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Abstract
In the book Cardinal Invariants on Boolean Algebras by J. Donald Monk many such
cardinal functions are defined and studied. Among them several are generalizations
of well known cardinal characteristics of the continuum. Alongside a long list of open
problems is given. Focusing on half a dozen of those cardinal invariants some of those
problems are given an answer here, which in most of the cases is a definitive one. Most
of them can be divided in two groups. The problems of the first group ask about the
change on those cardinal functions when going from a given infinite Boolean algebra
to its simple extensions, while in the second group the comparison is between a couple
of given infinite Boolean algebras and their free product.
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1 Introduction

Away to study the structure of a givenBoolean algebra is through the so called cardinal
invariants, which can be described, somehow loosely, as bounds, either upper or
lower, to the size of certain types of its substructures, be they algebraic, combinatorial
or topological. They are mainly generalizations of cardinal invariants of topological
spaces, as Boolean algebras always are, or of the characteristics of the continuum,
which are usually defined on the Boolean algebra P (ω) /Fin, i.e. the quotient of the
power set of ω modulo the ideal of the finite subsets of ω. Of all these possibilities, in
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948 M. J. Santos

this text we will focus on a half dozen of them. The reader is assumed to have basic
knowledge of Boolean algebras, as can be found in the first parts of [4].

Let (A,+, ·,−, 0, 1), usually abbreviated as A, be an infinite Boolean algebra with
< as its order relation. The set of all non-zero elements of A will be denoted A+. A
subset I ⊆ A is an ideal if 1 /∈ I , it is downward closed and a+b ∈ I , for all a, b ∈ I .

A partition of A is a non-empty subset X ⊆ A+ such that for all a, b ∈ X , a ·b = 0,
and such that for all c ∈ A+ there exists x ∈ X such that c · x �= 0. A (decreasing)
tower is a non-empty subset X ⊆ A+ well-ordered by <−1 whose product is 0, i.e.
whose only lower bound is 0. A centered family is a non-empty subset X ⊆ A such
that

∏
a∈F a �= 0 for all F ∈ [X ]<ω. If there exists a ∈ A+ such that a ≤ x , for

all x ∈ X , it is said that a is a pseudointersection of X . The algebra A is said to be
atomless if for all a ∈ A+ there exists b ∈ A+ such that b < a. If A is atomless, a
splitting family of A is a non-empty subset X ⊆ A such that for all a ∈ A+ there
exists x ∈ X such that a · x �= 0 �= a · −x .

From these kinds of subfamilies of a given infinite Boolean algebra A one can
define the following cardinal characteristics:

a (A) := min {|X | | X ⊆ A is an in f ini te parti tion}
t (A) := min {|X | | X ⊆ A is a tower}
p (A) := min {|X | | X ⊆ A is a centered f amily wi th no pseudointersection}
s (A) := min {|X | | X ⊆ A is a spli t ting f amily} .

For1 the notions of centered families and pseudointersections there exist the dual
notions of families with the finite union property, i.e. X ⊆ A such that

∑
a∈F a �= 1,

for all F ∈ [X ]<ω, and pseudounion, i.e. an upper bound not equal to 1. A p-family is
a family with the finite union property with no pseudounion. Similarly one can define
increasing towers. Thus the definitions of both p(A) and t(A) can be restated:

t (A) := min {|X | | X ⊆ A is an increasing tower}
p (A) := min {|X | | X ⊆ A is a p − f amily} .

Since every infinite partition is a p-family and every decreasing tower is a centered
family with no pseudointersection, it immediately follows that p (A) ≤ a (A) , t (A).
It is also easy to verify that every maximal centered subfamily of a splitting family
is a centered family with no pseudointersection. So, p (A) ≤ s (A). Notice also that,
when not ∞, t(A) is a regular cardinal.

These small cardinal characteristics are generalizations of well-known cardinal
characteristics of the continuum, when instead of A we have P (ω) /Fin, simply
denoted a, t, p and s. For more information on these cardinals see [2].

Other larger cardinal invariants derive from the following concepts. A subset X ⊆
A+ is dense if for all a ∈ A+, there exists x ∈ X such that x ≤ a. A subset X ⊆ A is

1 If A is an infinite Boolean algebra, an infinite partition of A can be found through Axiom of Choice. If P
is said partition, the set {−x | x ∈ P} is a centered family with no pseudointersection. So a(A) and p(A) are
well defined. If A is also atomless, then A+ is a splitting family, and also s(A) is well defined on atomless
Boolean algebras. However, not every infinite Boolean algebra has a tower. In this case t(A) = ∞.
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Questions on cardinal invariants... 949

irredundant if x is not algebraically generated by X \ {x}, for all x ∈ X . If X is not
irredundant, it will be called redundant. We can define

π (A) := min {|X | | X ⊆ A is dense}
I rr (A) := sup {|X | | X ⊆ A is irredundant} .

Of these concepts it is known that:

Theorem 1 (McKenzie, [4], Proposition 4.23.) Every maximal irredundant family of
a Boolean algebra generates a dense subalgebra.

An immediate consequence of this proposition is that ω ≤ π (A) ≤ I rr (A) for all
infinite Boolean algebra A.

In [5] there are several results on these cardinal functions, both concerning their
relation to other functions and their behaviour on different kinds of Boolean algebras
(although there it is written tow instead of t and spl instead of s). In that book several
questions are asked about these cardinal invariants. In this text an answer, be it partial
or complete, is given to some of them. Here a list of these problems is provided, with
the same enumeration as in [5].

– Problem 7. Does A ≤s B imply that a(B) ≤ a(A)?
– Problem 8. Is it true that for all infinite BAs A, B one has a(A ⊕ B) =
min(a(A), a(B))?

– Problem 37. Does A ≤s B imply that towspect (A) ⊆ towspect (B) or tow(B) ≤
tow(A)?

