
Archive for Mathematical Logic (2023) 62:703–733
https://doi.org/10.1007/s00153-022-00860-4 Mathematical Logic

Some implications of Ramsey Choice for families of
n-element sets

Lorenz Halbeisen1 · Salome Schumacher1

Received: 16 January 2022 / Accepted: 18 November 2022 / Published online: 16 December 2022
© The Author(s) 2022

Abstract
For n ∈ ω, the weak choice principle RCn is defined as follows:

For every infinite set X there is an infinite subset Y ⊆ X with a choice function
on [Y ]n := {z ⊆ Y : |z| = n}.

The choice principle C−n states the following:

For every infinite family of n-element sets, there is an infinite subfamily G ⊆ F
with a choice function.

The choice principles LOC−n and WOC−n are the same as C−n , but we assume that
the family F is linearly orderable (for LOC−n ) or well-orderable (for WOC−n ). In the
first part of this paper, for m, n ∈ ω we will give a full characterization of when the
implication RCm ⇒ WOC−n holds in ZF. We will prove the independence results by
using suitable Fraenkel-Mostowski permutation models. In the second part, we will
show some generalizations. In particular, we will show that RC5 ⇒ LOC−5 and that
RC6 ⇒ C−3 , answering two open questions from Halbeisen and Tachtsis (Arch Math
Logik 59(5):583–606, 2020). Furthermore, we will show that RC6 ⇒ C−9 and that
RC7 ⇒ LOC−7 .
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704 L. Halbeisen, S. Schumacher

1 Definitions and terminology

The notation we use is standard and follows that of [5]. Now we list some definitions
that shall be used in the sequel:

Definition 1.1 Let n be an arbitrary positive natural number.

1. C−n states that every infinite familyF of sets of size n has an infinite subset G ⊆ F
with a choice function.

2. LOC−n states that every infinite, linearly orderable family F of sets of size n has
an infinite subset G ⊆ F with a choice function.

3. WOC−n states that every infinite, well-orderable family F of sets of size n has an
infinite subset G ⊆ F with a choice function.

4. RCn states that every infinite set X has an infinite subset Y ⊆ X such that the set

[Y ]n = {z ⊆ Y : |z| = n}

has a choice function.
5. Let F be an infinite family of n-element sets. A Kinna-Wagner selection function

of F is a function f with dom( f ) = F such that for all p ∈ F , ∅ �= f (p) � p.
6. KW−

n states that every infinite family F of sets of size n has an infinite subset
G ⊆ F with a Kinna-Wagner selection function.

7. LOKW−
n states that every infinite, linearly orderable familyF of sets of size n has

an infinite subset G ⊆ F with a Kinna-Wagner selection function.

In 1995, Montenegro proved in [6] that RCn ⇒ C−n for all n ∈ {2, 3, 4}. It is still
unknownwhether this implication holds for any n ≥ 5. In 2017,Halbeisen andTachtsis
found interesting results concerning the implications RCm ⇒ C−n and RCm ⇒ RCn

for m, n ∈ ω \ {0, 1} (see [4]). Among other results they proved that the following
statements are consistent with ZF or provable in ZF, respectively:

(α) If m, n ∈ ω \ {0, 1} are such that there is a prime p with p � m and p | n, then

RCm � RCn and RCm � C−n .

(β) RC5 � LOC−2 and RC5 � LOC−3 .
(γ ) For every n ∈ ω \ {0, 1} we have that C−n ⇒ LOC−n ⇒ WOC−n but none of

these implications is reversible.
(δ) For every n ∈ ω \ {0, 1} the implication RC2n ⇒ LOKW−

n holds. In particular
we have that RC6 ⇒ LOC−3 (notice that LOKW−

3 ⇔ LOC−3 ).
In Sect. 2 of this paper, we will give a full characterization of when the implication

RCm ⇒ WOC−n (for m, n ∈ ω \ {0, 1}) is provable in ZF. To be more precise, it will
be shown (see Theorem 2.10) that for every m, n ∈ ω \ {0, 1}, RCm ⇒ WOC−n is
provable in ZF if an only if the following condition holds: Whenever we can write n
in the form

n =
∑

i<k

ai pi ,
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Some implications of Ramsey Choice for families of… 705

where p0, . . . , pk−1 are prime numbers and a0, . . . , ak−1 ∈ ω \ {0}, then we find
b0, . . . , bk−1 ∈ ω with

m =
∑

i<k

bi pi .

In order to prove the independence of this implication with ZF, we shall use per-
mutation models (see [5] for an introduction to permutation models and to models
of ZFA). With Pincus’ transfer theorems (see [7]), we are able to transfer the results
obtained in ZFA to ZF. Furthermore, Theorem 2.10 gives us the following three special
cases:

1. For all n ∈ ω we have that RCn ⇒WOC−n (see Corollary 2.3).
2. Let p be a prime number, m ∈ ω \ {0} and n ∈ ω \ {0, 1}. Then

RCpm ⇒WOC−n

if and only if n | pm or p = 2, m = 1 and n = 4 (see Corollary 2.12).
3. If RCm � WOC−n , we also have that RCm � RC−n and RCm � C−n (see Corol-

lary 2.11). This generalizes Halbeisens and Tachtsis’ result (α).

In Sect. 3, we will give some insights into the question what happens when we
weaken the assumption that our family of n-element sets is well-ordered. We will
prove that RC6 ⇒ C−n for n ∈ {3, 9} and that RCn ⇒ LOC−n for n ∈ {5, 7}.

2 On the implication RCm ⇒ WOC−
n

2.1 When is RCm ⇒ WOC−
n provable in ZF?

In this section, we will characterise the values m and n for which the implication
RCm ⇒WOC−n is provable in ZF. However, before we state and prove the main result
of this section, we introduce some notation and prove an auxiliary result.

Two finite partitions {xi : 0 ≤ i ≤ l} and {y j : 0 ≤ j ≤ k} of sets of the same
cardinality are of the same type, if l = k and for each 0 ≤ i ≤ l we have |xi | = |yi |.

Let k be a positive integer and let n = ∑
i<k ai pi , where p0, . . . , pk−1 are prime

numbers and a0, . . . , ak−1 ∈ ω \ {0}. Furthermore, for an infinite, well-ordered set λ,
let F = {Fα : α ∈ λ} be an infinite family of pairwise disjoint n-element sets, where
for each α ∈ λ, Fα is partitioned into sets Fα,i (i < k), where |Fα,i | = ai pi , i.e.,

Fα =
⋃

i<k

Fα,i and Fα,i ∩ Fα,i ′ = ∅ whenever i �= i ′.

In particular, for any α, α′ ∈ λ, the partitions {Fα,i : i < k} and {Fα′,i : i < k} are of
the same type.

For α ∈ λ we say that d ⊆ Fα diagonalises Fα if for all i < k, |Fα,i ∩ d| = 1. Let

Dα := {d ⊆ Fα : d diagonalises Fα}
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706 L. Halbeisen, S. Schumacher

and for each α ∈ λ let Dα be a non-empty subset of Dα such that for any α, α′ ∈ λ

we have |Dα| = |Dα′ |.
Finally, for some positive integer t ≥ 1 and some prime number p, for each α ∈ λ

let {Dp
α, j : j < t} be a partition of [Dα]p such that for any α, α′ ∈ λ, the partitions

{Dp
α, j : j < t} and {Dp

α′, j : j < t} are of the same type.

Lemma 2.1 Let n = ∑
i<k ai pi , F = {Fα : α ∈ λ}, Fα = ⋃{Fα,i : i < k}, Dα , and

{Dp
α, j : j < t} be as above. Furthermore, let p := pi0 for some pi0 ∈ {p0, . . . , pk−1},

and assume that for some integer l ≥ 0 there is a choice function

h :
[

⋃

α∈λ

Dα

]l+p

→
⋃

α∈λ

Dα .

Then there is an infinite subset λ′ ⊆ λ such that we are in at least one of the following
cases:

(a) There is a choice function

h′ :
[

⋃

α∈λ′
Dα

]l

→
⋃

α∈λ′
Dα .

(b) We can simultaneously refine the partitions on {Fα : α ∈ λ′} to partitions of the
same type (and extend accordingly the corresponding sets Dα).

