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Abstract
It is generally accepted that H. Friedman’s gap condition is closely related to iterated
collapsing functions from ordinal analysis. But what precisely is the connection? We
offer the following answer: In a previous paper we have shown that the gap condition
arises from an iterative construction on transformations of partial orders. Herewe show
that the parallel construction for linear orders yields familiar collapsing functions.
The iteration step in the linear case is an instance of a general construction that we
call ‘Bachmann–Howard derivative’. In the present paper, we focus on the unary
case, i.e., on the gap condition for sequences rather than trees and, correspondingly,
on addition-free ordinal notation systems. This is partly for convenience, but it also
allows us to clarify a phenomenon that is specific to the unary setting: As shown by
van der Meeren, Rathjen and Weiermann, the gap condition on sequences admits two
linearizations with rather different properties. We will see that these correspond to
different recursive constructions of sequences.

Keywords Ordinal collapsing functions · Friedman’s gap condition ·
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1 Introduction

There is clearly a parallel between Higman’s lemma [1] and Kruskal’s theorem [2] on
embeddings of sequences and trees, respectively. Not least, this parallel is manifest
in the fact that both results have an elegant proof by Nash-Williams’s minimal bad
sequence method [3]. If one wants to make the parallel more precise, it is natural to
start with the observation that both sequences and trees are recursive data types. Such
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582 A. Freund

a data type can be constructed as the initial fixed point of a suitable transformation.
For example, the initial fixed point of Z �→ 1+ X × Z is the set Seq(X) of sequences
with entries in X , while the initial fixed point of X �→ Seq(X) is the set of ordered
finite trees. In [4] we have studied certain general transformations of partial orders
that we call normal PO-dilators (alluding to Girard’s [5] dilators on linear orders). If
W is a normal PO-dilator, then its initial fixed point T W carries a canonical partial
order. In the aforementioned examples, this order coincides with the usual embedding
relation from Higman’s lemma and Kruskal’s theorem. Thus both these results are
instances of a general fact, which we call the uniform Kruskal theorem: If the normal
PO-dilator W preserves well partial orders (wpos), then the so-called Kruskal fixed
point T W is a wpo itself. Together with Rathjen and Weiermann, the present author
has shown that the uniform Kruskal theorem is equivalent to �1

1-comprehension [4]
(in the setting of reverse mathematics [6]). This is particularly interesting because it
means that the uniform Kruskal theorem exhausts the full strength of the minimal bad
sequence method (which has been analyzed by Marcone [7]), in contrast to Kruskal’s
original theorem. We note that constructions similar to W �→ T W had previously
been studied by Hasegawa [8, 9] and Weiermann [10].

Harvey Friedman has introduced a gap condition on embeddings of trees, which
leads to a much stronger version of Kruskal’s theorem (see the presentation by Simp-
son [11]). Schütte and Simpson [12] have studied the corresponding condition for
embeddings of sequences. As observed by Hasegawa [8, 9], Weiermann [10] and van
der Meeren [13], the gap condition is related to iterations of constructions such as
W �→ T W . One way to make this precise has been worked out by the present author
[14]:Given a normalPO-dilatorW and a partial order X , one can construct a relativized
Kruskal fixed point T W(X) that comes with a bijection

ιX + κX : X + W (T W(X)) → T W(X). (1.1)

Here addition denotes disjoint union, i. e., we have functions ιX : X → T W(X) and
κX : W (T W (X)) → T W(X) such that T W(X) is the disjoint union of their images.
The order on T W (X) is determined by certain inequalities between the values of ιX
and κX (see [14]). The transformation X �→ T W (X) can again be equipped with the
structure of a normal PO-dilator, which we call the Kruskal derivative of W . From
now on, the notation T W will be reserved for this PO-dilator. The single fixed point
from [4] should thus be denoted by T W (0), where 0 stands for the empty order. The
principle of �1

