
Archive for Mathematical Logic (2023) 62:751–788
https://doi.org/10.1007/s00153-023-00863-9 Mathematical Logic

A topological completeness theorem for transfinite
provability logic

Juan P. Aguilera1,2

Received: 16 May 2019 / Accepted: 17 January 2023 / Published online: 22 February 2023
© The Author(s) 2023

Abstract
We prove a topological completeness theorem for the modal logic GLP containing
operators {〈ξ 〉 : ξ ∈ Ord} intended to capture a wellordered sequence of consistency
operators increasing in strength. More specifically, we prove that, given a tall-enough
scattered space X , any sentence φ consistent with GLP can be satisfied on a poly-
topological space based on finitely many Icard topologies constructed over X and
corresponding to the finitely many modalities that occur in φ.
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1 Introduction

The purpose of this article is to prove a topological completeness theorem for the
transfinite extension of Japaridze’s logic GLP . GLP is a provability logic in a propo-
sitional language augmented with a possibly transfinite sequence of modal operators;
our case of interest is that in which the sequence is wellfounded. Each of these oper-
ators can be interpreted arithmetically as asserting provability within a given theory,
and the logic GLP relates these notions of provability to one another. For arithmeti-
cal interpretations of GLP , see Beklemishev [6], Fernández-Duque and Joosten [18],
Cordón-Franco et al. [15], and others. As a modal logic, GLP has some unusual
properties. For example, it is not complete with respect to any class of relational
frames; a natural question is whether it is complete with respect to its neighborhood
(i.e., topological) semantics. Beklemishev and Gabelaia [11] showed that GLPω, the
restriction of GLP to ω-many modalities, is complete with respect to a natural topo-
logical space on the ordinal ε0. Because sentences in the language of GLP contain
instances of only finitely manymodalities, the spaces constructed by Beklemishev and
Gabelaia serve as models also for formulas in the language of transfinite GLP; hence
it is also topologically complete. However, it is an open problem whether transfinite
GLP is complete with respect to a single Beklemishev-Gabelaia space.1 Another
open problem is that of completeness with respect to what are known as the canonical
topological semantics for GLP . The question of completeness with respect to these
spaces has very interesting connections with stationary reflection and indescribable
cardinals (see Bagaria [4], Bagaria-Magidor-Sakai [5] and Brickhill [14]). Complete-
ness for the two-modality fragment with respect to these topologies was proved by
Beklemishev [8]. It is not hard to see that GLP is not strongly complete with respect
to its canonical topological semantics; we shall prove this below.

Completeness with respect to Beklemishev-Gabelaia spaces was proved by
Fernández-Duque [16] for restrictions ofGLP to any countable amount of modalities.
It is not known whether this result can be extended to arbitrarily long sequences of
modalities, but the results from [3] show that the techniques would need to be very
different.

The topological completeness theorem we shall prove here goes in this direction.
Roughly, given a sentence consistent with GLP , we construct a topological model for
it with finitelymany topologies. The new feature is that these topologies in away corre-
spond to the modalities appearing in the sentence; we call these �ϑ-polytopologies, for
�ϑ a finite sequence of ordinals. In particular, one can extend the space with intermedi-
ate increasing topologies corresponding to modalities not appearing in the sentence in
such a way that each topology results in a model of the unimodal GL . Unfortunately,
this extension (with the intermediate topologies) will not be a model of GLP , but
we hope that a similar construction can yield completeness for Beklemishev-Gabelaia
spaces with any amount of topologies. This hope is the main motivation for carrying
out the work reported in this article.

1 The anonymous reviewer has pointed out that if X = (Ord, {Tι : ι ∈ Ord}) is a Beklemishev-Gabelaia
space, thenGLP is complete with respect to the space (Ord, {Tι+1 : ι ∈ Ord}) consisting of the successor
topologies of X. (This can be proved by adapting the previous arguments for completeness.)
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A topological completeness theorem for transfinite… 753

Our main tool is a technical “product lemma.” Essentially, given two ordinals κ and
λ, we find an ordinal � and natural projections π0 : � → κ and π1 : � → λ which
preserve satisfiability of polymodal formulas, if the ordinals are equippedwith the right
topologies. This is a generalization of a technical lemma of Beklemishev-Gabelaia
[10], which corresponds to the case in which the first element of the sequence �ϑ is 1.
The proof is largely arithmetical and relies heavily on the theory of hyperexponentials
and hyperlogarithms of Fernández-Duque and Joosten [17].

2 Preliminaries

2.1 The polymodal logic of provability

For any ordinal number � we consider a language L� consisting of a countable set
of propositional variables P together with the constants �, ⊥; Boolean connectives
∧, ∨, ¬, →; and a modality [ξ ] for each ordinal ξ < �. As usual, we write 〈ξ 〉 as a
shorthand for ¬[ξ ]¬.

Definition 2.1 The logic GLP� is then defined to be the least logic containing all
propositional tautologies and the following axiom schemata:

(i) [ξ ](ϕ → ψ) → ([ξ ]ϕ → [ξ ]ψ) for all ξ < �,
(ii) [ξ ]([ξ ]ϕ → ϕ) → [ξ ]ϕ for all ξ < �,
(iii) [ξ ]ϕ → [ζ ]ϕ for all ξ < ζ < �,
(iv) 〈ξ 〉ϕ → [ζ ]〈ξ 〉ϕ for all ξ < ζ < �,

and closed under the rules modus ponens and necessitation for each [ξ ]:
ϕ → ψ ϕ

ψ
MP

ϕ

[ξ ]ϕ nec

We will often write simply GLP for GLP� when we do not want to specify a �.
Note that GLP when restricted to any one modality is simply the well-known logic
GL . Modal logics are usually studied by means of relational semantics. A Kripke
�-frame is a structure (W , {Rξ })ξ<�, where each Rξ is a binary relation on W . We
define a valuation �·� to be a function assigning subsets of W to each L�-formula
such that �·� respects boolean connectives and such that

�〈ξ 〉ϕ� = R−1
ξ �ϕ�.

Proposition 2.2 (Segerberg [19]) GLP1 is complete with respect to the class of finite
relational frames (W , R) that are conversely wellfounded trees.

The preceding proposition provides a convenient way to study GLP1. However,
as is well known, GLP� is incomplete with respect to any class of relational frames
whenever 1 < �. This motivates the search for topological models of the GLP .

Recall that x is a limit point of A if A intersects every punctured neighborhood of
x . We call the set of limit points of A the derived set of A and denote it by d A. We
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754 J. P. Aguilera

may also denote it by dτ A to emphasize the topology we are considering. The derived
set operator is iterated transfinitely by setting

1. d0A = A,
2. dα+1A = ddαA, and
3. dγ A = ⋂

α<γ dαA for limit ordinals.

Since dαX ⊃ dβX whenever α < β, there exists a minimal ordinal ht(X)—the height
or rank of X—such that dht(X)X = dht(X)+1X . For any x ∈ X , we let ρτ x , the rank
of x , be the least ordinal ξ such that x /∈ dξ+1X , if it exists.

Throughout this paper, we will speak about rank-preserving extensions of topolo-
gies. (A topology σ on a set X is a rank-preserving extension of a topology τ on X if
τ ⊂ σ and ρσ x = ρτ x for all x ∈ X .)

Lemma 2.3 (Beklemishev-Gabelaia [10]). A topologyσ is a rank-preserving extension
of a scattered topology τ if, and only if, ρτ [U ] is an ordinal for each U ∈ σ .

A point in A that is not a limit point is isolated. Thus a point is isolated if and only
if it has rank 0. We denote by iso(A) the set of isolated points in A. A topological
space is scattered if iso(A) �= ∅ for each A ⊂ X (alternatively, if dht(X)X = ∅). Not
all scattered spaces are T1 (e.g., X = {0, 1} with open sets ∅, {0} and X ), however,
the examples in which we will focus are.

We study polytopological spaces—structures (X , {Tι}ι<�), where X is a set and
{Tι}ι<� is a sequence of topologies of length �. Topological semantics for modal
logics may be defined by interpreting diamonds as topological derivatives.

Definition 2.4 (Topological semantics). Let X = (X , {Tι}ι<�) be a polytopological
space. A valuation is a function �·� : L� → P(X) such that for any L�-formulae
ϕ,ψ :

(i) �⊥� = ∅;
(ii) �¬ϕ� = X\�ϕ�;
(iii) �ϕ ∧ ψ� = �ϕ� ∩ �ψ�;
(iv) �〈ξ 〉ϕ� = dTξ

�ϕ�.

A model M = (X, �·�) is a polytopological space together with a valuation. We
say that ϕ is satisfied inM if �ϕ� is nonempty and we say ϕ is valid in a space X and
write X |� ϕ if �ϕ� = X for any model based on X.

Observe that x ∈ �[ξ ]ϕ� if, and only if, there is a Tξ -neighborhood of x all of
whose points belong to �ϕ�, except possibly for x . In order that a space validate the
axioms of GLP , we need to impose some regularity conditions (see Beklemishev-
Bezhanishvili-Icard [9]). A space (X , {Tι}ι<�) is a GLP�-space if {Tι}ι<� is non-
decreasing, scattered, and

dξ A ∈ Tζ for all ξ < ζ and all A ∈ P(X) (2.1)

In the situation above, we refer to {Tι}ι<� as a GLP�-polytopology. Clearly, we have:
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Lemma 2.5 Any GLP�-space validates all theorems of GLP�.

A natural way of constructingGLP�-polytopologies appears to be to start with any
scattered topology and simply add all derived sets at each stage. This results in what
has come to be known as the canonical GLP-space generated by X . In doing so, the
topologies quickly become extremely fine. In fact, for the most natural examples, their
non-discreteness becomes undecidable within ZFC after two or three iterations.

One way out of this, explored in Beklemishev-Gabelaia [10], is to extend the topol-
ogy at each stage before adding derived sets. Extending the topology reduces the
amount of derived sets attainable and makes subsequent topologies coarser. A dif-
ferent approach, introduced in Fernández-Duque [16], is to fix increasing topologies
from the beginning and restrict the algebra of possible valuations. We will consider
the first approach here.