– Problem 38. Are there BAs A, B such that A ≤m B and tow(B) < tow(A)?
– Problem 45. Are there BAs A, B such that A ≤m B and p(B) < p(A)?
– Problem 46. Is it true that for all infinite BAs A, B we have p(A ⊕ B) =
min(p(A), p(B))?

– Problem 48. Is

p(A) = min{|X | : X is a maximal rami f ication set in A}?

– Problem 52. Is spl(A ⊕ B) = min(spl(A), spl(B)) for atomless A, B?
– Problem 70. Are there BAs A, B such that A ≤σ B and π(A) > π(B)?
– Problem 71. Are there BAs A, B such that A ≤s B and π(A) > π(B)?
– Problem 86. Can one have I rr(A) < I rr(B) for A ≤s B or A ≤m B?

2 Simple andminimal extensions

If A ⊆ B are two Boolean algebras with the same minimum and maximum elements,
and if the operations of B restricted to A coincide with the operations of A (or, usually,
if A is isomorphic to such a substructure of B), it is said that A is a subalgebra of B,
or that B is an extension of A. This fact is generally denoted A ≤ B.

If A ≤ B, it is said that B is a simple extension of A, if there exists x ∈ B such that
B = A (x), which means that B is the algebra generated by x and all the elements of
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A. This fact will be denoted A ≤s B. It is said that B is a minimal extension of A if
any algebra C such that A ≤ C ≤ B is either equal to A or equal to B. This fact is
denoted A ≤m B. If A ≤m B, it follows easily A ≤s B.

This section is about the changes, or the lack thereof, that can happen to the cardinal
functions defined in the Introduction when they pass from a Boolean algebra to their
simple and minimal extensions.

2.1 p-families, infinite partitions and towers

Considering the cardinal characteristics defined in the previous section and minimal
extensions we have the following result.

Theorem 2 Let A and B be infinite Boolean algebras. If A ≤m B, then p (B) ≤ p (A),
t (B) ≤ t (A) and a (B) ≤ a (A).

This fact can be found in [5] (Propositions 3.34, 4.36, 4.54). In this book the author
asks if this result can be extended to the case when B is a simple extension of A and
also if the inequalities can be strict in the case of B being a minimal extension of A
(Problems 7, 37, 38, 44, 45). For all these questions in this section affirmative answers
are given. Firstly Theorem 2 will be generalized to simple extensions. Some ideals
and their quotients will be important for this.

Definition 1 Let A and B be Boolean algebras such that A ≤ B. If x ∈ B define the
ideal on A below x as follows:

A � x := {a ∈ A | a ≤ x}.

Recall that for an ideal I ⊆ A the quotient A/I is the Boolean algebra on the
equivalence classes definedby the relationa ∼I b iffa	b = (a·(−b))+(b·(−a)) ∈ I ,
with the operations induced by those of A. This means that [a]I + [b]I = [a + b]I ,
[a]I ·[b]I = [a·b]I , and−[a]I = [−a]I , where [a]I is the equivalence class ofa, for all
a, b ∈ A. Also recall that the simple product A × B, whenever A and B are Boolean
algebras, refers to the Boolean algebra on the set A × B, with (1, 1) as maximum
element, (0, 0) as minimum element, and the operations defined coordinatewise.

Lemma 1 Let A be a Boolean algebra and suppose that A (x) is a simple extension
of A. If I0 := A � x and I1 := A � −x, then A (x) ∼= (A/I0) × (A/I1).

On the face of Lemma1, ifwe areworking on simple extensions ofBoolean algebras
and some of their cardinal characteristics, it would be useful to know the behavior of
said cardinal characteristics on simple products. Fortunately we have the following
lemma.

Lemma 2 Let A and B be two infinite Boolean algebras. Then

– p (A × B) = min {p (A) , p (B)} ,

– t (A × B) = min {t (A) , t (B)} and
– a (A × B) = min {a (A) , a (B)}.
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Questions on cardinal invariants... 951

Proofs of both lemmas can be found in [5], Propositions 2.28, 3.36, 4.37 and 4.55.
If b ∈ A, the set

A � b := {a ∈ A | a ≤ b}

with 0 as minimum element, b as maximum element, the product and sum of A, and
the complement restricted to b is a Boolean algebra. We say that X ⊆ A � b is a
p-family (resp. infinite partition, resp. tower) below b if it is so in the Boolean algebra
A � b. We now proceed to answer the questions.

Lemma 3 Let A be an infinite Boolean algebra and I ⊆ A be an ideal. Suppose that A/

I is infinite and that p (A) < p (A/I ) (resp. a (A) < a (A/I ), resp. t (A) < t (A/I )).
If {aα | α < κ} is a p-family in A (resp. infinite partition, resp. inc. tower) of minimum
size, then there exist b ∈ A+ and E ∈ [κ]κ such that {aα · b | α ∈ E} is a p-family
(resp. infinite partition, resp. tower) below b consisting of elements of I .

Proof Case 1. Suppose that
∑

α<κ [aα]I = [1]I .
Since A/I has no p-families of size κ , it follows that there exists F ∈ [κ]<ω such

that
∑

α∈F [aα]I = [1]I . Hence b := −∑
α∈F aα is an element of I . It follows

immediately that aα · b is an element of I , for all α < κ . Let E be the set of all α < κ

such that aα · b �= 0. If E ′ were a finite subset of E such that b = ∑
α∈E ′ aα · b, it

would follow that 1 = ∑
α∈E ′∪F aα , which is a contradiction.

