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Abstract
For n € w, the weak choice principle RC,, is defined as follows:

For every infinite set X there is an infinite subset Y C X with a choice function
on[Y":={zCY:|z| =n}

The choice principle C,; states the following:

For every infinite family of n-element sets, there is an infinite subfamily G C F
with a choice function.

The choice principles LOC;; and WOC, are the same as C,, but we assume that
the family F is linearly orderable (for LOC;) or well-orderable (for WOC;;). In the
first part of this paper, for m, n € w we will give a full characterization of when the
implication RC,, = WOC,, holds in ZF. We will prove the independence results by
using suitable Fraenkel-Mostowski permutation models. In the second part, we will
show some generalizations. In particular, we will show that RCs = LOC; and that
RC¢ = C5, answering two open questions from Halbeisen and Tachtsis (Arch Math
Logik 59(5):583-606, 2020). Furthermore, we will show that RC¢ = C4 and that
RC; = LOC; .
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1 Definitions and terminology

The notation we use is standard and follows that of [S]. Now we list some definitions
that shall be used in the sequel:

Definition 1.1 Let n be an arbitrary positive natural number.

1. C,; states that every infinite family J of sets of size n has an infinite subset G € F
with a choice function.

2. LOC,; states that every infinite, linearly orderable family F of sets of size n has
an infinite subset G C F with a choice function.

3. WOC, states that every infinite, well-orderable family F of sets of size n has an
infinite subset G C F with a choice function.

4. RC, states that every infinite set X has an infinite subset ¥ € X such that the set

[YI"={zCY:|z| =n}

has a choice function.

5. Let F be an infinite family of n-element sets. A Kinna-Wagner selection function
of F is a function f with dom(f) = F such thatforall p € 7, ¥ # f(p) C p.

6. KW, states that every infinite family F of sets of size n has an infinite subset
G C F with a Kinna-Wagner selection function.

7. LOKW, states that every infinite, linearly orderable family F of sets of size n has
an infinite subset G C F with a Kinna-Wagner selection function.

In 1995, Montenegro proved in [6] that RC,, = C, for all n € {2, 3, 4}. It is still
unknown whether this implication holds forany n > 5.1In 2017, Halbeisen and Tachtsis
found interesting results concerning the implications RC,, = C,; and RC,, = RC,
form,n € w\ {0, 1} (see [4]). Among other results they proved that the following
statements are consistent with ZF or provable in ZF, respectively:

() If m, n € w\ {0, 1} are such that there is a prime p with p { m and p | n, then
RC,, # RC, andRC,, % C, .

(B) RCs % LOC, and RCs5 = LOC;.

(y) For every n € w\ {0, 1} we have that C;; = LOC,, = WOC, but none of
these implications is reversible.

(8) Foreveryn € w)\ {0, 1} the implication RCy, = LOKW /" holds. In particular
we have that RCg = LOCS (notice that LOKW; < LOC;).

In Sect. 2 of this paper, we will give a full characterization of when the implication
RC,, = WOC;; (form,n € w\ {0, 1}) is provable in ZF. To be more precise, it will
be shown (see Theorem 2.10) that for every m,n € w \ {0, 1}, RC,, = WOC, is
provable in ZF if an only if the following condition holds: Whenever we can write n
in the form

n=>Y aipi

i<k

@ Springer



Some implications of Ramsey Choice for families of... 705

where po, ..., px—1 are prime numbers and ao, ..., adx—1 € o \ {0}, then we find
by, ...,br_1 € w with

m = Zb,'p,'.

i<k

In order to prove the independence of this implication with ZF, we shall use per-
mutation models (see [5] for an introduction to permutation models and to models
of ZFA). With Pincus’ transfer theorems (see [7]), we are able to transfer the results
obtained in ZFA to ZF. Furthermore, Theorem 2.10 gives us the following three special
cases:

1. For all n € w we have that RC,, = WOC,, (see Corollary 2.3).
2. Let p be a prime number, m € w \ {0} andn € w \ {0, 1}. Then

RC,n = WOC;,

ifandonlyifn | p™ or p =2, m = 1 and n = 4 (see Corollary 2.12).
3. If RC,;, % WOC,, we also have that RC,, # RC; and RC,, # C, (see Corol-
lary 2.11). This generalizes Halbeisens and Tachtsis’ result (c).

In Sect. 3, we will give some insights into the question what happens when we
weaken the assumption that our family of n-element sets is well-ordered. We will
prove that RCg = C;; for n € {3, 9} and that RC,, = LOC,; forn € {5, 7}.

2 On the implication RC,, = WOC;,
2.1 Whenis RC,, = WOC; provable in ZF?

In this section, we will characterise the values m and n for which the implication
RC,, = WOC, is provable in ZF. However, before we state and prove the main result
of this section, we introduce some notation and prove an auxiliary result.

Two finite partitions {x; : 0 < i <[} and {y; : 0 < j < k} of sets of the same
cardinality are of the same type, if | = k and for each 0 < i <[ we have |x;| = |y;].

Let k be a positive integer and let n = Zi<k a; pi, where po, ..., px—1 are prime
numbers and ag, . .., ax—1 € @ \ {0}. Furthermore, for an infinite, well-ordered set A,
let 7 = {Fy : @ € A} be an infinite family of pairwise disjoint n-element sets, where
for each a € A, Fy is partitioned into sets Fy ; (i < k), where |Fy ;| = aipi, i.e.,

F, = U Fyi; and Fu; N F,; =@ wheneveri #i’.
i<k
In particular, for any «, &’ € A, the partitions {Fy; : i < k}and {F, ; : i < k} are of
the same type.
For « € A we say thatd C F,, diagonalises Fy if foralli <k, |Fy; Nd| = 1. Let

Dy :=1{d C F, : d diagonalises Fy}
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706 L. Halbeisen, S. Schumacher

and for each o € X let D, be a non-empty subset of D,, such that for any o, &’ € A
we have |Dy| = |Dy|.

Finally, for some positive integer t > 1 and some prime number p, for each @ € A
let {DO’; e J < t} be a partition of [D]” such that for any «, o’ € A, the partitions

{ng 1 j <t}and {Ds, e J < t} are of the same type.

Lemma2.1 Letn =) ;_,aipi, F ={Fy :a € A}, Fy = J{Fa,i i <k}, Dg, and
{Dij i j <t} beasabove. Furthermore, let p := p,, for some p;, € {po, ..., pk—1)},
and assume that for some integer | > 0 there is a choice function

I+p
h: [U Da:| — | JDa.
aEL aEL

Then there is an infinite subset A" C ) such that we are in at least one of the following
cases:

(a) There is a choice function
I
e [U Dai| - | Du.
ae) aer

(b) We can simultaneously refine the partitions on {Fy : a € )} to partitions of the
same type (and extend accordingly the corresponding sets Dy ).

