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Abstract
We study the fixed point property and the Craig interpolation property for sublogics
of the interpretability logic IL. We provide a complete description of these sublogics
concerning the uniqueness of fixed points, the fixed point property and the Craig
interpolation property.
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1 Introduction

De Jongh and Sambin’s fixed point theorem [12] for the modal propositional logicGL
is one of notable results of modal logical investigation of formalized provability. For
any modal formula A, let v(A) be the set of all propositional variables contained in A.
A logic L is said to have the fixed point property (FPP) if for any modal formula A(p)
in which the propositional variable p appears only in the scope of �, there exists a
modal formula B such that v(B) ⊆ v(A) \ {p} and L � B ↔ A(B). De Jongh and
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2 S. Iwata et al.

Fig. 1 Sublogics of IL

Sambin’s theorem states that GL has FPP, and this is understood as a counterpart of
the fixed point theorem in formal arithmetic (see [4]). Bernardi [2] also proved the
uniqueness of fixed points (UFP) for GL.

A logic L is said to have the Craig interpolation property (CIP) if for any formulas
A and B, if L � A→ B, then there exists a formulaC such that v(C) ⊆ v(A)∩v(B),
L � A→ C , and L � C → B. Smoryński [13] and Boolos [3] independently proved
that GL has CIP. Smoryński also made an important observation that FPP for GL
follows from CIP and UFP.

The interpretability logic IL is an extension ofGL in the language ofGL equipped
with the binary modal operator�, where the modal formula A�B is read as “T +B is
relatively interpretable in T + A”. It is natural to ask whether IL also has the properties
that hold for GL. Indeed, de Jongh and Visser [8] proved UFP for IL and that IL has
FPP. Also Areces, Hoogland, and de Jongh [1] proved that IL has CIP.

Ignatiev [5] introduced the sublogic CL of IL as a base logic of the modal logical
investigation of the notion of partial conservativity, and proved that CL is complete
with respect to relational semantics (that is, usual Veltman semantics). Kurahashi and
Okawa [9] also introduced several sublogics of IL, and showed the completeness and
the incompleteness of these sublogics with respect to relational semantics.

In this paper, we investigate UFP, FPP, and CIP for sublogics of IL shown in Fig. 1.
Moreover, for technical reasons, we introduce and investigate the notions of �UFP

and �FPP that are restricted versions of UFP and FPP with respect to some particular
forms of formulas, respectively. Table 1 summarizes a complete description of these
sublogics concerning �UFP, UFP, �FPP, FPP, and CIP.

The paper is organized as follows. In Sect. 3, we show that UFP holds for extensions
of IL−(J4+), and that UFP is not the case for sublogics of IL−(J1, J5). We also show
that �UFP holds for extensions of IL−. In Sect. 4, we prove that the logic IL−(J2+, J5)
has CIP by modifying a semantical proof of CIP for IL by Areces, Hoogland, and de
Jongh. We also notice that CIP for IL easily follows from CIP for IL−(J2+, J5). In
Sect. 5, we observe that FPP for IL−(J2+, J5) immediately follows from our results
in the previous sections. Also, we give a syntactical proof of FPP for IL−(J2+, J5).
Moreover, we prove that IL−(J4, J5) has �FPP. In Sect. 6, we provide counter models
of �FPP for CL and IL−(J1, J5) and a counter model of FPP for IL−(J1, J4+, J5).
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The fixed point and the Craig interpolation… 3

Table 1 �UFP, UFP, �FPP, FPP,
and CIP for sublogics of IL

�UFP UFP �FPP FPP CIP

IL− � × × × ×
IL−(J1) � × × × ×
IL−(J5) � × × × ×
IL−(J1, J5) � × × × ×
IL−(J4+) � � × × ×
IL−(J1, J4+) � � × × ×
IL−(J2+) � � × × ×
CL � � × × ×
IL−(J4+, J5) � � � × ×
IL−(J1, J4+, J5) � � � × ×
IL−(J2+, J5) � � � � �
IL � � [8] � � [8] � [1]

As a consequence, we also show that CIP is not the case for these sublogics except
IL−(J2+, J5) and IL.

2 Preliminaries

2.1 IL and its sublogics

The interpretability logic IL is a base logic of modal logical investigations of the
notion of relative interpretability (see [15, 16]). The language of IL consists of propo-
sitional variables p, q, . . ., the propositional constant ⊥, the logical connective →,
the unary modal operator �, and the binary modal operator �. Other logical connec-
tives, the propositional constant �, and the modal operator ♦ are introduced as usual
abbreviations. The formulas of IL are generated by the following grammar:

A:: = ⊥ | p | A→ A | �A | A � A.

For each formula A, let �A ≡ A ∧�A.

Definition 1 The axioms of the modal propositional logic IL are as follows:

L1 All tautologies in the language of IL;
L2 �(A→ B) → (�A→ �B);
L3 �(�A→ A) → �A;
J1 �(A→ B) → A � B;
J2 (A � B) ∧ (B � C) → A � C ;
J3 (A � C) ∧ (B � C) → (A ∨ B) � C ;
J4 A � B → (♦A→ ♦B);
J5 ♦A � A.

The inference rules of IL are Modus Ponens
A A→ B

B
and Necessitation

A

�A
.
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4 S. Iwata et al.

The conservativity logic CL is obtained from IL by removing the axiom scheme
J5, that was introduced by Ignatiev [5] as a base logic of modal logical investigations
of the notion of partial conservativity. Several other sublogics of IL were introduced
in [9]. The basis for these newly introduced logics is the logic IL−.

Definition 2 The language of IL− is that of IL, and the axioms of IL− are
L1,L2,L3, J3, and J6: �A ↔ (¬A) � ⊥. The inference rules of IL− are Modus

Ponens, Necessitation, R1
A→ B

C � A→ C � B
, and R2

A→ B

B � C → A � C
.

For schemata Σ1, . . . , Σn , let IL−(Σ1, . . . , Σn) be the logic obtained by adding
Σ1, . . . , Σn as axiom schemata to IL−. The following schemata J2+ and J4+ were
introduced in [9] and [15], respectively:

J2+ (A � (B ∨ C)) ∧ (B � C) → A � C ;
J4+ �(A→ B) → (C � A→ C � B).

In this paper, we mainly deal with logics consisting of some of the axiom schemata
J1, J2+, J4+, and J5 (see Fig. 1 in Sect. 1). Then, we have the following proposition.

Proposition 1 Let A, B, and C be any formulas.

1. IL− � �¬A→ A � B.
2. IL− � �(A→ B) → (B � C → A � C).
3. IL− � (¬A ∧ B) � C → (A � C → B � C).
4. IL−(J4+) � J4.
5. IL−(J2+) � J2 ∧ J4+.
6. IL−(J2+) � (A � B) ∧ ((B ∧ ¬C) � C) → (A � C).
7. IL−(J1) � A � A.
8. CL is deductively equivalent to IL−(J1, J2+).
9. IL is deductively equivalent to IL−(J1, J2+, J5).

Proof Except clause 3, see [9]. For 3, by J3, IL− � ((¬A ∧ B) � C) ∧ (A � C) →
((¬A∧B)∨A)�C . Since IL− � B → ((¬A∧B)∨A), we have IL− � ((¬A∧B)∨
A)�C → B�C by the ruleR2. Thus, IL− � ((¬A∧ B)�C)∧ (A�C) → B�C .

�
The following lemma (Lemma 1) plays an important role in our proofs of CIP and

FPP for IL−(J2+, J5) in Sects. 4 and 5.

Fact 1 (See [17]) For any formula A,

IL− � (A ∨ ♦A) ↔ ((A ∧�¬A) ∨ ♦(A ∧�¬A)).

Lemma 1 Let A and C be any formulas.

1. IL−(J2, J5) � ((A ∧�¬A) � C) ↔ (A � C).
2. IL−(J2+, J5) � (C � (A ∧�¬A)) ↔ (C � A).
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The fixed point and the Craig interpolation… 5

Proof In this proof, let B ≡ (A ∧�¬A).
1. (←): Since IL− � B → A, we have IL− � A � C → B � C by R2.
(→): Since IL−(J5) � ♦B � B, we have IL−(J2, J5) � B � C → ♦B � C .

Hence, by J3,

IL−(J2, J5) � B � C → (B ∨ ♦B) � C .

By Fact 1 and R2, we obtain

IL−(J2, J5) � B � C → (A ∨ ♦A) � C .

Since IL− � A→ (A ∨ ♦A), we obtain

IL−(J2, J5) � B � C → A � C

by R2.
2. (→): This is immediate from IL− � B → A and R1.
(←): Since IL− � A→ (A ∨ ♦A), we obtain

IL− � C � A→ C � (A ∨ ♦A)

by R1. Then, by Fact 1 and R1,

IL− � C � A→ C � (B ∨ ♦B).

Since IL−(J5) � ♦B � B, we obtain

IL−(J2+, J5) � C � A→ C � B

because (C � (♦B ∨ B)) ∧ (♦B � B) → C � B is an instance of J2+. �

2.2 IL−-frames andmodels

Definition 3 We say that a system 〈W , R, {Sw}w∈W 〉 is an IL−-frame if it satisfies the
following three conditions:

1. W is a non-empty set;
2. R is a transitive and conversely well-founded binary relation on W ;
3. For each w ∈ W , Sw is a binary relation on W with

∀x, y ∈ W (xSw y ⇒ wRx).

A system 〈W , R, {Sw}w∈W ,�〉 is called an IL−-model if 〈W , R, {Sw}w∈W 〉 is an
IL−-frame and � is a usual satisfaction relation on the Kripke frame 〈W , R〉 with the
following additional condition:

w � A � B ⇐⇒ ∀x ∈ W (wRx & x � A⇒ ∃y ∈ W (xSw y & y � B)).
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6 S. Iwata et al.

A formula A is said to be valid in an IL−-frame 〈W , R, {Sw}w∈W 〉 if w � A for any
satisfaction relation � on the frame and any w ∈ W .

For each w ∈ W , let R[w] := {x ∈ W : wRx}.
Proposition 2 (See [9] and [15]) Let F = 〈W , R, {Sw}w∈W 〉 be any IL−-frame.
1. J1 is valid in F if and only if for any w, x ∈ W, if wRx, then xSwx.
2. J2+ is valid in F if and only if J4+ is valid in F and for any w ∈ W, Sw is

transitive.
3. J4+ is valid in F if and only if for any w ∈ W, Sw is a binary relation on R[w].
4. J5 is valid in F if and only if for any w, x, y ∈ W, wRx and x Ry imply xSw y.

Theorem 1 (See [5], [7] and [9]) Let L be one of logics shown in Fig.1 in Sect.1.
Then, for any formula A, the following are equivalent:

1. L � A.
2. A is valid in all (finite) IL−-frames in which all axioms of L are valid.

2.3 The fixed point and the Craig interpolation properties

For each formula A, let v(A) be the set of all propositional variables contained in A.