We have that b = ∑
α∈E aα · b, since otherwise we would have a non-zero element

c ≤ b such that aα · c = 0 for all α ∈ E , and hence for all α < κ , contradicting the
fact that {aα | α < κ} is a p-family of A. It follows that {aα · b | α ∈ E} is a p-family
below b. Finally, if we had |E | < κ , then {aα · b | α ∈ E} ∪ {b} would be a p-family
of A of size less that p(A). Therefore |E | = κ . (When dealing with infinite partitions
there also exists F ∈ [κ]<ω such that

∑
α∈F [aα]I = [1]I . Define b := −∑

α∈F aα

and E := κ\F . If {aα | α < κ} is a tower, there exists α < κ such that if α ≤ β < κ ,
then

[
aβ

]
I = [1]I . In this case b := −aα and E := κ\α.)

Case 2. Suppose that
∑

α<κ [aα]I �= [1]I .
There exists b ∈ A\I such that [b]I · [aα]I = [0]I , i.e. b · aα ∈ I , for all α <

κ . Consider E := {α < κ | aα · b �= 0}. If E ′ were a finite subset of E such that
b = ∑

α∈E ′ b · aα , it would follow that b ∈ I , which is a contradiction. Therefore
{aα · b | α ∈ E} is a p-family below b and, as was observed in case 1, the size of E is
κ (resp. infinite partition, resp. contains a tower). �

Theorem 3 Let A and B be infinite Boolean algebras. If A ≤s B, then p (B) ≤ p (A),
a (B) ≤ a (A) and t (B) ≤ t (A).

Proof From Lemma 1, it is known that there exist I0 and I1 ideals of A, such that
I0 ∩ I1 = {0} and B ∼= (A/I0) × (A/I1). We have two cases.

Case 1. The size of, say, A/I0 is finite.
In this case p(B) = p(A/I1). For proving this take {cα | α < p(A/I1)}, a p-family

in A/I1. It follows that {([1]I0 , cα) | α < p(A/I1)} is a p-family in B. Therefore
p(B) ≤ p(A/I1).

123



952 M. J. Santos

Now take λ < p(A/I1) and P = {(dα, cα) | α < λ} ⊆ B such that

∑

α∈F
(dα, cα) �= ([1]I0 , [1]I1)

for all F ∈ [λ]<ω. Since A/I0 is finite, there exists F ∈ [λ]<ω such that for all α < λ

there exists β ∈ F such that dα = dβ . Therefore

∑

α<λ

dα =
∑

β∈F
dβ.

If
∑

β∈F dβ �= [1]I0 , then (
∑

β∈F dβ, [1]I1) is a pseudounion of P witnessing that that
P is not a p-family in B. If

∑
β∈F dβ = [1]I0 , it follows that

∑
α∈F ′ cα �= [1]I1 , for all

F ′ ∈ [λ]<ω. If c ∈ A/I1 is a pseudounion of {cα | α < λ}, then ([1]I0 , c) witnesses
that P is not a p-family in B. Therefore λ < p(B). We conclude that p (B) = p (A/I1)
(analogously for the other two functions).

Suppose that κ = p (A) < p (A/I1). Let {aα | α < κ} be a p-family in A, and let
b and E be as given by Lemma 3 with I = I1. Since A/I0 is finite, there exist α < β

in E such that b · aα ∼I0 b · aβ , though b · aα �= b · aβ . Hence b · aα 	 b · aβ �= 0 and
lies both in I0 and I1, which is a contradiction. Therefore, p (A) ≥ p (A/I1) = p(B).
The proof is analogous for the other two cardinal functions.

Case 2. Both the size of A/I0 and the size of A/I1 are infinite.
In this case p (B) = min {p (A/I0) , p (A/I1)}, (resp. with the other two functions).

Suppose that κ = p (A) < p (A/I0) , p (A/I1). Let {aα | α < κ} be a p-family in
A (resp. infinite partition). If E and b are as given by Lemma 3 with I0 = I , it
follows that {aα · b | α ∈ E} ∪ {−b} is a p-family in A (resp. infinite partition) whose
elements, but possibly one of them, lie in I0. Applying Lemma 3 to this p-family
(partition) and I1, it follows that I0 ∩ I1 �= {0}, which is a contradiction. Therefore,
p (A) ≥ min {p (A/I0) , p (A/I1)} = p(B) (resp. for the function a).

(When {aα | α < κ} is an increasing tower, we take b and E corresponding to I0
and we are in one of the following two cases:

1.
∑

α∈E [b · aα]I1 = [b]I1 or
2.

∑
α∈E [b · aα]I1 �= [b]I1 .

Repeating the proof of Lemma 3 we get a similar contradiction.) �

Now an example of these inequalities being strict will be given. The following

lemma tells us when a simple extension is a minimal one.

Lemma 4 Let B := A (x) be a simple extension of a Boolean algebra A. Then B is a
minimal extension of A iff SmpA

x , the ideal generated by A � x and A � −x, is either
equal to A or a maximal ideal of A.

For a proof of this lemma see [5], Proposition 2.32. Recall that an ideal I ⊆ A is
maximal if for any ideal J such that I ⊆ J ⊆ A, it follows that I = J .

Theorem 4 There exist A and B infinite Boolean algebras such that A ≤m B and
t (B) < t (A).
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Questions on cardinal invariants... 953

Proof Let {Xn | n < ω} be a set of disjoint copies of βω\ω and p be an element of
X0. Define X := ⋃

n<ω Xn ,

U := {a ∈ P (X) | (∀n < ω) (a ∩ Xn ∈ clop (Xn)) ∧
(∃n < ω) (∀m ≥ n) (a ∩ Xn = Xn) ∧ p ∈ a ∩ X0}

and

I := {a ∈ P (X) | (∀n < ω) (a ∩ Xn ∈ clop (Xn)) ∧
(∃n < ω) (∀m ≥ n) (a ∩ Xn = ∅) ∧ p /∈ a ∩ X0},

where P(X) is the power set of X and clop(Xn) is the family of clopen subsets of Xn .

