
f dμn}n∈N from a c.o.-name of f and a bound B ∈ N

on | f |.
Observe that Definition 3.2 is uniform, whereas Definition 3.1 is not uniform.

Nevertheless, we have the following.

Theorem 3.3 ([9]) Suppose {μn}n∈N is uniformly computable. The following are
equivalent.

(1) {μn}n∈N is effectively weakly convergent.
(2) {μn}n∈N is uniformly effectively weakly convergent.

As we will see in Sect. 5, we will model the effective definitions of vague conver-
gence inM(R) after Definitions 3.1 and 3.2.

In addition, we need the following pair of definitions.

Definition 3.4 Suppose {an}n∈N is a sequence of reals, and let g :⊆ Q → N.

(1) We say g witnesses that lim infn an is not smaller than a if dom(g) is the left
Dedekind cut of a and if r < an whenever r ∈ dom(g) and n ≥ g(r).

(2) We say g witnesses that lim supn an is not larger than a if dom(g) is the right
Dedekind cut of a and if r > an whenever r ∈ dom(g) and n ≥ g(r).

In order to prove our first main result in the next section, we will need the following
theorem.

Theorem 3.5 (Effective Portmanteau Theorem, [9]) Let {μn}n∈N be a uniformly com-
putable sequence inM(R). The following are equivalent.

(1) {μn}n∈N effectively weakly converges to μ.
(2) From e, B ∈ N so that e indexes a uniformly continuous f ∈ Cb(R)with | f | ≤ B,

it is possible to compute a modulus of convergence of {∫
R
f dμn}n∈N.

(3) μ is computable, and from an index of C ∈ 	0
1(R) it is possible to compute an

index of a witness that lim supn μn(C) is not larger than μ(C).
(4) μ is computable, and from an index of U ∈ �0

1(R) it is possible to compute an
index of a witness that lim infn μn(U ) is not smaller than μ(U ).

(5) μ is computable, and for every μ-almost decidable A, limn μn(A) = μ(A) and
an index of a modulus of convergence of {μn(A)}n∈N can be computed from a
μ-almost decidable index of A.
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4 Effective convergence in the Prokhorovmetric

We say that a sequence {μn}n∈N in M(R) converges effectively in the Prokhorov
metric ρ to a measure μ if there is a computable function ε : N → N such that for
everyn, N ∈ N,n ≥ ε(N ) impliesρ(μn, μ) < 2−N . SinceM(R) forms a computable
metric space underρ, it follows that every uniformly computable sequence ofmeasures
inM(R) converges to a computable measure in ρ. As ρ metrizes the topology of weak
convergence of measures inM(R), it is natural to characterize effective convergence
in ρ as an effective notion of weak convergence. However, it is not immediately clear
that effective convergence in ρ can be obtained from effective weak convergence and
vice versa. The following result states that both of these convergence notions coincide
for uniformly computable sequences on measures inM(R).

Theorem 4.1 Suppose {μn}n∈N is uniformly computable. The following are equiva-
lent:

(1) {μn}n∈N is effectively weakly convergent;
(2) {μn}n∈N converges effectively in ρ.

First, we need the following lemma.

Lemma 4.2 Let μ ∈ M(R) be computable, and let s > 0 be rational. It is possible to
compute an open cover of R consisting of open balls with radius less that s, each of
which is a μ-almost decidable set.

Proof Adapt the proof of Lemma 5.1.1 in [8] by replacing R
+ with (0, s). ��

The proof of the classical version of Theorem 4.1 makes use of the classical Port-
manteau Theorem as well as a classical version of Lemma 4.2. As we shall see below,
Theorem 4.1 makes use of the effective Portmanteau Theorem as well as Lemma 4.2.
However, before proving Theorem 4.1, we also require the following lemma.

Lemma 4.3 If C ∈ 	0
1(R), then B(C, s) ∈ 	0

1(R) for any rational s > 0.