(c) We can simultaneously refine the partitions on {[Dα]p : α ∈ λ′} to partitions of
the same type.

(d) For each α ∈ λ′ we can choose a non-empty proper subset D′
α of Dα , i.e.,

∅ �= D′
α � Dα,

such that for all α, β ∈ λ′ we have |D′
α| = |D′

β |.
Proof Recall that for all α, α′ ∈ λ we have |Dα| = |Dα′ |. Now, assume that there is a
j0 < k such that for n j0 := a j0 p j0 and all α ∈ λ we have

n j0 � |Dα| .

For all α ∈ λ and all z ∈ Fα define

#z := ∣∣{X ∈ Dα : z ∈ X
}∣∣.

Since
∑

z∈Fα, j0
#z = |Dα|, |Fα, j0 | = n j0 and n j0 � |Dα|, it follows that

∅ �= {
z ∈ Fα, j0 : ∀z′ ∈ Fα, j0(#z ≤ #z′)

}
� Fα, j0 .

Therefore, we can simultaneously refine the partition on each Fα for α ∈ λ. Moreover,
notice that since n j0 is finite, we find an infinite set λ′ ⊆ λ such that for each α ∈ λ′,
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the block Fα, j0 is partitioned into two non-empty blocks Fα, j1 and Fα, j2 where for
all α, β ∈ λ′, |Fα, j1 | = |Fβ, j1 | and |Fα, j2 | = |Fβ, j2 |. This shows that all the refined
partitions are of the same type and we are in Case (b).

So, we can assume that for all i < k and all α ∈ λ we have

ni | |Dα|

where ni := ai pi .
We consider now the following four cases:

Case 1: There is a Z0 ∈
[⋃

α∈λ Dα

]l and an infinite subset λ′ ⊆ λ such that

∀α ∈ λ′ ∀X ∈ [Dα]p
(
h(Z0 ∪ X) ∈ X

)
.

By shrinking λ′ if necessary, we may assume that Z0 ∩ ⋃
α∈λ′ Dα = ∅. For every

α ∈ λ′ and all d ∈ Dα define

degα(d) := ∣∣{X ∈ [Dα]p : h(Z0 ∪ X) = d
}∣∣.

Note that
∑

d∈Dα
degα(d) = ∣∣[Dα]p

∣∣ =
(|Dα|

p

)
. Since p = pi0 and since ni0 | |Dα|,

we have p | |Dα|. Hence, it follows that |Dα| �

(|Dα|
p

)
. To see this, let D := |Dα|

and notice that if D = aps for some positive integers a, s where p � a, then

(
D

p

)
= aps · (aps − 1) · . . . · (aps − p + 1)

1 · 2 · . . . · p = aps−1 · (aps − 1) · . . . · (aps − p + 1)

1 · 2 · . . . · (p − 1)
.

Hence, ps �
(D
p

)
and in particular we have D �

(D
p

)
.

Thus, for each α ∈ λ′ we can choose

∅ �= D′
α :=

{
d ∈ Dα : ∀d ′ ∈ Dα(degα(d) ≤ degα(d ′))

}
� Dα.

Moreover, notice that since Dα is finite, by shrinking λ′ if necessary, we can assume
that for all α, β ∈ λ′ we have |D′

α| = |D′
β |, and we are in Case (d).

Case 2: There is a set Z0 ∈
[⋃

α∈λ Dα

]l , a non-negative integer j0 < t , and an infinite
subset λ′ ⊆ λ such that Z0 ∩⋃

α∈λ′ Dα = ∅ and

∀α ∈ λ′ ∃X , X ′ ∈ Dp
α, j0

(
h(Z0 ∪ X) ∈ Z0 ∧ h(Z0 ∪ X ′) ∈ X ′

)
.

In this case, we can simultaneously refine the partition on [Dα]p for each α ∈ λ′.
Moreover, since [Dα]p is finite (for all α ∈ λ′), by shrinking λ′ if necessary, we can
assume that for all α, β ∈ λ′, the partition on [Dα]p has the same type as the partition
on [Dβ ]p, and we are in Case (c).
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708 L. Halbeisen, S. Schumacher

Case 3: There is a set Z0 ∈
[⋃

α∈λ Dα

]l , a non-negative integer j0 < t , and an infinite
subset λ′ ⊆ λ such that Z0 ∩⋃

α∈λ′ Dα = ∅ and

∀α∈λ′
((∀X ∈Dp

α, j0
h(Z0 ∪ X) ∈ Z0

) ∧ ∃X , X ′ ∈Dp
α, j

(
h(Z0 ∪ X) �=h(Z0 ∪ X ′)

))
.

In this case, we can simultaneously refine the partition on [Dα]p for each α ∈ λ′.
Moreover, by shrinking λ′ if necessary, we can assume that all partitions are of the
same type and we are again in Case (c).
Case 4: For all Z ∈ [⋃

α∈λ Dα

]l and for all but finitely many α ∈ λ we have

∃ j < t ∀X , X ′ ∈ Dp
α, j

(
h(Z ∪ X) = h(Z ∪ X ′) ∈ Z

)
. (∗)

Then, for each Z ∈ [⋃
α∈λ Dα

]l let αZ ∈ λ be the least element with respect
to the well-ordering on λ such that (∗) holds for α = αZ . Furthermore, for every
Z ∈ [⋃

α∈λ Dα

]l let jZ < t be the least integer such that (∗) holds for α = αZ and

j = jZ . So, for every Z ∈ [⋃
α∈λ Dα

]l we have

∀X , X ′ ∈ Dp
αZ , jZ

(
h(Z ∪ X) = h(Z ∪ X ′) ∧ h(Z ∪ X) ∈ Z

)
. (∗∗)

Finally, we define a function h′ : [⋃α∈λ Dα

]l → ⋃
α∈λ Dα by stipulating

h′ :
[

⋃

α∈λ

Dα

]l

−→
⋃

α∈λ

Dα

Z �−→ h(Z ∪ X)

where X is an arbitrary element of Dp
αZ , jZ

. Note that by (∗∗) , h′ is a well-defined choice
function and we are in Case (a). ��

Now, we are ready to prove the main result of this section.

Proposition 2.2 Let m, n ∈ ω \ {0, 1} and assume that whenever we can write n in the
form

n =
∑

i<k

ai pi ,

where p0, . . . , pk−1 are prime numbers and a0, . . . , ak−1 are positive integers, then
we find b0, . . . , bk−1 ∈ ω with

m =
∑

i<k

bi pi .

Then, in ZF we have

RCm ⇒WOC−n .
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Some implications of Ramsey Choice for families of… 709

Proof Let F = {Fα : α ∈ λ} be an infinite, well-ordered family of pairwise disjoint
n-element sets. The goal is to construct an infinite subfamily of F with a choice
function.

Applying RCm to the set X0 := ⋃
α∈λ Fα , we obtain an infinite set Y0 ⊆ X0 such

that the set [Y0]m has a choice function. For 1 ≤ j ≤ n, let

λ j :=
{
α ∈ λ : |Fα ∩ Y0| = j

}
.

Since n is finite and λ is infinite, there exists a j0 with 1 ≤ j0 ≤ n such that λ j0 ⊆ λ

is infinite. If j0 = 1 we are done since {Fα : α ∈ λ1} ⊆ F has a choice function. If
1 < j0 < n, we apply RCm to the set

X1 :=
⋃{

Fα \ Y0 : α ∈ λ j0

}

and obtain an infinite set Y1 ⊆ X1 such the set [Y1]m has a choice function. As above,
for 1 ≤ j ≤ n − j0, let

λ j0, j :=
{
α ∈ λ j0 : |Fα ∩ Y1| = j

}
.

Then there exists a j1 with 1 ≤ j1 ≤ n − j0 such that λ j0, j1 ⊆ λ is infinite. If j1 = 1,
then the infinite family {Fα : α ∈ λ j0,1} ⊆ F has a choice function. Proceeding
this way, we either find an infinite subfamily of F with a choice function, or for an
infinite subset λ0 ⊆ λ, for all α ∈ λ0 we can simultaneously partition the sets Fα

into sets Fα,i with i < k for some k ≥ 1. Since for each i < k, |Fα,i | ≥ 2, we
have |Fα,i | = ai pi , where pi is prime and ai > 0. Finally, for each α ∈ λ0, let let
Dα := {d ⊆ Fα : d diagonalises Fα}.