(c) We can simultaneously refine the partitions on {[Dy]P : o € A} to partitions of
the same type.

(d) Foreach o € X' we can choose a non-empty proper subset D), of Dy, i.e.,

) # D., C Dy,

such that for all a, B € )" we have |D,,| = |D/’3|.

Proof Recall that for all o, &’ € A we have |Dy| = |D,’|. Now, assume that there is a
Jo < k such that for nj, :=aj,pj, and all @ € A we have

njOJ[|Da|.
Forall @ € A and all z € F, define
#z:=|{X € Dy : z € X}|.

Since ) #z = |Dyl, |Fa,jy| = nj, and nj, { | Dy, it follows that

ZeFa,jO
0 # {2 € Fojy: V2 € Fyjy(Hz <#2)} C Fujy.

Therefore, we can simultaneously refine the partition on each F, for @ € A. Moreover,
notice that since n j; is finite, we find an infinite set A’ C X such that foreach o € )/,
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the block Fy_ j, is partitioned into two non-empty blocks Fy j, and Fy, j, where for
alla, B € M, |Fy j,| = |Fg,j,| and |Fy j,| = |Fg,j,|. This shows that all the refined
partitions are of the same type and we are in Case (b).

So, we can assume that for all i < k and all @ € A we have

ni | |Dgl
where n; := a; p;.
We consider now the following four cases:
Case 1: Thereisa Zy € [Uaek Da]l and an infinite subset A’ C A such that

Va € X' VX € [Dy]” (h(Zo U X) € X).

By shrinking A’ if necessary, we may assume that Zo N |, Do = 9. For every
a € M and alld € D, define

deg, (d) = |{X € [Da]” : h(Zy U X) = d}|.

Note that } ;. , deg,(d) = [[Da17| = ('Dp‘”). Since p = pj, and since n;, | | Dy,

we have p | |Dy|. Hence, it follows that | Dy | 1 <|l;“|>. To see this, let D := |D,|

and notice that if D = ap® for some positive integers a, s where p 1 a, then

D\ ap’-(ap’—1)-...-(ap’—p+1) _apsfl-(aps—l)- oo apt=p+1)
p) 1-2-...-p a 1-2-...-(p=1) ’

Hence, p* ¢ (? ) and in particular we have D { (11? ).
Thus, for each o € A’ we can choose

0 # D, := [d € Dy : Vd' € Dy(deg,(d) < deg,(d)} S Da.

Moreover, notice that since Dy, is finite, by shrinking A’ if necessary, we can assume
that for all @, 8 € A’ we have |D, | = |D/§}|, and we are in Case (d).

Case 2: Thereisaset Zj € [U e Da]l, anon-negative integer jo < f, and an infinite
subset A" C A such that Zo N | J ;s Do = ¥ and

Vo e M 3X,X € Dg.jo (h(ZoU X) € Zg AW(Zo U X') € X').
In this case, we can simultaneously refine the partition on [Dy]? for each a € A/
Moreover, since [Dy]? is finite (for all @ € A’), by shrinking A’ if necessary, we can
assume that for all o, 8 € 1/, the partition on [D,]? has the same type as the partition
on [Dg]?, and we are in Case (c).
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Case 3: Thereisaset Zg € [Uyex Da]l, anon-negative integer jo < f, and an infinite
subset 2" € A such that Zo N | J, v Do = ¥ and

Vae,\’((VXe Dl . h(ZoUX) € Zo) A3X. X' € DL (h(Zo U X) #h(Zo U x’))).

In this case, we can simultaneously refine the partition on [D,]? for each a € 1.
Moreover, by shrinking A’ if necessary, we can assume that all partitions are of the
same type and we are again in Case (c).

Case 4: Forall Z € [Uye; Da]l and for all but finitely many o € A we have

3j <tVX, X' e DL, ((ZUX)=h(ZUX) € Z). ()

Then, for each Z € [U,e, Da] let az € A be the least element with respect
to the well-ordering on A such that (x) holds for « = «z. Furthermore, for every

YAS [UQGA Da]l let jz < t be the least integer such that (x) holds for « = oz and
Jj = jz.So, forevery Z € [Uaa Da]l we have

VX, X' eDl! . (M(ZUX)=h(ZUX') A (ZUX) € Z). )

az,jz

Finally, we define a function 2’ : [y, Da]l — (Uges Do by stipulating

1
h |:UD({| —>UDa
QEN aEA
Z+—— h(ZUX)

where X is an arbitrary element of D SZ’ iz Note that by (%) , 4’ is a well-defined choice
function and we are in Case (a). O

Now, we are ready to prove the main result of this section.

Proposition 2.2 Letm,n € w\ {0, 1} and assume that whenever we can write n in the
form

n=) api
i<k

where po, ..., pk—1 are prime numbers and ay, . .., ax—1 are positive integers, then
we find by, . .., b1 € w with

m = Zbipi.

i<k
Then, in ZF we have

RC,, = WOC,.
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Proof Let F = {F, : « € A} be an infinite, well-ordered family of pairwise disjoint
n-element sets. The goal is to construct an infinite subfamily of F with a choice
function.

Applying RC,, to the set Xo := (J,; Fo, We obtain an infinite set Yo € X such
that the set [Yp]” has a choice function. For 1 < j < n, let

rji={aer:|F,nYyl=j}

Since n is finite and A is infinite, there exists a jo with 1 < jo < n such that1;, € A
is infinite. If jo = 1 we are done since {Fy : « € A1} C F has a choice function. If
1 < jo < n, we apply RC,, to the set

Xp = J{Fa\ Yo €2}

and obtain an infinite set Y1 € X such the set [Y1]™ has a choice function. As above,
forl < j <n— jo,let

Ljoj =f{aerj |FaNY1| = j}.