Proof Let {Ii }i∈N be an enumeration of all rational open intervals ofR. Then, for each
i ∈ N, Ii = B(ai , ri ) for some ai , ri ∈ Q with ri > 0. Let A = B(C, s), and let
EA = {i ∈ N : Ii ∩ A = ∅}. It suffices to show that EA is c.e. Now, for each i ∈ N,
we enumerate i into EA whenever B(ai , ri ) ∩ A = ∅. Note that B(ai , ri ) ∩ A = ∅
if and only if d(ai , A) > ri , which occurs if and only if d(ai ,C) > ri + s. Since
C ∈ 	0

1(R), x �→ d(x,C) is lower semicomputable (Theorem 5.1.2 in [14]). Thus,
the enumeration is effective. Since s > 0 was arbitrary, the result follows. ��
Proof of Theorem 4.1 Suppose that {μn}n∈N converges effectively in ρ to μ. Then, μ
is computable, and we have a computable function ε : N → N such that for all
N ∈ N and all n ≥ ε(N ), ρ(μn, μ) < 2−N . In particular, for any C ∈ 	0

1(R) and all
n ≥ ε(N ),

μn(C) ≤ μ(B(C, 2−N )) + 2−N and μ(C) ≤ μn(B(C, 2−N )) + 2−N .
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Effective weak and vague convergence measures… 231

By Theorem 3.5, it suffices to compute an index of a witness that lim supn μn(C) is
not larger than μ(C) from an index e ∈ N of C ∈ 	0

1(R).
Fix r ∈ Q. Wait until r is enumerated into the right Dedekind cut of μ(C). Once

r has been enumerated into the right Dedekind cut of μ(C), search for the first M0 ∈
N so that r − μ(C) > 2−M0 . By Lemma 4.3 and the fact that μ is computable,
μ(B(C, 2−N )) is right-c.e. for any N ∈ N. Thus, search for the first N0 such that
r − μ(B(C, 2−N0)) > 2−M0 . Let M = M0 + N0 + 1, and let n0 = ε(M). Therefore,
for all n ≥ n0,

μn(C) ≤ μ(B(C, 2−M )) + 2−M ≤ μ(B(C, 2−M )) + 2−M < r − 2−M + 2−M = r .

It follows that n0 is an index of a witness that lim supn μn(C) is not larger than μ(C).
Next, suppose that {μn}n∈N effectively weakly converges to μ. Then, μ is com-

putable. By Theorem 3.5, we can compute for every μ-almost decidable A an index
of a modulus of convergence of {μn(A)}n∈N from a μ-almost decidable index of A.

We build the function ε : N → N by the following effective procedure. First,
let N ∈ N. By Lemma 4.2, we can compute a sequence {Bj } j∈N of uniformly μ-
almost decidable rational open balls in R with radius less than 2−(N+3) such that
⋃∞

j=1 Bj = R. Search for the first k0 so that μ(
⋃k0

j=1 Bj ) ≥ μ(R) − 2−(N+2). Let

A =
⎧
⎨

⎩

⋃

j∈J

B j : J ⊆ {1, . . . , k0}
⎫
⎬

⎭
.

Then,A is a finite collection ofμ-almost decidable sets. Define ε(N ) to be the smallest
index so that |μn(A)−μ(A)| < 2−(N+2) for every A ∈ A and every n ≥ ε(N ). Thus,

μn

⎛

⎝R \
⎛

⎝
k0⋃

j=1

Bj

⎞

⎠

⎞

⎠ ≤ μ

⎛

⎝R \
⎛

⎝
k0⋃

j=1

Bj

⎞

⎠

⎞

⎠ + 2−(N+2) ≤ 2−(N+1)

for all n ≥ ε(N ).
To see that ε is the desired function, fix E ∈ B(R). Let

A0 =
⋃

{Bj : ( j ∈ {1, . . . , k0}) ∧ (Bj ∩ E �= ∅)}.

Then, A0 ∈ A and satisfies the following properties:

(1) A0 ⊂ B(E, 2−(N+2)) ⊂ B(E, 2−N ).