Definition 4 We say that a formula A is modalized in a propositional variable p if
every occurrence of p in A is in the scope of some modal operators � or �.

Definition 5 A logic L is said to have the fixed point property (FPP) if for any proposi-
tional variable p and any formula A(p)which is modalized in p, there exists a formula
F such that v(F) ⊆ v(A)\{p} and L � F ↔ A(F).

Definition 6 We say that the uniqueness of fixed points (UFP) holds for a logic L if
for any propositional variables p, q and any formula A(p) which is modalized in p
and does not contain q,

L � �(p↔ A(p)) ∧�(q ↔ A(q)) → (p↔ q).

Theorem 2 (De Jongh and Visser [8])

1. IL has FPP.
2. UFP holds for IL.

In particular, de Jongh andVisser showed that a fixedpoint of a formula A(p)�B(p)
is A(�)�B(�¬A(�)). Then, a fixed point of every formula A(p)which is modalized
in p is explicitly calculable by a usual argument.

Definition 7 A logic L is said to have the Craig interpolation property (CIP) if for
any formulas A and B, if L � A → B, then there exists a formula C such that
v(C) ⊆ v(A) ∩ v(B), L � A→ C , and L � C → B.

Theorem 3 (Areces, Hoogland, and de Jongh [1]) IL has CIP.
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The fixed point and the Craig interpolation… 7

3 Uniqueness of fixed points

In this section, we investigate the uniqueness of fixed points for sublogics. Firstly, we
show that UFP holds for extensions of IL−(J4+). Secondly, we prove that UFP is
not the case for sublogics of IL−(J1, J5). Then, we investigate the newly introduced
notion that a formula A(p) is left-modalized in a propositional variable p. We prove
that UFP with respect to formulas which are left-modalized in p (�UFP) holds for all
extensions of IL−. Finally, we discuss Smoryński’s implication “CIP + UFP⇒ FPP”
in our framework.

3.1 UFP

By adapting Smoryński’s argument [14], de Jongh and Visser [8] showed that UFP
holds for every logic closed under Modus Ponens and Necessitation, and containing
L1, L2, L3, E1, and E2, where

E1 �(A↔ B) → (A � C ↔ B � C);
E2 �(A↔ B) → (C � A↔ C � B).

Since E1 and E2 are easy consequences of Proposition 1.2 and J4+ respectively,
we obtain the following theorem.

Theorem 4 (UFP for IL−(J4+))UFPholds for every extension of the logic IL−(J4+).

As shown in [8], in the proof of Theorem 4, the use of the following substitution
principle is essential.

Proposition 3 (The Substitution Principle) Let A, B, and C(p) be any formulas.

1. IL−(J4+) � �(A↔ B) → (C(A) ↔ C(B)).
2. If C(p) is modalized in p, then IL−(J4+) � �(A↔ B) → (C(A) ↔ C(B)).

Proposition 3.2 shows that every extension L of IL−(J4+) proves �(A ↔ B) →
(C(A) ↔ C(B)) for any formula C(p) which is modalized in p. We show that the
converse of this statement also holds.

Proposition 4 Let L be any extension of IL−. Suppose that for any formula C(p)
which is modalized in p, L � �(A↔ B) → (C(A) ↔ C(B)). Then, L � J4+.

Proof Let A, B, and C be any formulas and assume p /∈ v(C). Then, the formula
C � p is modalized in p. By the supposition, we have

L � �(A↔ A ∧ B) → (C � A↔ C � (A ∧ B)).

Since IL− � �(A → B) → �(A ↔ A ∧ B) and IL− � C � (A ∧ B) → C � B,
we obtain L � �(A→ B) → (C � A→ C � B). �

On the other hand, we show that UFP does not hold for sublogics of IL−(J1, J5)
in general.
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8 S. Iwata et al.

Fig. 2 A counter model of UFP
for IL−(J1, J5)

Proposition 5 Let p, q be distinct propositional variables. Then,

IL−(J1, J5) � �(p↔ (�� ¬p)) ∧�(q ↔ (�� ¬q)) → (p↔ q).

Proof We define an IL−-frame F = 〈W , R, {Sw}w∈W 〉 as follows:
– W := {w, x, y};
– R := {〈w, x〉};
– Sw := {〈x, x〉, 〈x, y〉}, Sx := ∅, Sy := ∅.
Obviously, by Proposition 2, IL−(J1, J5) is valid in F . Let � be a satisfaction

relation on F satisfying the following conditions:

– w � p and w � q;
– x � p and x � q;
– y � p and y � q.

We prove w � �(p ↔ (� � ¬p)) ∧ �(q ↔ (� � ¬q)) ∧ ¬(p ↔ q). Since
w � p and w � q, w � ¬(p ↔ q) is obvious. We show w � (p ↔ (� � ¬p)) ∧
(q ↔ (� � ¬q)). Since w � p and w � q, it suffices to prove w � � � ¬p and
w � ¬(�� ¬q).

– w � � � ¬p: Let z ∈ W be any element with wRz. Then, z = x . Since xSw y
and y � ¬p, we obtain w � �� ¬p.

– w � ¬(��¬q): Let z ∈ W be any element with xSwz. Then, z = x or z = y. In
either case, we obtain z � q. Since x Ry, we conclude w � ¬(�� ¬q).

At last, we showw � �(p↔ (��¬p))∧�(q ↔ (��¬q)). Let z ∈ W be such that
wRz. Then, z = x . Since there is no z′ ∈ W such that x Rz′, x � (��¬p)∧(��¬q).
Since x � p and x � q, we have x � (p ↔ (�� ¬p)) ∧ (q ↔ (�� ¬q)). Hence,
we obtain w � �(p↔ (�� ¬p)) ∧�(q ↔ (�� ¬q)).

Therefore, w � �(p↔ (�� ¬p)) ∧�(q ↔ (�� ¬q)) ∧ ¬(p↔ q). �

3.2 �UFP

Even for extensions of IL−, Proposition 1.2 suggests that the uniqueness of fixed points
may hold with respect to formulas in some particular forms. From this perspective,
we introduce the notion that formulas are left-modalized in p.
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The fixed point and the Craig interpolation… 9

Definition 8 We say that a formula A is left-modalized in a propositional variable p
if A is modalized in p and p /∈ v(C) for any subformula B � C of A.

Then, we obtain the following version of the substitution principle.

Proposition 6 Let A, B, and C(p) be any formulas such that p /∈ v(E) for any
subformula D � E of C.

1. IL− � �(A↔ B) → (C(A) ↔ C(B)).
2. If C(p) is left-modalized in p, then IL− � �(A↔ B) → (C(A) ↔ C(B)).

Proof 1. This proposition is proved by induction on the construction of C(p). We
only prove the case C(p) ≡ D(p) � E (By our supposition, p /∈ v(E)). For any
subformula D′ � E ′ of D, it is also a subformula of C , and hence p /∈ v(E ′). Then,
by the induction hypothesis, we obtain

IL− � �(A↔ B) → (D(A) ↔ D(B)).

Then, IL− � �(A↔ B) → �(D(A) ↔ D(B)). Therefore, by Proposition 1.2,

IL− � �(A↔ B) → (D(A) � E ↔ D(B) � E).

Since p /∈ v(E), we find C(A) ≡ (D(A) � E) and C(B) ≡ (D(B) � E). Therefore,

IL− � �(A↔ B) → (C(A) ↔ C(B)).

2. This follows from our proof of clause 1. �
We introduce our restricted versions of UFP and FPP.

Definition 9 We say that �UFP holds for a logic L if for any formula A(p) which is
left-modalized in p, L � �(p↔ A(p)) ∧�(q ↔ A(q)) → (p↔ q).

Definition 10 We say that a logic L has �FPP if for any formula A(p) which is left-
modalized in p, there exists a formula F such that v(F) ⊆ v(A)\{p} and L � F ↔
A(F).

Then, �UFP holds for every our sublogic of IL.

Theorem 5 (�UFP for IL−) �UFP holds for all extensions of IL−.
Proof Let A(p) be any formulawhich is left-modalized in p. Then, by Proposition 6.2,
IL− � �(p↔ q) → (A(p) ↔ A(q)). Therefore,

IL− � �(p↔ A(p)) ∧�(q ↔ A(q)) → (�(p↔ q) → (A(p) ↔ A(q)))

→ (�(p↔ q) → (p↔ q))

→ (�(�(p↔ q) → (p↔ q)))

→ �(p↔ q)

→ (p↔ q).

�
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10 S. Iwata et al.

3.3 Applications of Smoryński’s argument

We have shown that UFP and the substitution principle hold for extensions of
IL−(J4+) (Theorem 4 and Proposition 3). Then, by applying Smoryński’s argument
[13], we prove that for any appropriate extension of IL−(J4+), CIP implies FPP.

Lemma 2 Let L be any extension of IL−(J4+) that is closed under substituting a
formula for a propositional variable. If L has CIP, then L also has FPP.

Proof Suppose L ⊇ IL−(J4+) and L has CIP. Let A(p) be any formula modalized in
p. Then, by Theorem 4,

L � �(p↔ A(p)) ∧�(q ↔ A(q)) → (p↔ q).

We have

L � �(p↔ A(p)) ∧ p→ (�(q ↔ A(q)) → q).

Since L has CIP, there exists a formula F such that v(F) ⊆ v(A)\{p}, L � �(p ↔
A(p)) ∧ p → F and L � F → (�(q ↔ A(q)) → q). Since q /∈ v(F), we have
L � F → (�(p↔ A(p)) → p) by substituting p for q. Then,

L � �(p↔ A(p)) → (F ↔ p).

By substituting A(F) for p, we get

L � �(A(F) ↔ A(A(F))) → (F ↔ A(F)). (1)

Then

L � �(A(F) ↔ A(A(F))) → �(F ↔ A(F)).

Since A(p) is modalized in p, by Proposition 3.2,

L � �(A(F) ↔ A(A(F))) → (A(F) ↔ A(A(F))).

Then, by applying the axiom scheme L3, we obtain L � A(F) ↔ A(A(F)). From
this with (1), we conclude L � F ↔ A(F). Therefore, F is a fixed point of A(p) in
L . �

Also, we have shown that �UFP and the substitution principle with respect to left-
modalized formulas hold for extensions of IL− (Theorem 5 and Proposition 6). Thus,
our proof of Lemma 2 also works for proving the following lemma.

Lemma 3 Let L be any extension of IL− that is closed under substituting a formula
for a propositional variable. If L has CIP, then L also has �FPP.
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The fixed point and the Craig interpolation… 11

4 The Craig interpolation property

In this section, we prove the following theorem.

Theorem 6 (CIP for IL−(J2+, J5)) The logic IL−(J2+, J5) has CIP.

Our proof of Theorem 6 is based on a semantical proof of CIP for IL due to Areces,
Hoogland, and de Jongh [1].

4.1 Preparations for our proof of Theorem 6

In this subsection, we prepare several definitions and prove some lemmas that are
used in our proof of Theorem 6. Only in this section, we write � A instead
of IL−(J2+, J5) � A if there is no confusion. Notice that by Proposition 1,
� J2 ∧ J4 ∧ J4+.