Then there exists a j; with 1 < ji <n — jo suchthat A, ; € Aisinfinite. If j; =1,
then the infinite family {Fy, : @ € Aj,,1} € F has a choice function. Proceeding
this way, we either find an infinite subfamily of F with a choice function, or for an
infinite subset Ag C A, for all « € Ao we can simultaneously partition the sets Fy
into sets Fy; with i < k for some k > 1. Since for each i < k, |Fy;| > 2, we

have |Fy.i| = a; pi, where p; is prime and a; > 0. Finally, for each o € Ag, let let
D, :={d C Fy : d diagonalises F,}.
Now, since n = Zi<k a; pi, by our assumption we find by, ..., bx—1 € w with

m = Zi<k b; p;, and since m > 2, there is an ip < k with b;; # 0. In particular, we
have m > p;,. Let p := p;, and [ := m — p, where [ > 0. Furthermore, for t = 1,
{Dqy,j 1 j <t} = [Dg]? is the trivial partition of [Dy]?. Thus, by RC,,, there is an
infinite set A € A¢ and a choice function

h: [U Da]l+p — | JDa.

aEA aEA

So, we have all the requirements to apply Lemma 2.1 iteratively until — after finitely
many steps — the partitions of the F;,’s or of the [ D, ]”’s contain a block with just one
element, or the sets D, are singletons: To see this, notice first that if we are in one of
the cases (b), (c¢), or (d), or if / = 0, then we can either refine the partition of the F;’s
or of the [Dy]?’s. Now, if we are in case (a) for [ > 0, then, by the properties of

m= bipi
i<k
and since we start with/ =m — p,[ > p; (for some i < k) and we can proceed with

I Z=l—p,'.
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710 L. Halbeisen, S. Schumacher

So, after finitely many steps —in particular after finitely many choices of sets Zo—
we are in the situation where the partitions of the Fy’s or of the [D,]?’s contain a
block with just one element, or the D, ’s are reduced to singletons, which gives us an
algorithm to select an element from each of the remaining F,’s— where in the case
when |Dy| = 1, we choose the element in Dy N Fy . O

Corollary 2.3 For every n €  we have that

RC, = WOC; .

2.2 When is RC,, = WOC,; consistent with ZF?

In this section we will show that for all n,m € w \ {0, 1} which do not satisfy the
conditions of Proposition 2.2 we get that

RC,, % WOC;

is consistent with ZF. In a first step we will construct suitable Fraenkel-Mostowski
permutation models—similar to those constructed in [2, Sec. 6] —in which we have
RC,, # WOC,, . We will then see that both statements, RC,, and WOC,, are injec-
tively boundable. So, by [7, Theorem 3A3] the result is transferable to ZF.

Let po and p; be two prime numbers. We start with a ground model M, ,, of
ZFA + AC with a set of atoms

A::U{A,- i ea)}UU{Bj 1] € w},
where for all i, j € w the sets A; and B; are called blocks. These blocks have the

following properties:

e Foralli e w, A; ={a;x : k < po} and B; = {b;; : | < p1} with |A;| = po and
|Bil = p1.
e The blocks are pairwise disjoint.

For all i, j € w we define a permutation on A as follows:

e Foralli € wandall k < pg let

a;i o ifk=po—1,
aj(ai k) ==

aik+1 ifk < po—1,
and «;(a) = a foralla € A\ A;. Analogously forall j € wand alll < pj let

bi.o ifl =p; — 1,

(b 1) =
Press {bj,m it < pi—1,

and B (b) = b forallb € A\ Bj.
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Now we define an abelian group G of permutations of .4 by requiring
PG &< ¢Pp=0uop,
where

o= Hozf" with k; < pg foreachi € w

I€Ew
and

B = nﬂjj with/; < py foreach j € w.
Jjew
Let F be the normal filter on G generated by the subgroups
fixg(E) ={¢p € G:Va € E(¢p(a) = a)}
with E € fin(A) := {A € A : |A| € w}. Let V), ,, be the class of all hereditarily
symmetric sets.

Remark 2.4 We can also work with k blocks of size po, ..., px—1, where p; is a
prime number for every i < k. The corresponding permutation model is denoted by

VP()w-st—]'

Definition 2.5 A set E € fin(A) is closed if and only if for all i, j € w we have that
AANE#A0=A; CE and BjﬂE;é@:}ngE.

We now define a well-ordering on the set of closed sets.

Definition 2.6 Let C; and C> be twoblocksin {A; : i € w}U{B; : j € w}. We define

Ci=A; N C,=Bj, or
Cil<C:ié= JC1=A; ANCr=A; Ni<j,or
C1=Bi/\C2=Bj/\i<j.

Moreover, for distinct closed sets E = | J{Fo,...F,} € fin(A) and E' =
(U{F{, ..., F,,} € fin(A) with blocks Fo, ..., Fy, F{,..., F,, let

E < E' : <= The < -least block in the symmetric difference
{Fo, ..., Fa}A{Fy, ..., F,}belongs to E.

Note that this defines a well-ordering on the set of closed sets and therefore on the
set of all closed supports.
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Lemma 2.7 Letn € w\ {0, 1} and let po and p1 be two prime numbers such that
n=cpo+dpr #0
for c,d € w. Then we have that
Vpo,p1 E~WOC,, .
Proof Define
F = [Al UA1U--UAjpe—1UBjgeU---UBjjerg—1 : Ll =k(c+d)forak e w].
Then F is an infinite family of pairwise disjoint n-element sets. Since the empty set
is a support of F, we have that 7 € V), ,,. Moreover, F is well-orderable in V) p, .

Assume towards contradiction that there is an infinite subset G € F with a choice
function

g:G—~Jg

in Vy, ;. Let E, € fin(A) be a closed support of g. Since Ej is finite, there is a
Go € G such that Go N E; = . Then there are i, j € w with

8(Go) € A4i U Biycyj-
Define yg := o4 o B¢+ ;. We have that

g(10(Go)) = g(Go) # y0(g(Go)).

So E, is not a support of g which is a contradiction. O

Lemma 2.8 Letm € w )\ {0, 1} and let py, p1 be prime numbers such that
m # cpo +dpi

forall c,d € w. Then we have:
Vpo,p1 ERCy,

Proof Letx € Vp, ;, be an infinite set with closed support E € fin(A). If there is an
E € fin(A) such that

y :={z € x : E is a support of z}

is an infinite set, then y can be well-ordered in V,, 5, and we can define a choice
function on [y]™ by choosing the least element with respect to that well-ordering.
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So, assume that for all £ € fin(.A) there are only finitely many z € x with support
E. For every closed set E € fin(A) with E, C E define

Mg = {z € x : E is the minimal closed support of z with E, C E}

Since E is a support of Mg, the sets Mg belong to V), p,, and by our assumption, the
sets Mg are finite. Now, for each z € Mg define

(2] :={¢(2) : ¢ € fixg(Ex)} S ME.

To see that [z] € Mg, notice that since E € fin(A) is closed, for all ¢ € G we have
¢(E) =E.

We consider the following two cases:
Case 1: For infinitely many Mg there is a z € M with

[z] = ME.