(2) E ⊂ A0 ∪
(
R\

(⋃k0
j=1 Bj

))
.

(3) |μn(A0) − μ(A0)| < 2−(N+2) for all n ≥ ε(N ).
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Therefore, for all n ≥ ε(N ),

μ(E) ≤ μ(A0) + 2−(N+2)

< μn(A0) + 2−(N+1)

≤ μn(B(E, 2−(N+2))) + 2−(N+1) < μn(B(E, 2−N )) + 2−N

and

μn(E) ≤ μn(A0) + 2−(N+1) < μ(A0) + 2−N ≤ μ(B(E, 2−N )) + 2−N .

Since E ∈ B(R) was arbitrary, it follows that ρ(μn, μ) < 2−N for all n ≥ ε(N ), as
desired. ��

Theorem 4.1 serves as further evidence that effective weak convergence is the
appropriate computable analogue to weak convergence. When viewing M(R) as a
computable metric space, effective weak convergence can be defined as the effective
topology induced by ρ inM(R).

5 Effective vague convergence inM(R)

In Sects. 3 and 4, we discussed effective weak convergence in M(R). In this section,
we effectivize the definition of vague convergence. Just as in the case of weak conver-
gence, we provide a non-uniform definition (Definition 5.1) and a uniform definition
(Definition 5.2).

Definition 5.1 We say {μn}n∈N effectively vaguely converges to μ if for every f ∈
Cc
K (R), limn

∫
R
f dμn = ∫

R
f dμ and it is possible to compute an index of a modulus

of convergence of {∫
R
f dμn}n∈N from an index of f and an index of supp f .

Definition 5.2 We say {μn}n∈N uniformly effectively vaguely converges to μ if it
weakly converges to μ and there is a uniform procedure that, for any f ∈ CK (R),
computes a modulus of convergence of {∫

R
f dμn}n∈N from a name of f and a name

of supp f .

As expected, the following theorem establishes the equivalence between these two
definitions.

Theorem 5.3 Suppose {μn}n∈N is uniformly computable. The followingare equivalent.

(1) {μn}n∈N is effectively vaguely convergent.
(2) {μn}n∈N is uniformly effectively vaguely convergent.

Before we prove this theorem, we need the following lemma.

Lemma 5.4 For all f ∈ CK (R), it is possible to compute a rational polygonal function
ψ so that suppψ ⊆ [�min{supp f }�, �max{supp f }�] from a name of f and a name
of supp f .
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Proof Sincemin{supp f } andmax{supp f } are computable,wemay compute rationals
p ∈ (�min{supp f }�,min{supp f }) and q ∈ (max{supp f }, �max{supp f }�). Now,
compute a function ψ ∈ PQ[p, q] that approximates f on the interval [p, q] with the
property that ψ(p) = ψ(q) = 0. ��
Proof of Theorem 5.3 It is possible to compute a name of f ∈ Cc

K (R) and a name of
supp f from an index of f and an index of supp f . It thus follows that every uniformly
effectively vaguely convergent sequence is effectively vaguely convergent.

Now, suppose {μn}n∈N effectively vaguely converges to μ. Let ρ be a name of
f ∈ CK (R), and let κ be a name of supp f . We construct a function G : N → N as
follows. Let I = [�min{supp f }�, �max{supp f }�], which can be computed from κ

by Lemma 5.2.6 in [14]. Let T be a function on R given by

T (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 �min{supp f }� ≤ x ≤ �max{supp f }�
x + �min{supp f }� + 1 �min{supp f }� − 1 < x < �min{supp f }�
−x + �max{supp f }� + 1 �max{supp f }� < x < �max{supp f }� + 1

0 otherwise.