Let us finish this section with the remark that GLP is not strongly complete with
respect to its canonical semantics. By strong completeness (with respect to a class of
models X ), we mean the following assertion: whenever � is a set of L�-sentences
consistent with GLP�, then there is some model X ∈ X where � is satisfied.

Proposition 2.6 Suppose X is a scattered space in which every Gδ set is open. Then
GL is not strongly complete with respect to X.

Proof This is a generalization of the usual proof thatGL is not strongly complete with
respect to trees. Let

� = {♦p0} ∪ {�(pi → ♦pi+1) : i < ω}.

Suppose � is satisfied at some x . Then, for each i , there is a neighborhood Ui of
x such that every y ∈ Ui with x �= y, if y satisfies pi , then y is a limit of points
satisfying pi+1. Since U := ⋂

i<ω Ui is Gδ , it is open. Since x satisfies ♦p0 and U
is a neighborhood of x , U contains some x0 �= x of some rank α0 < ρ(x) satisfying
p0. Inductively, for each i < ω, there is some xi ∈ U satisfying pi with xi �= x , and,
since xi ∈ Ui , xi is a limit of points satisfying pi+1; in particular, there is one such
point xi+1 in U , say of rank αi+1 < αi (so in particular xi+1 �= x). This gives an
infinite decreasing sequence of ordinals. ��

Recall that if κ is an ordinal of uncountable cofinality, then the intersection of
countably many sets which are closed and cofinal in κ is also closed and cofinal in
κ . Hence, Proposition 2.6 applies to the closed-unbounded topology from Blass [13].
More generally:

Corollary 2.7 GL is not strongly complete with respect to topologies on ordinals given
by countably complete filters, such as the closed-unbounded topology.

The spaces we will consider will instead be built around the Generalized Icard
topologies.

Definition 2.8 (Generalized Icard Topologies). Let (X , τ ) be a scattered space of rank
�. We define a topology τ↑1 generated by τ and all sets of the form

(α, β)τ := {x ∈ X : α < ρτ x < β},
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756 J. P. Aguilera

for ordinals α < β ≤ � + 1. We iterate this construction by setting

• τ↑(ι+1) = (τ↑ι)↑1, and
• τ↑λ = ⋃

ξ<λ τ↑ξ at limit stages.

These are called the generalized Icard topologies.

These topologies were defined differently in [3]. By Lemma 2.20.2.20 below, both
definitions coincide. Another equivalent formulation is as follows: τ↑1 is generated by
τ and the family

{dξ+1X : ξ ∈ Ord}. (2.2)

2.2 Arithmetic, I

Definition 2.9 We fix some notation related to ordinal arithmetic.

1. Whenever α < β, we denote by−α+β the unique ordinal γ such that α+γ = β.
2. Whenever A is a set of ordinals, we denote by α + A the set {α + β : β ∈ A}.

Expressions such as −α + A are defined analogously, if they make sense.
3. For all nonzero ξ , there exist ordinals α and β such that ξ = α + ωβ . Such a β is

unique. We denote it by �ξ and call it the end-logarithm of ξ .
4. For all nonzero ξ , there exists a unique ordinal η such that ξ can be written as

ωη + γ , with γ < ξ . We denote this ordinal by Lξ and call it the initial logarithm
of ξ .

The operations � and L should be regarded as functions on (a sufficiently large subset
of) Ord. Nonetheless, in its use and in general whenever we deem it convenient, we
will omit the symbol ‘◦’ for function composition, as well as perhaps parentheses.

Our completeness proof will rely heavily upon an analysis of generalized Icard
topologies and their structure induced by the arithmetical properties of ordinals.Hence,
developing a thorough intuition about them will be crucial. A most useful remark in
this direction is the fact that they are to arbitrary topological spaces as the usual order
topology is to ordinal numbers. Indeed, define the initial segment topology I0 on an
ordinal � (or on Ord) to be generated by all initial segments [0, α], for α < �.
Then (�, I0) is a scattered space: a rather trivial scattered space—it carries no further
information than the usual ordering on Ord. For instance, we have ρI0α = α for all
α and ht(�, I0) = �.

Lemma 2.10 I1 := I0↑1 is the order topology. We have ρI1α = �α for all α, so
in particular isolated points are exactly the successor ordinals. Moreover, ht(� +
1, I1) = L(�) + 1.

Proof It is not hard to see that I1 is the order topology, and that the rank function
is � is established by a simple induction. Finally, let H be the class of additively
indecomposable ordinals. It follows that

ht(� + 1,I1) = sup
ξ≤�

(�ξ + 1) = sup
ξ≤�∩H

(�ξ + 1) = sup
ξ≤�∩H

(Lξ + 1) = sup
ξ≤�

(Lξ + 1).
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A topological completeness theorem for transfinite… 757

Since α �→ Lα is non-decreasing, this last supremum is equal to L(�)+1, as claimed.
��

In what follows, wewrite simply Iλ instead of I0↑λ. These topologies are important
because, as we will see, the completeness theorem can quickly be reduced to the case
when the underlying space is an ordinal equipped with a topology of the form Iλ.

2.3 d-maps and J-maps

There is an appropriate notion of structure-preserving mappings between scattered
spaces. We say that a function between topological spaces is pointwise discrete if the
preimage of any singleton is a discrete subspace.

Definition 2.11 (d-map) Let X and Y be scattered spaces. A function f : X → Y is
a d-map if it is continuous, open, and pointwise discrete.

Clearly, any homeomorphism is a d-map. In particular, ordinal addition and sub-
straction, i.e., functions of the form

(−ξ + ·) : ([ξ, ξ + �], Iζ ) → ([0,�], Iζ ),

are d-maps. The rank function

ρτ : (X , τ ) → ([0, ρτ X ], I0)

is also a d-map. A more interesting example is given by end-logarithms of the form:

� : (�, I1+ζ ) → (�, Iζ ).

A proof of this, and the more general Lemma 2.21 below can be found in Fernández-
Duque [16].

Since the composition of d-maps is a d-map, they can be thought of as morphisms
in the category of scattered spaces. We will now state various properties of d-maps.

Lemma 2.12 Let f : X → Y be a d-map.

1. If Y is an ordinal � with the initial segment topology, then f is the rank function
on X.

2. For any A ⊂ Y , f −1d A = d f −1A.
3. f : (X , τ↑λ) → (Y , σ↑λ) is a d-map for any λ.
4. If f is surjective, then for any L1-formula ϕ, X |� ϕ implies Y |� ϕ.

Proof Items 1 and 2 appear in Beklemishev-Gabelaia [10]; item 4 appears in
Bezhanishvili-Mines-Morandi [12] in the current formulation. Item 3 is proved in
[3], but therein a different definition of τ↑λ is used, and we still have not shown that
they are equivalent. Nonetheless, the claim can be proved by an easy induction.
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758 J. P. Aguilera

Suppose f : (X , τ↑λ) → (Y , σ↑λ) is a d-map. Note that 2 implies that d-maps are
rank-preserving, i.e.,

ρτ↑λ
(x) = ρσ↑λ

( f (x)) for every x ∈ X .

It follows that for any τ↑λ-open A,

f (A ∩ (α, β)τ↑λ) = f (A) ∩ (α, β)σ↑λ ∈ σ↑λ+1;

and for any σ↑λ-open B,

f −1(B ∩ (α, β)σ↑λ) = f −1(B) ∩ (α, β)τ↑λ ∈ τ↑λ+1;

so that f is (τ↑λ+1, σ↑λ+1)-continuous and open. Clearly it is also pointwise discrete.
The case for limit λ follows from Fernández-Duque [16, Lemma 5.8]. ��

As mentioned in the proof of 2.12.3, Lemma 2.12.2 implies that d-maps are rank-
preserving. Also, it follows from 2.12.3 that if the rank of (X , τ ) is �, then

ρτ : (X , τ↑λ) → (�, Iλ)

is a d-map. The main feature of d-maps is as follows:

Lemma 2.13 GLP1 is complete with respect to a scattered space (X , τ ) if, and only
if, for any finite, converse-wellfounded tree T , there exists a τ -open subspace S of X
and a surjective d-map f : (S, τ ) → T .

Proof That completeness follows from the existence of d-maps is independently due
to Abashidze [1] and Blass [13]. Note that it immediately follows from Proposition
2.2 and Lemma 2.12.4.

The converse is probably folklore and will not be needed below, but we prove it
anyway. Suppose GLP1 is complete with respect to (X , τ ), where τ is scattered. Let
(T ,<) be a finite, converse wellfounded tree. We define from T a modal formula ϕ

consistent with GLP1. Let {pt : t ∈ T } be a set of distinct propositional variables and
r be the root of T . Set

ϕ = pr ∧
∧

s∈T ; s �=r

¬ps ∧
⎛

⎝
∧

t∈T ;t �=r

♦pt

⎞

⎠ ∧ �
(

∨

t∈T
pt

)

∧ � (¬pr )

∧
⎛

⎝
∧

s,t∈T ; s �=t

�(ps → ¬pt )

⎞

⎠ ∧
(

∧

s<t

�(ps → ♦pt )

)

∧
⎛

⎝
∧

s �<t

�(ps → ¬♦pt )

⎞

⎠ ∧ �
∧

t∈T

(

pt → �
∨

t<s

ps

)

.
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A topological completeness theorem for transfinite… 759

Clearly, there is a Kripkemodel based on T where ϕ is true in r ; namely, any onewhere
each pt holds only in t . Hence, ϕ is consistent with GLP1, whereby it is satisfiable in
X . Fix a valuation over X and a point xr ∈ X such that xr |� ϕ. Thus, xr satisfies pr
and

∧
s,t∈T ; s �=r ¬ps and xr is a limit point of points satisfying each of pt , for t �= r .