Now, since n = ∑
i<k ai pi , by our assumption we find b0, . . . , bk−1 ∈ ω with

m = ∑
i<k bi pi , and since m ≥ 2, there is an i0 < k with bi0 �= 0. In particular, we

have m ≥ pi0 . Let p := pi0 and l := m − p, where l ≥ 0. Furthermore, for t = 1,
{Dα, j : j < t} = [Dα]p is the trivial partition of [Dα]p. Thus, by RCm , there is an
infinite set λ ⊆ λ0 and a choice function

h :
[

⋃

α∈λ

Dα

]l+p

→
⋃

α∈λ

Dα .

So,we have all the requirements to applyLemma2.1 iteratively until—after finitely
many steps—the partitions of the Fα’s or of the [Dα]p’s contain a block with just one
element, or the sets Dα are singletons: To see this, notice first that if we are in one of
the cases (b), (c), or (d), or if l = 0, then we can either refine the partition of the Fα’s
or of the [Dα]p’s. Now, if we are in case (a) for l > 0, then, by the properties of

m =
∑

i<k

bi pi

and since we start with l = m − p, l ≥ pi (for some i < k) and we can proceed with
l ′ := l − pi .
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710 L. Halbeisen, S. Schumacher

So, after finitely many steps—in particular after finitely many choices of sets Z0—
we are in the situation where the partitions of the Fα’s or of the [Dα]p’s contain a
block with just one element, or the Dα’s are reduced to singletons, which gives us an
algorithm to select an element from each of the remaining Fα’s—where in the case
when |Dα| = 1, we choose the element in Dα ∩ Fα,0. ��
Corollary 2.3 For every n ∈ ω we have that

RCn ⇒WOC−n .

2.2 When is RCm � WOC−
n consistent with ZF?

In this section we will show that for all n,m ∈ ω \ {0, 1} which do not satisfy the
conditions of Proposition 2.2 we get that

RCm � WOC−n

is consistent with ZF. In a first step we will construct suitable Fraenkel-Mostowski
permutation models—similar to those constructed in [2, Sec. 6]—in which we have
RCm � WOC−n . We will then see that both statements, RCm and WOC−n , are injec-
tively boundable. So, by [7, Theorem 3A3] the result is transferable to ZF.

Let p0 and p1 be two prime numbers. We start with a ground model Mp0,p1 of
ZFA+ AC with a set of atoms

A :=
⋃
{Ai : i ∈ ω} ∪

⋃
{Bj : j ∈ ω},

where for all i, j ∈ ω the sets Ai and Bj are called blocks. These blocks have the
following properties:

• For all i ∈ ω, Ai = {ai,k : k < p0} and Bi = {bi,l : l < p1} with |Ai | = p0 and
|Bi | = p1.

• The blocks are pairwise disjoint.

For all i, j ∈ ω we define a permutation on A as follows:

• For all i ∈ ω and all k < p0 let

αi (ai,k) :=
{
ai,0 if k = p0 − 1,

ai,k+1 if k < p0 − 1,

and αi (a) = a for all a ∈ A \ Ai . Analogously for all j ∈ ω and all l < p1 let

β j (b j,l) :=
{
bi,0 if l = p1 − 1,

b j,l+1 if l < p1 − 1,

and β j (b) = b for all b ∈ A \ Bj .
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Some implications of Ramsey Choice for families of… 711

Now we define an abelian group G of permutations of A by requiring

φ ∈ G ⇐⇒ φ = α ◦ β,

where

α =
∏

i∈ω

α
ki
i with ki < p0 for each i ∈ ω

and

β =
∏

j∈ω

β
l j
j with l j < p1 for each j ∈ ω.

Let F be the normal filter on G generated by the subgroups

fixG(E) = {φ ∈ G : ∀a ∈ E(φ(a) = a)}

with E ∈ fin(A) := {A ⊆ A : |A| ∈ ω}. Let Vp0,p1 be the class of all hereditarily
symmetric sets.

Remark 2.4 We can also work with k blocks of size p0, . . . , pk−1, where pi is a
prime number for every i < k. The corresponding permutation model is denoted by
Vp0,...,pk−1 .

Definition 2.5 A set E ∈ fin(A) is closed if and only if for all i, j ∈ ω we have that

Ai ∩ E �= ∅ ⇒ Ai ⊆ E and Bj ∩ E �= ∅ ⇒ Bj ⊆ E .

We now define a well-ordering on the set of closed sets.

Definition 2.6 LetC1 andC2 be two blocks in {Ai : i ∈ ω}∪{Bj : j ∈ ω}. We define

C1 < C2 : ⇐⇒

⎧
⎪⎨

⎪⎩

C1 = Ai ∧ C2 = Bj , or

C1 = Ai ∧ C2 = A j ∧ i < j, or

C1 = Bi ∧ C2 = Bj ∧ i < j .

Moreover, for distinct closed sets E = ⋃{F0, . . . Fn} ∈ fin(A) and E ′ =⋃{F ′0, . . . , F ′m} ∈ fin(A) with blocks F0, . . . , Fn, F ′0, . . . , F ′m let

E ≺ E ′ : ⇐⇒ The < -least block in the symmetric difference

{F0, . . . , Fn}	{F ′0, . . . , F ′m} belongs to E .

Note that this defines a well-ordering on the set of closed sets and therefore on the
set of all closed supports.
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712 L. Halbeisen, S. Schumacher

Lemma 2.7 Let n ∈ ω \ {0, 1} and let p0 and p1 be two prime numbers such that

n = cp0 + dp1 �= 0

for c, d ∈ ω. Then we have that

Vp0,p1 |� ¬WOC−n .

Proof Define

F :=
{
Al ∪ Al+1 ∪ · · · ∪ Al+c−1 ∪ Bl+c ∪ · · · ∪ Bl+c+d−1 : l = k(c + d) for a k ∈ ω

}
.

Then F is an infinite family of pairwise disjoint n-element sets. Since the empty set
is a support of F , we have that F ∈ Vp0,p1 . Moreover, F is well-orderable in Vp0,p1 .
Assume towards contradiction that there is an infinite subset G ⊆ F with a choice
function

g : G →
⋃

G

in Vp0,p1 . Let Eg ∈ fin(A) be a closed support of g. Since Eg is finite, there is a
G0 ∈ G such that G0 ∩ Eg = ∅. Then there are i, j ∈ ω with

g(G0) ∈ Al+i ∪ Bl+c+ j .

Define γ0 := αl+i ◦ βl+c+ j . We have that

g(γ0(G0)) = g(G0) �= γ0(g(G0)).

So Eg is not a support of g which is a contradiction. ��
Lemma 2.8 Let m ∈ ω \ {0, 1} and let p0, p1 be prime numbers such that

m �= cp0 + dp1

for all c, d ∈ ω. Then we have:

Vp0,p1 |� RCm

Proof Let x ∈ Vp0,p1 be an infinite set with closed support Ex ∈ fin(A). If there is an
E ∈ fin(A) such that

y := {
z ∈ x : E is a support of z

}

is an infinite set, then y can be well-ordered in Vp0,p1 and we can define a choice
function on [y]m by choosing the least element with respect to that well-ordering.

123
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So, assume that for all E ∈ fin(A) there are only finitely many z ∈ x with support
E . For every closed set E ∈ fin(A) with Ex � E define

ME :=
{
z ∈ x : E is the minimal closed support of z with Ex ⊆ E

}
.

Since E is a support of ME , the sets ME belong to Vp0,p1 , and by our assumption, the
sets ME are finite. Now, for each z ∈ ME define

[z] := {φ(z) : φ ∈ fixG(Ex )} ⊆ ME .

To see that [z] ⊆ ME , notice that since E ∈ fin(A) is closed, for all φ ∈ G we have
φ(E) = E .

We consider the following two cases:
Case 1: For infinitely many ME there is a z ∈ ME with

[z] = ME .