Note that supp T = B(I , 1), and so T ∈ CK (R). Since {μn}n∈N effectively vaguely
converges toμ, we can compute an indexn0 ∈ N so that

∣
∣
∫
R
T dμn − ∫

R
T dμ

∣
∣ < 2−1

whenever n ≥ n0. It follows that for every n,m ≥ n0,
∣
∣
∫
R
T dμn − ∫

R
T dμm

∣
∣ < 1.

By Lemma 5.4, we can compute a rational polygonal function ψ with the property
that suppψ ⊆ I and

max{| f (x) − ψ(x)| : x ∈ I } <
2−(N+2)

1 + ∫
R
T dμn0

.

Since {μn}n∈N effectively vaguely converges to μ, we can compute an n1 ∈ N so that∣
∣
∫
R

ψ dμn − ∫
R

ψ dμ
∣
∣ < 2−(N+1) whenever n ≥ n1. Set G(N ) = max{n0, n1}.

Suppose n ≥ G(N ). Then,

∣
∣
∣
∣

∫

R

f dμn−
∫

R

f dμ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

R

( f − ψ) dμn

∣
∣
∣
∣+

∣
∣
∣
∣

∫

R

ψ dμn −
∫

R

ψ dμ

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R

(ψ − f ) dμ

∣
∣
∣
∣

< 2−(N+2) + 2−(N+1) + 2−(N+2)

= 2−N .

Thus, G is a modulus of convergence of {∫
R
f dμn}n∈N. Since the construction of G

from ρ and κ is uniform, {μn}n∈N uniformly effectively vaguely converges to μ. ��
By the same reasoning as with effective weak convergence, we may also conclude

the following.

Corollary 5.5 Suppose {μn}n∈N is a uniformly computable sequence in M(R) that is
effectively vaguely convergent. Then, {μn}n∈N is vaguely convergent.
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234 D. A. Rojas

Recall that effective weak limit measures are computable. It is reasonable to ask if
this translates to effective vague convergence as well. Below, we provide a negative
answer to this question.

Proposition 5.6 There is a uniformly computable sequence ofmeasures that effectively
vaguely converges to a limit measure μ with the property that μ(R) is incomputable.

Proof Let A ⊂ N be an incomputable c.e. set, and let {ai }n∈N be an effective enumer-
ation of A. For each n ∈ N, let μn = ∑n

i=0 2
−(ai+1)δi . Note that μn is a uniformly

computable sequence of measures. We will show that {μn}n∈N effectively vaguely
converges to the measure μ = ∑∞

i=0 2
−(ai+1)δi .

For starters, fix f ∈ Cc
K (R) and an index of supp f . Then, we can compute

max{supp f } by Lemma 5.2.6 in [14]. Observe that for all n ≥ �max{supp f }� + 1,

∫

R

f dμn =
n∑

i=0

2−(ai+1) f (i) =
∞∑

i=0

2−(ai+1) f (i) =
∫

R

f dμ.

Thus, �max{supp f }� + 1 is an index of a modulus of convergence of the sequence
{∫

R
f dμn}n∈N. Finally, note that μ(R) = ∑∞

i=0 2
−(ai+1) is incomputable since it is

the limit of a Specker sequence. ��
We have in the proof of Proposition 5.6 above not only an example of an incom-

putable effective vague limit, but also a finite one. This leads us to ask the following
question: when are effective vague limit measures computable? We provide a neces-
sary and sufficient condition for which this is the case.

Proposition 5.7 Suppose {μn}n∈N is a uniformly computable sequence inM(R) that
effectively vaguely converges to μ. If μ(R) is computable, then μ is computable.