Moreover, by each of the conjuncts above:

1. there is a punctured neighborhood of xr where each point satisfies pt for some
t ∈ T ;

2. there is a punctured neighborhood of xr where no point satisfies pr ;
3. for each pair of distinct s, t ∈ T , there is a punctured neighborhood of xr of points

satisfying at most one of ps and pt ;
4. for each pair of distinct s, t ∈ T with s < t , there is a punctured neighborhood of

xr where all points satisfying ps are limits of points satisfying pt ;
5. for each pair of distinct s, t ∈ T with s �< t , there is a punctured neighborhood of

xr where all points satisfying ps are not limits of points satisfying pt ; and
6. there is a punctured neighborhood of xr where whenever a point x satisfies pt ,

then there is a punctured neighborhood of x where each points satisfies one of ps ,
with t < s.

Let S be the intersection of all those finitely many open neighborhoods of xr . Clearly,
x |� pt and t �= s together imply x �|� ps . We define f : S → T by

f (x) = t if, and only if, x |� pt .

We claim f is a d-map. Let At be an open subset of T of the form

{s ∈ T : t ≤ s},

so that

f −1(At ) = {x ∈ S : x |� ps ∧ t ≤ s}.

This clearly equals S if t = r . Otherwise, for each x ∈ S with x |� ps and t ≤ s,
there is an open neighborhood U of x where each point satisfies pu for some u > s.
But t < u, whence U ⊂ f −1(At ). This implies that f −1(At ) is open, and so f is
continuous.

Conversely, suppose U ⊂ S is open, x ∈ U is such that x |� pt , and t < s. Then
x is a limit of points satisfying ps , so that

{y ∈ S : y |� ps} ∩U �= ∅,

whence s ∈ f (U ). Hence, f is open. Finally if t ∈ T , then f −1(t) is discrete, for t
is the image of points satisfying pt and no point in S can satisfy ps ∧ ♦ps for any s.
Therefore, f is a d-map. ��

Hence, the need to check whether a given spaceX satisfies a formula is replaced by
the definition of a suitable mapping between X and some other space which is known

123



760 J. P. Aguilera

to do so. In practice, polymodal analogs of Lemma 2.13 do not even require us to use
full d-maps, but rather a weaker form of embeddings, as shown by Beklemishev [7]:

Definition 2.14 (J-frame) A finite polymodal Kripke frame

F = (W , {<n}n<ω)

is called a J-frame if each relation is transitive and conversely wellfounded and it
satisfies the following two conditions:

(I) For all x, y ∈ W and all m < n: x <n y implies that for all z ∈ W : x <m z if,
and only if y <m z.

(J) For all x, y, z ∈ W and all m < n: if x <m y and y <n z, then x <m z.

We call a J-frame a Jn-frame if all binary relations past the nth one are empty.

Let (T ,<0, . . . , <N ) be a frame. Denote by En the reflexive, symmetric, and tran-
sitive closure of

⋃
n≤k<ω <k . The equivalence classes under En are called n-planes.

A natural order is defined on the set of (n + 1)-planes:

α ≺ β if, and only if, x <n y for some x ∈ α, y ∈ β

We say that a J-frame is a J-tree if for all n, the (n + 1)-planes contained in each
n-plane form a tree under <n and if whenever α < β for two (n + 1)-planes α, β, we
have x <n y for all x ∈ α and y ∈ β. This means that each Jn-tree can be thought of
as a tree each of whose nodes is itself a Jn−1-tree. Below, a node t ∈ T is a hereditary
k-root if for no j ≥ k and no s ∈ T do we have s < j t . We also write x �k y if
x < j y for some j ≥ k and

�k(x) = {x ∈ T : x �k y}.

Definition 2.15 (J-map)Let (T , σ0, . . . , σn)be a Jn-tree and (X , τ0, . . . , τn)be a space
with n + 1 topologies. We say that a function f : X → T is a Jn-map if

( j1) f : (X , τn) → (T , σn) is a d-map;
( j2) f : (X , τk) → (T , σk) is open for each k;
( j3) f −1(�k(x)), f −1({x} ∪ �k(x)) ∈ τk for each k < n and each hereditary

(k + 1)-root x ;
( j4) f −1x is a τk-discrete subspace for each k < n and each hereditary (k + 1)-root

x .

Lemma 2.16 (Beklemishev [7]). If f : Y → Z is a Jn-map and g : X → Y is a
d-map, then f ◦ g : X → Z is a Jn-map.

Lemma 2.17 (Beklemishev-Gabelaia [10]). For each Ln+1-formula ϕ consistent with
GLP, there exists a Jn-tree T such that if X is a GLPn+1-space and f : X → T is
a surjective Jn-map, then X �|� ¬ϕ, i.e., ϕ is satisfiable in X.

We call the tree obtained in Lemma 2.17 the canonical tree for ϕ.
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2.4 Arithmetic, II

We will need the definition of hyperlogarithms and hyperexponentials, due to
Fernández-Duque and Joosten [17]:

Definition 2.18

1. The hyperlogarithms {�ξ }ξ∈Ord are the unique family of pointwise maximal ini-
tial2 functions that satisfy:

(a) �1 = �, and
(b) �α+β = �β�α .

2. Let the function e be defined by ξ �→ −1+ωξ . The hyperexponentials {eζ }ζ∈Ord

are the unique pointwise minimal family of normal functions that satisfy

(a) e1 = e, and
(b) eα+β = eαeβ for all α and β.

One can verify by induction that the sequence {�ξγ : ξ ∈ Ord} is non-increasing for
any ordinal γ . If we set e0 to be the identity function and eξ0 = 0 for all ξ , then one
can also describe hyperexponentials recursively by condition 2.18.2(b), together with
the following normality clause:

for any ξ and any limit λ : eξ λ = lim
η→λ

eξ η; (2.3)

and the following fixed-point clause:

for any ξ and any limit λ : eλ(ξ + 1) = lim
η→λ

eη(eλξ + 1). (2.4)

The hyperexponential family refines the Veblen hierarchy. We mention some more
properties of hyperlogarithms and—exponentials.

Lemma 2.19 (see Fernández-Duque and Joosten [17] and Fernández-Duque [16]).

1. If ξ and δ are nonzero, then �ξ (γ + δ) = �ξ δ; if γ < δ as well, then �ξ (−γ + δ) =
�ξ δ. Moreover, if 1 < ξ , then �ξ (γ δ) = �ξ δ;

2. If ξ < ζ , then �ξ eζ = e−ξ+ζ and �ζ eξ = �−ξ+ζ . Furthermore, if α < eξ β, then
�ξα < β.

Proof (Sketch of 2.19) That �ξ (γ + δ) = �ξ δ is proved by induction on ξ using
2.18.2(b). From this follows that if γ < δ, then

�ξ (δ) = �ξ (γ + (−γ + δ)) = �ξ (−γ + δ).

Finally, it is proved by induction that �(γ δ) = Lγ + �δ, so that if 1 < ξ , then

�ξ (γ δ) = �−1+ξ �(γ δ) = �−1+ξ (Lγ + �δ) = �−1+ξ �δ = �ξ δ,

2 That is, sending initial segments of Ord onto initial segments of Ord .
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as desired. ��
We now give an alternative characterization of topologies τ↑λ and their rank func-

tions:

Lemma 2.20 Let (X , τ ) be a scattered space of rank �.

1. The topologies τ↑λ are computed as follows:

• τ↑0 is equal to τ

• τ↑λ generated by τ and all sets of the form

(α, β]τξ := {x ∈ X : α < �ξρτ x ≤ β},

for some −1 ≤ α < β ≤ � and some ξ < λ.

2. If (X , τ ) is a scattered space, then ρτ↑λ
= �λ ◦ ρτ . In particular, the rank function

of Iλ is �λ.

Sets of the form [α, β]τξ , [α, β)τξ , and (α, β)τξ are defined in the obvious way. In
particular, note that (α, β)τ0 = (α, β)τ .

Proof The second claim follows from Lemmas 2.12.1 and 2.12.3. We use this to prove
the first claim by induction. Suppose τ↑λ is generated by τ and all sets of the form

(α, β]τξ := {x ∈ X : α < �ξρτ x ≤ β},

for ξ < λ. By definition, τ↑(λ+1) = (τ↑λ)↑1 is generated by τ↑λ and all sets of the
form

(α, β)τ↑λ := {x ∈ X : α < ρτ↑λ
x < β},

but ρτ↑λ
= �λ ◦ ρτ by induction hypothesis. So (τ↑λ)↑1 is generated by all sets of the

form

(α, β]τξ := {x ∈ X : α < �ξρτ x ≤ β},

for ξ < λ + 1. The limit case is immediate. ��
The following lemmaprovides thekey relationshipbetween arithmetic and topology

for ordinals:

Lemma 2.21 (Fernández-Duque [16]). Hyperlogarithms

�ξ : (�, Iξ+ζ ) → (�, Iζ )

are d-maps.

We will make use of the following two lemmata from [3]:
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Lemma 2.22 Let (X , τ ) be a scattered space and λ be an ordinal. Any x in (X , τ↑λ)

has a λ-neighborhood U such that whenever x �= y ∈ U, �λρ0y < �λρ0x.

Lemma 2.23 Let 1 < λ be an additively indecomposable ordinal and x ∈ X be such
that ρτ x = eλ� > 0. Then for any τ↑λ-neighborhood V of x, there exist

• a set U ∈ τ , and
• ordinals η < eλ� and ζ < λ,

such that V contains the set U ∩ (η, eλ�]τζ .
For ranks not of the form eλ�, we have a more general result, also from [3]:

Lemma 2.24 Let (X , τ ) be a scattered space. Suppose 0 < λ, 0 < �λξ , and ρτ x = ξ .
Then for any τ↑λ-neighborhood V of x, there exist

• a set U ∈ τ , and
• a finite partial function r : λ → Ord such that letting

BX
r (x) =

⋂

ζ∈dom(r)

(r(ζ ), �ζ ξ ]τζ ,

we have U ∩ BX
r (x) ⊂ V .