For a formula A, we define the formula ∼A as follows:

∼A :≡
{
B if A ≡ ¬B for some formula B,

¬A otherwise.

For a set X of formulas, by LX we denote the set of all formulas built up from ⊥
and propositional variables occurring in formulas in X . We simply write LA instead
of L{A}. For a finite set X of formulas, let

∧
X be a conjunction of all elements of

X . For the sake of simplicity, only in this section, � ∧
X → A will be written as

� X → A.
For a set Φ of formulas, we define

Φ� := {A : there exists a formula B such that A � B ∈ Φ or B � A ∈ Φ}.

Definition 11 A set Φ of formulas is said to be adequate if it satisfies the following
conditions:

1. Φ is closed under taking subformulas and the ∼-operation;
2. ⊥ ∈ Φ�;
3. If A, B ∈ Φ�, then A � B ∈ Φ;
4. If A ∈ Φ�, then �∼A ∈ Φ.

Our notion of adequate sets is essentially the same as that introduced by de Jongh
and Veltman [7].

Note that for any finite set X of formulas, there exists the smallest finite adequate
set Φ containing X . We denote this set by ΦX .

Definition 12 1. A pair (Γ1, Γ2) of finite sets of formulas is said to be separable if
for some formula I ∈ LΓ1 ∩ LΓ2 , � Γ1 → I , and � Γ2 → ¬I . A pair is said to
be inseparable if it is not separable.

2. A pair (Γ1, Γ2) of finite sets of formulas is said to be complete if it is inseparable
and
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12 S. Iwata et al.

– For each F ∈ ΦΓ1 , either F ∈ Γ1 or ∼F ∈ Γ1;
– For each F ∈ ΦΓ2 , either F ∈ Γ2 or ∼F ∈ Γ2.

We say a finite set X of formulas is consistent if � X → ⊥. If a pair (Γ1, Γ2) is
inseparable, then it can be shown that both of Γ1 and Γ2 are consistent.

In the rest of this subsection, we fix some sets X and Y of formulas. Put Φ1 := ΦX

(resp. Φ2 := ΦY ) and L1 := LX (resp. L2 := LY ). Let X ′ ⊆ Φ1 and Y ′ ⊆ Φ2. It is
easily proved that if (X ′,Y ′) is inseparable, then for any formula A ∈ Φ1, at least one
of (X ′ ∪ {A},Y ′) and (X ′ ∪ {∼A},Y ′) is inseparable. Also, a similar statement holds
for Φ2 and Y ′. Then, we obtain the following proposition.

Proposition 7 If (X ,Y ) is inseparable, then there exists some complete pair Γ ′ =
(Γ1, Γ2) such that X ⊆ Γ1 ⊆ Φ1 and Y ⊆ Γ2 ⊆ Φ2.

Let K (Φ1, Φ2) be the set of all complete pairs (Γ1, Γ2) satisfying Γ1 ⊆ Φ1 and
Γ2 ⊆ Φ2. Note that the set K (Φ1, Φ2) is finite. For each Γ ∈ K (Φ1, Φ2), let Γ1 and
Γ2 be the first and the second components of Γ , respectively.

Definition 13 We define a binary relation ≺ on K (Φ1, Φ2) as follows: For Γ ,Δ ∈
K (Φ1, Φ2),

Γ ≺ Δ :⇔ For i = {1, 2}, if �A ∈ Γi , then �A, A ∈ Δi , and
there exists some �B such that �B ∈ Δ1 ∪Δ2 and �B /∈ Γ1 ∪ Γ2.

Then,≺ is a transitive and conversely well-founded binary relation on K (Φ1, Φ2).

Definition 14 Let Γ ,Δ ∈ K (Φ1, Φ2) and A ∈ Φ1
� ∪ Φ2

�. We say that Δ is an
A-critical successor of Γ (write Γ ≺A Δ) if the following conditions are met:

1. Γ ≺ Δ;
2. If A ∈ Φ1

�, then

Γ A
1 :={�∼B,∼B : B � A ∈ Γ1} ⊆ Δ1;

Γ A
2 :={�∼C,∼C : C ∈ Φ2

� and for some I ∈ L1 ∩ L2,

� Γ1 → (I ∧ ¬A) � A & � Γ2 → C � I } ⊆ Δ2.

3. If A ∈ Φ2
�, then

Γ A
1 :={�∼B,∼B : B ∈ Φ1

� and for some I ∈ L1 ∩ L2,

� Γ1 → B � I & � Γ2 → (I ∧ ¬A) � A} ⊆ Δ1;
Γ A
2 :={�∼C,∼C : C � A ∈ Γ2} ⊆ Δ2.

Thenotion of A-critical successors is originally introduced byde Jongh andVeltman
[7]. Our definition is based on a modification due to Areces, Hoogland, and de Jongh
[1].

From the following claim, Definition 14 makes sense.
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The fixed point and the Craig interpolation… 13

Proposition 8 If A ∈ Φ1
� ∩Φ2

�, then the sets Γ A
1 in clauses 2 and 3 of Definition 14

coincide. This is also the case for Γ A
2 .

Proof We prove only for Γ A
1 . It suffices to show that for any formula B, the following

are equivalent:

1. B � A ∈ Γ1.
2. B ∈ Φ1

� and for some I ∈ L1 ∩L2, � Γ1 → B � I , and � Γ2 → (I ∧¬A) � A.

(1 ⇒ 2): Suppose B � A ∈ Γ1, then B ∈ Φ1
�. By Proposition 1.1, we have

IL− � (A ∧ ¬A) � A because IL− � �¬(A ∧ ¬A). Since A ∈ L1 ∩ L2, the clause
2 holds by letting I ≡ A.

(2 ⇒ 1): Assume that clause 2 holds. Then, A � B ∈ Φ1 because A, B ∈ Φ1
�.

Suppose, towards a contradiction, that ¬(B � A) ∈ Γ1. By Proposition 1.6, � (B �
I ) ∧ ((I ∧ ¬A) � A) → B � A. Then, we obtain � Γ1 → ¬((I ∧ ¬A) � A).
This contradicts the inseparability of Γ because (I ∧ ¬A) � A ∈ L1 ∩ L2. Hence,
¬(B � A) /∈ Γ1. Since Γ is complete, B � A ∈ Γ1. �
Lemma 4 For Γ ,Δ ∈ K (Φ1, Φ2), if Γ ≺ Δ, then Γ ≺⊥ Δ.

Proof Notice that⊥ ∈ Φ1
�∩Φ2

�. By Proposition 8, it suffices to show that ifC �⊥ ∈
Γ1 (resp. Γ2), then �∼C,∼C ∈ Δ1 (resp. Δ2). Suppose C � ⊥ ∈ Γ1. Then, by
(J6), � Γ1 → �∼C . Note that �∼C ∈ Φ1, and hence �∼C ∈ Γ1. By Γ ≺ Δ,
�∼C,∼C ∈ Δ1. The case C �⊥ ∈ Γ2 is proved similarly. Therefore, Γ ≺⊥ Δ. �
Lemma 5 For Γ ,Δ,Θ ∈ K (Φ1, Φ2) and A ∈ Φ1

� ∪ Φ2
�, if Γ ≺A Δ and Δ ≺ Θ ,

then Γ ≺A Θ .

Proof We only prove the case A ∈ Φ1
�. Let Γ A

1 and Γ A
2 be the sets as in Definition 14.

If �∼B,∼B ∈ Γ A
1 , then �∼B ∈ Δ1 because Γ ≺A Δ. Thus, �∼B,∼B ∈ Θ1

becauseΔ ≺ Θ . Similarly, if�∼C,∼C ∈ Γ A
2 , thenΘ2 contains�∼C and∼C . This

means Γ ≺A Θ . �
In order to prove the Truth Lemma (Lemma 4.2), we show the following two

lemmas.

Lemma 6 Let Γ ∈ K (Φ1, Φ2). If ¬(G � F) ∈ Γ1 ∪ Γ2, then there exists a pair
Δ ∈ K (Φ1, Φ2) such that:

1. Γ ≺F Δ;
2. G,�∼F ∈ Δ1 ∪Δ2.

Proof Suppose ¬(G � F) ∈ Γ1. Let

X ′ :=� Γ1 ∪ {G,�∼G,�∼F} ∪ {�∼A,∼A : A � F ∈ Γ1};
Y ′ :=� Γ2 ∪ {�∼B,∼B : B ∈ Φ2

� and for some I ∈ L1 ∩ L2,

� Γ1 → (I ∧ ¬F) � F & � Γ2 → B � I },

where �Γi (i = 1, 2) denotes the set {�C,C : �C ∈ Γi }.
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14 S. Iwata et al.

We claim �∼G /∈ Γ1 ∪ Γ2. Assume �¬G ∈ Γ1. Then, � Γ1 → �¬G. By
Proposition 1.1, � �¬G → G � F . Hence, � Γ1 → G � F . This implies that Γ1 is
inconsistent, a contradiction. Thus, �∼G /∈ Γ1. Moreover, if �∼G ∈ Γ2, then ♦G
separates (Γ1, Γ2) because ♦G ∈ L1 ∩ L2. This contradicts the inseparability of Γ .
Hence, �∼G /∈ Γ2.

We show that (X ′,Y ′) is inseparable. Suppose, for a contradiction, that J ∈ L1∩L2
separates (X ′,Y ′). From � Y ′ → ¬J ,

� �Γ2 →
⎛
⎝J →

∨
j∈κ

(♦Bj ∨ Bj )

⎞
⎠ ,

where κ is an appropriate index set for Y ′ such that for each j ∈ κ , Bj ∈ Φ2
� and

there exists a formula I j ∈ L1 ∩ L2 such that

� Γ1 → (I j ∧ ¬F) � F, and (2)

� Γ2 → Bj � I j . (3)

Then

� Γ2 → �

⎛
⎝J →

∨
j∈κ

(♦Bj ∨ Bj )

⎞
⎠ .

By Proposition 1.2,

� Γ2 →
⎛
⎝

⎛
⎝∨

j∈κ

(♦Bj ∨ Bj )

⎞
⎠ �

∨
j∈κ

I j → J �
∨
j∈κ

I j

⎞
⎠ .

By (3), J2, J3, and J5, we have � Γ2 →
(∨

j∈κ (♦Bj ∨ Bj )
)

�
∨

j∈κ I j . Hence

� Γ2 → J �
∨
j∈κ

I j . (4)

On the other hand, from � X ′ → J ,

� �Γ1 →
⎛
⎝¬J ∧ G ∧�¬G →

∨
A�F∈Γ1

(♦A ∨ A) ∨ ♦F

⎞
⎠ ,

(By Proposition 1.2)

� Γ1 → �

⎛
⎝¬J ∧ G ∧�¬G →

∨
A�F∈Γ1

(♦A ∨ A) ∨ ♦F

⎞
⎠ ,
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The fixed point and the Craig interpolation… 15

� Γ1 →
⎛
⎝

⎛
⎝ ∨

A�F∈Γ1

(♦A ∨ A) ∨ ♦F

⎞
⎠ � F → (¬J ∧ G ∧�¬G) � F

⎞
⎠ .