Proof Suppose μ(R) is computable. It suffices to show that μ(U ) is left-c.e. for every
U ∈ �0

1(R) uniformly in an index of U .
For starters, let I be a rational open interval. Since 1I is nonnegative and lower-

semicomputable, we can compute a sequence of computable Lipschitz functions 0 ≤
Tk ≤ 1 such that Tk increases to 1I pointwise and supp Tk = I for each k (see
Proposition C.7, [7]). By the Monotone Convergence Theorem, ν(I ) = limk

∫
R
Tk dν

for any ν ∈ M(R).
Fix q ∈ Q. Since {μn}n∈N effectively vaguely converges to μ, we can compute

an index of a modulus of convergence of {∫
R
Tk dμn}n∈N with limn

∫
R
Tk dμn =∫

R
Tk dμ for each k from an index of Tk and an index of supp Tk . This means

∫
R
Tk dμ

is a computable real for each k. Thus, we enumerate q into the left Dedekind cut of
μ(I ) if we can find k1, k2 ∈ N such that k1 < k2 and

∫
R
Tk1 dμ ≤ q ≤ ∫

R
Tk2 dμ. It

follows that μ(I ) is left-c.e. uniformly in an index of I .
Now, fix U ∈ �0

1 . Then, U can be expressed as a countable union of rational open
intervals. By the observation above, it follows that μ(U ) is the limit of an increasing
sequence of left-c.e. reals. Therefore, μ(U ) is left-c.e. uniformly in an index of U . ��

Another way of ensuring that effective vague limits are computable is by analyzing
the point in which effective weak and vague convergence coincide. Below, we provide
a sufficient condition for which these notions do coincide.
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Theorem 5.8 Suppose {μn}n∈N is uniformly computable. Suppose further that there is
a computable modulus of convergence of {μn(R)}n∈N. The following are equivalent.

(1) {μn}n∈N is effectively vaguely convergent.
(2) {μn}n∈N is effectively weakly convergent.

In fact, we will prove that effective vague convergence is equivalent to uniform
effective weak convergence. The following series of lemmas will allow us to carry out
a proof of Theorem 5.8 similar to the proof of Theorem 3.3.

Lemma 5.9 Suppose {μn}n∈N is uniformly computable and effectively vaguely con-
verges to μ. Suppose further that there is a computable modulus of convergence of
{μn(R)}n∈N. For every f ∈ Cc

K (R) such that 0 ≤ f ≤ 1, limn
∫
R
(1 − f ) dμn =∫

R
(1 − f ) dμ and it is possible to compute an index of a modulus of convergence of

{∫
R
(1 − f ) dμn}n∈N from an index of f and an index of supp f .

Proof Fix f ∈ Cc
K (R) and an index of supp f . By Theorem 5.3, we can compute a

modulus of convergence g1 :⊆ N → N for {∫
R
f dμn}n∈N. By assumption, there

is a computable modulus of convergence g2 :⊆ N → N for {μn(R)}n∈N. There-
fore, n1 = max{g1(N + 1), g2(N + 1)} is an index of a modulus of convergence of
{∫

R
(1 − f ) dμn}n∈N. ��

Lemma 5.10 Suppose {μn}n∈N is uniformly computable and effectively vaguely con-
verges to μ. Suppose further that there is a computable modulus of convergence
of {μn(R)}n∈N. From N ∈ N, it is possible to compute a, n0 ∈ N such that
μn(R \ [−a, a]) < 2−N for all n ≥ n0.

Proof Combine Lemma 5.9 and the proof of Lemma 5.5 in [9]. ��
Lemma 5.11 Suppose {μn}n∈N is uniformly computable and effectively vaguely con-
verges to μ. Suppose further that there is a computable modulus of convergence of
{μn(R)}n∈N. From a name of an f ∈ Cb(R) and an N , B ∈ N so that | f | ≤ B, it
is possible to compute a, n1 ∈ N and ψ ∈ PQ[−a, a] so that ψ is computably com-
pactly supported,

∣
∣
∫
R
( f − ψ) dμ

∣
∣ < 2−N , and

∣
∣
∫
R
( f − ψ) dμn

∣
∣ < 2−N whenever

n ≥ n1.