We conclude this section with a final observation on logarithms:

Lemma 2.25 Suppose that λ is additively indecomposable, ζ is of the form eλζ0, and
�λξ < ζ0. Let

η = min{β : �βξ < ζ }.

Then η is a successor ordinal or zero.

Proof This is proved by induction on ξ . Suppose towards a contradiction that ξ is least
such that η is a limit; clearly ζ < ξ . If η is additively decomposable, say

η = η0 + ωρ > ωρ,

then

�ηξ = �ωρ

�η0ξ.

Now, we must have �η0ξ < ξ , for otherwise

ξ = �η0ξ ≤ �ωρ

ξ = �ωρ

�η0ξ ≤ ξ,

contradicting the fact �ωρ
�η0ξ < ζ ; thus, �η0ξ < ξ . But then, ζ ≤ �η0ξ and

�λ�η0ξ = �η0+λξ ≤ �λξ < ζ0,
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so by the induction hypothesis applied to �η0ξ , the least η′ such that

�η′
�η0ξ < ζ

is a successor ordinal. However, this ordinal is ωρ , which is a contradiction.
Thus η is additively indecomposable. Fernández-Duque and Joosten [17] computed

that, letting

η∗ = argmin{�νξ : 0 ≤ ν < η},

i.e., letting η∗ be the least ordinal ν which minimizes �νξ in [0, η), we have

1. if 0 < η∗, then

�ηξ = �η�η∗
ξ ;

2. if 0 = η∗, then

�ηξ = sup
β∈[0,ξ)

(
�ηβ + 1

)
.

If 0 < η∗, then �η∗
ξ < ξ , then one reaches a contradiction as above, using the

induction hypothesis on �η∗
ξ ; thus 0 = η∗. Now, note that η ≤ λ, since �λξ < ζ0 ≤ ζ .

In fact, we must have η < λ, by the displayed equation above. Since λ is additively
indecomposable, we have

�ηeλζ0 = eλζ0 = ζ < ξ,

and thus

�ηξ = sup
β∈[0,ξ)

(
�ηβ + 1

)

≥ �ηζ + 1

= �ηeλζ0 + 1

= eλζ0 + 1,

= ζ + 1,

which is again a contradiction. This proves the lemma. ��

3 �#-polytopologies
In this section, we state our completeness theorem and prove it modulo the product
lemma, which will be proved in the next section. Let us begin with somemotivation by
recalling the constructions from [10] and [16]. Let X = (X , τ ) be a scattered space;
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by [3], GL is complete with respect to each topology τ↑λ, with 0 < λ, provided X is
tall enough. Thus, one would attempt to prove completeness of GLP with respect to
the polytopology

{τ↑λ : 0 < λ < �}.

However, this is not a GLP-space and thus does not validate the axioms of GLP . The
idea is then to replace each topology τ↑λ by a rank-preserving extension and prove
completeness for that space. It is not known whether this is possible for arbitrary �.
What wewill do here is, given a formulaφ consistent withGLP , say, with occurrences
of modalities λ0, . . . , λn , and a (tall enough) scattered space X = (X , τ ), we produce
a sequence of topologies τ0, . . . , τn such that

1. (X , τ0, . . . , τn) satisfies φ, and
2. each τi is a rank-preserving extension of τ↑1+λi .

Definition 3.1 (ϑ-maximal topology) Let ϑ be a nonzero ordinal and (X , τ ) be a
scattered topological space. We say that τ∗ is a ϑ-extension of τ if

1. τ ⊂ τ∗,
2. ρτ∗ = ρτ , and
3. the identity function id : (X , τ ) → (X , τ∗) is continuous at all points x such that

�ϑρτ (x) = 0.

We say that τ∗ is an ϑ-maximal topology if there are no proper ϑ-extensions of τ∗.

In particular, when ϑ = 1, ϑ-maximality coincides with the notion of �-maximality
from [10]. If �ϑ = {ϑi : 0 < i < n} is a finite increasing sequence of non-zero ordinals,
we write

∂ �ϑ := {∂ϑi+1 : 0 < i < n},

where ∂ϑi+1 = −ϑi +ϑi+1 for 0 < i . For such a sequence �ϑ , we also write ∂ϑ1 = ϑ1.

Definition 3.2 Let us call a polytopological space X = (X , τ0, . . . , τn) a �ϑ-
polytopology over (X , τ ) if �ϑ = {ϑi : 0 < i ≤ n} is an increasing sequence of
non-zero ordinals and

1. τ0 is a ϑ1-maximal extension of τ ,
2. τi+1 is a ∂ϑi+2-maximal extension of (τi )↑∂ϑi+1 , for i + 1 < n, and
3. τn = (τn−1)↑∂ϑn

.

We remark the following consequence of the definition.

Lemma 3.3 Let X = (X , τ0, . . . , τn) be a �ϑ-polytopology over (X , τ ). Then, for each
i with 1 ≤ i ≤ n,

ρτi = ρτ↑ϑi
= �ϑi ◦ ρτ .
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Let us refer to the polytopologies considered in [10] and [16] as BG-polytopologies.
We will not need that notion below, so we do not define them. �ϑ-polytopologies are
weak versions of BG-polytopologies. For example, supposeX is a {ω1}-polytopology
over the interval topology on an ordinal. Then τ1 is a rank-preserving extension of
Iω1 obtained just by adding sets that would be already included in the corresponding
rank-preserving extension of Iω1 in any corresponding BG-space of length≥ ω1 over
I1. We now state the completeness theorem we shall prove:

Theorem 3.4 Let �ϑ be an increasing sequence of nonzero ordinals. Denote by GLP �
�ϑ the fragment of GLP whose only modalities appear in �ϑ .
1. (Soundness) All theorems of GLP � �ϑ hold in every �ϑ-space.
2. (Completeness) Let � ≥ ϑn be a limit ordinal and (X , τ ) be any scattered space

of height ≥ e�1. Suppose ϕ only contains modalities in �ϑ and is consistent with
GLP � �ϑ . Then, there is an open subset U of X such that ϕ is satisfied on a
�ϑ-polytopology over (U , τ↑1).

The result also holds also for successor ordinals by replacing e�1 with e1+�ω. In
fact, this general version is what we will prove; the smaller bound in the statement of
the theorem follows from the fact that, for limit �,

lim
λ→�

eλω = lim
λ→�

eλ+11 = lim
λ→�

eλ1 ≤ lim
λ→�

e�1 = e�1

These bounds are sharp (this follows from Lemma 2.13).
Notice that in Theorem 3.4.3.4, we satisfy the consistent formula on a �ϑ-

polytopology over a subspace (X , τ↑1). We cannot in general replace this with
(X , τ↑0)—consider an ordinal with the initial-segment topology. It is still useful to
consider polytopologies of this sort. We will call �ϑ-polytopologies over the initial-
segment topology improper.

In the remainder of this article, we prove Theorem 3.4. Soundness follows from
Lemma 3.6 below, which in turn follows from Lemma 3.5. The proofs are the same
as in the case ϑ = 1 from [10]. They can also be found in [2].

Lemma 3.5 (X , τ ) is a ϑ-maximal space if, and only if, for all x ∈ X whose rank ρ

is such that �ϑρ > 0 and all V ∈ τ with V ⊂ [0, ρ)τ0 , one of the following holds:

1. V ∪ {x} ∈ τ , or
2. ρτ (U ∩ V ) < ρ for some τ -neighborhood U of x.

Lemma 3.6 Suppose (X , τ ) is ϑ-maximal and λ ≥ ϑ . Then {d A : A ⊂ X} ⊂ τ↑λ.

It follows from Lemma 3.6 that all �ϑ-polytopologies areGLPn-spaces, which implies
soundness.

Lemma 3.7 (pullback) Suppose Y = (Y ,S0, . . . ,Sn) is a (possibly improper) �ϑ-
polytopology over (Y , σ ) and f : (X , τ ) → (Y , σ ) is a d-map. Then, there exists a
�ϑ-polytopology X = (X , T0, . . . , Tn) over (X , τ ) such that

f : (X , Ti ) → (Y ,Si ) (3.1)
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is a d-map for each i ≤ n.

Proof This is essentially the same proof as for the case ϑ = 1 (see [10, Lemma 8.5]).
The key point is the following claim:

Claim 1 Suppose T and S are topologies such that f : (X , T ) → (Y ,S) is a d-map
and S ′ is a ϑ-maximal extension of S. Then, the topology generated by T and the
family

f −1S ′ := { f −1S : S ∈ S ′}

is aϑ-extension ofT .Moreover, f : (X , T ′) → (Y ,S ′) is a d-map for anyϑ-extension
T ′ of this topology.

To see this suffices, suppose the claim holds. Then, letting T0 be any ϑ1-maximal
extension of the topology given by T and f −1S0, we obtain that (3.1) holds for i = 0.
Inductively, suppose (3.1) holds for some i . By Lemma 2.12.3,

f : (X , Ti↑∂ϑi+1) → (Y ,Si↑∂ϑi+1)

is a d-map. If i + 1 = n, then we are done; otherwise, by definition, Si+1 is a ∂ϑi+2-
maximal extension of Si↑∂ϑi+1 , whereby the claim yields that (3.1) holds for i + 1 if
we set Ti+1 to be some ∂ϑi+2-maximal extension of the topology given by Ti↑∂ϑi+1

and f −1Si+1. Hence, it suffices to prove the claim.

Proof of the claim Let R be the topology given by T and f −1S ′. Using the fact that

f : (X , T ) → (Y ,S) is a d-map, (3.2)

it is not hard to see that f : (X ,R) → (Y ,S ′) is also a d-map. By definition, T ⊂ R,
whence R is a rank-preserving extension of T . Let x ∈ X be such that �ϑρT x = 0.
We need to show that id : (X , T ) → (X ,R) is continuous at x . This follows from the
fact that S ′ is a ϑ-extension of S: for anyR-neighborhood of x of the form f −1V , we
have that V is a S ′-neighborhood of f (x) and �ϑρS ′ f (x) = 0, so that f (x) ∈ U for
some U ∈ S with U ⊂ V . Therefore, x ∈ f −1U ⊂ f −1V and f −1U ∈ T , by (3.2).