Take A := I ∪U as a set algebra, i.e. as a subalgebra of P(X). To verify that A is
indeed a Boolean algebra take a, b ∈ A. If b ∈ U , then a ∪ b ∈ U . If both a, b ∈ I ,
then a∪b ∈ I . Similarly it can be verified that A is closed under intersections. Besides
a ∈ I iff X \ a ∈ U . By its definition I is a maximal ideal of A.

Claim ω < t(A).

Proof Let C := {an | n < ω} be a strictly increasing family of elements from A. If
C ⊆ I , then p /∈ ⋃

n<ω X0 ∩ an . Since clop(βω \ ω) has no countable towers, there
exist a, b ∈ clop (X0) such that

1. p ∈ b
2.

⋃
n<ω X0 ∩ an ⊂ a,

3. b ∩ a = ∅ and
4. a ∪ b �= X0.

Then a ∪ b∪ (⋃
0<n<ω Xn

)
is an element of A not equal to X which contains each

element of C , and so this last set does not form a tower.
If C is not subset of I , without loss of generality, it can be supposed that C ⊆ U .

Then there exists m < ω such that for all n, k < ω, if k ≥ m, then an ∩ Xk =
Xk . Therefore, there exists k < m such that for all n < ω, an ∩ Xk � Xk , i.e.
{an ∩ Xk | n < ω} is a strictly increasing family in clop (Xk). Since this is an algebra
with no countable towers, there exists a ∈ clop (Xk) such that a ∪ ⋃

n∈ω\{k} Xn

witnesses that C is not a tower and the claim has been proved. �

Let x := ⋃

n∈ω\{0} Xn and B := A (x). Since x is not element of A, B is a simple
extension of A, not equal to A. Furthermore, it is a minimal extension of A. Indeed,
both A � x and A � −x are respectively

{y ∈ I | y ∩ X0 = ∅}

and

{y ∈ I | y ⊂ X0} .
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It is easy to verify that SmpA
x = I . Since I is a maximal ideal of A, it follows that

A ≤m B.
Trivially

⎧
⎨

⎩

⋃

k≤n

Xk | n < ω

⎫
⎬

⎭

is a countable tower of B. Then ω = t (B) < t (A). �

Lemma 5 For any infinite Boolean algebra A, t (A) = ω iff a (A) = ω iff p (A) = ω.

Proof Observe that if {an | n < ω} is a p-family in some Boolean algebra A, then
{bn | n < ω}, where bn := ∑

i≤n ai for each n < ω, is a tower in A; if {bn | n < ω}
is an increasing tower in A, then {cn | n < ω}, where cn := bn · (−∑

i<n bi ) for each
n < ω, is an infinite partition of A; and if {cn | n < ω} is an infinite partition of A, it
is a p-family in A. �


From this lemma and the previous theorem this corollary follows.

Corollary 1 There exist A and B Boolean algebras, A ≤m B such that p (B) < p (A)

and a (B) < a (A).

2.2 Dense and irredundant families

Opposite to what was concluded at the end of the previous subsection, the cardinal
function π is fixed on minimal extensions.

Theorem 5 Let A and B be infinite Boolean algebras. If A ≤m B, thenπ (A) = π (B).

See [5], Proposition 6.2. On the other hand there are cases where A ≤s B, and
π (A) < π (B). Take for example A = P (ω) and B = P (ω) /Fin × P (ω) / {∅}.
Trivially we have π (A) = ω, and taking as witness any almost disjoint family of
P (ω) /Fin of size c it is verified that π (B) = c. Now, answering negatively to
Problem 71, it will be proved impossible to have the opposite inequality.

Definition 2 If I ⊆ A is an ideal, define π (I ) as the minimum size of a dense subset
of I , i.e. a set D ⊂ I\{0} such that for all x ∈ I\{0} there exists y ∈ D such that
y ≤ x .

Lemma 6 If I , J ⊆ A are ideals such that I ∩ J = {0}, then π(A/I ) ≥ π(J ).

Proof Suppose that D := {xα | α < π(A/I )} ⊆ A\I , is a set of representatives of a
dense family of A/I . Define

D′ := {xα ∈ D | ∃yα ∈ J such that [xα]I ≤ [yα]I }.

For each xα ∈ D′, fix yα and define zα := xα · yα . Since xα /∈ I , while xα · (−yα) ∈ I ,
for any xα ∈ D′, it follows that zα /∈ I . In particular zα �= 0, for all xα ∈ D′. The set of
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Questions on cardinal invariants... 955

such zα is dense on J . Indeed, if y ∈ J\{0}, there exists xα ∈ D, such that [xα]I ≤ [y]I .
It follows that xα ∈ D′. Suppose that zα � y. Then 0 �= zα · (−y) ≤ xα · (−y) ∈ I .
But zα ∈ J , and thus 0 �= zα · (−y) ∈ I ∩ J which is a contradiction. Therefore,
zα ≤ y.

Since we got a dense subset of J of at most π(A/I ) many elements, it follows that
π(A/I ) ≥ π(J ). �

Theorem 6 Let A and B be infinite Boolean algebras. If A ≤s B, then π (A) ≤ π (B).

Proof Remember that if A ≤s B, then there exist I0 and I1 ideals of A such
that I0 ∩ I1 = {0} and B ∼= (A/I0) × (A/I1). It follows easily that π (B) =
max {π (A/I0) , π (A/I1)}.

Applying Lemma 6 to I0 and I1, we get that π(A/I0) ≥ π(I1) and that π(A/

I1) ≥ π(I0). We can also apply it to

I ′ := {a ∈ A | ∀x ∈ I0 ∀y ∈ I1 a · x = 0 = a · y},

which is an ideal such that I ′ ∩ I0 = {0} = I ′ ∩ I1, to conclude that π(I ′) ≤ π(A/

I0), π(A/I1). Since at least one of these last two cardinals is infinite, we conclude that
π(I0) + π(I1) + π(I ′) ≤ π(A/I0) + π(A/I1) = π(B).