Lety := | J{Mg : Ex C EA3Jz € Mg(Mg = [z])}. The set y is in Vpo,p1 because
E, is a support of y. Let + € y with |[¢| = m and let E be a smallest closed set such
that Mg C y and |t N MEg| is not of the form kg po + k1 p1 with kg, k1 € w. To see that
such a set ¢ exists, notice that for [z] = Mg and [7'] = Mg, if [z] N [Z/] # @, then
Mg = Mg

Definet_y :=tNMg. Since E\ E, # () there are blocks A;,, ..., A;,_,, Bj,, ...,
Bj with
E \ Ex = U{AiO’ Ail tee Al‘ufl’ Bju’ Bju+l Yo B/’u+ufl}'
Define
~ i )\.
G:= !Ha;;" ol_[ﬂjljg] Vk<uVl<v (K,-k <poAAj, < pl)} .
keu lev

Kig Kiy—1 )\'jll )\ju+v71 ~
=  O---0; op.7 o---0p. .
Let ¢ P Q- ﬂ]u ,BJHW1 € G. Define

ol i=ki, ifr <uand @l := A ifu <r <u+wv.

The elements in G can be ordered lexicographically. We call this well-ordering < G
Foralls,s’ < t_yand allr < u + v define

dist, ((s, ")) := |,
where ¢ is the <-smallest element in G with o(s) =s'.

The rest of the proof can be done as in [2, Proposition 6.6]. For the sake of com-
pleteness, we will redo it here:
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714 L. Halbeisen, S. Schumacher

Claim 1: Forall s, s’,s” < t_; and all r < u + v we have that
dist,((s, s")) +p dist, ((s", s”)) = dist, ((s, s")),

where p = poifr <uand p = pyifu <r < u+v. Moreover, +, denotes addition
modulo p.

Proofof Claim 1 Let ¢, ¢1, ¢ € G be < G-minimal with
do(s) =", d1(s") = 5" and p(s) = 5"

Assume that ¢ # @1 o ¢p. So we have that ¢! o ¢1 o ¢p9 # id and

¢~ o ¢1ogols) =s.
Let! < u 4 v be the largest number such that

¢~ ool #0.

Without loss of generality we assume that / < u. Then let m € w with

@ ' ogrogy)"li=1.
Note that (¢! o ¢1 0 ¢g)" # «;, because otherwise we would have that «;, (s) = s
which is a contradiction to the fact that E' is the minimal support of s with Ex C E.
So thereisa ¢ € G \ {id} with

@ ' ogiogy)" =goa,andg <¢ a;.

Then goa;, (s) = s = a;,(s) = ¢~ ! (5). Note that g = <= o;,. We have that ¢o; # 0
or ¢1]; # 0 or ¢|; # 0. Without loss of generality we assume that ¢g|; 7 0. Then

-1

pooa; op™ <5 o
and
¢o o oci?l o () =¢po a;] oaj (s) =¢o(s) =s'.
This contradicts the minimality of ¢y. —Claim 1

Forallf Ct_y,alls < 7andall r < u + v define
xr (s, ) = {dist, ((s, s)) : s’ € 1}.

These sets have the following properties:
Claim 2: Forallf € t_; and all 5, s’ < 7 we have that
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1 <|x-(s,0)] < poforallr <uand1 < |x-(s,7)| < piforallu <r <u-+v.

. forall r < u + v thereis a k, € w such that x,(s,7) = x-(s',7) +, k, where
p=poifr<uand p=pjifu <r <u+v.

3. x5, D = x5, D).

4. if s # s’ there is an r < u + v such that x, (s, ) # x.- (s, 7).

o =

Proofof Claim2 1. Note that 0 < ¥, (s, ) since dist,({s, s)) = 0.

2. Setk; := |, where ¢ is <z-minimal with ¢ (s) = s" and use Claim 1.

3. This follows from 2.

4. Lets, s <1 and let ¢ be <x-minimal with ¢ (s) = s". If x,(s, 1) = x,(s', 1) for
all ¥ < u + v it follows that ¢|, = k, = 0 forallr < u + v. So ¢ = id and
therefore s = s'.

—Claim 2

We define an ordering < on the sets x, (s, ) as follows: x.(s,7) < x (s',7) if
and only if x,(s,7) = x,(s’,f) or the smallest integer in the symmetric difference
x (s, YAy, (s, f) belongs to x, (s, f).

For all non-empty sets f C ¢_1, all 7 < u + v and all natural numbers n define Ar, NG)
as follows: Let A, o(7) := ¥ and for every n € w \ {0} let

n—1 n—1
A (D) = {s e\ Jri@® ¥ € N rri® (x5, D) = 45" D) -
i=0 i=0

Note that | J,c,, Ar,n(f) = 7 and only finitely many A, ,(7) are non-empty. Assume
that #,_; is defined for an r < u + v. Then let

tr = Ar g (tr—1),
where ny € w is the smallest natural number such that A, ,,(#,—1) is not of the form
cpo +dpy
with ¢, d € w. By Claim 2, 1,4, is a one-element set, i.e., there is an s < ¢ with
tutv—1 = {s}.

So we choose s from ¢. This shows that RC,, holds in V, p,.
Case 2: There are infinitely many Mg such that there are z, 7/ € Mg with

z1N[1=0.
Our goal is to reduce this case to Case 1. For every E € fin(A) with E, C E define
[MEg] = {[z] : z € ME}.
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Furthermore, choose a wy in the ground model M, ,,, = ZFA + AC such that

wo\  J  IMel=0
E € fin(A)
E.CE
and

for all closed sets E € fin(A) with E, C E and Mg # () we have lwy N [Mg]| = 1.

In other words, wg picks exactly one element from each non-empty [Mg]. Note that
E is a support of wp. So wg € Vy, p,. Choose

M;; = Mg Nwy.

This reduces Case 2 to Case 1. O
Proposition2.9 Letm,n € w\ {0, 1}, k € w, and let py, ..., px—1 be prime numbers
such that

wt Y

i<k

forallci € w, i <k, and

H=Zdipi

i<k
for some d; € w, i € k. Then

RC,, # WOC;

is consistent with ZF.

Proof Similar as in Lemmas 2.7 and 2.8 we can prove that
Vyo,oospir = RCy A=WOC,. (1)
In order to transfer this statement to ZF, we have to show that RC, and WOC; are

injectively boundable for all n € w. Then we can use Pincus’ transfer theorem [7,
Theorem 3A3]. The terms “boundable” and “injectively boundable” are defined in

[7].
For a set x we define the injective cardinality

|x|— := {o € Q: there is an injection from « into x},
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where 2 is the class of all ordinal numbers. Moreover let ¢ (x) denote the following
property:

if x is an infinite set, there is an infinite y C x with a choice function on [y]".
Note that ¢ (x) is boundable. Since ¢ (x) holds when |x|_ > w, it follows that
RC, <= Vx(lx|- = 0w = ¢x)).