Now let T ′ be any ϑ-extension ofR. Clearly, f : (X , T ′) → (Y ,S ′) is continuous
and pointwise discrete. Suppose towards a contradiction that x ∈ X and W ∈ T ′
witness a failure of f being open. Let

ρ := ρT x = ρT ′x = ρS ′ f (x).

Note that we must have 0 < �ϑρ. Without loss of generality, we may assume ρ is the
least possible rank of a counterexample and W contains no other point of rank ≥ ρ,
so that W = W0 ∪ {x}, for some W0 ∈ T with W0 ⊂ [0, ρ)T0 . We will arrive at a
contradiction using Lemma 3.5: since f is rank-preserving, we have that �ϑρ > 0,
f (W0) ∈ S ′, and f (W0) ⊂ [0, ρ)S

′
0 . Hence, by Lemma 3.5, one of the following

holds:
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1. f (W0) ∪ { f (x)} ∈ S ′, or
2. ρS ′(U ∩ f (W0)) < ρ for some S ′-neighborhood U of f (x).

It must be the second one that holds, for f (W0) ∪ { f (x)} = f (W ) is not S ′-open
by hypothesis. Observe that f −1U ∩ W is a T ′-neighborhood of x and thus contains
points with rank of every ordinal up to, and including, ρ. Because W contains only
one point of rank ρ and f is rank-preserving,

( f −1U ∩ W ) \ f −1(x) = f −1U ∩ W0.

It follows that the set

f −1U ∩ W0

contains points with rank of every ordinal up to, but not including, ρ. However, this
is impossible by 3 above, because ρ is a limit ordinal. This finishes the proof of the
claim and the lemma. ��

Lemma 3.7 is still true in the degenerate case σ = I0. In this case, notice that I0 is
already ϑ-maximal for every ϑ , for there is only one point of each rank. The proof of
Theorem 3.8 below is postponed to the next section. It is stated in a way that directly
gives all information we will need when applying it below.

Theorem 3.8 (Product Lemma) Assume ς is a nonzero additively indecomposable
ordinal, ([0, κ], T0, . . . , Tn) is a �ϑ-polytopology over Iς , and ([0, λ],S0, . . . ,Sn) is
a �ϑ-polytopology over I0. Suppose moreover that

κ < eς+ϑnω

and that

λ < eϑnω.

Let ξ = �ς [0, κ], let � = eς (ξ + λ) < eς+ϑnω, and define X↑ = [0,�] ∩ [ξ,∞)ς
and X↓ = [0,�] ∩ [0, ξ)ς . Then, there exist:

1. A �ϑ-polytopology ([0,�],R0, . . . ,Rn) over Iς .
2. Functions π0 : [0,�] → [0, κ] and π1 : [0,�] → [0, λ] such that:

• π0 : (X↓,Ri ) → ([0, κ], Ti ) is a surjective d-map for each i;
• π1 : (X↑,Ri ) → ([0, λ],Si ) is a surjective d-map for each i;
• X↑ ⊂ dR0π

−1
0 (α) for any α ≤ κ;

• π1 = −ξ + �ς ;
• the polytopology (R0, . . . ,Rn), when restricted to X↑, is the one obtained

from Lemma 3.7 by pulling back via π1;
• π−1

1 ({λ}) = {�}.
Theorem 3.8 is the main new ingredient of our proof. With it, we can adapt the

usual proofs to obtain completeness. First, we need an embedding lemma:
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Lemma 3.9 Let (T ,<0,<1, . . . , <n)beafinite Jn-treewith root r and �ϑ bean increas-
ing n-sequence of nonzero ordinals. Then, for any ς > 0, there exist

• a �ϑ-polytopology ([0,�], T0, . . . , Tn) over ([0,�], Iς ) such that � < eς+ϑnω;
and

• a surjective Jn-map f : ([0,�], T0, . . . , Tn) → T such that f −1(r) = {�}.
Proof The proof is by induction on n. The base case follows from [3, Theorem 6.11],
so we assume that the result holds for all m < n and proceed by a subsidiary double
induction on

1. ς , which we decompose as ς0 + ωρ ; and
2. hgt0(T ), the height of <0,

in that order. Let hgti (T ) be the height of <i . We need to consider various cases:

Case I: ωρ < ς . By the induction hypothesis (for ς ) applied to ωρ , there are:

• a �ϑ-polytopology ([0,�0],S0, . . . ,Sn) over ([0,�0], Iωρ ) such that �0 <

eωρ+ϑnω; and
• a surjective Jn-map g : ([0,�0],S0, . . . ,Sn) → T such that g−1(r) = {�0}.

By Lemma 2.21,

�ς0 : ([0, eς0�0], Iς ) → ([0,�0], Iωρ )

is a d-map, whence by Lemma 3.7, there is a �ϑ-polytopology

X = ([0, eς0�0], T0, . . . , Tn)

over ([0, eς0�0], Iς ) such that

�ς0 : ([0, eς0�0], Ti ) → ([0,�0],Si )

is a d-map for each i ≤ n. It follows that f := g ◦ �ς0 is a surjective Jn-map from
X onto T . It remains to check the bound on � := eς0�0. Since �0 < eωρ+ϑnω, we
have

eς0�0 < eς0eωρ+ϑnω = eς0+ωρ+ϑnω = eς+ϑnω,

as needed.

Case II: ς is additively indecomposable and 0 = hgt0(T ), so that <0= ∅. Let

�ϑ∗ = −ϑ1 + �ϑ � [2, n] = (−ϑ1 + ϑ2,−ϑ1 + ϑ3, . . . ,−ϑ1 + ϑn).

By induction hypothesis (applied to n), there are:

• a �ϑ∗-polytopology ([0,�0],S1, . . . ,Sn) over ([0,�0], Iϑ1) such that

�0 < eϑ1+(−ϑ1+ϑn)ω = eϑnω;
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• a surjective Jn−1-map g : ([0,�0],S1, . . . ,Sn) → (T ,<1, . . . , <n) such that
g−1(r) = {�0}.

Note that each Si is a rank-preserving extension of Iϑi . Thus, a simple computation
shows that ([0,�0], I0,S1, . . . ,Sn) is a(n improper) �ϑ-polytopology. Clearly,

�ς : ([0, eς�0], Iς ) → ([0,�0], I0)

is a d-map. By Lemma 3.7, there exists a �ϑ-polytopology X of the form ([0, eς�0],
T0, . . . , Tn) over ([0, eς�0], Iς ) such that

�ς : ([0, eς�0], Ti ) → ([0,�0],Si )

is a d-map for each i ≤ n. Let � := eς�0 < eς+ϑnω. Let f := g ◦ �ς . We have that

f : ([0,�], T1, . . . Tn) → (T ,<1, . . . , <n) is a Jn−1-map. (3.3)

We claim (3.3) holds for the full space X and the structure (T ,<0, . . . , <n), i.e.,
f is already a Jn-map: condition ( j1) is given by definition; ( j2) is satisfied trivially
since the topology induced by <0 is discrete; ( j3) and ( j4) hold for k �= 0 because of
(3.3) and for k = 0 because r is the sole hereditary 1-root of T .

Case III: ς is additively indecomposable and 0 < hgt0(T ). Let r1, . . . , rm be all <0-
successors of r that are hereditary 1-roots and (following earlier notation) let �0(ri )
denote the generated subtrees. Also let �1(r) denote the subtree consisting of all
nodes that are <0-incomparable with r (i.e., the <0-roots). By induction hypothesis
(applied to hgt0(T )), there exist �ϑ-polytopologies

Xi = ([0, κi ], T i
0 , . . . , T i

n )

over ([0, κi ], Iς ) and surjective Jn-maps

fi : Xi → (�0(ri ),<0, . . . , <n)

for 0 < i . Let

κ = κ1 + 1 + κ2 + 1 + . . . + 1 + κm

and

X = ([0, κ], T0, . . . Tn)

be the topological sum. We also denote by

f ∗ : X →
⎛

⎝
⋃

0<i≤n

�0(ri ),<0, . . . , <n

⎞

⎠
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the sum of the functions fi . We may define an improper �ϑ-polytopology

Y′ = ([0, λ], I0,S1, . . . ,Sn)

over I0 as in Case II in such a way that there is a Jn−1-map

g : ([0, λ],S1, . . . ,Sn) → (�1(r),<1, . . . , <n)

such that, letting f0 = g ◦ �ς and

Y = [0, eςλ]

then

f0 : Y → (�1(r),<0, . . . , <n)

is a Jn-map.
Similarly, suppose ξ is any ordinal and let

fξ (ζ ) = g
(

− ξ + �ς (ζ )
)
.

Since

−ξ + �ς :
([
0, eς (ξ + λ)

] ∩ [
ξ,∞)

ς
, Iς

)
→ ([0, λ], I0

)

is a d-map (it is the rank function), by applying Lemma 3.7 we obtain a polytopology
Ŝ0, . . . , Ŝn on

[
0, eς (ξ + λ)

] ∩ [
ξ,∞)

ς
such that

fξ :
([
0, eς (ξ + λ)

] ∩ [
ξ,∞)

ς
, Ŝi

)
→ ([0, λ],Si

)

is a d-map for each i . Arguing as in Case II, we see that

fξ :
([
0, eς (ξ + λ)

] ∩ [
ξ,∞)

ς
, Ŝ0, . . . , Ŝn

)
→ (�1(r),<0, . . . , <n

)

is also a Jn-map. We now fix

ξ = the unique ordinal equal to �ς [0, κ].