By J2, J3, and J5, we have � Γ1 →
(∨

A�F∈Γ1
(♦A ∨ A) ∨ ♦F

)
� F . Hence,

we obtain � Γ1 → (¬J ∧ G ∧ �¬G) � F . By Proposition 1.3, � Γ1 →
(J � F → (G ∧�¬G) � F). By Lemma 1.1, � Γ1 → (J � F → G � F). Since
� Γ1 → ¬(G � F), we get � Γ1 → ¬(J � F). From (2) and J3, we obtain � Γ1 →(∨

j∈κ I j ∧ ¬F
)

� F . By Proposition 1.6, � Γ1 →
(
J �

∨
j∈κ I j → J � F

)
.

Hence,

� Γ1 → ¬
⎛
⎝J �

∨
j∈κ

I j

⎞
⎠ .

From this and (4),we conclude that¬(J�
∨

j∈κ I j ) separates (Γ1, Γ2), a contradiction.
Therefore, (X ′,Y ′) is inseparable.

Now let Δ ∈ K (Φ1, Φ2) be a complete pair extending (X ′,Y ′). We have Γ ≺F Δ

and G,�∼F ∈ Δ1. The other case where ¬(G � F) ∈ Γ2 is proved in a similar way.
�

Lemma 7 Let Γ ,Δ ∈ K (Φ1, Φ2). Suppose that Γ ≺A Δ, G � F ∈ Γ1 ∪ Γ2 and
G ∈ Δ1 ∪Δ2. Then, there exists a pair Θ ∈ K (Φ1, Φ2) such that:

– Γ ≺A Θ;
– F ∈ Θ1 ∪Θ2;
– �∼A,∼A ∈ Θ1 ∪Θ2.

Proof Suppose G � F ∈ Γ1. From G ∈ Δ1 ∪Δ2 and G ∈ Φ1, we obtain G ∈ Δ1 by
the inseparability of Δ. We distinguish the following two cases:

(Case 1): Assume A ∈ Φ1
�. Then, G � A ∈ Φ1. If G � A ∈ Γ1, then ∼G ∈ Δ1

because Γ ≺A Δ. This contradicts the consistency of Δ1. Therefore, G � A /∈ Γ1.
Since Γ is complete, we have ¬(G � A) ∈ Γ1.

Let:

X ′ :=� Γ1 ∪ {�∼F, F,�∼A,∼A} ∪ {�∼B,∼B : B � A ∈ Γ1};
Y ′ :=� Γ2 ∪ {�∼C,∼C : C ∈ Φ2

� and for some I ∈ L1 ∩ L2,

� Γ1 → (I ∧ ¬A) � A & � Γ2 → C � I }.

We show �∼F /∈ Γ1 ∪ Γ2. If �∼G ∈ Γ1, then ∼G ∈ Δ1 because Γ ≺ Δ. This
contradicts the consistency of Δ1. Hence, �∼G /∈ Γ1. Since � Γ1 → (G� F)∧♦G,
we have � Γ1 → ♦F by J4. Therefore, �∼F /∈ Γ1. Moreover, if �∼F ∈ Γ2, then
♦F would separate (Γ1, Γ2), a contradiction. Thus, �∼F /∈ Γ2.

We show that (X ′,Y ′) is inseparable. Suppose, for a contradiction, that for some
J ∈ L1 ∩ L2, � X ′ → J and � Y ′ → ¬J .
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16 S. Iwata et al.

From � Y ′ → ¬J ,

� �Γ2 →
⎛
⎝J →

∨
j∈κ

(♦C j ∨ C j )

⎞
⎠ ,

where κ is an appropriate index set such that for each j ∈ κ ,C j ∈ Φ2
� and there exists

a formula I j ∈ L1 ∩ L2 such that � Γ1 → (I j ∧ ¬A) � A and � Γ2 → C j � I j .
Then,

� Γ2 → �

⎛
⎝J →

∨
j∈κ

(♦C j ∨ C j )

⎞
⎠ .

Since � Γ2 →
(∨

j∈κ (♦C j ∨ C j )
)

�
∨

I j , by Proposition 1.2, we obtain

� Γ2 → J �
∨

I j . (5)

On the other hand, from � X ′ → J ,

� �Γ1 →
⎛
⎝¬J ∧�¬F ∧ F ∧ ¬A→ ♦A ∨

∨
B�A∈Γ1

(♦B ∨ B)

⎞
⎠ ,

� Γ1 → �

⎛
⎝¬J ∧�¬F ∧ F ∧ ¬A→ ♦A ∨

∨
B�A∈Γ1

(♦B ∨ B)

⎞
⎠ .

Then, by Proposition 1.2, we obtain � Γ1 → (¬J ∧ �¬F ∧ F ∧ ¬A) � A
because � Γ1 →

(
♦A ∨∨

B�A∈Γ1
(♦B ∨ B)

)
� A. By Proposition 1.3, � Γ1 →

(J � A→ (�¬F ∧ F ∧ ¬A) � A). By Lemma 1.2, we have � Γ1 → G � (�¬F ∧
F). Then, by Proposition 1.6, we obtain � Γ1 → ((�¬F ∧ F ∧¬A)� A→ G� A).
Thus, � Γ1 → (J � A→ G � A). Since¬(G � A) ∈ Γ1, we get � Γ1 → ¬(J � A).

Since � Γ1 →
(∨

j∈κ I j ∧ ¬A
)

� A, we have � Γ1 →
(
J �

∨
j∈κ I j → J � A

)
by Proposition 1.6. Therefore,

� Γ1 → ¬
⎛
⎝J �

∨
j∈κ

I j

⎞
⎠ .

From this and (5), we conclude that ¬(J �
∨

j∈κ I j ) separates (Γ1, Γ2), a contra-
diction.

(Case 2): Assume A ∈ Φ2
�. Let:

X ′ :=� Γ1 ∪ {�∼F, F}
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The fixed point and the Craig interpolation… 17

∪ {�∼B,∼B : B ∈ Φ1
� and for some I ∈ L1 ∩ L2,

� Γ1 → B � I & � Γ2 → (I ∧ ¬A) � A};
Y ′ :=� Γ2 ∪ {�∼A,∼A} ∪ {�∼C,∼C : C � A ∈ Γ2}.

As inCase 1, it can be shown�∼F /∈ Γ1∪Γ2.We prove that (X ′,Y ′) is inseparable.
Suppose, for a contradiction, that for some J ∈ L1∩L2, � X ′ → J and � Y ′ → ¬J .
From � X ′ → J ,

� �Γ1 →
⎛
⎝�¬F ∧ F ∧ ¬J →

∨
j∈κ

(♦Bj ∨ Bj )

⎞
⎠ ,

where κ is an appropriate index set such that for each j ∈ κ , Bj ∈ Φ1
� and there exists

a formula I j ∈ L1 ∩ L2 such that � Γ1 → Bj � I j and � Γ2 → (I j ∧ ¬A) � A.
Then,

� Γ1 → �

⎛
⎝�¬F ∧ F ∧ ¬J →

∨
j∈κ

(♦Bj ∨ Bj )

⎞
⎠ .

Since � Γ1 →
(∨

j∈κ (♦Bj ∨ Bj )
)

�
∨

I j , we have

� Γ1 → (�¬F ∧ F ∧ ¬J ) �
∨
j∈κ

I j

by Proposition 1.2. Then,

� Γ1 →
⎛
⎝�¬F ∧ F ∧

∧
j∈κ

¬I j ∧ ¬J

⎞
⎠ �

⎛
⎝∨

j∈κ

I j ∨ J

⎞
⎠ ,

� Γ1 →
⎛
⎝�¬F ∧ F ∧ ¬

⎛
⎝∨

j∈κ

I j ∨ J

⎞
⎠

⎞
⎠ �

⎛
⎝∨

j∈κ

I j ∨ J

⎞
⎠ .

Since G � F ∈ Γ1, by Lemma 1.2, we obtain � Γ1 → G � (�¬F ∧ F). Therefore,
by Proposition 1.6, we obtain

� Γ1 → G �

⎛
⎝∨

j∈κ

I j ∨ J

⎞
⎠ . (6)
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On the other hand, from � Y ′ → ¬J ,

� �Γ2 →
⎛
⎝J ∧ ¬A→ ♦A ∨

∨
C�A∈Γ2

(♦C ∨ C)

⎞
⎠ ,

� Γ2 → �

⎛
⎝J ∧ ¬A→ ♦A ∨

∨
C�A∈Γ2

(♦C ∨ C)

⎞
⎠ .

Since � Γ2 →
(
♦A ∨∨

C�A∈Γ2
(♦C ∨ C)

)
� A, we obtain � Γ2 → (J ∧¬A) � A

by Proposition 1.2. Since � Γ2 →
(∨

j∈κ I j ∧ ¬A
)

� A, we have

� Γ2 →
⎛
⎝

⎛
⎝∨

j∈κ

I j ∨ J

⎞
⎠ ∧ ¬A

⎞
⎠ � A.

From this and (6), we conclude ∼G ∈ Δ1 because Γ ≺A Δ. This contradicts the
consistency of Δ1.

In both cases, (X ′,Y ′) is inseparable, and hence we can obtain a complete pair
Θ ∈ K (Φ1, Φ2) which extends (X ′,Y ′) and satisfies the desired conditions. �

4.2 Proof of Theorem 6

We are ready to prove Theorem 6.

Proof of Theorem 6 Suppose that the implication A0 → B0 has no interpolant, and
we would like to show � A0 → B0. It follows that ({A0}, {¬B0}) is inseparable.
Let Φ1 (resp. Φ2) be the smallest finite adequate set containing A0 (resp. ¬B0),
and put K := K (Φ1, Φ2). There exists Γ ′ ∈ K (Φ1, Φ2) such that A0 ∈ Γ ′

1 and
¬B0 ∈ Γ ′

2. For Γ ∈ K , we define inductively the rank of Γ (write rank(Γ )) as
rank(Γ ) := sup{rank(Δ)+1 : Γ ≺ Δ}, where sup ∅ = 0. This notion is well-defined
because ≺ is conversely well-founded.

For finite sequences τ and σ of formulas, let τ ⊆ σ mean that σ is an end-extension
of τ . Let τ ∗ 〈A〉 be the sequence obtained from τ by adding A as the last element.