Let y := ⋃{ME : Ex � E ∧ ∃z ∈ ME (ME = [z])}. The set y is in Vp0,p1 because
Ex is a support of y. Let t ⊆ y with |t | = m and let E be a smallest closed set such
that ME ⊆ y and |t ∩ME | is not of the form k0 p0+ k1 p1 with k0, k1 ∈ ω. To see that
such a set t exists, notice that for [z] = ME and [z′] = ME ′ , if [z] ∩ [z′] �= ∅, then
ME = ME ′ .

Define t−1 := t ∩ME . Since E \ Ex �= ∅ there are blocks Ai0 , . . . , Aiu−1 , Bju , . . . ,

Bju+v−1 with

E \ Ex =
⋃
{Ai0 , Ai1 . . . , Aiu−1 , Bju , Bju+1 , . . . , Bju+v−1}.

Define

G̃ :=
{

∏

k∈u
α

κik
ik

◦
∏

l∈v

β
λ ju+l
ju+l : ∀k < u ∀l < v

(
κik < p0 ∧ λ ju+l < p1

)}
.

Let φ = α
κi0
i0

◦ · · · ◦ α
κiu−1
iu−1 ◦ β

λ ju
ju

◦ · · · ◦ β
λ ju+v−1
ju+v−1 ∈ G̃. Define

φ|r := κir if r < u and φ|r := λ jr if u ≤ r < u + v.

The elements in G̃ can be ordered lexicographically. We call this well-ordering ≤G̃ .
For all s, s′ < t−1 and all r < u + v define

distr (〈s, s′〉) := φ|r ,

where φ is the ≤G̃-smallest element in G̃ with φ(s) = s′.
The rest of the proof can be done as in [2, Proposition 6.6]. For the sake of com-

pleteness, we will redo it here:
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714 L. Halbeisen, S. Schumacher

Claim 1: For all s, s′, s′′ < t−1 and all r < u + v we have that

distr (〈s, s′〉)+p distr (〈s′, s′′〉) = distr (〈s, s′′〉),

where p = p0 if r < u and p = p1 if u ≤ r < u+ v. Moreover,+p denotes addition
modulo p.

Proof of Claim 1 Let φ0, φ1, φ ∈ G̃ be ≤G̃-minimal with

φ0(s) = s′, φ1(s
′) = s′′ and φ(s) = s′′.

Assume that φ �= φ1 ◦ φ0. So we have that φ−1 ◦ φ1 ◦ φ0 �= id and

φ−1 ◦ φ1 ◦ φ0(s) = s.

Let l < u + v be the largest number such that

φ−1 ◦ φ1 ◦ φ0|l �= 0.

Without loss of generality we assume that l < u. Then let m ∈ ω with

(φ−1 ◦ φ1 ◦ φ0)
m |l = 1.

Note that (φ−1 ◦ φ1 ◦ φ0)
m �= αil because otherwise we would have that αil (s) = s

which is a contradiction to the fact that E is the minimal support of s with Ex ⊆ E .
So there is a ϕ ∈ G̃ \ {id} with

(φ−1 ◦ φ1 ◦ φ0)
m = ϕ ◦ αil and ϕ <G̃ αil .

Then ϕ ◦αil (s) = s ⇒ αil (s) = ϕ−1(s). Note that ϕ−1 <G̃ αil . We have that φ0|l �= 0
or φ1|l �= 0 or φ|l �= 0. Without loss of generality we assume that φ0|l �= 0. Then

φ0 ◦ α−1il
◦ ϕ−1 <G̃ φ0

and

φ0 ◦ α−1il
◦ ϕ−1(s) = φ0 ◦ α−1il

◦ αil (s) = φ0(s) = s′.

This contradicts the minimality of φ0. �Claim 1

For all t̃ ⊆ t−1, all s < t̃ and all r < u + v define

χr (s, t̃) := {distr (〈s, s′〉) : s′ ∈ t̃}.

These sets have the following properties:
Claim 2: For all t̃ ⊆ t−1 and all s, s′ < t̃ we have that
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Some implications of Ramsey Choice for families of… 715

1. 1 ≤ |χr (s, t̃)| ≤ p0 for all r < u and 1 ≤ |χr (s, t̃)| ≤ p1 for all u ≤ r < u + v.
2. for all r < u + v there is a kr ∈ ω such that χr (s, t̃) = χr (s′, t̃) +p kr , where

p = p0 if r < u and p = p1 if u ≤ r < u + v.
3. |χr (s, t̃)| = |χr (s′, t̃)|.
4. if s �= s′ there is an r < u + v such that χr (s, t̃) �= χr (s′, t̃).

Proof of Claim 2 1. Note that 0 < χr (s, t̃) since distr (〈s, s〉) = 0.
2. Set kr := φ|r , where φ is ≤G̃-minimal with φ(s) = s′ and use Claim 1.
3. This follows from 2.
4. Let s, s′ < t̃ and let φ be ≤G̃-minimal with φ(s) = s′. If χr (s, t̃) = χr (s′, t̃) for

all r < u + v it follows that φ|r = kr = 0 for all r < u + v. So φ = id and
therefore s = s′.

�Claim 2

We define an ordering � on the sets χr (s, t̃) as follows: χr (s, t̃) � χr (s′, t̃) if
and only if χr (s, t̃) = χr (s′, t̃) or the smallest integer in the symmetric difference
χ(s, t̃)	χr (s′, t̃) belongs to χr (s, t̃).
For all non-empty sets t̃ ⊆ t−1, all r < u+ v and all natural numbers n define λr ,n(t̃)
as follows: Let λr ,0(t̃) := ∅ and for every n ∈ ω \ {0} let

λr ,n(t̃) :=
{
s ∈ t̃ \

n−1⋃

i=0
λr ,i (t̃) : ∀s′ ∈ t̃ \

n−1⋃

i=0
λr ,i (t̃)

(
χr (s, t̃) � χr (s

′, t̃)
)
}

.

Note that
⋃

n∈ω λr ,n(t̃) = t̃ and only finitely many λr ,n(t̃) are non-empty. Assume
that tr−1 is defined for an r < u + v. Then let

tr := λr ,n0(tr−1),

where n0 ∈ ω is the smallest natural number such that λr ,n0(tr−1) is not of the form

cp0 + dp1

with c, d ∈ ω. By Claim 2, tu+v−1 is a one-element set, i.e., there is an s < t with

tu+v−1 = {s}.

So we choose s from t . This shows that RCm holds in Vp0,p1 .
Case 2: There are infinitely many ME such that there are z, z′ ∈ ME with

[z] ∩ [z′] = ∅.

Our goal is to reduce this case to Case 1. For every E ∈ fin(A) with Ex � E define

[ME ] := {[z] : z ∈ ME }.

123



716 L. Halbeisen, S. Schumacher

Furthermore, choose a w0 in the ground model Mp0,p1 |� ZFA+ AC such that

w0 \
⋃

E ∈ fin(A)

Ex � E

[ME ] = ∅

and

for all closed sets E ∈ fin(A) with Ex � E and ME �= ∅ we have |w0 ∩ [ME ]| = 1.

In other words, w0 picks exactly one element from each non-empty [ME ]. Note that
Ex is a support of w0. So w0 ∈ Vp0,p1 . Choose

M ′
E := ME ∩ w0.

This reduces Case 2 to Case 1. ��
Proposition 2.9 Let m, n ∈ ω \ {0, 1}, k ∈ ω, and let p0, . . . , pk−1 be prime numbers
such that

m �=
∑

i<k

ci pi

for all ci ∈ ω, i < k, and

n =
∑

i<k

di pi

for some di ∈ ω, i ∈ k. Then

RCm � WOC−n

is consistent with ZF.

Proof Similar as in Lemmas 2.7 and 2.8 we can prove that

Vp0,...,pk−1 |� RCm ∧ ¬WOC−n . (1)

In order to transfer this statement to ZF, we have to show that RCn and WOC−n are
injectively boundable for all n ∈ ω. Then we can use Pincus’ transfer theorem [7,
Theorem 3A3]. The terms “boundable” and “injectively boundable” are defined in
[7].

For a set x we define the injective cardinality

|x |− := {α ∈  : there is an injection from α into x},
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Some implications of Ramsey Choice for families of… 717

where  is the class of all ordinal numbers. Moreover let ϕ(x) denote the following
property:

if x is an infinite set, there is an infinite y ⊆ x with a choice function on [y]n .