Let � = eς (ξ + λ) and write X↑ = [0,�] ∩ [ξ,∞)ς and X↓ = [0,�] ∩ [0, ξ)ς . By
the Product Lemma, there are:

1. A �ϑ-polytopology ([0,�],R0, . . . ,Rn) over Iς .
2. Functions π0 : [0,�] → [0, κ] and π1 : [0,�] → [0, λ] such that:

• π0 : (X↓,Ri ) → ([0, κ], Ti ) is a surjective d-map for each i ;
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• π1 : (X↑,Ri ) → ([0, λ],Si ) is a surjective d-map for each i ;
• X↑ ⊂ dR0π

−1
0 (α) for any α ≤ κ , and in particular when

α = κ1 + 1 + . . . + 1 + κi ,

for i < m;
• π1 = −ξ + �ς ;
• the polytopology (R0, . . . ,Rn), when restricted to X↑, is the one obtained
from Lemma 3.7 by pulling back via π1;

• π−1
1 ({λ}) = {�}.

Thus, when restricted to X↑, the topologiesRi and Ŝi coincide (directly by definition),
so

fξ : (X↑,R0, . . . ,Rn) → (�1(r),<0, . . . , <n)

is a Jn-map. We define a function

f : ([0,�],R0, . . . ,Rn) → (T ,<0, . . . , <n)

given by:

f (x) =
{
f ∗(π0(x)) if x ∈ X↓
fξ if x ∈ X↑

Since X↑ and X↓ are Iς+1-clopen and 1 ≤ ∂ϑ1, it follows that X↑ and X↓ are Ri -
clopen for all 0 < i . The facts that fξ and f ∗ are Jn-maps and that the projection π0
is a d-map yield condition ( j1), as well as conditions ( j2)–( j4) for 0 < i . We verify
the remaining ones:

( j2) Let U be R0-open. If U ⊂ X↓, then f (U ) is <0-open, as π0 ◦ f ∗ is a Jn-
map. If U ∩ X↑ �= ∅, then we claim f (U ) is <0-open in T . Indeed, since
X↑ ⊂ dR0π

−1
0 (κi ) for any 0 < i ≤ m, then there are ordinals ξ0, . . . , ξm ∈ U

such that π0(ξi ) = κi for each i . But then π0(U ∩ X↓) contains a neighborhood
Ui of each κi and by choice of f ∗, f ∗(Ui ) = �0(ri ).

( j3) Any hereditary 1-root x is either r or in some Ti . In the former case, f −1(�0(r))
and f −1({r} ∪ �0(r)) ∈ τ0 equal [1,�) and [1,�], respectively. In the latter
case, the result follows from the continuity of π0 and the fact that f ∗ is a Jn-map.

( j4) Again, f −1({r}) = {�} and for any hereditary 1-root x �= r , f −1(x) =
π−1
0 f ∗−1(x) is discrete because f ∗−1(x) is discrete and π0 is pointwise dis-

crete.

Therefore, f is a indeed a surjective Jn-map.
Since we have considered all cases, the lemma follows. ��

We can now finish the proof of Theorem 3.4. Let � ≥ ϑn and (X , τ ) be any
scattered space of height ≥ e1+�ω. Suppose ϕ only contains modalities in �ϑ and is
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consistent with GLP � �ϑ . We need to show that ϕ is satisfied on a �ϑ-polytopology
over (X , τ↑1).

We use Lemmata 2.17 and 3.9 to find

1. the canonical tree T for ϕ with root r ,
2. a �ϑ-polytopology ([0,�], T0, . . . , Tn) over ([0,�], I1) such that � < e1+ϑnω,

and
3. a surjective Jn-map f : ([0,�], T0, . . . , Tn) → T such that f −1(r) = {�}.
By Lemma 2.17,

([0,�], T0, . . . , Tn) �|� ¬ϕ,

i.e., ϕ is satisfiable in ([0,�], T0, . . . , Tn). Now, by assumption, (X , τ ) is a scattered
space such that

e1+ϑnω ≤ e1+�ω ≤ hgt(X , τ ).

Let U be the neighborhood of x consisting of all points of rank ≤�, so (U , τ ) is a
scattered space of height � + 1. By Lemma 3.7, there is a �ϑ-polytopolgy

U = (U ,S0, . . . ,Sn)

over (U , τ↑1) such that

ρτ : (U ,Si ) → ([0,�], Ti )

is a d-map for each i ≤ n. By Lemmata 2.17 and 2.16, ϕ is then satisfiable in U. This
completes the proof of Theorem 3.4.

4 Proof of the product lemma

For convenience, we restate the lemma:

Theorem 4.1 (Product Lemma) Assume ς is a nonzero additively indecomposable
ordinal, ([0, κ], T0, . . . , Tn) is a �ϑ-polytopology over Iς , and ([0, λ],S0, . . . ,Sn) is
a �ϑ-polytopology over I0. Suppose moreover that

κ < eς+ϑnω

and that

λ < eϑnω.

Let ξ = �ς [0, κ], let � = eς (ξ + λ) < eς+ϑnω, and define X↑ = [0,�] ∩ [ξ,∞)ς
and X↓ = [0,�] ∩ [0, ξ)ς . Then, there exist:
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1. A �ϑ-polytopology ([0,�],R0, . . . ,Rn) over Iς .
2. Functions π0 : [0,�] → [0, κ] and π1 : [0,�] → [0, λ] such that:

• π0 : (X↓,Ri ) → ([0, κ], Ti ) is a surjective d-map for each i;
• π1 : (X↑,Ri ) → ([0, λ],Si ) is a surjective d-map for each i;
• X↑ ⊂ dR0π

−1
0 (α) for any α ≤ κ;

• π1 = −ξ + �ς ;
• the polytopology (R0, . . . ,Rn), when restricted to X↑, is the one obtained

from Lemma 3.7 by pulling back via π1;
• π−1

1 ({λ}) = {�}.
Let ς , κ , and λ be as in the statement. Fix �ϑ-polytopologies ([0, κ], T0, . . . , Tn)

and ([0, λ],S0, . . . ,Sn) over Iς and I0, respectively and let

ξ = �ς [0, κ].

Since logarithms map initial segments of Ord to initial segments of Ord (by defini-
tion), ξ is an ordinal. In fact, it is a successor ordinal. To see this, suppose towards a
contradiction that it were a limit ordinal. Thus, for each ζ < ξ , we have ζ ∈ �ς [0, κ],
so eς ζ < κ . By continuity, eς ξ ≤ κ , so ξ ∈ �ς [0, κ]—a contradiction.

Thus ξ is a successor ordinal. Write ζ for its predecessor. We have

eς ζ ≤ κ < eς ξ

for otherwise eς ξ belongs to the interval [0, κ] and so ξ ∈ �ς [0, κ], contrary to its
definition. The case ς > 1 will require most of our efforts and will be considered first,
over the next few sections. The case ς = 1 will be covered in Sect. 4.4.

4.1 The partition

Definition 4.2 As in the statement of the theorem, we define:

� = least α such that − ξ + �ςα = λ

= eς (ξ + λ)

= eς (�ς [0, κ] + λ).

Observe that if λ < eϑnω and κ < eς+ϑnω, then

eς (ξ + λ) < eς+ϑnω,

as desired. We also set:

1. X↓ = [0,�] ∩ [0, ξ)ς ;0
2. X↑ = [0,�] ∩ [ξ,∞)ς .

See the following picture:
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X↓

X↑

�ςOrd

Ord

ξ

. . .

. . .

�eς ξ eς ξ ·2 eς ξ ·3

The purpose of this section is to partition X↓ into smaller clopen cells. The idea is that
the projection π0 will be defined differently on different cells. We begin by defining
a partition of the interval [0, eς ξ) into smaller intervals [αι, βι] and then we lift it to
all of X↓. What αι and βι are, as well as the set over which ι ranges, will depend on
various parameters.

Condition (2.4) states that

eς (ζ + 1) = lim
α→ς

eα(eς ζ + 1).

One of the cases we consider is that eς ζ ≤ κ < e(eς ζ + 1). Otherwise, e(eς ζ + 1) ≤
κ < eς ξ , and so

eα(eς ζ + 1) ≤ κ

for some greatest ordinal 0 < α < ς , which we will denote by ν. Thus,

eν(eς ζ + 1) ≤ κ < eν+1(eς ζ + 1).

We are not assuming that ς is multiplicatively indecomposable, but it is a limit of
ordinals of the form ν ·ι. This is because ς is additively indecomposable, so if ν ·ι < ς ,
then ν · (ι + 1) < ς as well.

Ord

α0 α1 α2 α3

. . .

αω αω+1

. . .

X0 X1 X2 Xω
eς ξ

4.1.1 When e(e&� + 1) ≤ �

Definition 4.3 For each ι such that ν · ι < ς , we define:

• α0 = 0;
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• αι+1 = βι + 1;
• αι = eν·ι(eς ζ + 1), at limit stages; and
• βι = eν·ικ .

Let X ι = [αι, βι]. Then X ι is clearly Iς -clopen.

Lemma 4.4 Suppose ς is a limit ordinal and e(eς ζ + 1) ≤ κ . Then, the sets {Xγ :
γ < ς} in Definition 4.3 form a partition of eς ξ .

Proof Recall that ς is additively indecomposable and thus a limit of ordinals of the
form ν · ι. If ς = ν · ω, then Xγ is only defined for finite γ . We have

lim
n<ω

βn = lim
n<ω

eν·nκ

≥ lim
n<ω

eν·ne(eς ζ + 1)

= lim
n<ω

eν·n(eς ζ + 1)

= lim
γ<ς

eγ (eς ζ + 1)

= eς ξ.

Since βn < eς ξ for all n < ω, we have limn<ω βn = eς ξ .
Suppose now that ν · ω < ς . Then, ς is a limit of ordinals of the form ν · ι, where

ι is a limit ordinal. In that case, we have

sup{αι : ν · ι < ς, ι ∈ Lim} = eς ξ,

so it suffices to show that

lim
ι→γ

αι = eν·γ (eς ζ + 1) for each limitγ such that ν · γ < ς.