We define an IL−-model M = 〈W , R, {Sw}w∈W ,�〉 as follows:

W := {〈Γ , τ 〉 : Γ ∈ K and τ is a finite sequence of elements of

Φ1
� ∪Φ2

� with rank(Γ )+ |τ | ≤ rank(Γ ′)};
〈Γ , τ 〉R〈Δ, σ 〉 :⇔ Γ ≺ Δ and τ � σ ;
〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉

:⇔
⎧⎨
⎩
〈Γ , τ 〉R〈Δ, σ 〉, 〈Γ , τ 〉R〈Θ, ρ〉 and
if τ ∗ 〈A〉 ⊆ σ, Γ ≺A Δ and �∼A ∈ Δ1 ∪Δ2,

then τ ∗ 〈A〉 ⊆ ρ, Γ ≺A Θ and �∼A,∼A ∈ Θ1 ∪Θ2;
〈Γ , τ 〉 � p : ⇐⇒ p ∈ Γ1 ∪ Γ2.
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The fixed point and the Craig interpolation… 19

Claim IL−(J2+, J5) is valid in the frame of M .

Proof It is clear that R is transitive and conversely well-founded.

– Suppose 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉. Then, we have 〈Γ , τ 〉R〈Θ, ρ〉 by the definition of
S〈Γ ,τ 〉. Therefore, J4+ is valid in the frame of M .

– Suppose 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉S〈Γ ,τ 〉〈Λ,π〉. Then, we have 〈Γ , τ 〉R〈Δ, σ 〉 and
〈Γ , τ 〉R〈Λ,π〉.
Assume τ ∗ 〈A〉 ⊆ σ , Γ ≺A Δ, and �∼A ∈ Δ1 ∪ Δ2. By 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉,
we obtain τ ∗ 〈A〉 ⊆ ρ, Γ ≺A Θ , and �∼A ∈ Θ1 ∪Θ2. By 〈Θ, ρ〉S〈Γ ,τ 〉〈Λ,π〉,
we conclude τ ∗ 〈A〉 ⊆ π , Γ ≺A Λ, and �∼A,∼A ∈ Λ1 ∪Λ2.
Thus, 〈Δ, σ 〉S〈Γ ,τ 〉〈Λ,π〉. We obtain that J2+ is valid in the frame of M .

– Suppose 〈Γ , τ 〉R〈Δ, σ 〉R〈Θ, ρ〉. Then, 〈Γ , τ 〉R〈Δ, σ 〉, andhence 〈Γ , τ 〉R〈Θ, ρ〉
by the transitivity of R.
Assume τ ∗ 〈A〉 ⊆ σ , Γ ≺A Δ, and �∼A ∈ Δ1 ∪ Δ2. Since σ ⊆ ρ, we have
τ ∗ 〈A〉 ⊆ ρ. Since Δ ≺ Θ , we have �∼A,∼A ∈ Θ1 ∪Θ2. Also, by Lemma 5,
Γ ≺A Θ .
Thus, 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉. We conclude that J5 is valid in the frame of M . �

Claim (The Truth Lemma) For B ∈ Φ1 ∪ Φ2 and 〈Γ , τ 〉 ∈ W , the following are
equivalent:

1. B ∈ Γ1 ∪ Γ2.
2. 〈Γ , τ 〉 � B.

Proof The lemma is proved by induction on the construction of B. We only prove for
B ≡ G � F .

(1 ⇒ 2): Assume G � F ∈ Γ1 ∪ Γ2. Let 〈Δ, σ 〉 ∈ W be any element such that
〈Γ , τ 〉R〈Δ, σ 〉 and 〈Δ, σ 〉 � G. By the induction hypothesis, G ∈ Δ1 ∪ Δ2. We
distinguish the following two cases:

(Case 1): Assume that τ ∗ 〈A〉 ⊆ σ , Γ ≺A Δ, and �∼A ∈ Δ1 ∪Δ2. By Lemma 7,
there exists a pairΘ ∈ K such thatΓ ≺A Θ , F ∈ Θ1∪Θ2, and�∼A,∼A ∈ Θ1∪Θ2.

Take ρ := τ ∗ 〈A〉. By Γ ≺ Θ , rank(Θ)+ 1 ≤ rank(Γ ). We have

rank(Θ)+ |ρ| = rank(Θ)+ 1+ |τ | ≤ rank(Γ )+ |τ | ≤ rank(Γ ′).

It follows that 〈Θ, ρ〉 ∈ W , andwe have 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉. By the induction hypoth-
esis, 〈Θ, ρ〉 � F . Therefore, 〈Γ , τ 〉 � G � F .

(Case 2): Otherwise, by Lemma 4, we have Γ ≺⊥ Δ. By Lemma 7, there exists a
pair Θ ∈ K such that Γ ≺⊥ Θ and F ∈ Θ1 ∪Θ2.

Take ρ := τ ∗ 〈⊥〉. Then, we have 〈Θ, ρ〉 ∈ W by a similar argument as in
Case 1. By the definition of S〈Γ ,τ 〉 and induction hypothesis, 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉 and
〈Θ, ρ〉 � F . Therefore, 〈Γ , τ 〉 � G � F .

(2 ⇒ 1): Assume G � F /∈ Γ1 ∪ Γ2. Then, ¬(G � F) ∈ Γ1 ∪ Γ2 because Γ is
complete. By Lemma 6, there exists a pair Δ ∈ K such that Γ ≺F Δ and G,�∼F ∈
Δ1 ∪ Δ2. Let σ := τ ∗ 〈F〉. We have 〈Δ, σ 〉 ∈ W . By the induction hypothesis,
〈Δ, σ 〉 � G. It suffices to show that for any 〈Θ, ρ〉 ∈ W , if 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉,
then 〈Θ, ρ〉 � F . Suppose 〈Δ, σ 〉S〈Γ ,τ 〉〈Θ, ρ〉. Since τ ∗ 〈F〉 ⊆ σ , Γ ≺F Δ, and
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�∼F ∈ Δ1∪Δ2, we have∼F ∈ Θ1∪Θ2 (and hence F /∈ Θ1∪Θ2). By the induction
hypothesis, 〈Θ, ρ〉 � F . �

Let ε be the empty sequence, then 〈Γ ′, ε〉 ∈ W because rank(Γ ′)+|ε| ≤ rank(Γ ′).
By the Truth Lemma (Lemma 4.2), 〈Γ ′, ε〉 � A0 ∧ ¬B0, and therefore A0 → B0 is
not valid in M . It follows that IL−(J2+, J5) does not prove A0 → B0. �

4.3 Consequences of Theorem 6

In this subsection, we prove some consequences of Theorem 6 on interpolation proper-
ties. Firstly, we prove that IL−(J2+, J5) has a version of the�-interpolation property.
Secondly, we notice that CIP for IL easily follows from Theorem 6.

Before them, we show the so-called generated submodel lemma. Let M =
〈W , R, {Sw}w∈W ,�〉 be any IL−-model such that J4+ is valid in the frame of M .
For each r ∈ W , we define an IL−-model M∗ = 〈W ∗, R∗, {S∗w}w∈W ∗ ,�∗〉 as fol-
lows:

– W ∗ := R[r ] ∪ {r};
– x R∗y : ⇐⇒ x Ry;
– yS∗x z : ⇐⇒ ySx z;
– x �∗ p : ⇐⇒ x � p.

We call M∗ the submodel of M generated by r . It is easy to show that if J1 is valid in
the frame of M , then it is also valid in the frame of M∗. This is also the case for J2+
and J5. Also, the following lemma is easily obtained.

Lemma 8 (The Generated Submodel Lemma) Suppose that J4+ is valid in the
frame of an IL−-model M = 〈W , R, {Sw}w∈W ,�〉. For any r ∈ W, let M∗ =
〈W ∗, R∗, {S∗w}w∈W ∗ ,�∗〉 be the submodel of M generated by r . Then, for any x ∈ W ∗
and formula A, x � A if and only if x �∗ A.

Proof This is proved by induction on the construction of A. We only prove the case
A ≡ (B � C).

(⇒): Suppose x � B�C . Let y ∈ W ∗ be any element such that x R∗y and y �∗ B.
Then, x Ry, and by the induction hypothesis, y � B. Hence, there exists z ∈ W such
that ySx z and z � C . Since J4+ is valid in the frame of M , x Rz. Since r Rx , we have
r Rz. Thus, z ∈ W ∗. It follows yS∗x z. By the induction hypothesis, z �∗ C . Therefore,
x �∗ B � C .

(⇐): Suppose x �∗ B � C . Let y ∈ W be any element with x Ry and y � B.
Since x ∈ W ∗, we have y ∈ W ∗, and hence x R∗y. By the induction hypothesis,
y �∗ B. Then, for some z ∈ W ∗, yS∗x z and z �∗ C . We have ySx z. By the induction
hypothesis, z � C . Thus, we conclude x � B � C . �
Proposition 9 For any formulas A and B, the following are equivalent:

1. � A � B.
2. � A→ ♦B.
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Proof (1⇒ 2): Suppose � A→ ♦B. Then, by Theorem 1, there exist an IL−-model
M = 〈W , R, {Sw}w∈W ,�〉 and r ∈ W such that IL−(J2+, J5) is valid in the frame
of M and r � A ∧�¬B. By the Generated Submodel Lemma, we may assume that
r is the root of M , that is, for all w ∈ W\{r}, r Rw.

We define a new IL−-model M ′ = 〈W ′, R′, {S′w}w∈W ′ ,�′〉 as follows:
– W ′ := W ∪ {r0}, where r0 is a new element;

– x R′y : ⇐⇒
{
x Ry if x �= r0,

y ∈ W if x = r0;

– yS′x z : ⇐⇒
{
ySx z if x �= r0,

yRz if x = r0;
– x �′ p : ⇐⇒ x �= r0 and x � p.

Then, IL−(J2+, J5) is also valid in the frame of M ′. Also, it is easily shown that for
any x ∈ W and any formula C , x � C if and only if x �′ C .

Then, r �′ A∧�¬B. Let x ∈ W ′ be any element such that r S′r0x . Then, r Rx , and
hence r R′x . We have x �

′ B. Therefore, we obtain r0 �
′ A� B. It follows � A� B.

(2⇒ 1): Suppose � A→ ♦B, then � ♦B � B → A � B by R2. Thus, � A � B.
�

Areces, Hoogland, and de Jongh [1] proved that IL has the�-interpolation property.
Namely, for every formulas A and B with IL � A � B, there exists a formula C such
that v(C) ⊆ v(A)∩v(B), IL � A�C , and IL � C � B. We prove that IL−(J2+, J5)
has a version of the �-interpolation property.

Corollary 1 (A version of the �-interpolation property) Let A and B be any formulas.
If � A � B, then there exists a formula C such that v(C) ⊆ v(A) ∩ v(B), � A→ C,
and � C � B.

Proof Suppose � A � B. Then, by Proposition 9, � A → ♦B. By Theorem 6, there
exists a formula C such that v(C) ⊆ v(A) ∩ v(B), � A → C , and � C → ♦B. By
Proposition 9 again, we obtain � C � B. �
Problem 1 Does the logic IL−(J2+, J5) have the original version of the �-
interpolation property?

For each formula A, let Sub(A) be the set of all subformulas of A. Also, let
PSub(A) := Sub(A) \ {A}. We prove that IL is embeddable into IL−(J2+, J5) in
some sense.