So, RC, is injectively boundable. Furthermore, we have that =WOC,, is boundable.
So, (1) is transferable into ZF. O

Propostion 2.2 together with Propostion 2.9 gives us the following result:

Theorem 2.10 Let m,n € w \ {0, 1}. Then RC,, implies WOC,; if an only if the

following condition holds: For all prime numbers po, ..., px—1 such that there are
positive integers ay, . . ., Ax—1 With
n=Yap.
i<k
we can find by, . .., br—1 € w with
m = Z bi Di-
i<k

We conclude this section by giving a few consequences. Since =WOC,” = —RC,,
Proposition 2.9 gives us:

Corollary2.11 Let m,n € w \ {0, 1} and let py, ..., px—1 be k € w prime numbers
such that

m # Zcipi

i<k
forallci € w,i <k, and
n=>Y dipi
i<k
for some d; € w, i <k. Then

RC,, # RC,

in ZF.

Proof This follows from RC,, = WOC, (Corollary 2.3) and RC,, # WOC,  (Propo-
sition 2.9). ]

@ Springer



718 L. Halbeisen, S. Schumacher

Corollary 2.12 Let p be a prime number, let m € w \ {0} and n € w \ {0, 1}. Then we
have that

RC,m = WOC,;
ifandonly ifn | p™ orp =2, m =1andn = 4.
Proof If n is divisible by a prime g # p we have that
Vy ERCpm A =WOC,,.

Therefore, RCm # WOC; in ZF. So we can assume that n = plforak e w)\ {0}.

Casel:m >k
Let r € w and let pg, p1..., pr—1 be prime numbers such that there are
ap, day, ..., a1 € w with

n= Pk = Zaipi-

i<r
Then

pr=p" Pt =) praip.

i<r
So by Proposition 2.2 we have that
RC,m = WOC,, .

Case2:m <k
First, assume that p # 2. By Bertrand’s postulate there is a prime number gg with

p" < qo <2p™.

Note that pf — go > pF —2p™ > p and go # p. So there is a prime number g; # p
with

a1 | (P = qo).

By construction, p¥ can be written as a sum of multiples of go and ¢;. Since ¢; tp™
and p" < ¢, we have that

p" #aqo + bq.
forall a, b € w. So by Proposition 2.9 we have that

RCpm + WOC;]‘ .
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Now, let p = 2 and k > 3. Then there is a prime number go with
2k71—l<q0 <2k_2.
It follows that
2 <2kt < qo <2k_2.
So, 2¥ — go > 2 and with the same argumentation as above we see that
RCy» % WOCx.

Now we assume that p = 2 and k = 2 (i.e., m = 1). This is the only remaining case.
By Proposition 2.2 we have that

RC, = WOC;.

3 Results provable in ZF

In this section we shall prove four results which are provable in ZF. The first two results
are about the implications RCq = C, for n € {3, 9}, and the second two results are
about the implications RC, = LOC,, form € {5, 7}.

3.1 RCq implies C5

In the proof of the next result, we will closely follow the proof of RC4 = C, given
in [6].
Proposition 3.1 ZF = RCg = Cj, i.e,, it is provable in ZF that RCg implies C5 .

Proof Let JF be an infinite family of pairwise disjoint sets of size 3. We apply RCg to
the set |J F. This gives us an infinite subset ¥ C | J F with a choice function on [Y1°.
For every i € {1, 2, 3} we define

G =ueF: lunY|=i}.
Without loss of generality we can assume that G := Gz is infinite, since otherwise,

we can easily define a choice function on an infinite subset of F. So, there is a choice
function

[ [Ug]6—> Ug.

We define a directed graph on G by putting a directed edge from v to u (i.e., v — u),
if and only if f(u U v) € u. If there is direct edge from v to u we will say that the
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edge points from v to u. With this graph we carry out the same construction as in [6].
So, there is an infinite subset H C G which is partitioned into finite sets (A,,),ee Such
that for every n € w, all elements in A,, have outdegree n. Moreover, for all n € w we
have that | A, | is odd, and for all n < m, the edges between A, and A,, all point from
Ay, to Aj,. We can assume that we are in one of the following two cases:

Case 1: There are infinitely many n € w with 3 1 |A,,]|.

In this case we follow the proof of the Claim in [6, p. 60]: Without loss of generality
we can assume that 3 { |A, | forevery n € w. Letng € w and pg = {xo, x1, x2} € A,,.
For eachi < 2 we define

deg(x;) := {g € Apgt1: f(g U po) = xi}|.

Since 3 1 |Apy+1] we have that 3 1 (deg(xp) + deg(x;) + deg(x2)). Therefore, we can
choose one element from py.

Case 2: For all n € w we have that 3 | |A,].

Let po € H and let n € w be the unique natural number with py € A,. There is
an s € w with |A,| = 25 + 1. We want to find the number of elements in A,, with
edges pointing to pg. There are ('Az"l) edges in A,. Since the number of edges in A,
that point to an element in A, is the same for every element of A,, we have that the

indegree of pg in A, is given by
1 [lAn] 1
U ) =50 =D =5
lAnl\ 2 2

By assumption we have that 3 | |A,| = 2s + 1. Therefore, 3 t s. Assume that
po = {x0, x1, x2}. For every i < 2 we define

indegree 4 (po) =

Ay i={v e A, f(wU po) = x;}.
Since 31 (|A’| + |Ay'| + |Az2]) = s, we can choose an element from py. O
3.2 RCg implies C

Lemma 3.2 Let F be an infinite family of pairwise disjoint 4-element sets. If there is
a choice function

[ [U]—“]é — U}—,

then there is a function h with h(p U q) € pUgq forall p # q in F.

Proof Let p # g be elements of F. We will show that we can choose exactly one
element from p U q. There are
8
()
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6-element subsets of p U g. From each of these subsets we can choose one point with
the choice function f. Let A be the set of all elements in p U ¢ which are chosen the
most times. Note that 1 < |A| < 7, because 8 does not divide 28.

e If |[A| = 1 we are done.

e If |A| =2, choose f((pUq)\ A).
e If |[A| =3and A C p or A C g we are done because we can choose the point in
p\Aoring\ A. Otherwise, |p N A| = 1or|g N A| = 1 and we are also done.

o If |A]| € {5, 6,7}, replace A by (p Uq) \ A. So we are in one of the cases above.
e If |A] = 4, the set [(p U g) \ AJ? contains <3) = 6 elements. For each B €

[(pU q)\A]2 choose f(AU B). Let Cy and C be the sets of all elements in p U g
which are chosen the most and the least often. Note that either C or C; does not
contain 4 elements. By the cases above we are done.