Let us assume that ς is multiplicatively indecomposable for notational simplicity and
show that

lim
ι→γ

αι = eν·γ (eς ζ + 1) for each limit γ < ς; (4.1)

the general case is similar. Let thus γ < ς be a limit ordinal and decompose it as
γ = γ ∗ + ωρ , where ρ is nonzero. Recall that the functions eι are normal. First, we
have:

lim
ι→γ

αι = lim
ι→γ

βι = lim
ι→γ

eν·ικ.

123



A topological completeness theorem for transfinite… 777

Using the decomposition of γ :

lim
ι→γ

αι = lim
ι→γ

eν·ικ

= lim
ι→ωρ

eν·(γ ∗+ι)κ

= lim
ι→ωρ

eν·γ ∗+ν·ικ

= eν·γ ∗
(

lim
ι→ωρ

eν·ικ
)

. (4.2)

By choice of ν, we have

eν(eς ζ + 1) ≤ κ < eν+1(eς ζ + 1),

so normality implies that

lim
ι→ωρ

eν·ι(eν(eς ζ + 1)
)

≤ lim
ι→ωρ

eν·ικ

≤ lim
ι→ωρ

eν·ιeν+1(eς ζ + 1)

= lim
ι→ωρ

eν·ι(eς ζ + 1)

= lim
ι→ωρ

eν·ι(eν(eς ζ + 1)
)
.

This implies that

lim
ι→ωρ

eν·ικ = lim
ι→ωρ

eν·ι(eς ζ + 1). (4.3)

Now, recall that if ν∗ is any limit, then, for every ordinal γ , we have

eν∗
(γ + 1) = lim

ι→ν∗ e
ι(eν∗

γ + 1).

Using this (for ν∗ = ν · ωρ and γ = eς ζ ) and the additive indecomposability of ς ,
we obtain:

lim
ι→ωρ

eν·ι(eς ζ + 1) = lim
ι→ν·ωρ

eι(eς ζ + 1)

= lim
ι→ν·ωρ

eι(eν·ωρ+ς ζ + 1)

= lim
ι→ν·ωρ

eι(eν·ωρ

eς ζ + 1)

= eν·ωρ

(eς ζ + 1).
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Putting this together with Eqs. (4.2) and (4.3),

eν·γ (eς ζ + 1) = eν·γ ∗
eν·ωρ

(eς ζ + 1) = eν·γ ∗
(

lim
ι→ωρ

eν·ι(eς ζ + 1)

)

= eν·γ ∗
(

lim
ι→ωρ

eν·ικ
)

= lim
ι→γ

αι,

which proves Eq. (4.1). This finishes the proof of the lemma. ��

4.1.2 When e&� ≤ � < e(e&� + 1)

In this case, the partition is simpler than before:

Definition 4.5 For each ι < ς , we define:

• α0 = 0;
• αι+1 = βι + 1;
• αι = eι(eς ζ + 1), at limit stages; and
• βι = eι+1(eκ + 1).

Let X ι = [αι, βι]. As before, X ι is Iς -clopen.

Remark 4.6 If eς ζ < κ , then βι could also be defined to be eι+1κ , and the argument
below will go through. We have chosen to define βι = eι+1(eκ + 1) in order to merge
the case eς ζ = κ with the case eς ζ < κ < e(eς ζ + 1).

Lemma 4.7 Suppose ς is a limit ordinal and eς ζ ≤ κ < e(eς ζ + 1). Then, the sets
{Xγ : γ < ς} in Definition 4.5 form a partition of eς ξ .

Proof If ς = ω, then Xγ is only defined for finite γ . We have

lim
n<ω

βn = lim
n<ω

en(eκ + 1)

≥ lim
n<ω

en(eς ζ + 1)

= eς ξ.

Since βn < eς ξ for all n < ω, we have limn<ω βn = eς ξ .
Suppose now that ω < ς . Then, ς is a limit of limit ordinals. In that case, we have

sup
ι∈ς∩Lim

αι = eς ξ,

so it suffices to show that

lim
ι→γ

αι = eγ (eς ζ + 1) for each limit γ < ς. (4.4)

However, this is immediate from [3, Lemma 2.8]. ��
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4.2 Projections

Definition 4.8 (Projections) We define the functions π0 and π1:

(↓) π0 : [0, eς ξ) → [0, κ] is defined by:

π0(α) =
{

�ι+2α, if eς ζ ≤ κ < e(eς ζ + 1);
�ν·ια, if e(eς ζ + 1) ≤ κ;

where ι is the unique ordinal such that α ∈ X ι.
(↓) The function π0 is extended to all of X↓: given α ∈ X↓, let η be least such that

�ηα < eς ξ . Then, π0(α) = π0(�
ηα).

(↑) π1 : X↑ → [0, λ] is defined by

π1α = −ξ + �ςα.

Being the rank function,

π1 : (X↑, Iς ) → ([0, λ], I0)

is a surjective d-map. It is not immediately clear whether π0 is a d-map; this we verify
below.

Observe first that, since X↓ = [0,�]0 ∩ [0, ξ)ς by definition, the ordinal η in the
second clause above must be strictly smaller than ς .

Let us look at the definition of π0 a bit more closely. Consider a typical element α∗
of X↓ and generate the sequence

{�να∗ : ν ∈ Ord}.

Let η be least such that α := �ηα∗ < eς ξ . Then α belongs to some cell

X ι = [αι, βι].

Let us suppose first that eς ζ ≤ κ < e(eς ζ + 1). Then,

βι = eι+1(eκ + 1),

so π0α = �ι+2α ∈ [0, κ] and

π0[αι, βι] = �ι+2[αι, βι] = [0, κ],

with the maximum being attained at the value eι+2κ ∈ [αι, βι].
Let us suppose now that e(eς ζ + 1) ≤ κ . Then

βι = eν·ικ,

123



780 J. P. Aguilera

so π0α = �ν·ια ∈ [0, κ] and again

π0[αι, βι] = �ν·ι[αι, βι] = [0, κ],

with the maximum being attained at the value βι.

Lemma 4.9 π0 : (X↓, Iς ) → ([0, κ], Iς ) is a surjective d-map.

Proof Surjectivity we verified in the discussion preceding this lemma; we verify that
it is a d-map. Consider cells of the form

Xη
ι = {

x ∈ X↓ : �η+1x < eς ξ and eς ξ ≤ �ηx and �η+1x ∈ X ι

}

= {
x ∈ X↓ : �η+1x ≤ eς ξ and eς ξ < �ηx and �η+1x ∈ X ι

}

= X↓ ∩ [0, eς ξ ]η+1 ∩ (eς ξ,∞)η ∩ [αι, βι]η+1.

(The second equality follows from the definition of X↓.) Observe that [αι, βι]η+1 is
an Iς -clopen interval if η < ς , even when αι is a limit ordinal; this is because αι is
always an isolated point in Iς by its definition. The definition of π0 is the same within
each Xη

ι and in each of those sets, π0 is defined as a logarithm and is thus a d-map
(recall that ς is additively indecomposable). Additionally, by Lemma 2.25, if x ∈ X↓,
then the least η such that �ηx < eς ξ is a successor ordinal or zero. If we additionally
define X−1

ι := X ι, then the collection of all X
η
ι forms a clopen partition of X↓. Since

π0 is a d-map on each cell, it is a d-map on all of X↓. ��
Lemma 4.10 π−1

0 α is Iς -dense in X↑ for any α ≤ κ .

Proof Let β ∈ X↑, so that β has Iς -rank ρ := �ςβ ≥ ξ . It is enough to consider the
case ρ = ξ , as any Iς -neighborhood of any point of higher rank contains a point of
rank ξ . LetU be an Iς -neighborhood of β and fix α ≤ κ – we showU contains some
point χ such that π0χ = α. We distinguish three cases:

Case I: β = eς ξ and e(eς ζ + 1) ≤ κ . We can apply Lemma 2.23 (over the interval
topology) to obtain a Iς -neighborhood base of eς ξ consisting of sets of the form

(η, eς ξ ]ν·γ

for η < eς ξ and ν · γ < ς .
Hence, we may assume U is a neighborhood of eς ξ of the form (η, eς ξ ]ν·γ . Let μ

be an ordinal large enough so that η < αμ. This ordinal certainly exists, as it follows
from Lemma 4.4 that:

lim
ι→ς

eν·ικ = lim
ι→ς

αι = eς ξ.

Claim 2 Let χ := αγ+μ + eν·γ (αμ + eν·μα). Then χ ∈ U ∩ Xγ+μ.
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Proof We first verify that χ ∈ [αγ+μ, βγ+μ]. Clearly αγ+μ ≤ χ . Moreover, eν·μκ is
additively indecomposable, so

αμ + eν·μα ≤ eν·μκ.

eν·γ eν·μκ is likewise additively indecomposable, and thus

χ = αγ+μ + eν·γ (αμ + eν·μα)

≤ eν·γ eν·μκ

= eν·(γ+μ)κ

= βγ+μ,

so χ ∈ [αγ+μ, βγ+μ]. We now verify that χ ∈ U . To see this, it suffices to note that,
by choice of μ,

η < αμ < αμ + eν·μα

= �ν·γ eν·γ (αμ + eν·μα)

= �ν·γ (
αγ+μ + eν·γ (αμ + eν·μα)

)

= �ν·γ χ.

This proves the claim. ��

A direct computation shows

π0χ = �ν·(γ+μ)χ = �ν·μ�ν·γ (
αγ+μ + eν·γ (αγ+μ + eν·μα)

)

= �ν·μ�ν·γ eν·γ (αγ+μ + eν·μα)

= �ν·μ(αγ+μ + eν·μα)

= �ν·μeν·μα

= α.

Since U was arbitrary, this finishes the proof in this case.

Case II: β = eς ξ and eς ζ ≤ κ < e(eς ζ + 1). As before, we may assume U is of the
form

(η, eς ξ ]γ

for η < eς ξ and γ < ς . Let μ be an ordinal large enough so that η < αμ.