Note that ϕ(x) is boundable. Since ϕ(x) holds when |x |− > ω, it follows that

RCn ⇐⇒ ∀x(|x |− ≤ ω ⇒ ϕ(x)).

So, RCn is injectively boundable. Furthermore, we have that ¬WOC−n is boundable.
So, (1) is transferable into ZF. ��

Propostion 2.2 together with Propostion 2.9 gives us the following result:

Theorem 2.10 Let m, n ∈ ω \ {0, 1}. Then RCm implies WOC−n if an only if the
following condition holds: For all prime numbers p0, . . . , pk−1 such that there are
positive integers a0, . . . , ak−1 with

n =
∑

i<k

ai pi ,

we can find b0, . . . , bk−1 ∈ ω with

m =
∑

i<k

bi pi .

We conclude this section by giving a few consequences. Since¬WOC−n ⇒ ¬RCn ,
Proposition 2.9 gives us:

Corollary 2.11 Let m, n ∈ ω \ {0, 1} and let p0, . . . , pk−1 be k ∈ ω prime numbers
such that

m �=
∑

i<k

ci pi

for all ci ∈ ω, i < k, and

n =
∑

i<k

di pi

for some di ∈ ω, i < k. Then

RCm � RCn

in ZF.

Proof This follows fromRCn ⇒WOC−n (Corollary 2.3) and RCm � WOC−n (Propo-
sition 2.9). ��
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718 L. Halbeisen, S. Schumacher

Corollary 2.12 Let p be a prime number, let m ∈ ω \ {0} and n ∈ ω \ {0, 1}. Then we
have that

RCpm ⇒WOC−n

if and only if n | pm or p = 2, m = 1 and n = 4.

Proof If n is divisible by a prime q �= p we have that

Vq |� RCpm ∧ ¬WOC−n .

Therefore, RCpm � WOC−n in ZF. So we can assume that n = pk for a k ∈ ω \ {0}.
Case 1: m ≥ k
Let r ∈ ω and let p0, p1 . . . , pr−1 be prime numbers such that there are
a0, a1, . . . , ar−1 ∈ ω with

n = pk =
∑

i<r

ai pi .

Then

pm = pm−k pk =
∑

i<r

pm−kai pi .

So by Proposition 2.2 we have that

RCpm ⇒WOC−n .

Case 2: m < k
First, assume that p �= 2. By Bertrand’s postulate there is a prime number q0 with

pm < q0 < 2pm .

Note that pk − q0 > pk − 2pm ≥ p and q0 �= p. So there is a prime number q1 �= p
with

q1 | (pk − q0).

By construction, pk can be written as a sum of multiples of q0 and q1. Since q1 � pm

and pm < q0, we have that

pm �= aq0 + bq1.

for all a, b ∈ ω. So by Proposition 2.9 we have that

RCpm � WOC−
pk

.
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Some implications of Ramsey Choice for families of… 719

Now, let p = 2 and k ≥ 3. Then there is a prime number q0 with

2k−1 − 1 < q0 < 2k − 2.

It follows that

2 < 2k−1 < q0 < 2k − 2.

So, 2k − q0 > 2 and with the same argumentation as above we see that

RC2n � WOC2k .

Now we assume that p = 2 and k = 2 (i.e., m = 1). This is the only remaining case.
By Proposition 2.2 we have that

RC2 ⇒WOC−4 .

��

3 Results provable in ZF

In this sectionwe shall prove four results which are provable in ZF. The first two results
are about the implications RC6 ⇒ C−n for n ∈ {3, 9}, and the second two results are
about the implications RCn ⇒ LOC−m for m ∈ {5, 7}.

3.1 RC6 implies C−
3

In the proof of the next result, we will closely follow the proof of RC4 ⇒ C−4 given
in [6].

Proposition 3.1 ZF � RC6 ⇒ C−3 , i.e., it is provable in ZF that RC6 implies C
−
3 .

Proof Let F be an infinite family of pairwise disjoint sets of size 3. We apply RC6 to
the set

⋃F . This gives us an infinite subset Y ⊆ ⋃F with a choice function on [Y ]6.
For every i ∈ {1, 2, 3} we define

Gi := {u ∈ F : |u ∩ Y | = i}.

Without loss of generality we can assume that G := G3 is infinite, since otherwise,
we can easily define a choice function on an infinite subset of F . So, there is a choice
function

f :
[⋃

G
]6 →

⋃
G.

We define a directed graph on G by putting a directed edge from v to u (i.e., v → u),
if and only if f (u ∪ v) ∈ u. If there is direct edge from v to u we will say that the
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720 L. Halbeisen, S. Schumacher

edge points from v to u. With this graph we carry out the same construction as in [6].
So, there is an infinite subsetH ⊆ G which is partitioned into finite sets (An)n∈ω such
that for every n ∈ ω, all elements in An have outdegree n. Moreover, for all n ∈ ω we
have that |An| is odd, and for all n < m, the edges between An and Am all point from
Am to An . We can assume that we are in one of the following two cases:
Case 1: There are infinitely many n ∈ ω with 3 � |An|.
In this case we follow the proof of the Claim in [6, p. 60]: Without loss of generality
we can assume that 3 � |An| for every n ∈ ω. Let n0 ∈ ω and p0 = {x0, x1, x2} ∈ An0 .
For each i ≤ 2 we define

deg(xi ) := |{q ∈ An0+1 : f (q ∪ p0) = xi }|.

Since 3 � |An0+1| we have that 3 � (deg(x0)+ deg(x1)+ deg(x2)). Therefore, we can
choose one element from p0.
Case 2: For all n ∈ ω we have that 3 | |An|.
Let p0 ∈ H and let n ∈ ω be the unique natural number with p0 ∈ An . There is
an s ∈ ω with |An| = 2s + 1. We want to find the number of elements in An with
edges pointing to p0. There are

(|An |
2

)
edges in An . Since the number of edges in An

that point to an element in An is the same for every element of An , we have that the
indegree of p0 in An is given by

indegreeAn
(p0) = 1

|An|
(|An|

2

)
= 1

2
(|An| − 1) = s.

By assumption we have that 3 | |An| = 2s + 1. Therefore, 3 � s. Assume that
p0 = {x0, x1, x2}. For every i ≤ 2 we define

Axi
n := {v ∈ An : f (v ∪ p0) = xi }.

Since 3 � (|Ax0
n | + |Ax1

n | + |Ax2
n |) = s, we can choose an element from p0. ��

3.2 RC6 implies C−
9

Lemma 3.2 Let F be an infinite family of pairwise disjoint 4-element sets. If there is
a choice function

f :
[⋃

F
]6 →

⋃
F ,

then there is a function h with h(p ∪ q) ∈ p ∪ q for all p �= q in F .

Proof Let p �= q be elements of F . We will show that we can choose exactly one
element from p ∪ q. There are

(
8
6

)
= 28
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Some implications of Ramsey Choice for families of… 721

6-element subsets of p ∪ q. From each of these subsets we can choose one point with
the choice function f . Let A be the set of all elements in p ∪ q which are chosen the
most times. Note that 1 ≤ |A| ≤ 7, because 8 does not divide 28.

• If |A| = 1 we are done.
• If |A| = 2, choose f ((p ∪ q) \ A).
• If |A| = 3 and A ⊆ p or A ⊆ q we are done because we can choose the point in

p \ A or in q \ A. Otherwise, |p ∩ A| = 1 or |q ∩ A| = 1 and we are also done.
• If |A| ∈ {5, 6, 7}, replace A by (p ∪ q) \ A. So we are in one of the cases above.

• If |A| = 4, the set [(p ∪ q) \ A]2 contains

(
4
2

)
= 6 elements. For each B ∈

[(p∪ q)\A]2 choose f (A∪ B). Let C0 and C1 be the sets of all elements in p∪ q
which are chosen the most and the least often. Note that either C0 or C1 does not
contain 4 elements. By the cases above we are done.

So there is a choice function

h : {p ∪ q : p, q ∈ F} →
⋃

F .