So there is a choice function

h:{pUq:p,qu}—)U]—".
(]

Lemma3.3 Ler {A,: n € w} be a countable family of pairwise disjoint non-empty
finite sets of pairwise disjoint sets of size 2, and let F := | ,,.,, An be the correspond-
ing infinite family of 2-element sets. If

f:[U}']6—>U}'.

is a choice function, then there is an infinite subfamily G C F with a choice function.

new

Proof By using a bijection between w and an infinite subset of w, without loss of
generality we are in one of the following four cases:

Case 1: For all n € w we have that 2 1 |A,,|.

Let k € w. Then there are natural numbers [y, /; and I, such that

[Asl = 2lp + 1, |Askg1]l =20 + 1 and |Azpqo| =2 + 1.
For every a € Az U A3p41 U Azgyo define
#a = |{(ao, a1, az) € Azk X Aspy1 X Aspy2: fagUap Uar) € all.

If #a is odd, we can choose an element from a, for example the element in a we choose
more often than the other. Since

2{1_[(2li+1) and Z #a =]_[(2zi+1),

i<2 a€A3UA3k+1UA3L 42 i<2
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we have that for every k € w there is at least one @ € A3 U A3zg+1 U Azg42 such that
#a is odd. So, we can find a choice function on the infinite set

G :={a € F: #ais odd}.

Case 2: For all n € o we have that |A,| = 2.
For every k € w let Ay, = {ax, ba} and By = {ax} U Axyy1 and By =
{bok} U Aogy1. For every a € Ay U Azg41 we define

Ha = Hl € {0,1}: f(UBi) ea”.

Note that if #a = 1, we can choose an element from a and we are done. So, if there
are infinitely many a € F such that #a is odd, we are done. Otherwise, there is an
infinite subset / C w such that for all k € I there is a unique a; € Az U Apgyq with
#ay = 2. Then we are in the first case for the family {{ax}: k € I}.
Case 3: For all n € w we have that |A,| > 3,41 |A,|and 2 | |A,|.

Let n € w. Then, by the properties of |A,| we have |A,| = 2¢ for some odd ¢,
[An
2
subsets of Ar U Asr+1 with two elements in Ay, and two elements in Apg41. Note
that the number of such subsets, as the product of two odd numbers, is odd. Let % be
the choice function we found in Lemma 3.2. Then for every k € w there is at least one

a € Asr U Aggyq such that

and therefore we have that ( > is odd. For every k € w we look at the 4-element

#a = |{({ao, a1}, {bo. b1)) € [A2e]® x [Azr1]* : h(ag Uar Ubg Uby) € al|
is odd. So again we found a choice function on the infinite set
G :={a € F : #a is odd}.

Case 4: For all n € w we have that |A,,| > 3 and 4 | |A,].
Let n € w. Then there is a k € w with |A,| = 4k. We have that

An
2|1Anl 1 (' 3 |>, 2

since otherwise we would have that

|An|(JAnl = DALl —2)  2(4k* —3k) + 1 cw
214, -2-3 - 2.3 ’

but this is not the case since the numerator is odd. We define
#a = |{{ao. a1, az} € [A,] : f(ap Uar Uay) € a}|
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and forall y € [J A, let
#(y) == [{{ao, a1, a2} € [A,] : flapUar Ua) = y}l.

Note that by (2)

Hy e JAn:#(y) = max{#(z) ze UA,,}H < 204,l.
If there is an a = {ag, a1} € A,, with
#(ao) # #(a1)
choose the element a; with lower #(a;). Otherwise we have that
B, ={aec A, #a=max{#b:b e A,}} C A,.

Repeat the procedure with A, := B, until either 4  |A,| or there is an a = {ag, a1} €
A, with

#(ao) # #(a1).

Note that we have to repeat the procedure at most |A,| times. In the end we either
found a choice function on an infinite subset of F or we reduced Case 4 to one of the
other cases. O

Corollary 3.4 Let F be an infinite family of pairwise disjoint 4-element sets. If

f:[U]—']6—>UJ-'

is a choice function, then there is an infinite subset G C F with a choice function on

g.

Proof Let h be the choice function we found in Lemma 3.2. We can define a complete,
directed graph on F by putting an edge from p to ¢ if and only if 2(p U g) € ¢g. With
this graph we can do the same construction as in [6]. So, we can find an infinite subset
G C F such that we can choose exactly 1 or 2 elements from each G € G. So either
we found a choice function on an infinite subset of G or we can find an infinite family
of 2-element sets H. Then we apply Lemma 3.3 to H and we are done. O

Lemma3.5 Let F := {F) : A € A} be an infinite family of 10-element sets. Assume
that each F), € F is a disjoint union of five 2-element sets F ;, 0 < i < 4. Moreover,
assume that

f:[U]—']6—>U]-‘

is a choice function. Then there is an infinite subset G C F with a Kinna-Wagner
selection function.
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Proof For all 4-element sets A C | F, we define the degree of A by
deg(A) ={Fi: FAe FANIi<4ANF iNA=0ANf(AUF, ;) € Fi}l.
If there is an Ag € [U F ]4 with infinite degree we are done, because then the set
G ={FeF:3i =4 (f(A)UF, ;) € Fri)}
is infinite and from every G € G we can choose the set
{f(AQUG) i =4NG CG.

Thus, we can assume that each A € [U F ]4 has finite degree. Define F2 = {F;; :
F, e FAi<4)andforall Fy € Flet F2 :=(F; :i <4}.
Case 1: There is an n €  such that for infinitely many A € A there are distinct
A, B € F? with deg(AU B) = n.

LetG :={F, € F:3A,B € Ff(deg(A U B) = n)}. By assumption this is an
infinite set. Choose an (n + 3)-element set {X; : i <n+2} C F2. Forall G € G and
all A, B € G* with deg(A U B) = n put an edge pointing from A to B if and only if

f(AUBUX;) € B,
where
ip:=min{i <n+2: f(AUBUX;) ¢ X;}.

Notice that this gives us a directed graph with at least one edge in each G with G € G.
If for infinitely many G € G not all elements of G> have the same outdegree, we are
done. So, we either have a cycle on infinitely many G or we have a complete graph
in which every node has outdegree 2. In the former case we can choose a point in each
AU B, where A, B € G? are neighbours. Thus, we can choose 5 elements in each
G € G. In the latter case, we can choose 5 edges as follows: For the node A € G2, let
B, C € G be the two successors of A in the graph. Consider the edge which connects
B and C (see Fig. 1). If this edge points to C, then we go to B and consider the two
successors of B. Proceeding this way, we obtain a cycle on infinitely many G>’s and
can again choose 5 elements from G.