Proposition 10 For any formula A, the following are equivalent:

1. IL � A.
2. A is valid in all finite IL−-frames in which all axioms of IL are valid.
3. � �

∧{B � B : B ∈ PSub(A)} → A.

Proof (1⇒ 2) is obvious.
(3⇒ 1) follows from Proposition 1.7.
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(2⇒ 3): Suppose L � �
∧{B � B : B ∈ PSub(A)} → A. Then, by Theorem 1,

there exist a finite IL−-model M = 〈W , R, {Sw}w∈W ,�〉 and r ∈ W such that
IL−(J2+, J5) is valid in the frame of M and r � �

∧{B � B : B ∈ PSub(A)} ∧¬A.
By the Generated Submodel Lemma, we may assume that r is the root of M .

We define an IL−-model M ′ = 〈W ′, R′, {S′w}w∈W ′ ,�′〉 as follows:
– W ′ := W ;
– x R′y : ⇐⇒ x Ry;
– yS′x z : ⇐⇒ ySx z or (x Ry and z = y);
– x �′ p : ⇐⇒ x � p.

Claim IL is valid in the frame of M ′.

Proof By Proposition 1.8, it suffices to show that J1, J2+, and J5 are valid in the
frame of M ′.

J1: Suppose x Ry. Then, yS′x y by the definition of S′x . Thus, J1 is valid.
J4+: Suppose yS′x z. Then, ySx z or (x Ry and y = z). If ySx z, then x Rz because

J4+ is valid in the frame of M . If x Ry and y = z, then x Rz. Hence, in either case,
we have x Rz. Therefore, J4+ is valid.

J2+: Suppose yS′x z and zS′xu. We distinguish the following four cases.

– (Case 1): ySx z and zSxu. Since J2+ is valid in the frame of M , ySxu.
– (Case 2): ySx z, x Rz and z = u. Then, ySxu.
– (Case 3): x Ry, y = z and zSxu. Then, ySxu.
– (Case 4): x Ry, y = z, x Rz and z = u. Then, x Ry and y = u.

In either case, we have yS′xu. Since J4+ is valid, we obtain that J2+ is valid in the
frame of M ′.

J5: Suppose x R′y and yR′z. Then, x Ry and yRz. Since J5 is valid in the frame of
M , ySx z. Then, yS′x z. Therefore, J5 is valid. �
Claim For any B ∈ Sub(A) and x ∈ W , x � B if and only if x �′ B.

Proof We prove the claim by induction on the construction of B. We only give a proof
of the case that B is C � D.

(⇒): Suppose x � C � D. Let y ∈ W be such that x Ry and y �′ C . By the
induction hypothesis, y � C . Then, there exists z ∈ W such that ySx z and z � D.
Then, yS′x z and by the induction hypothesis, z �′ D. Therefore, x �′ C � D.

(⇐): Suppose x �′ C � D. Let y ∈ W be such that x Ry and y � C . By the
induction hypothesis, y �′ C . Hence, there exists z ∈ W such that yS′x z and z �′ D.
By the induction hypothesis, z � D. By the definition of S′x , we have either ySx z or
(x Ry and y = z). If ySx z, then x � C � D. If x Ry and y = z, then x Ry and y � D.
Here either x = r or r Rw. Since D ∈ PSub(A), we obtain x � D � D because
r � �

∧{B � B : B ∈ Sub(A)}. Thus, for some z′ ∈ W , ySx z′ and z′ � D. We
conclude x � C � D. �

Since r � A, we obtain r �
′ A by the claim. Thus, A is not valid in some finite

IL−-frame in which all axioms of IL are valid. �
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Proof of Theorem 3 Suppose IL � A→ B. Then, by Proposition 10,

� �
∧
{C � C : C ∈ PSub(A→ B)} → (A→ B).

Since PSub(A→ B) = Sub(A) ∪ Sub(B), we have

� �
∧
{C � C : C ∈ Sub(A)} ∧ A→

(
�

∧
{C � C : C ∈ Sub(B)} → B

)
.

By Theorem 6, there exists a formula D such that v(D) ⊆ v(A) ∩ v(B),

� �
∧
{C � C : C ∈ Sub(A)} ∧ A→ D

and

� D →
(
�

∧
{C � C : C ∈ Sub(B)} → B

)
.

Then, by Proposition 1.7, we obtain IL � A→ D and IL � D → B. �

5 The fixed point property

In this section, we investigate FPP and �FPP. First, we study FPP for the logic
IL−(J2+, J5). Then, we prove that IL−(J4, J5) has �FPP.

5.1 FPP for IL−(J2+, J5)

From Theorem 6 and Lemma 2, we immediately obtain the following corollary.

Corollary 2 (FPP for IL−(J2+, J5)) IL−(J2+, J5) has FPP.

Moreover, we give a syntactical proof of FPP for IL−(J2+, J5) by modifying de
Jongh andVisser’s proof of FPP for IL. Since the Substitution Principle (Proposition 3)
holds for extensions of IL−(J4+), as usual, it suffices to prove that every formula of
the form A(p) � B(p) has a fixed point in IL−(J2+, J5). As a consequence, we
show that every formula A(p) which is modalized in p has the same fixed point in
IL−(J2+, J5) as given by de Jongh and Visser. That is,

Theorem 7 For any formulas A(p) and B(p), A(�) � B(�¬A(�)) is a fixed point
of A(p) � B(p) in IL−(J2+, J5).

Theorem 7 follows from the following five lemmas.

Lemma 9 Let L be any extension of IL−. For any formulas A and B, if L � �¬A→
(A↔ B), then L � (A ∧�¬A) ↔ (B ∧�¬B).
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Proof Suppose L � �¬A → (A ↔ B). Then, L � �¬A → (�¬A ↔ �¬B) and
hence L � �¬A→ �¬B. By combining this with our supposition, we obtain

L � (A ∧�¬A) → (B ∧�¬B).

On the other hand, L � ¬B → (�¬A → ¬A). Hence, by the axiom scheme L3,
L � �¬B → �¬A. Therefore, by our supposition,

L � (B ∧�¬B) → (A ∧�¬A).

�
Lemma 10 For any formulas A and C,

IL−(J4+) � (A(�) ∧�¬A(�)) ↔ (A(A(�) � C) ∧�¬A(A(�) � C)).

Proof ByProposition 1.1, IL− � �¬A(�) → A(�)�C . Therefore,we obtain IL− �
�¬A(�) → (� ↔ (A(�) �C)). Then, IL− � �¬A(�) → �(� ↔ (A(�) �C)).
Therefore, by Proposition 3.1, we obtain

IL−(J4+) � �¬A(�) → (A(�) ↔ A(A(�) � C)).

The lemma directly follows from this and Lemma 9. �
Lemma 11 For any formulas A, C, and D,

IL−(J2, J4+, J5) � (A(�) � D) ↔ (A(A(�) � C) � D).

Proof By Lemma 10 and R2, we obtain

IL−(J4+) � ((A(�) ∧�¬A(�)) � D) ↔ ((A(A(�) � C) ∧�¬A(A(�) � C)) � D).

Therefore, by Lemma 1.1, we obtain

IL−(J2, J4+, J5) � (A(�) � D) ↔ (A(A(�) � C) � D).

�
Lemma 12 For any formulas B and C, IL−(J4+) proves

(B(�¬C) ∧�¬B(�¬C)) ↔ (B(C � B(�¬C)) ∧�¬B(C � B(�¬C))).

Proof Since IL− � �¬B(�¬C) → �(⊥ ↔ B(�¬C)),

IL−(J4+) � �¬B(�¬C) → (C �⊥ ↔ C � B(�¬C)).
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Then, by J6, IL−(J4+) � �¬B(�¬C) → (�¬C ↔ C � B(�¬C)) and hence
IL−(J4+) � �¬B(�¬C) → �(�¬C ↔ C � B(�¬C)). Therefore, by Proposi-
tion 3.1, we obtain

IL−(J4+) � �¬B(�¬C) → (B(�¬C) ↔ B(C � B(�¬C))).

The lemma is a consequence of this with Lemma 9. �
Lemma 13 For any formulas B, C, and D,

IL−(J2+, J5) � (D � B(�¬C)) ↔ (D � B(C � B(�¬C))).

Proof By Lemma 12 and R1, IL−(J4+) proves

D � (B(�¬C) ∧�¬B(�¬C)) ↔ D � (B(C � B(�¬C)) ∧�¬B(C � B(�¬C))).

Therefore, by Lemma 1.2,

IL−(J2+, J5) � (D � B(�¬C)) ↔ (D � B(C � B(�¬C))).

�
Proof of Theorem 7 Let F ≡ A(�) � B(�¬A(�)). By Lemma 11 for C ≡ D ≡
B(�¬A(�)), we obtain

IL−(J2, J4+, J5) � F ↔ (A(F) � B(�¬A(�))).

Furthermore, by Lemma 13 for C ≡ A(�) and D ≡ F ,

IL−(J2+, J5) � (A(F) � B(�¬A(�))) ↔ (A(F) � B(F)).

We conclude

IL−(J2+, J5) � F ↔ A(F) � B(F).

�

5.2 �FPP for IL−(J4, J5)

From Lemma 11, we immediately obtain the following corollary.

Corollary 3 For any formulas A(p) and B, if p /∈ v(B), then A(�) � B is a fixed
point of A(p) � B in IL−(J2, J4+, J5).

Therefore, IL−(J2, J4+, J5) has �FPP.Moreover, we prove the following theorem.
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Theorem 8 (�FPP for IL−(J4, J5)) For any formulas A(p) and B, if the formula
A(p) � B is left-modalized in p, then A(�¬A(�)) � B is a fixed point of A(p) � B
in IL−(J4, J5). Therefore, IL−(J4, J5) has �FPP.

Before proving Theorem 8, we prepare two lemmas.

Lemma 14 For any formula A(p) such that �A(p) is left-modalized in p,

IL− � �A(�) ↔ �A(�A(�)).

Proof This is proved in a usual way by using Proposition 6. �
Lemma 15 Let A(p) and B be any formulas such that p /∈ v(E) for any subformula
D � E of A(p). Then,

IL−(J4, J5) � (A(�¬A(p)) � B) ↔ (A(A(p) � B) � B).

Proof By Proposition 1.1, IL− � �¬A(p) → A(p) � B. On the other hand, since
IL−(J4) � A(p) � B → (♦A(p) → ♦B), we have IL−(J4) � �¬B → (A(p) �
B → �¬A(p)). Hence, IL−(J4) � �¬B → (�¬A(p) ↔ A(p) � B). Then,

IL−(J4) � �¬B → �(�¬A(p) ↔ A(p) � B).

By Proposition 6.1, we obtain

IL−(J4) � �¬B → (A(�¬A(p)) ↔ A(A(p) � B)).

Thus,

IL−(J4) � (A(�¬A(p)) ∨ ♦B) ↔ (A(A(p) � B) ∨ ♦B).