��
Lemma 3.3 Let {An : n ∈ ω} be a countable family of pairwise disjoint non-empty
finite sets of pairwise disjoint sets of size 2, and letF := ⋃

n∈ω An be the correspond-
ing infinite family of 2-element sets. If

f :
[⋃

F
]6 →

⋃
F .

is a choice function, then there is an infinite subfamily G ⊆ F with a choice function.

Proof By using a bijection between ω and an infinite subset of ω, without loss of
generality we are in one of the following four cases:
Case 1: For all n ∈ ω we have that 2 � |An|.
Let k ∈ ω. Then there are natural numbers l0, l1 and l2 such that

|A3k | = 2l0 + 1, |A3k+1| = 2l1 + 1 and |A3k+2| = 2l2 + 1.

For every a ∈ A3k ∪ A3k+1 ∪ A3k+2 define

#a := |{(a0, a1, a2) ∈ A3k × A3k+1 × A3k+2 : f (a0 ∪ a1 ∪ a2) ∈ a}|.

If #a is odd, we can choose an element from a, for example the element in a we choose
more often than the other. Since

2 �
∏

i≤2
(2li + 1) and

∑

a∈A3k∪A3k+1∪A3k+2
#a =

∏

i≤2
(2li + 1),
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722 L. Halbeisen, S. Schumacher

we have that for every k ∈ ω there is at least one a ∈ A3k ∪ A3k+1 ∪ A3k+2 such that
#a is odd. So, we can find a choice function on the infinite set

G := {a ∈ F : #a is odd}.

Case 2: For all n ∈ ω we have that |An| = 2.
For every k ∈ ω let A2k = {a2k, b2k} and B0 := {a2k} ∪ A2k+1 and B1 :=

{b2k} ∪ A2k+1. For every a ∈ A2k ∪ A2k+1 we define

#a :=
∣∣∣
{
i ∈ {0, 1} : f

(⋃
Bi

)
∈ a

}∣∣∣ .

Note that if #a = 1, we can choose an element from a and we are done. So, if there
are infinitely many a ∈ F such that #a is odd, we are done. Otherwise, there is an
infinite subset I ⊆ ω such that for all k ∈ I there is a unique ak ∈ A2k ∪ A2k+1 with
#ak = 2. Then we are in the first case for the family {{ak} : k ∈ I }.
Case 3: For all n ∈ ω we have that |An| ≥ 3, 4 � |An| and 2 | |An|.

Let n ∈ ω. Then, by the properties of |An| we have |An| = 2t for some odd t ,

and therefore we have that

(|An|
2

)
is odd. For every k ∈ ω we look at the 4-element

subsets of A2k ∪ A2k+1 with two elements in A2k and two elements in A2k+1. Note
that the number of such subsets, as the product of two odd numbers, is odd. Let h be
the choice function we found in Lemma 3.2. Then for every k ∈ ω there is at least one
a ∈ A2k ∪ A2k+1 such that

#a := |{({a0, a1}, {b0, b1}) ∈ [A2k]2 × [A2k+1]2 : h(a0 ∪ a1 ∪ b0 ∪ b1) ∈ a}|

is odd. So again we found a choice function on the infinite set

G := {a ∈ F : #a is odd}.

Case 4: For all n ∈ ω we have that |An| ≥ 3 and 4 | |An|.
Let n ∈ ω. Then there is a k ∈ ω with |An| = 4k. We have that

2|An| �

(|An|
3

)
, (2)

since otherwise we would have that

|An|(|An| − 1)(|An| − 2)

2 · |An| · 2 · 3 = 2(4k2 − 3k)+ 1

2 · 3 ∈ ω,

but this is not the case since the numerator is odd. We define

#a := |{{a0, a1, a2} ∈ [An]3 : f (a0 ∪ a1 ∪ a2) ∈ a}|
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and for all y ∈ ⋃
An let

#(y) := |{{a0, a1, a2} ∈ [An]3 : f (a0 ∪ a1 ∪ a2) = y}|.

Note that by (2)

∣∣∣
{
y ∈

⋃
An : #(y) = max

{
#(z) : z ∈

⋃
An

}}∣∣∣ < 2|An|.

If there is an a = {a0, a1} ∈ An with

#(a0) �= #(a1)

choose the element ai with lower #(ai ). Otherwise we have that

Bn := {a ∈ An : #a = max{#b : b ∈ An}} � An .

Repeat the procedure with An := Bn until either 4 � |An| or there is an a = {a0, a1} ∈
An with

#(a0) �= #(a1).

Note that we have to repeat the procedure at most |An| times. In the end we either
found a choice function on an infinite subset of F or we reduced Case 4 to one of the
other cases. ��
Corollary 3.4 Let F be an infinite family of pairwise disjoint 4-element sets. If

f :
[⋃

F
]6 →

⋃
F

is a choice function, then there is an infinite subset G ⊆ F with a choice function on
G.
Proof Let h be the choice function we found in Lemma 3.2. We can define a complete,
directed graph on F by putting an edge from p to q if and only if h(p ∪ q) ∈ q. With
this graph we can do the same construction as in [6]. So, we can find an infinite subset
G ⊆ F such that we can choose exactly 1 or 2 elements from each G ∈ G. So either
we found a choice function on an infinite subset of G or we can find an infinite family
of 2-element setsH. Then we apply Lemma 3.3 toH and we are done. ��
Lemma 3.5 Let F := {Fλ : λ ∈ �} be an infinite family of 10-element sets. Assume
that each Fλ ∈ F is a disjoint union of five 2-element sets Fλ,i , 0 ≤ i ≤ 4. Moreover,
assume that

f :
[⋃

F
]6 →

⋃
F

is a choice function. Then there is an infinite subset G ⊆ F with a Kinna-Wagner
selection function.
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Proof For all 4-element sets A ⊆ ⋃F , we define the degree of A by

deg(A) := |{Fλ,i : Fλ ∈ F ∧ i ≤ 4 ∧ Fλ,i ∩ A = ∅ ∧ f (A ∪ Fλ,i ) ∈ Fλ,i }|.

If there is an A0 ∈
[⋃F]4 with infinite degree we are done, because then the set

G := {Fλ ∈ F : ∃i ≤ 4 ( f (A0 ∪ Fλ,i ) ∈ Fλ,i )}

is infinite and from every G ∈ G we can choose the set

{ f (A0 ∪ Gi ) : i ≤ 4} ∩ G � G.

Thus, we can assume that each A ∈ [⋃F]4 has finite degree. Define F2 = {Fλ,i :
Fλ ∈ F ∧ i ≤ 4} and for all Fλ ∈ F let F2

λ := {Fλ,i : i ≤ 4}.
Case 1: There is an n ∈ ω such that for infinitely many λ ∈ � there are distinct
A, B ∈ F2

λ with deg(A ∪ B) = n.
Let G := {Fλ ∈ F : ∃A, B ∈ F2

λ (deg(A ∪ B) = n)}. By assumption this is an
infinite set. Choose an (n+ 3)-element set {Xi : i ≤ n+ 2} ⊆ F2. For all G ∈ G and
all A, B ∈ G2 with deg(A ∪ B) = n put an edge pointing from A to B if and only if

f (A ∪ B ∪ Xi0) ∈ B,

where

i0 := min{i ≤ n + 2 : f (A ∪ B ∪ Xi ) /∈ Xi }.

Notice that this gives us a directed graph with at least one edge in eachG2 withG ∈ G.
If for infinitely many G ∈ G not all elements of G2 have the same outdegree, we are
done. So, we either have a cycle on infinitely many G2 or we have a complete graph
in which every node has outdegree 2. In the former case we can choose a point in each
A ∪ B, where A, B ∈ G2 are neighbours. Thus, we can choose 5 elements in each
G ∈ G. In the latter case, we can choose 5 edges as follows: For the node A ∈ G2, let
B,C ∈ G2 be the two successors of A in the graph. Consider the edge which connects
B and C (see Fig. 1). If this edge points to C , then we go to B and consider the two
successors of B. Proceeding this way, we obtain a cycle on infinitely many G2’s and
can again choose 5 elements from G.
Case 2: For all n ∈ ω there are only finitely many λ ∈ � such that there are A, B ∈ F2

λ

with deg(A ∪ B) = n.
Let A−1 := ∅ and for every n ∈ ω define

An := {A ∈ F2 : ∃B ∈ F2(deg(A ∪ B) = n)} \ An−1.