Case 2: For all n € w there are only finitely many A € A such thatthereare A, B € F f
with deg(A U B) = n.

Let A_; := ¥ and for every n € w define

Ay ={A € F?:3B € F*(deg(AU B) = n)} \ An_1.

Note that these sets are pairwise disjoint families of 2-element sets. So we can apply
Lemma 3.3 and we are done. O

Now, we are ready to prove the following:
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NN

Fig.1 How to choose the edges

C

oe—0 3

Proposition 3.6 ZF - RCs = C,.

Proof Let F be an infinite family of pairwise disjoint sets of size 9. Since RCg holds,
there is an infinite set Y C | J F with a choice function

fire —v.
Forall0 <i <9let
G ={FNY:FeFA|IFNY|=i}.

Thereis a 1 <i < 9 such that G; is an infinite set.

Case 1: G or Gg is infinite.
In the case Gg is infinite, we look at the complements.

Case 2: G3 or Gg is infinite.
Use Proposition 3.1.

Case 3: Gy is infinite.
Use Corollary 3.4.

Case 4: Gs is infinite.

Apply RCg to the complements. Then we are either in one of the preceding cases or
the complements are partitioned into two sets of size two. We look at the 10 edges
between the first 5 elements and the second two elements and use Lemma 3.5.

Case 5: Gy is infinite.
For all G € G7 let G be the complement of G in the sense that for the F € F with
G C F we have that

G:=F\G.
Note that |G| = 2. Let
E:={{x,y}:3G € Gr(x e Gand y € G)}.
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Apply RCq to £. Without loss of generality we can assume that we find a choice
function

g [E1° = €,

because otherwise we are in one of the preceding cases. So, for every G € G7 there
are 14 edges between G and G. Hence, there are

14
(6>_3-7~11-13

. 14\ .
6-element subsets. From each of them g chooses one element. Since ( 6) is not

divisible by 14, we can choose less than 14 edges and we are in one of the preceding
cases.

Case 6: Go is infinite.
With the choice function f we can choose an element from each 6-element subset of

a G € Gy. There are (2) subsets of size 6. Since 9 { (2) we can reduce this case to

one of the cases above.

Case 7: G is infinite.
We iteratively apply RCg¢ to the complements. So, we can reduce this case to one of
the cases above. O

3.3 RCs implies LOCS

We will now show that RCs implies LOCy . The beginning of the proof will be as
usual: Let F be an infinite, linearly orderable family of 5-element sets. We apply
RCs to | J F. This will give us an infinite subfamily G € F such that each p € G is
partitioned into two parts. If one of these parts is of size one, we have a choice function
and we are done. Otherwise, the two parts are of size 2 and 3. So if we could show that
RCs implies LOC, or LOC5, the proof would be finished. However, Halbeisen’s and
Tachtsis’ result (8) shows that this idea will not lead to success— which is the reason
why we will work with the set of edges between the two parts.

Theorem 3.7 ZF - RCs = LOCj5.
Proof Let F be an infinite, linearly orderable collection of pairwise disjoint sets of
size 5. We fix a linear order on F and apply RCs on the set X := |J F to find an

infinite subset ¥ C X with a choice function f : [Y]> — Y. Forevery i < 5 we
define

Fi={peF:|pNnY|=i}l
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Fig.2 The partitions of a p* into y(f , ylp on the left and into ,667 s ,Blp and ﬁf on the right

The only non-trivial case is when the elements p of an infinite subfamily G € F
are partitioned into a set with two elements and a set with three elements, namely
p={ap,bp,cp}U{xp, yp}.

Now we look at the set Z of all non-directed edges between a pointin {a, b, ¢}
and one in {x, y,}. For every p € G let p* be the set of all edges in Z belonging to
p and for each subset H C F we define H* := {p* : p € H}.

Claim 1: Assume that there is an infinite subset H C G such that we can choose
between 1 and 5 elements from each p* € H*. Then there is a choice function

h:H—>UH.

Proofof Claim 1 Let p € H and assume that we can choose k € {1, 2, 3, 4, 5} elements
from p*. We look at p as a graph with k edges. If 2 { k, x, and y, do not have the
same degree and we can choose the element with lower degree. Otherwise we have
that 3 4 k and we can choose an element from {ap, by, cp}. —Claim 1

Now we apply RCs on the set Z. Then there is an infinite subset Q C Z with a
choice function g : [Q]° — Q. By Claim 1 we can without loss of generality assume
that p* C Q for every p in some infinite H C G.

We can partition each p* € H* as follows into two sets yop and ylp of size three
(Fig. 2):

V()p = {{ap, xp} {bp, xp}, {cp, xp}} and le = {ap, yp}: bp, yp} {cp, ypl}-

Analogously we can partition p* into three sets ﬁé’ , ,Bf , ,357 of size two as follows
(Fig. 2):

,367 = {ap, xp} {ap, ypi} ﬂ]p = {bp, xp}, {bp, yp}} and
,35 = {{prxp}v {va)’p}}‘
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Let

Hi :={y' i <1ApeH)

Al
be the sets of size three appearing in the partition of a p* € H* and let
H;::{,Bip:iSZApeH}

be the family of sets of size two which appear in the partition of a p* € H*. If there
is a y € Hj such that for infinitely many g € H;

gy Up) ep, 3

we are done by Claim 1. Otherwise, for every y € Hj there are only finitely many
B € H3 with (3) and we define

deg(y) := B € Hy: g(y UP) € B}l € .

We are in one of the following two cases:

Case 1: There is an n € w such that deg(y) = n for infinitely many y € Hj.
LetZ3 := {y € Hj : deg(y) = n}. Choose an (n +4)-element set {; : i <n+3} C
H3. For every y € 73 we define

j(y):=min{i <n+3:g(yUp) €y}
So from every y € I5 we choose the element

glyUBjp) €y

and we are done by Claim 1.
Case 2: For each n € w there are only finitely many y € H3 with deg(y) = n.

For every n € w we define

Ap = {y € Hj : deg(y) = n} and

B,:={BeH;:3y €A Ip" e H (y S p*ABC pH}
If there are infinitely many p € H such that 7/6" € A, and ylp € A, withn # m we
are done by Claim 1 since we can choose three edges from each of these infinitely

many p’s. So we can assume that for every p € H both, y(f’ and ylp , have the same
degree and we define

Co={peH:{y]. v/} S A}
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for every n € w. Moreover, let

out(B) := {y € UAmig(,BUV)GV}-

m>n
for every n € w and every g € B,. If thereis a B € |, ., B» With |out(8)| = oo we
are done by Claim 1. So assume that [out(B)| € w forall 8 € | J,,c,, Bn-

Claim 2: We can find an infinite subset ' C H with a partition K =  J,,., K» where
each K, is finite and non-empty. Moreover, we can assume that for all natural numbers
n>m,all peK,,alqgeK,andall j <2

g0 U = g UBY) e .