Now we prove that the left side of the last inequality is ≥ π(A). Take D0 ⊆ I0,
D1 ⊆ I1 and D′ ⊆ I ′, dense subsets of minimum size of the respective ideals. Take
x ∈ A+. If there exists, for some i < 2, some non-zero yi ∈ Ii such that yi · x �= 0,
then there exists z ∈ Di such that z ≤ x . If this is not the case, then x ∈ I ′ and there
exists z ∈ D′ such that z ≤ x . So D0 ∪ D1 ∪ D′ is a dense subset of A.

Then π (I0)+π (I1)+π
(
I ′) ≥ π (A). Finally we conclude that π(A) ≤ π(B). �


Finally, we state that I rr is not moved by simple extensions, giving an answer to
problem 86. In order to prove this we need the following theorem (see [5], Theorem
8.4.).

Theorem 7 I rr (A × B) = max {I rr (A) , I rr (B)} for all infinite Boolean algebras
A and B.

Theorem 8 Let A and B be infinite Boolean algebras. If A ≤s B, then Irr (A) =
I rr (B).

Proof Since any irredundant subset of A is an irredundant set of B it follows that
I rr (A) ≤ I rr (B). We also know that there exist two ideals I0 and I1 of A such that
I0 ∩ I1 = {0} and B ∼= (A/I0 × A/I1).

Theorem 7 tells us that I rr (B) = max {I rr (A/I0) , I rr (A/I1)}. Wlog I rr(B) =
I rr(A/I0). We will consider two cases.

Case 1. Irr(A/I0) is a successor cardinal. Suppose that I rr (A/I0) = κ+ and take{
[aα]I0 | α < κ+}

an irredundant family of A/I0. If
{
aα | α < κ+}

were redundant,
we would have α < κ+ such that aα is generated by

{
aβ | α �= β ∈ κ+}

, while

[aα]I0 is not generated by
{[
aβ

]
I0

| α �= β ∈ κ+
}
, which is clearly a contradiction.

So κ+ ≤ I rr(A).

123



956 M. J. Santos

Case 2. Irr(A/I0) is a limit cardinal. Suppose that I rr (A/I0) = λ and take
κ < λ. Let

{
[aα]I0 | α < κ

}
be an irredundant family of A/I0. As in the previous

case {aα | α < κ} is irredundant, and it follows that κ ≤ I rr(A). Since λ is limit, we
conclude that λ ≤ I rr(A).

In either case I rr(B) ≤ I rr(A) and the equality is verified. �


3 Free products

Definition 3 (Free product) If A and B are two Boolean algebras, their free product,
denoted A ⊕ B, is an algebra C such that there exist A′, B ′ ≤ C , such that A ∼= A′,
B ∼= B ′,

C = 〈A′ ∪ B ′〉 :=
{

∑

i<n

ai · bi | n < ω, ai ∈ A′, bi ∈ B ′
}

and for all a ∈ A′ \ {0} and all b ∈ B ′\ {0}, a · b �= 0.
Given two Boolean algebras A and B, this algebra exists and is unique up to

isomorphisms.

In topological duality we have that if A ∼= clop (X) and B ∼= clop (Y ), for some
zero-dimensional compact Hausdorff spaces A and B, then A ⊕ B ∼= clop (X × Y ).
This algebra consists of sets of the form

⋃
i<n ai × bi , for some n < ω, where

ai ∈ clop(X) and bi ∈ clop(Y ), for all i < n. It is worth observing that

⋃

i<n

ai × bi =
⋃

∅�=J⊆n

(
⋂

i∈J

ai \
⋃

j /∈J

a j ) × (
⋃

i∈J

bi ).

Therefore we can always assume without loss of generality either that the ai ’s are
disjoint, or that the bi ’s are disjoint. More basic information on free products can be
found in [4], volume 1, chapter 4.

From now on A and B will be two infinite Boolean algebras isomorphic to (and
often interchanged with) the algebra of clopen sets of two zero-dimensional compact
Hausdorff spaces X and Y .

Theorem 9 Let A and B be two infinite Boolean algebras. Then

– p (A ⊕ B) ≤ min {p (A) , p (B)},
– t (A ⊕ B) ≤ min {t (A) , t (B)},
– a (A ⊕ B) ≤ min {a (A) , a (B)} and, if A and B are atomless,
– s (A ⊕ B) ≤ min {s (A) , s (B)} .

Proof Take {aα | α < p(A)} ⊆ A a centered family with no pseudointersection.
It follows that {aα × Y | α < p(A)} is a centered family of A ⊕ B. If it had a
pseudointersection, wlog of the form a×bwith a ∈ A+ and b ∈ B+, then awould be a
pseudointersection of theaα’s,which is a contradiction. Therefore {aα×Y | α < p(A)}
has no pseudointersection and p(A ⊕ B) ≤ p(A). Analogously p(A ⊕ B) ≤ p(B).

For the other cardinal functions the proofs are analogous. �
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Considering these simple inequalities a natural question to arise is whether equality
holds in any of the four cases or any of them can be strict. Monk asks these questions
(Problems 8, 46, 52) for p, a and s, and claims to have an affirmative answer for t.
Here we give an affirmative answer for p and s, and provide other, perhaps better,2

proof for t. For a we give a lower bound.

Theorem 10 s (A ⊕ B) = min {s (A) , s (B)}, for atomless infinite Boolean algebras
A and B.

Proof Suppose that κ < min {s (A) , s (B)} and that

C :=
⎧
⎨

⎩
cα :=

⋃

i<nα

aα
i × bα

i | α < κ

⎫
⎬

⎭

is a subset of A ⊕ B. It follows that neither
{
aα
i | α < κ, i < nα

}
is a splitting family

of A, nor
{
bα
i | α < κ, i < nα

}
is a splitting family of B. Let a and b non-empty

witnesses of this fact, which means that:

1. ∀α < κ ∀i < nα , either a ∩ aα
i = ∅ or a ⊂ aα

i , and
2. ∀α < κ ∀i < nα , either b ∩ bα

i = ∅ or b ⊂ bα
i .