Proof We modify the proof of Lemma 5.6 in [9] so that ψ is computably compactly
supported. Then, use a name of ψ and a name of supp ψ to compute n1 ∈ N with the
desired properties. ��
Proof of Theorem 5.8 It is immediate that (2) implies (1). Now, suppose {μn}n∈N effec-
tively vaguely converges to μ. Fix f ∈ Cb(R) with name ρ and bound B ∈ N. We
construct the function G : N → N as follows. By means of Lemma 5.11, we can com-
pute a, n1 ∈ N and ψ ∈ PQ[−a, a] so that ψ is computably compactly supported,∣
∣
∫
R
( f − ψ) dμ

∣
∣ < 2−(N+2), and

∣
∣
∫
R
( f − ψ) dμn

∣
∣ < 2−(N+2) whenever n ≥ n1.

Since {μn}n∈N effectively vaguely converges to μ, we can compute an n2 ∈ N so that∣
∣
∫
R

ψ dμn − ∫
R

ψ dμ
∣
∣ < 2−(N+1) whenever n ≥ n2. Set G(N ) = max{n1, n2}.
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Suppose n ≥ G(N ). Then,
∣
∣
∣
∣

∫

R

f dμn−
∫

R

f dμ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

R

( f − ψ) dμn

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R

ψ dμn −
∫

R

ψ dμ

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R

(ψ − f ) dμ

∣
∣
∣
∣

< 2−(N+2) + 2−(N+1) + 2−(N+2)

= 2−N .

Thus, G is a modulus of convergence of {∫
R
f dμn}n∈N. Since the construction of G

from ρ and B is uniform, {μn}n∈N uniformly effectively weakly converges to μ. The
result follows by Theorem 3.3. ��

We conclude this section by deriving from Theorem 5.8 the following effective
version of a classical result in probability theory.

Corollary 5.12 Suppose {μn}n∈N is a uniformly computable sequence of probability
measures. The following are equivalent.

(1) {μn}n∈N is effectively vaguely convergent.
(2) {μn}n∈N is effectively weakly convergent.

6 Conclusion

We expanded the effective framework for the study of weak convergence of measures
inM(R) introduced in [9] by demonstrating the equivalence between effective weak
convergence and effective convergence in the Prokhorov metric. This provides further
evidence that effective weak convergence is the appropriate analogue to classical weak
convergence in M(R). While the Prokhorov metric is useful in defining M(R) as a
computable metric space, effective weak convergence is a more useful tool to analyze
properties of M(R) as a computable metric space. Theorem 4.1, therefore, unifies
the approaches in [8] and [9] to studying the effective theory of weak convergence in
M(R).

Additionally, we introduced two effective notions of vague convergence inM(R).
While the moduli of convergence in the first definition are produced for computable
functions in CK (R), moduli of convergence in the second definition are produced for
all functions inCK (R) via names. Similar to effective weak convergence, Theorem 5.3
shows that they are equivalent. Just as in the classical sense, however, there are notable
differences between effective weak convergence and effective vague convergence.

Consider the following classical example. The sequence {δn}n∈N of point masses
converges vaguely to the zero measure, but it does not converge weakly since
limn f (n) = ∞ for any f ∈ Cb(R) supported on R. This distinction carries over
in the effective setting, albeit in a more computationally significant manner. In Propo-
sition 5.6, we gave an example of a uniformly computable sequence of measures that
effectively vaguely converges to a finite incomputable measure. Thus, the “vagueness”
of effective vague convergence is present in the fact that limits under this convergence
notion may not be computable even when finite.

Nevertheless, we provide evidence that effective vague convergence is the appro-
priate computable analogue to classical vague convergence. For instance, we found in
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Theorem 5.8 a sufficient condition for which effective weak and vague convergence
coincide. Consequently, Corollary 5.12 provides the following observation: whereas
classical weak and vague convergence coincide at the probability measures, effective
weak and vague convergence coincide at the computable probability measures. Since
we argue that effective weak convergence is the appropriate computable analogue to
classical weak convergence, a similar argument follows in the case of effective vague
convergence. In the future, wewould like to generalize the definitions of effectiveweak
and vague convergence tomeasures inM(X) for an arbitrary computablemetric space
X .
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