By R2, we obtain

IL−(J4) � ((A(�¬A(p)) ∨ ♦B) � B) ↔ ((A(A(p) � B) ∨ ♦B) � B).

Therefore, we conclude

IL−(J4, J5) � (A(�¬A(p)) � B) ↔ (A(A(p) � B) � B).

�
Proof of Theorem 8 Let F :≡ �¬A(�). Since �¬A(p) is left-modalized in p,
IL− � F ↔ �¬A(F) by Lemma 14. Since IL−(J4) � �(F ↔ �¬A(F)), by
Proposition 6.2, we have

IL−(J4) � (A(F) � B) ↔ (A(�¬A(F)) � B).
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By Lemma 15,

IL−(J4, J5) � (A(�¬A(F)) � B) ↔ (A(A(F) � B) � B).

Therefore,

IL−(J4, J5) � (A(F) � B) ↔ (A(A(F) � B) � B).

�

6 Failure of �FPP, FPP, and CIP

In this section, we provide counter models of �FPP for CL and IL−(J1, J5), and also
provide a counter model of FPP for IL−(J1, J4+, J5). We also show that CIP is not
the case for our sublogics except IL−(J2+, J5) and IL. Let ω be the set {0, 1, 2, . . .}
of all natural numbers.

6.1 A counter model of �FPP for CL

In this subsection, we prove that IL−, IL−(J1), IL−(J4+), IL−(J1, J4+), IL−(J2+),
and CL have neither �FPP nor CIP.

Theorem 9 The formula p�q which is left-modalized in p has no fixed points inCL.
That is, for any formula A which satisfies v(A) ⊆ {q},

CL � A↔ A � q.

Proof We define an IL−-frame F = 〈W , R, {Sw}w∈W 〉 as follows:
– W := {xi , yi : i ∈ ω};
– R := {〈xi , x j 〉, 〈xi , y j 〉, 〈yi , x j 〉, 〈yi , y j 〉 ∈ W 2 : i > j};
– For each i ∈ ω and wi ∈ {xi , yi }, Swi := {〈a, a〉 : wi Ra} ∪ {〈a, b〉 : there exists
an even number k < i − 1 such that ((a = xk or a = yk) and b = xk+1)}.
For example, Sx3 , Sy3 , Sx4 , and Sy4 are shown in the following figure (Fig. 3).

In the figure, R relations and S relations are drawn by solid lines and broken lines,
respectively. Since R is transitive, we draw only solid lines connecting the immediately
preceding and succeeding elements.

It is easy to show that J1 and J2+ are valid in F . Thus, CL is valid in F by
Proposition 1.9. Let � be a satisfaction relation on F such that for any i ∈ ω, we have
xi � q and yi � q. For each w ∈ W , we say that i ∈ ω is an index of w if either
w = xi or w = yi .

Claim 1 For any formula A with v(A) ⊆ {q}, there exists an nA ∈ ω satisfying the
following two conditions:

1. Either ∀m ≥ nA (xm � A) or ∀m ≥ nA (xm � A);

123



28 S. Iwata et al.

Fig. 3 A counter model of �FPP for CL

2. Either ∀m ≥ nA (ym � A) or ∀m ≥ nA (ym � A).

Proof We prove the claim by induction on the construction of A.
A ≡ ⊥: Then, nA = 0 and ∀m ≥ nA (xm � A and ym � A).
A ≡ q: Then, nA = 0 and ∀m ≥ nA (xm � q and ym � q).
A ≡ B → C : By the induction hypothesis, there exist nB, nC ∈ W satisfying
the statement of the claim for B and C , respectively. Let nA = max{nB, nC }. We
distinguish the following three cases.

– ∀m ≥ nA (xm � B): Then, ∀m ≥ nA (xm � B → C).
– ∀m ≥ nA (xm � C): Then, ∀m ≥ nA (xm � B → C).
– ∀m ≥ nA (xm � B) and ∀m ≥ nA (xm � C): Then, ∀m ≥ nA (xm � B → C).

In a similar way, it is proved that either ∀m ≥ nA (ym � B → C) or ∀m ≥ nA (ym �

B → C).
A ≡ �B: We distinguish the following two cases.

– There exists an n ∈ W such that either xn � B or yn � B: Then, nA = n + 1 and
∀m ≥ nA (xm � �B and ym � �B).

– For all n ∈ W , xn � B and yn � B: Then, nA = 0 and ∀m ≥ nA (xm � �B and
ym � �B).
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A ≡ B � C : We distinguish the following five cases.

– (Case 1): There exists an even number k such that xk � B, xk � C , and xk+1 � C .
Let nA = k + 2 and m ≥ nA. Then, xm Rxk and xk � B. For any v ∈ W
with xk Sxmv, either v = xk or v = xk+1 by the definition of Sxm . Thus, v � C .
Therefore, we obtain xm � B � C . Since ym Rxk , we also obtain ym � B � C in
a similar way.

– (Case 2): There exists an even number k such that yk � B, yk � C , and xk+1 � C .
It is proved that nA = k + 2 witnesses the claim as in Case 1.

– (Case 3): There exists an odd number k such that xk � B and xk � C . Let
nA = k + 1 and m ≥ nA. Then, xm Rxk and xk � B. For any v ∈ W with xk Sxmv,
we have v = xk by the definition of Sxm . Thus, v � C . Therefore, we obtain
xm � B � C . Since ym Rxk , ym � B � C is also proved.

– (Case 4): There exists an odd number k such that yk � B and yk � C . It is proved
that nA = k + 1 witnesses the claim as in Case 3.

– (Case 5): Otherwise, all of the following conditions are satisfied.

(I) For any even number k, if xk � B, then either xk � C or xk+1 � C .
(II) For any even number k, if yk � B, then either yk � C or xk+1 � C .
(III) For any odd number k, if xk � B, then xk � C .
(IV) For any odd number k, if yk � B, then yk � C .

By the induction hypothesis, there exists an nB ∈ ω which is a witness of the
statement of the claim for B. Now, we prove that there exists a natural number
nA ≥ 1 such that for each i ≥ nA − 1, we have xi � ¬B ∨ C and yi � ¬B ∨ C .
We distinguish the following four cases.

– ∀m ≥ nB (xm � B and ym � B): Then, by (III) and (IV), there are infinitely
many odd numbers k such that xk � C and yk � C . Thus, by the induction
hypothesis, there exists an nC ∈ ω such that ∀m ≥ nC (xm � C and ym � C).
Then, we define nA := nC + 1.

– ∀m ≥ nB (xm � B and ym � B): Then, by (III), there are infinitely many
odd numbers k such that xk � C . Thus, by the induction hypothesis, there
exists an nC ∈ ω such that ∀m ≥ nC (xm � C). Then, we define nA :=
max{nB, nC } + 1.

– ∀m ≥ nB (xm � B and ym � B): Then, by (IV), there are infinitely many
odd numbers k such that yk � C . Thus, by the induction hypothesis, there
exists an nC ∈ ω such that ∀m ≥ nC (ym � C). Then, we define nA :=
max{nB, nC } + 1.

– ∀m ≥ nB (xm � B and ym � B): We define nA := nB + 1.

We prove that nA witnesses the claim. Let m ≥ nA and z ∈ W be such that xm Rz
and z � B. We show that there exists a v ∈ W such that zSxmv and v � C . Let i
be an index of z. If i is odd, then zSxm z and z � C by (III) and (IV). Assume that
i is even. We distinguish the following two cases.

– nA − 1 ≤ i < m: We obtain z � ¬B ∨ C by the choice of nA. Since z � B,
we have z � C . By the definition of Sxm , we find zSxm z.
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– i < nA − 1: Then, i < m − 1. Therefore, zSxm z and zSxm xi+1. Furthermore,
by (I) and (II), we obtain z � C or xi+1 � C .

In any case, there exists v ∈ W such that zSxmv and v � C . Therefore, we obtain
xm � B � C . Similarly, we have ym � B � C . �
We suppose, towards a contradiction, that there exists a formula A such that v(A) ⊆

{q} andCL � A↔ A�q. SinceCL is valid inF , A↔ A�q is valid inF . Moreover,
the following claim holds.

Claim 2 For any w ∈ W whose index is n, n is even if and only if w � A.

Proof We prove the claim by induction on n. Let w ∈ W be any element whose index
is n.

For n = 0, since there is no w′ ∈ W such that wRw′, we obtain w � A � q and
hence, w � A. Suppose n > 0 and that the claim holds for any natural number less
than n.

(⇐): Assume that n is an odd number. Then,wRyn−1. Since n−1 is even, yn−1 � A
by the induction hypothesis. Let v be any element in W satisfying yn−1Swv. By the
definitions of Sw and �, we obtain v = yn−1 and v � q. Therefore, w � A � q and
hence w � A.

(⇒): Assume that n is an even number. Let v be any element in W with wRv and
v � A. Let m be the index of v. Since m < n and v � A, m is even by the induction
hypothesis. Since n is also even, m < n − 1 and hence vSwxm+1. Furthermore,
xm+1 � q by the definition of �. Therefore, we obtain w � A� q and hence, w � A.

�
This contradicts Claim 1. Therefore, for any formula Awith v(A) ⊆ {q}, we obtain

CL � A↔ A � q. �
Corollary 4 Let L be any logic that is closed under substituting a formula for a propo-
sitional variable and satisfies IL− ⊆ L ⊆ CL. Then, L has neither �FPP nor CIP.

Proof By Theorem 9, every sublogic of CL does not have �FPP. By Lemma 3, every
logic L such that IL− ⊆ L ⊆ CL does not have CIP. �

6.2 A counter model of �FPP for IL−(J1, J5)

In this subsection, we prove that IL−(J5) and IL−(J1, J5) have neither �FPP nor CIP.

Theorem 10 The formula p � q which is left-modalized in p has no fixed point in
IL−(J1, J5). That is, for any formula A which satisfies v(A) ⊆ {q},

IL−(J1, J5) � A↔ A � q.

Proof We define an IL−-frame F = 〈W , R, {Sw}w∈W 〉 as follows:
– W := ω ∪ {v};
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Fig. 4 A counter model of �FPP for IL−(J1, J5)

– R := {〈x, y〉 ∈ W 2 : x, y ∈ ω and x > y};
– Sv := ∅ and for each n ∈ ω, Sn := {〈x, y〉 ∈ W 2 : nRx and (y = x or x Ry or (x
is even, x < n − 1 and y = v))}.
For instance, the relations S3 and S4 are shown in the following figure (Fig. 4). In

the case of x Ry for x, y < n, xSn y holds, and the corresponding broken lines are
omitted in the figure.

Then, IL−(J1, J5) is valid in F . Let � be a satisfaction relation on F such that
v � q and for each n ∈ ω, n � q.

Claim 1 For any formula A with v(A) ⊆ {q}, there exists an nA ∈ ω such that

∀m ≥ nA (m � A) or ∀m ≥ nA (m � A).

Proof We prove the claim by induction on the construction of A. We only prove the
case of A ≡ B � C . We distinguish the following three cases.