The set a × b witnesses that C is not a splitting family of A ⊕ B. Indeed, take
α < κ and suppose that (a × b) ∩ cα �= ∅. Then there exists i < nα such that
(a × b)∩ (

aα
i × bα

i

) �= ∅. But thus a ∩ aα
i �= ∅ and b∩ bα

i �= ∅, from whence follows
that a ⊂ aα

i and b ⊂ bα
i and hence that (a × b) ⊂ cα . Therefore for all α < κ

either a × b and cα are disjoint or a × b is subset of cα . We finally conclude that
κ < s (a ⊕ b). �


Recall that a maximal centered family U ⊆ A is called an ultrafilter and that if U
is an ultrafilter of A and

⋃
i<n ai ∈ U , then there exists i < n such that ai ∈ U .

Theorem 11 p (A ⊕ B) = min {p (A) , p (B)}.
Proof Suppose that κ < min {p (A) , p (B)} and that

C :=
⎧
⎨

⎩
cα :=

⋃

i<nα

aα
i × bα

i | α < κ

⎫
⎬

⎭

is a centered family in A⊕ B. Extend C to an ultrafilterU of A⊕ B. So for all α < κ

there is iα < nα such that aα
iα

× bα
iα
is an element of U . Hence

{
aα
iα

× bα
iα

| α < κ
}

is a centered family and both
{
aα
iα

| α < κ
}
and

{
bα
iα

| α < κ
}
are centered families

in A and B respectively. Let a and b be some pseudointersections of each family. So

a × b is a pseudointersection of
{
aα
iα

× bα
iα

| α < κ
}
and therefore of C . It follows

that κ < p (A ⊕ B). �

2 The proof provided here is shorter and uses set-theoretic notation which seems to the author more intuitive
when dealing with free products of Boolean algebras.
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Implicit in the last proofs is the fact that if we have in A ⊕ B a centered family
with no pseudointersection (resp. splitting) is because its projection on one coordinate
is also a centered family with no pesudointersection (resp. is also splitting). So these
structures on A ⊕ B strongly “inherit” the behavior they have on A and B.

On the other hand, if on A ⊕ B we have cα := ⋃
i<nα

aα
i × bα

i , for α < κ , which
form a strictly decreasing family, and choose, through and ultrafilter, some iα < nα

for each α, as in the last proof, we can be sure only of taking on each coordinate a
centered family, not precisely a decreasing family, and hence any hypothesis regarding
t(A) or t(B) cannot be immediately used. For this reason, even when next result is
analogous to both the previous ones, its proof is considerably less trivial.

Theorem 12 3 t (A ⊕ B) = min {t (A) , t (B)}.
Proof Let κ be a regular cardinal less than min {t (A) , t (B)} and

C :=
⎧
⎨

⎩
eα :=

⋃

i<nα

aα
i × bα

i | α < κ

⎫
⎬

⎭

be a strictly decreasing family of A ⊕ B. It will be proved that C has a pseudointer-
section.

First suppose that κ = ω. Since ω < t (A) and ω < t (B), from Lemma 5 it
follows that ω < p (A) and ω < p (B). Therefore, from Theorem 11, we conclude
that ω = κ < p (A ⊕ B) ≤ t (A ⊕ B) and that C has a pseudointersection.

Now suppose that ω < κ . Suppose also that for all α < κ and i < j < nα we have
that bα

i ∩ bα
j = ∅. Since κ is a regular uncountable cardinal, we may also suppose that

there exists n < ω such that n = nα , for all α < κ . It will be proved inductively that
for all n < ω such a strictly decreasing family has a pseudointersection.

The basic step, when n = 1, is trivial. Suppose that n is greater than 1 and that the
claim is already proved for all m ∈ n\ {0}. If α < κ and I is a nonempty subset of n,
define

cα
I :=

⋂

i∈I
aα
i \

⋃

i∈n\I
aα
i

and

dα
I :=

⋃

i∈I
bα
i .

Clearly for all α < κ

⋃

I∈P(n)\{∅}
cα
I × dα

I =
⋃

i<n

aα
i × bα

i = eα.

3 Theorem 4.40 in [5], states this fact, although it mainly refers to the spectrum of towers of the Boolean
algebras in question, i.e. the set of regular cardinals κ such that there is a tower of size κ in the respective
Boolean algebra. Notice that the following proof also serves for proving said theorem. Instead of beginning
with κ < min{t(A), t(B)} begin with κ /∈ (tspec(A) ∪ tspec(B)) and everything else follows.
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Observe also that for allα < β < κ and J , I ∈ P(n)\{∅}, if cβ
J∩cα

I �= ∅, it follows that
dβ
J ⊆ dα

I . Indeed, if there exist x ∈ cβ
J ∩ cα

I and y ∈ dβ
J \dα

I , we have that (x, y) ∈ eβ .
On the other hand (x, y) /∈ cα

I × dα
I , because y /∈ dα

I , and (x, y) /∈ cα
I ′ × dα

I ′ for
I ′ ∈ P(n)\{∅, I }, because x ∈ cα

I and cα
I ∩ cα

I ′ = ∅. Therefore (x, y) /∈ eα . But this
means that eβ � eα , which is a contradiction.4

Since the sets of the form
⋃

I∈P(n)\{∅}
cα
I ,

where α < κ , form a decreasing family of non-empty sets, and therefore a centered
family extendable to an ultrafilter, for all α < κ there exists Iα ∈ P (n) \ {∅} such that{
cα
Iα

| α < κ
}
is a centered family. So

{
dα
Iα

| α < κ
}
is a decreasing family. It follows

that

C ′ :=
⎧
⎨

⎩

⋃

i∈Iα
aα
i × bα

i | α < κ

⎫
⎬

⎭

is a decreasing family of non-empty sets. Wlog we can suppose that there exists a
nonempty I ∈ P(n) such that Iα = I for all α < κ . Notice that {⋂i∈I aα

i | α < κ} is
a centered family.