Note that these sets are pairwise disjoint families of 2-element sets. So we can apply
Lemma 3.3 and we are done. ��

Now, we are ready to prove the following:
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Fig. 1 How to choose the edges

Proposition 3.6 ZF � RC6 ⇒ C−9 .

Proof Let F be an infinite family of pairwise disjoint sets of size 9. Since RC6 holds,
there is an infinite set Y ⊆ ⋃F with a choice function

f : [Y ]6 → Y .

For all 0 ≤ i ≤ 9 let

Gi := {F ∩ Y : F ∈ F ∧ |F ∩ Y | = i}.

There is a 1 ≤ i ≤ 9 such that Gi is an infinite set.

Case 1: G1 or G8 is infinite.
In the case G8 is infinite, we look at the complements.

Case 2: G3 or G6 is infinite.
Use Proposition 3.1.

Case 3: G4 is infinite.
Use Corollary 3.4.

Case 4: G5 is infinite.
Apply RC6 to the complements. Then we are either in one of the preceding cases or
the complements are partitioned into two sets of size two. We look at the 10 edges
between the first 5 elements and the second two elements and use Lemma 3.5.

Case 5: G7 is infinite.
For all G ∈ G7 let G be the complement of G in the sense that for the F ∈ F with
G ⊆ F we have that

G := F \ G.

Note that |G| = 2. Let

E := {{x, y} : ∃G ∈ G7(x ∈ G and y ∈ G)}.
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726 L. Halbeisen, S. Schumacher

Apply RC6 to E . Without loss of generality we can assume that we find a choice
function

g : [E]6 → E,

because otherwise we are in one of the preceding cases. So, for every G ∈ G7 there
are 14 edges between G and G. Hence, there are

(
14
6

)
= 3 · 7 · 11 · 13

6-element subsets. From each of them g chooses one element. Since

(
14
6

)
is not

divisible by 14, we can choose less than 14 edges and we are in one of the preceding
cases.

Case 6: G9 is infinite.
With the choice function f we can choose an element from each 6-element subset of

a G ∈ G9. There are
(
9
6

)
subsets of size 6. Since 9 �

(
9
6

)
we can reduce this case to

one of the cases above.

Case 7: G2 is infinite.
We iteratively apply RC6 to the complements. So, we can reduce this case to one of
the cases above. ��

3.3 RC5 implies LOC−
5

We will now show that RC5 implies LOC−5 . The beginning of the proof will be as
usual: Let F be an infinite, linearly orderable family of 5-element sets. We apply
RC5 to

⋃F . This will give us an infinite subfamily G ⊆ F such that each p ∈ G is
partitioned into two parts. If one of these parts is of size one, we have a choice function
and we are done. Otherwise, the two parts are of size 2 and 3. So if we could show that
RC5 implies LOC−2 or LOC−3 , the proof would be finished. However, Halbeisen’s and
Tachtsis’ result (β) shows that this idea will not lead to success—which is the reason
why we will work with the set of edges between the two parts.

Theorem 3.7 ZF � RC5 ⇒ LOC−5 .

Proof Let F be an infinite, linearly orderable collection of pairwise disjoint sets of
size 5. We fix a linear order on F and apply RC5 on the set X := ⋃F to find an
infinite subset Y ⊆ X with a choice function f : [Y ]5 → Y . For every i ≤ 5 we
define

Fi := {p ∈ F : |p ∩ Y | = i}.
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Fig. 2 The partitions of a p∗ into γ
p
0 , γ p

1 on the left and into β
p
0 , β

p
1 and β

p
2 on the right

The only non-trivial case is when the elements p of an infinite subfamily G ⊆ F
are partitioned into a set with two elements and a set with three elements, namely
p = {ap, bp, cp} ∪ {xp, yp}.

Now we look at the set Z of all non-directed edges between a point in {ap, bp, cp}
and one in {xp, yp}. For every p ∈ G let p∗ be the set of all edges in Z belonging to
p and for each subset H ⊆ F we define H∗ := {p∗ : p ∈ H}.

Claim 1: Assume that there is an infinite subset H ⊆ G such that we can choose
between 1 and 5 elements from each p∗ ∈ H∗. Then there is a choice function

h : H →
⋃

H.

Proof of Claim 1 Let p ∈ H and assume that we can choose k ∈ {1, 2, 3, 4, 5} elements
from p∗. We look at p as a graph with k edges. If 2 � k, xp and yp do not have the
same degree and we can choose the element with lower degree. Otherwise we have
that 3 � k and we can choose an element from {ap, bp, cp}. �Claim 1

Now we apply RC5 on the set Z . Then there is an infinite subset Q ⊆ Z with a
choice function g : [Q]5 → Q. By Claim 1 we can without loss of generality assume
that p∗ ⊆ Q for every p in some infinite H ⊆ G.
We can partition each p∗ ∈ H∗ as follows into two sets γ

p
0 and γ

p
1 of size three

(Fig. 2):

γ
p
0 := {{ap, xp}, {bp, xp}, {cp, xp}} and γ

p
1 := {{ap, yp}, {bp, yp}, {cp, yp}}.

Analogously we can partition p∗ into three sets β
p
0 , β

p
1 , β

p
2 of size two as follows

(Fig. 2):

β
p
0 := {{ap, xp}, {ap, yp}}, β

p
1 := {{bp, xp}, {bp, yp}} and

β
p
2 := {{cp, xp}, {cp, yp}}.

123



728 L. Halbeisen, S. Schumacher

Let

H∗
3 := {γ p

i : i ≤ 1 ∧ p ∈ H}

be the sets of size three appearing in the partition of a p∗ ∈ H∗ and let

H∗
2 := {β p

i : i ≤ 2 ∧ p ∈ H}

be the family of sets of size two which appear in the partition of a p∗ ∈ H∗. If there
is a γ ∈ H∗

3 such that for infinitely many β ∈ H∗
2

g(γ ∪ β) ∈ β, (3)

we are done by Claim 1. Otherwise, for every γ ∈ H∗
3 there are only finitely many

β ∈ H∗
2 with (3) and we define

deg(γ ) := |{β ∈ H∗
2 : g(γ ∪ β) ∈ β}| ∈ ω.

We are in one of the following two cases:

Case 1: There is an n ∈ ω such that deg(γ ) = n for infinitely many γ ∈ H∗
3.

Let I∗3 := {γ ∈ H∗
3 : deg(γ ) = n}. Choose an (n+ 4)-element set {βi : i ≤ n+ 3} ⊆

H∗
2. For every γ ∈ I∗3 we define

j(γ ) := min{i ≤ n + 3 : g(γ ∪ βi ) ∈ γ }.

So from every γ ∈ I∗3 we choose the element

g(γ ∪ β j(γ )) ∈ γ

and we are done by Claim 1.

Case 2: For each n ∈ ω there are only finitely many γ ∈ H3 with deg(γ ) = n.
For every n ∈ ω we define

An := {γ ∈ H∗
3 : deg(γ ) = n} and

Bn := {β ∈ H∗
2 : ∃γ ∈ An∃p∗ ∈ H∗(γ ⊆ p∗ ∧ β ⊆ p∗)}.

If there are infinitely many p ∈ H such that γ
p
0 ∈ An and γ

p
1 ∈ Am with n �= m we

are done by Claim 1 since we can choose three edges from each of these infinitely
many p’s. So we can assume that for every p ∈ H both, γ p

0 and γ
p
1 , have the same

degree and we define

Cn := {p ∈ H : {γ p
0 , γ

p
1 } ⊆ An}
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for every n ∈ ω. Moreover, let

out(β) :=
{

γ ∈
⋃

m>n

Am : g(β ∪ γ ) ∈ γ

}
.

for every n ∈ ω and every β ∈ Bn . If there is a β ∈ ⋃
n∈ω Bn with |out(β)| = ∞ we

are done by Claim 1. So assume that |out(β)| ∈ ω for all β ∈ ⋃
n∈ω Bn .