Proof of Claim 2 For every n € w we define R, to be the set of all p € [ J;.,, Ck such
that there area g € Cp,ani € {0, 1} and a j € {0, 1, 2} with

g(V,'p U ﬁ?) € V,’p-
Since |out(B)] is finite for all 8 € Unew B, the set R, is finite. Let J, := C,, \ R,.

Define S, to be the set of all p € |J,., Jk such that there are a ¢ € J,, and a
Jj €10, 1,2} with

glyg VB # gy UBD.

First of all assume that there is an ng € w such that S, is infinite. Since J,,, is finite,
we can then find a go € J,, and a jo € {0, 1, 2} such that for infinitely many p € S,

BY 3 g(rf U L) # g UBL) € B

and we can choose the set of edges yop or ylp depending on the choice in S ;:) 0. With
Claim 1 we are done. Therefore, we can assume that each S, is finite. In this case
we define K, := J, \ S, for all n € w. Infinitely many sets K, are non-empty. By
renumbering the sets K, we can assume that each K, is non-empty. —Claim 2

With the same construction we did in the proof of Claim 2 we can find an infinite
subset K € 7 with a partition £ = |, ., K», Where each K, is finite and non-empty.

Moreover, we can assume that for all natural numbers n > m, all p € I,,,allg € I,
andall j <2

gy UBDH =gy UB)) € B

Note: Up to now we nowhere used the assumption that our infinite family F of sets
of size five is linearly ordered. In the last step we will need this assumption.
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For each n € w, let p, € K, be the smallest element in K, with respect to the
linear order on . Note that such a smallest element exists since each K, is finite and
non-empty. We define

3
h* :{py:ncw}— |:Up:i|
new
Py {g (Vo””“ Uﬂ,’-’”) J = 2}.
By Claim 1 we are done. O

3.4 RC; implies LOC;

Before we prove our last result, we shall prove three lemmata.

Lemma 3.8 Let F be a linearly orderable family of pairwise disjoint 6-element sets.
Assume that we can partition each p € F in a unique way into three 2-element sets
,8(1)’ , ﬂlp and ,85 and in a unique way into two 3-element sets yop , ylp . Further assume
that there is a choice function

7
Uz - U~
Then there is an infinite subfamily G C F with a Kinna-Wagner selection function.

Proof We define
F={yl:ie{0,1}ApeF}
and
Fa={BUBL i, j} € 31> A p € F}.
For every y € F3 let
deg(y):=|{6 € Fa: 6Ny =0 A f(3UY) €5}
If there is a y € F3 with deg(y) = oo, then we are done because we can choose

between one and three elements from infinitely many p € F. The rest of the proof is
similar to the proof of Theorem 3.7. O

Lemma 3.9 Let F be a linearly orderable family of pairwise disjoint 12-element sets.
Assume that we can partition each p € F in a unique way into three 4-element sets
80, 81 and 8> and in a unique way into four 3-element sets yy, y1, y2 and y3. Further
assume that there is a choice function

£ [U]—"]7 -~

@ Springer



Some implications of Ramsey Choice for families of... 731

Then there is an infinite subset G C F with a Kinna-Wagner selection function.
Proof The proof is similar to the proof of Theorem 3.7. O

Lemma 3.10 Let F be a linearly orderable family of pairwise disjoint 10-element sets.
Assume that we can partition each p € F in a unique way into two 5-element sets €
and €1 and in a unique way into five 2-element sets B;, i < 4. Further assume that
there is a choice function

[ [U]-"T — U}'.

Then there is an infinite subset G C F with a Kinna-Wagner selection function.
Proof The proof is similar to the proof of Theorem 3.7. O
Proposition 3.11 ZF - RC7; = LOC;.

Proof Let F be a linearly orderable, infinite family of sets of size 7. We apply RC7 on
the set X := [ J F to find an infinite subset ¥ C X with a choice function f : Yy —
Y. For every i <7 we define

Fi={peF:IpnyY|=i}.

Note that we can without loss of generality assume that 7 or 73 has infinite cardinality.
Case 1: F3 has infinite cardinality.
For every p € F3 let

p*::{{a,x}e[p]zzaepﬂY/\xep\Y}

and apply RC7 on the set X* := | J{p* : p € F3}. We get an infinite subset Y* C X*
with a choice function g : [Y*]7 — Y*. Forevery 1 <i < 12 define

Fr={p"ipeFRAlp"nY*| =i}

There is an i with 1 < i < 12 such that | 7| = oo. If i ¢ {6, 12} we can choose an
element from each p with p* € F;* and therefore we are done. If i = 6, the only case
in which we cannot choose an element from all p with p* € F¢ is the one illustrated
in Fig. 3:

But in this case we are done by Lemma 3.8. And if i = 12 we are done by
Lemma 3.9.

Case 2: F> has infinite cardinality.

For every 1 < i < 10 we define }'l* as in Case 1. The only i for which we cannot
choose one element from each p with p* € F;* or for which we cannot choose three
elements from each p with p* € F* in order to reduce it to Case 1, is i = 10. But in
this case we are done by Lemma 3.10. O
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Fig.3 Casei =6

4 Open questions

1. By [6] we have thatRC,, = C,; in ZF forevery n € {2, 3, 4}. Does this implication
hold for any other n € w \ {0, 1}?

2. By [6], Proposition 3.11 and Theorem 3.7 we have that RC,, = LOC, in ZF for
any n € {2,3,4,5,7}. Does this implication hold for any other n € w \ {0, 1}?

3. Forevery n € w\ {0, 1} the following weak choice principle was introduced in

[8]:

nC;NO: For every infinite family F of finite sets with cardinality at least n there is
an infinite subfamily G C F with a selection function f: G — [J g]" such that
f(G) € [G) forall G € G.

Moreover, as in [1] we can define a restricted version of nCZRO as follows:

nRCsn: Given any infinite set x, there is an infinite subset y C x and a selection
function f that chooses an n-element subset from every z C 'y containing at least
n elements.

The relationship of RC,, and nRCy, to kCZRO and C; has already been studied
in [3]. However, the following question is still open: For every n € {2, 3, 4, 6}
we have that nRCq, = nC;0 in ZF. Does this implication hold for any other
new\{0,1}?
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