– Case 1: There exists an even number k such that k � B, for all j ≤ k, j � C and
v � C : Let nA = k+ 1 and m ≥ nA. Then, mRk and k � B. For any w ∈ W with
kSmw, since either w ≤ k or w = v, we obtain w � C . Therefore, m � B � C .

– Case 2: There exists an odd number k such that k � B and for all j ≤ k, j � C :
Let nA = k+ 1 and m ≥ nA. Then, mRk and k � B. For any w ∈ W with kSmw,
we have w � C because w ≤ k. Therefore, m � B � C .

– Case 3: Otherwise: Then, the following conditions (I) and (II) are fulfilled.

(I) For any even number k, if k � B, then there exists a j ≤ k such that j � C or
v � C .
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(II) For any odd number k, if k � B, then there exists a j ≤ k such that j � C .

By the induction hypothesis, there exists an nB ∈ ω such that ∀m ≥ nB (m � B)

or ∀m ≥ nB (m � B). We may assume that nB is an odd number. We distinguish
the following two cases.

– ∀m ≥ nB (m � B): Let nA = nB + 1 and m ≥ nA. Let k be any element in
W satisfying mRk and k � B. Since nB is odd and nB � B, there exists a
j0 ≤ nB such that j0 � C by (II). We distinguish the following three cases.
• k is odd: By (II), there exists a j1 ≤ k such that j1 � C . Then, kSm j1 and

j1 � C .
• k is even and k ≥ nB : Since k ≥ j0, we have kSm j0 and j0 � C .
• k is even and k < nB : By (I), there exists a j1 ≤ k such that j1 � C or

v � C . Since k < nB ≤ m − 1, we obtain k < m − 1. Hence, kSm j1 and
kSmv.

In any case, there exists a w ∈ W such that kSmw and w � C . Therefore,
m � B � C .

– ∀m ≥ nB (m � B): Let nA = nB + 1 and m ≥ nA. Let k be any element in
W satisfying mRk and k � B. Then, k < nB because k � B. We distinguish
the following two cases.
• k is odd: Since there exists a j ≤ k such that j � C by (II). Then, kSm j .
• k is even: By (I), there exists a j ≤ k such that j � C or v � C . Since
k < nB ≤ m − 1, we obtain k < m − 1 and hence kSm j and kSmv.

In any case, there exists a w ∈ W such that kSmw and w � C . Therefore,
m � B � C . �
We suppose, towards a contradiction, that there exists a formula A such that v(A) ⊆

{q} and IL−(J1, J5) � A ↔ A � q. Since IL−(J1, J5) is valid in F , we have that
A↔ A � q is also valid in F . Then, the following claim holds.

Claim 2 For any n ∈ ω, n is even if and only if n � A.

Proof We prove the claim by induction on n.
For n = 0, since obviously 0 � A � q, we have 0 � A. Suppose n > 0 and the

claim holds for any natural number less than n.
(⇐): Assume that n is odd. Then, nRn − 1 and since n − 1 is even, n − 1 � A by

the induction hypothesis. Let w be the any element in W which satisfies n − 1Snw.
By the definition of Sn , we find w ≤ n − 1 and hence w � q. Therefore, n � A � q,
and thus n � A.

(⇒): Assume that n is even. Let m be the any element in W which satisfies nRm
andm � A. By the induction hypothesis,m is even and hencem < n−1. Then,mSnv
and v � q. Therefore, n � A � q and hence, n � A. �

This contradicts Claim 1. Threfore, for any formula A with v(A) ⊆ {q}, we obtain
IL−(J1, J5) � A↔ A � q. �

As in Corollary 4, we obtain the following corollary.

123



The fixed point and the Craig interpolation… 33

Corollary 5 Let L be any logic that is closed under substituting a formula for a propo-
sitional variable and satisfies IL− ⊆ L ⊆ IL−(J1, J5). Then, L has neither �FPP
nor CIP.

6.3 A counter model of FPP for IL−(J1, J4+, J5)

In Theorems 9 and 10, we proved that the logics CL and IL−(J1, J5) do not have
�FPP. On the other hand, we proved in Theorem 8 that IL−(J4, J5) has �FPP. Thus,
we cannot provide a counter model of �FPP for extensions of IL−(J4, J5). In this
subsection, we prove that the logics IL−(J4+, J5) and IL−(J1, J4+, J5) have neither
FPP nor CIP.

Theorem 11 The formula��¬p has no fixed point in IL−(J1, J4+, J5). That is, for
any formula A with v(A) = ∅,

IL−(J1, J4+, J5) � A↔ �� ¬A.

Proof We define an IL−-frame F = 〈W , R, {Sw}w∈W 〉 as follows:
– W := ω;
– x Ry : ⇐⇒ x > y;
– For each n ∈ W , Sn := {〈x, y〉 ∈ W 2 : x, y < n and (x ≥ y or (x = 0 and (y is
even or y = n − 1)))}.
We draw the relations S3 and S4. As in the proof of Theorem 10, in the case of x Ry

for x, y < n, xSn y holds, and the corresponding broken lines are omitted in the figure
(Fig. 5).

Then, IL−(J1, J4+, J5) is valid in F . Let � be an arbitrary satisfaction relation on
F .

Claim 1 For any formula A with v(A) = ∅, there exists an nA ∈ W such that

∀m ≥ nA (m � A) or ∀m ≥ nA (m � A).

Proof This is proved by induction on the construction of A. We prove only the case
of A ≡ B � C . We distinguish the following three cases.

– Case 1: There exists an n > 0 such that n � B and for all k ≤ n, k � C . Let
nA = n + 1 and m ≥ nA. Then, mRn and n � B. Also, for any k ∈ W , if nSmk,
then k ≤ n because n �= 0. Therefore, k � C . Thus, m � B � C .

– Case 2: 0 � B and for all even numbers k, k � C . By the induction hypothesis,
there exists an nC ∈ W such that ∀m ≥ nC (m � C) or ∀m ≥ nC (m � C).
Since there are infinitely many even numbers k ∈ W such that k � C , we obtain
∀m ≥ nC (m � C). Let nA = nC + 1. Then, for any m ≥ nA, we have mR0
and 0 � B. Let k ∈ W be such that 0Smk. Then, k is even or k = m − 1 by
the definition of Sm . By our supposition, if k is even, then k � C . If k = m − 1,
then m − 1 � C because m − 1 ≥ nC . Therefore, in either case, k � C . Thus,
m � B � C .
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Fig. 5 A counter model of FPP
for IL−(J1, J4+, J5)

– Case 3: Otherwise: Then, the following conditions (I) and (II) are fulfilled.

(I) For any n > 0, if n � B, then there exists a k ∈ W such that k ≤ n and k � C .
(II) If 0 � B, then there exists an even number k ∈ W such that k � C .

We distinguish the following two cases.

– 0 � B: Let nA = 0 and m ≥ nA. For any n ∈ W satisfying mRn and n � B,
since n �= 0, there exists a k ≤ n such that k � C by the condition (I). Since
nSmk, we obtain m � B � C .

– 0 � B: By the condition (II), there exists an even number k such that k � C .
Let nA = k + 1 and m ≥ nA. Let n ∈ W be such that mRn and n � B. If
n �= 0, then there exists a k′ ≤ n such that k′ � C and nSmk′ by the condition
(I). If n = 0, then since k is even and k < m, we obtain nSmk and k � C .
Therefore, m � B � C . �

We suppose, towards a contradiction, that there exists a formula A such that v(A) =
∅ and IL−(J1, J4+, J5) � A↔ ��¬A. Then, A↔ ��¬A is valid in F because
so is IL−(J1, J4+, J5). Then, the following claim holds.

Claim 2 For any n ∈ W , n even if and only if n � A.

Proof We prove the by induction on n. For n = 0, obviously 0 � A. Suppose n > 0
and the claim holds for any natural number less than n.
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(⇐): Assume that n is odd. Then, nR0. For any k ∈ W which satisfies 0Snk, since
n is odd, k is even and k < n. By the induction hypothesis, k � A. Thus, we obtain
n � �� ¬A and hence, n � A.

(⇒): Assume that n is even. Let m ∈ W be such that nRm. We distinguish the
following three cases.

– m = 0: Then, 0Snn−1. Since n−1 is odd, n−1 � ¬A by the induction hypothesis.
– m is even and m �= 0: Then, mSnm − 1. Since m − 1 is odd, m − 1 � ¬A by the
induction hypothesis.

– m is odd: Then, mSnm. Since m is odd, m � ¬A by the induction hypothesis.

In any case, there exists a w ∈ W such that mSnw and w � ¬A. Therefore, we obtain
n � �� ¬A and hence, n � A. �

This contradictions Claim 1. Therefore, there is no formula A such that v(A) = ∅
and IL−(J1, J4+, J5) � A↔ �� ¬A. �
Corollary 6 Every sublogic of IL−(J1, J4+, J5) does not have FPP. Furthermore, if
L is closed under substituting a formula for a propositional variable and satisfies
IL−(J4+) ⊆ L ⊆ IL−(J1, J4+, J5), then L does not have CIP.

Proof By Theorem 11, every sublogic of IL−(J1, J4+, J5) does not have FPP. By
Lemma 2, every logic L that is closed under substituting a formula for a propositional
variable and satisfies IL−(J4+) ⊆ L ⊆ IL−(J1, J4+, J5) does not have CIP. �

7 Concluding remarks

In this paper, we provided a complete description of twelve sublogics of IL concerning
UFP, FPP, and CIP. In particular, for these sublogics L , we proved that L has FPP
if and only if L contains IL−(J2+, J5). On the other hand, there are many other
logics between IL− and IL. For instance, Kurahashi and Okawa [9] introduced eight
sublogics such as IL−(J2, J4+, J5) that are not in Fig. 1, and proved that these eight
logics are not complete with respect to usual Veltman semantics but complete with
respect to generalized Veltman semantics. Then, it is natural to investigate a sharper
threshold for FPP in a larger class of sublogics. Then, for example, we propose a
question if J2+ can be weakened by J2 in the statement of Corollary 2.

Problem 2 Does the logic IL−(J2, J4+, J5) have FPP?

In our proofs of Theorems 6, 7, and 8, the use of the axiom scheme J5 seems
inevitable. In fact, CL (= IL−(J1, J2+)) fails to have �FPP. From this observation,
in an earlier version of the present paper, we had proposed the question whether J5
is necessary or not for �FPP and FPP. Later on, the third author of the present paper
settled this question. For each n ≥ 1, let J5n be the following axiom scheme:

J5n ♦n A � A.

Concerning J5n , the following result is established.

123



36 S. Iwata et al.

Theorem 12 (Okawa [11]) Let n ≥ 1.

1. IL−(J5n) � J5n+1 and IL−(J2+, J5n+1) � J5n.
2. IL−(J2+, J5n) and IL−(J4, J5n) have FPP and �FPP, respectively.

Furthermore, the authors have already developed several studies related to the
present paper (cf. [6, 10]).
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