Claim 2:We can find an infinite subset K ⊆ H with a partition K = ⋃
n∈ω Kn where

each Kn is finite and non-empty. Moreover, we can assume that for all natural numbers
n > m, all p ∈ Kn , all q ∈ Km and all j ≤ 2

g(γ p
0 ∪ β

q
j ) = g(γ p

1 ∪ β
q
j ) ∈ β

q
j .

Proof of Claim 2 For every n ∈ ω we define Rn to be the set of all p ∈ ⋃
k>n Ck such

that there are a q ∈ Cn , an i ∈ {0, 1} and a j ∈ {0, 1, 2} with

g(γ p
i ∪ β

q
j ) ∈ γ

p
i .

Since |out(β)| is finite for all β ∈ ⋃
n∈ω Bn , the set Rn is finite. Let Jn := Cn \ Rn .

Define Sn to be the set of all p ∈ ⋃
k>n Jk such that there are a q ∈ Jn , and a

j ∈ {0, 1, 2} with

g(γ p
0 ∪ β

q
j ) �= g(γ p

1 ∪ β
q
j ).

First of all assume that there is an n0 ∈ ω such that Sn0 is infinite. Since Jn0 is finite,
we can then find a q0 ∈ Jn0 and a j0 ∈ {0, 1, 2} such that for infinitely many p ∈ Sn0

β
q0
j0
 g(γ p

0 ∪ β
q0
j0

) �= g(γ p
1 ∪ β

q0
j0

) ∈ β
q0
j0

and we can choose the set of edges γ
p
0 or γ

p
1 depending on the choice in β

p0
j0
. With

Claim 1 we are done. Therefore, we can assume that each Sn is finite. In this case
we define Kn := Jn \ Sn for all n ∈ ω. Infinitely many sets Kn are non-empty. By
renumbering the sets Kn we can assume that each Kn is non-empty. �Claim 2

With the same construction we did in the proof of Claim 2 we can find an infinite
subsetK ⊆ J with a partitionK = ⋃

n∈ω Kn,where each Kn is finite and non-empty.
Moreover, we can assume that for all natural numbers n > m, all p ∈ In , all q ∈ Im
and all j ≤ 2

g(γ p
0 ∪ β

q
j ) = g(γ p

1 ∪ β
q
j ) ∈ β

q
j .

Note: Up to now we nowhere used the assumption that our infinite family F of sets
of size five is linearly ordered. In the last step we will need this assumption.
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730 L. Halbeisen, S. Schumacher

For each n ∈ ω, let pn ∈ Kn be the smallest element in Kn with respect to the
linear order on F . Note that such a smallest element exists since each Kn is finite and
non-empty. We define

h∗ : {p∗n : n ∈ ω} →
[

⋃

n∈ω

p∗n

]3

p∗n �→
{
g

(
γ
pn+1
0 ∪ β

pn
j

)
: j ≤ 2

}
.

By Claim 1 we are done. ��

3.4 RC7 implies LOC−
7

Before we prove our last result, we shall prove three lemmata.

Lemma 3.8 Let F be a linearly orderable family of pairwise disjoint 6-element sets.
Assume that we can partition each p ∈ F in a unique way into three 2-element sets
β
p
0 , β

p
1 and β

p
2 and in a unique way into two 3-element sets γ

p
0 , γ

p
1 . Further assume

that there is a choice function

f :
[⋃

F
]7 →

⋃
F .

Then there is an infinite subfamily G ⊆ F with a Kinna-Wagner selection function.

Proof We define

F3 :=
{
γ
p
i : i ∈ {0, 1} ∧ p ∈ F}

and

F4 :=
{
β
p
i ∪ β

p
j : {i, j} ∈ [3]2 ∧ p ∈ F}

.

For every γ ∈ F3 let

deg(γ ) := ∣∣{δ ∈ F4 : δ ∩ γ = ∅ ∧ f (δ ∪ γ ) ∈ δ
}∣∣.

If there is a γ ∈ F3 with deg(γ ) = ∞, then we are done because we can choose
between one and three elements from infinitely many p ∈ F . The rest of the proof is
similar to the proof of Theorem 3.7. ��
Lemma 3.9 Let F be a linearly orderable family of pairwise disjoint 12-element sets.
Assume that we can partition each p ∈ F in a unique way into three 4-element sets
δ0, δ1 and δ2 and in a unique way into four 3-element sets γ0, γ1, γ2 and γ3. Further
assume that there is a choice function

f :
[⋃

F
]7 →

⋃
F .
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Then there is an infinite subset G ⊆ F with a Kinna-Wagner selection function.

Proof The proof is similar to the proof of Theorem 3.7. ��
Lemma 3.10 LetF be a linearly orderable family of pairwise disjoint 10-element sets.
Assume that we can partition each p ∈ F in a unique way into two 5-element sets ε0
and ε1 and in a unique way into five 2-element sets βi , i ≤ 4. Further assume that
there is a choice function

f :
[⋃

F
]7 →

⋃
F .

Then there is an infinite subset G ⊆ F with a Kinna-Wagner selection function.

Proof The proof is similar to the proof of Theorem 3.7. ��
Proposition 3.11 ZF � RC7 ⇒ LOC−7 .

Proof LetF be a linearly orderable, infinite family of sets of size 7. We apply RC7 on
the set X := ⋃F to find an infinite subset Y ⊆ X with a choice function f : [Y ]7 →
Y . For every i ≤ 7 we define

Fi :=
{
p ∈ F : |p ∩ Y | = i

}
.

Note thatwe canwithout loss of generality assume thatF2 orF3 has infinite cardinality.
Case 1: F3 has infinite cardinality.
For every p ∈ F3 let

p∗ := {{a, x} ∈ [p]2 : a ∈ p ∩ Y ∧ x ∈ p \ Y}

and apply RC7 on the set X∗ := ⋃{p∗ : p ∈ F3}. We get an infinite subset Y ∗ ⊆ X∗
with a choice function g : [Y ∗]7 → Y ∗. For every 1 ≤ i ≤ 12 define

F∗
i := {p∗ : p ∈ F3 ∧ |p∗ ∩ Y ∗| = i}.

There is an i with 1 ≤ i ≤ 12 such that |F∗
i | = ∞. If i /∈ {6, 12} we can choose an

element from each p with p∗ ∈ F∗
i and therefore we are done. If i = 6, the only case

in which we cannot choose an element from all p with p∗ ∈ F∗
6 is the one illustrated

in Fig. 3:
But in this case we are done by Lemma 3.8. And if i = 12 we are done by

Lemma 3.9.

Case 2: F2 has infinite cardinality.
For every 1 ≤ i ≤ 10 we define F∗

i as in Case 1. The only i for which we cannot
choose one element from each p with p∗ ∈ F∗

i or for which we cannot choose three
elements from each p with p∗ ∈ F∗

i in order to reduce it to Case 1, is i = 10. But in
this case we are done by Lemma 3.10. ��
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732 L. Halbeisen, S. Schumacher

Fig. 3 Case i = 6

4 Open questions

1. By [6] we have that RCn ⇒ C−n in ZF for every n ∈ {2, 3, 4}. Does this implication
hold for any other n ∈ ω \ {0, 1}?

2. By [6], Proposition 3.11 and Theorem 3.7 we have that RCn ⇒ LOC−n in ZF for
any n ∈ {2, 3, 4, 5, 7}. Does this implication hold for any other n ∈ ω \ {0, 1}?

3. For every n ∈ ω \ {0, 1} the following weak choice principle was introduced in
[8]:

nC−<ℵ0 : For every infinite family F of finite sets with cardinality at least n there is

an infinite subfamily G ⊆ F with a selection function f : G → [⋃G]n
such that

f (G) ∈ [G]n for all G ∈ G.
Moreover, as in [1] we can define a restricted version of nC−<ℵ0 as follows:

nRCfin: Given any infinite set x , there is an infinite subset y ⊆ x and a selection
function f that chooses an n-element subset from every z ⊆ y containing at least
n elements.

The relationship of RCn and nRCfin to kC−<ℵ0 and C−j has already been studied
in [3]. However, the following question is still open: For every n ∈ {2, 3, 4, 6}
we have that nRCfin ⇒ nC−ℵ0 in ZF. Does this implication hold for any other
n ∈ ω \ {0, 1}?
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