If I �= n, there existsm < n such that |I | = m. So, by induction hypothesis, C ′ has
a pseudointersection, and hence C also has a pseudointersection. If I = n, we have
two cases:

Case 1. There exists α < κ such that
⋂

i<n

aβ1
i ⊆

⋂

i<n

aβ0
i

for all α < β0 < β1 < κ . It is clear that there exists a ∈ A such that a ⊆ ⋂
i<n a

β
i

for all α < β < κ . If b ∈ B is a pseudointersection of
{⋃

i<n b
α
i | α < κ

}
, it follows

that a × b is a pseudointersection for C .
Case 2. For all α < κ there exist α < β0 < β1 < κ such that

⋂

i<n

aβ1
i �

⋂

i<n

aβ0
i .

Observe that this means that there exists j < n such that bβ0
j ∩ bβ1

i = ∅ for all i < n.

Indeed, suppose that for all j < n there exists i < n such that bβ0
j ∩ bβ1

i �= ∅ and

hence such that aβ1
i ⊆ aβ0

j (as it was observed when dealing with the d’s and c’s). Take

x ∈ ⋂
i<n a

β1
i and j < n. Since aβ1

i ⊆ aβ0
j for some i < n, it follows that x ∈ aβ0

j . We

4 As witnessed by this observation, observations (5), (6) and (7) in the proof of Theorem 4.40 in [5] heavily
influenced the present proof.
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conclude that
⋂

i<n a
β1
i ⊆ ⋂

i<n a
β0
i , which is contradiction. From this observation it

follows that
⋃

i<n b
β
i ⊆ ⋃

i∈n\{ j} b
β0
i for all β1 ≤ β < κ .

With this idea it is easy to inductively construct a cofinal set {βα | α < κ} ⊆ κ and
a sequence { jα | α < κ} such that

⎧
⎨

⎩

⋃

i∈n\{ jα}
aβα

i × bβα

i | α < κ

⎫
⎬

⎭

is a decreasing family. Applying the inductive hypothesis to this family we get a
pseudointersection of C . �


Now take two disjoint elements of (A ⊕ B)+, say a × b and c × d. There is
nothing preventing, say, a and c from not being disjoint, being enough that b and
d are disjoint. Hence it can be observed that given some infinite disjoint family of
A ⊕ B its projection to either coordinate must not be, not even something close to, a
disjoint family. Nevertheless, it can be noticed also that if we restrict the same disjoint
family to some subfamily such that, say, projecting to the second coordinate give us a
centered family, then necessarily in the first coordinate we get a disjoint family. With
this thoughts the following result was obtained.

Theorem 13 min {min {a (A) , a (B)} ,max {p (A) , p (B)}} ≤ a (A ⊕ B).

Proof Take ω ≤ κ < min {min {a (A) , a (B)} ,max {p (A) , p (B)}}, so wlog we can
assume that κ < a (A) , p (B). Let P := {cα | α < κ} be a disjoint family of A ⊕ B.
Since each cα can be replaced by the disjoint union of finitely many sets of the form
aiα × biα , as was observed at the beginning of this section, and κ is an infinite cardinal,
we may suppose that each cα := aα × bα . We will prove that P is not a partition of
A ⊕ B. We consider two cases.

Case 1. For all E ∈ [κ]≥ω there exists F ∈ [E]<ω such that bα ⊆ ⋃
β∈F bβ for all

α ∈ E .
Let F0 be such a finite subset for κ = E . Suppose that for some n < ω we have

already defined Fi , for all i < n. Let Fn be such a finite subset for κ\⋃
i<n Fi . So

recursively define a sequence {Fn | n < ω} of finite, pairwise disjoint subsets of κ

such that if m < n < ω, then

⋃

α∈Fn
bα ⊆

⋃

α∈Fm
bα.

Extending the centered family

⎧
⎨

⎩

⋃

α∈Fn
bα | n < ω

⎫
⎬

⎭
,

to an ultrafilter, it follows easily that we can choose for each n < ω some αn ∈ Fn
such that

{
bαn | n < ω

}
is a centered family.
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Extend the set {αn | n < ω} to D, a maximal subset of κ such that {bα | α ∈ D} is
a centered family. Since for all α < β elements of D, cα and cβ are disjoint, it follows
that {aα | α ∈ D} is an infinite set of disjoint elements of A.

Since κ < a (A), there exists a ∈ A+ witnessing that {aα | α ∈ D} is not a partition.
Also, κ < p (B), which means that there exists b ∈ B+, such that b ⊆ bα , for all
α ∈ D. Hence a × b witnesses that P is not a partition of A ⊕ B.

Case 2. There exists E ∈ [κ]≥ω such that for all F ∈ [E]<ω there exists α ∈ E
such that bα �

⋃
β∈F bβ .

Suppose that E is a maximal subset of κ with this property. It follows that
{bα | α ∈ κ\E} is a centered family in B. To prove it take α0, ..., αn ∈ κ \ E . Because
of the maximality of E , if i ≤ n, there exists Fi , a finite subset of E , such that

⋃

α∈E
bα ⊆

⋃

β∈Fi
bβ ∪ bαi .

If F := ⋃
i≤n Fi , it follows that for all i ≤ n

⋃

α∈E
bα ⊆

⋃

β∈F
bβ ∪ bαi .

Also, by hypothesis, we know that there exists α′ ∈ E such that bα′ �
⋃

β∈F bβ .
Hence ∅ �= bα′ \⋃

β∈F bβ ⊆ bαi for all i ≤ n. It follows that {bα | α ∈ κ\E} is a
centered family. If κ \ E is infinite, as in the previous case, it can be proved that P is
not a partition of A ⊕ B.