Claim 3 Let χ := αγ+μ + eγ (αμ + eμ+2α). Then, χ ∈ U ∩ Xγ+μ.
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Proof Clearlyαγ+μ ≤ χ . Sinceα ≤ κ and eμ+1(eκ+1) is additively indecomposable,
we have

αμ + eμ+2α ≤ eμ+1(eκ + 1),

so that

αγ+μ + eγ (αμ + eμ+2α) ≤ eγ+μ+1(eκ + 1) = βγ+μ,

and thus χ ∈ Xγ+μ.
As before, we have

η < αμ < αμ + eμ+2α

= �γ eγ (αμ + eμ+2α)

= �γ
(
αγ+μ + eγ (αμ + eμ+2α)

)

= �γ χ.

This proves the claim. ��
A direct computation shows

π0χ = �γ+μ+2χ = �μ+2�γ
(
αγ+μ + eγ (αμ + eμ+2α)

)

= �μ+2�γ eγ (αμ + eμ+2α)

= �μ+2(αμ + eμ+2α)

= �μ+2eμ+2α

= α.

Since U was arbitrary, this finishes the proof in this case.

Case III: eς ξ < β. As observed by Fernández-Duque and Joosten [17], there is a
least η∗ < ς such that

�η∗
β = eς ξ.

Since ς is additively indecomposable, η∗ must be a successor ordinal, say η+1. Thus,

�η+1β = eς ξ < �ηβ,

and so �ηβ must be of the form β ′+eς ξ . The Hyperexponential Normal Form theorem
[3, Proposition 2.13] states that every ordinal γ can be uniquely written in the form
eγ0γ1, where γ1 is either additively decomposable or 1. If γ1 = 1, then let us call
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the expression eγ01 the normal form expansion of γ . Inductively, the normal form
expansion of

γ = eγ0(γ1 + γ2)

is defined to be

nf(γ ) = eγ0(γ1 + nf(γ2)).

Observe that η < ς , for otherwise we would have

ξ < eς ξ ≤ �ςβ,

contradicting the choice of β. Thus, if one writes out the normal form expansion of
β, one obtains an expression of the form

eβ0
(
β1 + eβ2

(
. . . (β ′ + nf(eς ξ)) . . .

))
, (4.5)

where eς ξ < β ′ + eς ξ and all the exponents to the left of β ′ + nf(eς ξ) add up to η.
Consider the sequence {β(ι) : ι < eς ξ}, where β(ι) is the ordinal one obtains if one
substitutes ι for the rightmost occurrence of nf(eς ξ) in the normal form expansion
(4.5) of β. If U is a Iς -neighborhood of β, then, by Lemma 2.24, U contains a set of
the form

Br (β) =
⋂

i∈dom(r)

(r(i), �iβ]i ,

where r : ς → β + 1 is a finite partial function. It follows from this and from the
continuity of exponentials that every such setU , if nonempty, contains cofinally many
ordinals of the form β(ι). Since eς ξ < β ′+eς ξ and eς ξ is additively indecomposable,
we must have eς ξ < β ′, so it follows that for each β(ι),

π0β(ι) = π0�(β
′ + ι) = π0�ι.

An argument as in Case I or Case II (according as κ < e(eς ζ + 1) or e(eς ζ + 1) ≤ κ)
shows that there is some ι < eς ξ such that β(ι) ∈ U and π0β(ι) = α. ��

4.3 The polytopology

It remains to define a �ϑ-polytopology (R0, . . . ,Rn) on ([0,�], Iς ) such that the
projection mappings

π0 : (X↓,Ri ) → ([0, κ], Ti )
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and

π1 : (X↑,Ri ) → ([0, λ],Si )

remain d-maps. Recall that n denotes the length of �ϑ .
To begin, we observe that since

π0 : (X↓, Iς ) → ([0, κ], Iς )

is a d-map by Lemma 4.9, we may apply Lemma 3.7 to obtain a �ϑ-polytopology
(X↓, T̂0, . . . , T̂n) over Iς such that

π0 : (X↓, T̂i ) → ([0, κ], Ti )

is a d-map for each 0 ≤ i ≤ n.
This �ϑ-polytopology (T̂0, . . . , T̂n) is not, however, a topology on [0,�], so we need

to extend it. For each i , let R̂i be the smallest topology on [0,�] extending Iς+ϑi and
containing all sets in T̂i . Since X↑ is Iς+1-clopen, R̂i is simply equal to Iς+ϑi when
restricted to X↑, for 0 < i . We are closer to our goal, but not done yet, since the space

([0,�], R̂0, . . . , R̂n)

might not be a �ϑ-polytopology, as R̂0 might not be ϑ1-maximal around points in X↑.
The projection π1, which was defined as the function

α �→ −ξ + �ςα

is the rank function of (X↑, Iς ) (viewed as a subspace of ([0,�], Iς )), so

π1 : (X↑, Iς ) → ([0, λ], I0)

is a d-map. Having only one point of each rank, the space ([0, λ], I0) has no proper
rank-preserving extensions, and in particular is ϑ1-maximal. By the claim within the
proof of Lemma 3.7, if (X↑,R) is any ϑ1-extension of (X↑, Iς ), then

π1 : (X↑,R) → ([0, λ], I0)

remains a d-map. Let ([0,�],R0) be a ϑ1-maximal extension of ([0,�], R̂0). Then,
R0 only adds neighborhoods around points of rank some ρ such that 0 < �ϑ1ρ and,
moreover, only neighborhoods around points in X↑, since (X↓, T̂0) was already ϑ1-
maximal. Given a point x ∈ X↑, and recalling that ξ , the minimum Iς -rank of points
in X↑, is a successor ordinal, we see that

0 < �ϑ1ρ([0,�],R0)x if, and only if, 0 < �ϑ1�ς x

if, and only if, 0 < �ϑ1(−ξ + �ς x)
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if, and only if, 0 < �ϑ1ρ(X↑,Iς )x .

Thus, the space (X↑,R0) is a ϑ1-extension of (X↑, Iς ). It follows that

π1 : (X↑,R0) → ([0, λ], I0)

remains a d-map. We may now apply Lemma 3.7 to obtain a �ϑ-polytopology

(X↑,R0, Ŝ1, . . . , Ŝn)

over (X↑,R0) such that

π1 : (X↑, Ŝi ) → ([0, λ],Si )

is a d-map for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, we letRi be the disjoint union

(X↓, T̂i ) � (X↑, Ŝi ).

The sets X↑ and X↓ are R0↑ϑ1 -clopen and so it follows that

([0,�],R0,R1, . . . ,Rn)

is a �ϑ-polytopology. Moreover, we have seen that

π0 : (X↓, T̂i ) → ([0, κ], Ti )

is a d-map for each 0 ≤ i ≤ n and that

π1 : (X↑,Ri ) → ([0, λ],Si )

is also a d-map for each 0 ≤ i ≤ n. The other conditions in the statement of the
Product Lemma we have shown already, so its proof is complete.

4.4 When & = 1

The plan to prove the lemma in the case ς = 1 is similar to the case 1 < ς , but
simpler. We follow the same proof outline from the preceding sections. The essence
of the construction below is the same as that of the d-product from Beklemishev-
Gabelaia [10], but more direct (and, in return, less general). Let �[0, κ] = ξ = ζ + 1,
� = ωξ+λ, X↓ = [0,�] ∩ [0, ξ)1, and X↑ = [0,�] ∩ [ξ,∞)1. Then, X↑ consists of
all ordinals in [0,�] which are of the form ωξ · η, for some η ≤ ωλ, and X↓ consists
of all ordinals in [0,�] which are of the form ωξ · η + γ , for some η < ωλ and some
γ ∈ [1, ωξ ).

Lemma 4.11 (1 + κ) · ω = ωξ .
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Proof Since �[0, κ] = ξ = ζ + 1, we must have

ωζ ≤ κ < ωξ .

The ordinal ωξ is additively indecomposable and thus (1+ κ) · n < ωξ for all n < ω,
so

ωξ = lim
n<ω

ωζ · n ≤ lim
n<ω

(1 + κ) · n ≤ ωξ ,

which proves the lemma. ��
Thus, a typical element of X↓ has the form ωξ ·η+ (1+κ) ·n+1+γ , where η < ωλ,
n < ω, and 0 ≤ γ ≤ κ . For such η, n, and γ , we define

π0(ω
ξ · η + (1 + κ) · n + 1 + γ ) = γ ;

for η ≤ ωλ, we let

π1(ω
ξ · η) = −ξ + �η.

Being the rank function, π1 : (X↑, I1) → ([0, λ], I0) is a surjective d-map. Similarly,
π0 : (X↓, I1) → ([0, κ], I1) is a surjective d-map, since X↓ is a disjoint union of
copies of the space [0, κ] indexed by ordinals η < ωλ and numbers n < ω and π0 is
a homeomorphism when restricted to any one of these copies.

Lemma 4.12 π−1
0 α is I1-dense in X↑ for any α ≤ κ .

Proof Fix β = ωξ · η ∈ X↑. Suppose first that η is a successor ordinal, so β is of the
form ωξ · η̄ + ωξ . Let U be a I1-neighborhood of β; we may assume that

U = (ωξ · η̄ + γ, β]0,

where γ < ωξ . By Lemma 4.11, we may find n large enough so that

γ < (1 + κ) · n.

Therefore, letting

α̂ = ωξ · η̄ + (1 + κ) · n + 1 + α,

we have α̂ ∈ U and π0α̂ = α, as desired.
If η is a limit ordinal, then, β is a limit of ordinals of the form ωξ · η̄, for any I1-

neighborhood U of β, the previous argument applied to any sufficiently large enough
η̄ shows that U contains some α̂ such that π0α̂ = α. This proves the lemma. ��
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The argument in Sect. 4.3 does not depend on whether ς = 1, so one may proceed
similarly to construct the polytopology (R0, . . .Rn) and argue that the projection
mappings

π0 : (X↓,Ri ) → ([0, κ], Ti )

and

π1 : (X↑,Ri ) → ([0, λ],Si )

remain d-maps. This completes the proof of the theorem.
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