Suppose that |κ \ E | < ω. By hypothesis we know that for all F ∈ [E]<ω, Y �=⋃
β∈F bβ . Since κ < p (B), it follows that there is b ∈ B+ such that b∩bα = ∅ for all

α ∈ E . Clearly if
⋃

α∈κ\E aα �= X , then the set (X\⋃
α∈κ\E aα) × b would witness

that P is not a partition of A⊕B. Suppose that this is not the case, so
⋃

α∈κ\E aα = X .
Since κ \ E is finite, we may suppose that it is equal to {αi | i ≤ n} for some n < ω.
As it was observed when proving that {bα | α ∈ κ\E} is a centered family, there exist
α′ ∈ E and F ∈ [E]<ω such that ∅ �= bα′ \⋃

β∈F bβ ⊆ bαi for all i ≤ n. In particular
bα′ ∩ bαi �= ∅ for all i ≤ n. Also aα′ ∩ aα j �= ∅ for some j ≤ n, which would imply
that cα′ ∩ cα j �= ∅. This is a contradiction, since P is supposed to be a disjoint family.
So

⋃
α∈κ\E aα �= X and we conclude that P is not a partition.

All cases considered, it follows that κ < a (A ⊕ B). �

The complicated statement of the previous theorem can be translated as follows: If

there exists a disjoint family of A ⊕ B which disproves the equality for a in Theorem
9, its size must be at least as big as either p (A) or p (B).

We conclude this section pointing at a possibility for answering Problem 8. Sim-
plifying to the case where A = B, it follows from Theorem 13 that if we wanted to
get an example of a (A ⊕ A) < a (A), it would be necessary that p (A) < a (A). Now
take the better known case where A = P(ω)/Fin. It is known to be consistent that
p < a (see [1], [3]). Hinting at a possible negative answer to Problem 8, the following
question arises:

Question 1 Is it consistent that p = a(P(ω)/Fin ⊕ P(ω)/Fin) < a?
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4 Other questions

In this last section, as a kind of a appendix, we will briefly deal with a couple of
questions that, though related to the cardinal invariants defined in the first section,
remain somehow detached from those dealt with in sections 2 and 3. The first asks
about the possibility of an alternative definition of p. That possible definition is related
to the so called ramification sets.

Definition 4 Let A be a Boolean algebra. X ⊂ A is said to be a ramification set if for
all a, b ∈ X either a ≤ b, b ≤ a, or a · b = 0.

Problem 48 asks: Is

p (A) = min {|X | | X is maximal rami f ication set o f A}?

Here this question is answered negatively. The algebra which proves this is an interval
algebra.

Definition 5 Let L be a linearly ordered set. The interval algebra of L , denoted
I ntalg (L), is the set algebra on L generated by the intervals of the form [a, b),
where a ∈ L ∪ {−∞} and b ∈ L ∪ {∞}.

It is easy to verify that for all linearly ordered set L , its interval algebra is the set of
all

⋃
i<n[ai , bi ), where n < ω, ai ∈ L ∪ {−∞}, bi ∈ L ∪ {∞}, ai < bi and bi < a j

for all i < j < n.
Take A := I ntalg (ω1). The set

{[n, n + 1) | n < ω} ∪ {[ω,∞)}

witnesses that a (A), and hence that p (A), is equal to ω.
Now suppose that R := {cn | n < ω} is ramification set of A. Each cn is of the

form
⋃

i≤mn
[αn

i , β
n
i ). Suppose that βn

mn
< ∞ for all n < ω. Take

β := sup{βn
mn

| n < ω}.

Clearly the interval [β,∞), being disjoint to every element of R, witnesses that R is
not a maximal ramification set.

On the other hand, suppose that there exists n0 < ω such that β
n0
mn0

= ∞. Then
take

α := sup({αn
mn

| n < ω} ∪ {βn
mn

| n < ω ∧ βn
mn

< ∞}).

Take n < ω. If βn
mn

= ∞, then [α,∞) is subset of [αn
mn

, βn
mn

) ⊆ cn . If βn
mn

< ∞, then
[αn

mn
, βn

mn
) < [α,∞), and hence [α,∞) is disjoint to cn . Therefore [α,∞) witnesses

that R is not a maximal ramification set. We conclude that the minimum size of a
maximal ramification set defines a cardinal function other than p.

The following question introduces a kind of extension other than those of the Sect. 2.
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Definition 6 Let A and B two Boolean algebras such that A ≤ B. It is said that A is
σ -embedded in B, A ≤σ B, if for all b ∈ B the ideal A � b is σ -generated.

Recall that an ideal I of some Boolean algebra A is σ -generated if there exists
X ∈ [I ]ω such that for all a ∈ I there exists x ∈ X such that a ≤ x . The following
theorem answers negatively to Problem 70: Are there BAs A, B such that A ≤σ B
and π(A) > π(B)?

Theorem 14 Let A and B two infinite Boolean algebras. If A ≤σ B, then π (A) ≤
π (B).

Proof A family X ⊆ B \ {1} will be said to be cofinal in B if for all b ∈ B \ {1}
there exists x ∈ X such that b ≤ x . It is clear that X ⊆ B \ {1} is cofinal in B iff
{−x | x ∈ B} is dense in B. Therefore there exists X a cofinal family in B of size
π (B). For x ∈ X take Cx ∈ [A]ω, a set witnessing that A � x is σ -generated.

Take a ∈ A \ {1}. Since X is cofinal in B, there exists x ∈ X such that a ≤ x . It
follows that a is an element of A � x . Hence there exists y ∈ Cx such that a ≤ y.
Therefore

Y :=
⋃

x∈X
Cx

is cofinal in A. Since {−y | y ∈ Y } is a dense set of A of size π (B) · ω = π (B), it
follows that π (A) ≤ π (B). �
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