1-comprehension is still equivalent to the statement that T W preserves
wpos if W does. Now that T W is a transformation rather than a single order, we can
iterate the construction: LetT0 be the identity on partial orders, considered as a normal
PO-dilator. Given Tn , define T

−
n+1 as the Kruskal derivative of Seq ◦ Tn . Then put

Tn+1 := Tn ◦T
−
n+1. In [14] it is shown thatTn(0) is isomorphic to the set of trees with

labels in {0, . . . , n − 1}, ordered according to Friedman’s strong gap condition. The
analogous (but much simpler) result for a certain collection of sequences is discussed
below.

The equivalence between�1
1-comprehension and the uniformKruskal theorem has

been derived from a previous result on the level of linear orders. Each dilator D (i. e.,
each suitable transformation of well orders) gives rise to a linear order ϑD, which
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Bachmann–Howard derivatives 583

we call the Bachmann–Howard fixed point of D (since it relativizes the Bachmann–
Howard ordinal or, more precisely, the notation system from [15]). By an earlier result
of the author [16–19], �1

1-comprehension is equivalent to the statement that ϑD is a
well order for any dilator D. In the present paper, we will relativize the construction
of ϑD to a linear order X . This results in a Bachmann–Howard fixed point ϑD(X)

over X , which comes with a bijection

ιX + ϑX : X + D(ϑD(X)) → ϑD(X),

analogous to (1.1). The appropiate inequalities between different values of ιX and
ϑX will, once again, be a crucial part of the definition. As above, the notation ϑD
is now reserved for the transformation X �→ ϑD(X), while the single fixed point
from [19] should be denoted by ϑD(0). We will see that the transformation ϑD can
again be equipped with the structure of a dilator. This dilator ϑD will be called the
Bachmann–Howard derivative of D.

Let us discuss the relation between Kruskal and Bachmann–Howard derivatives.
By a linearization of a partial order P by a linear order X we shall mean an order-
reflecting surjection f : X → P . Here, order-reflecting means that f (x) ≤P f (y)
implies x ≤X y, which also ensures that f is injective. Note that this coincides
with the usual notion of linearization if we identify X with its image under f . A
linearization of a PO-dilator W by a dilator D is a natural family of linearizations
D(X) → W (X), one for each linear order X . We will show that any linearization
of W by D can be transformed into a linearization of the Kruskal derivative T W by
the Bachmann–Howard derivative ϑD.

We now consider an application of our general constructions. In [20], van der
Meeren, Rathjen and Weiermann study a certain collection of sequences with gap
condition, as well as its linearization by iterated collapsing functions. We will give the
following systematic reconstruction of these objects:

(1) Let S00 and T
0
0 be the identity on partial and linear orders, respectively (considered

as a normal PO-dilator and a dilator in the sense of Girard).
(2) Define S0n+1 as the Kruskal derivative of S

0
n , and T

0
n+1 as the Bachmann–Howard

derivative of T0n .
(3) Write 1 for the order with a single element. Then S0n(1) coincides with the set of

sequences Sn[0] from [20, Definition 12], ordered by Friedman’s strong gap con-
dition. Furthermore, T0n(1) coincides with the system Tn[0] of collapsing functions
from [20, Definitions 24 to 27].

Now the fact that Tn[0] ∼= T0n(1) is a linearization of Sn[0] ∼= S0n(1) is immediate by
the general result from the previous paragraph, which thus replaces the explicit verifi-
cation in [20, Lemmas 10 and 11]. More importantly, our reconstruction clarifies two
conceptual points. First, it confirms that gap condition and collapsing functions are
closely related, maybe even more closely than expected: they arise by entirely parallel
constructions on partial and linear orders, respectively. Secondly, the collapsing func-
tions studied in [20] (and the variant with addition in [21]) are supposed to generalize
Rathjen’s notation system for the Bachmann–Howard ordinal (see [4]). But do they

123



584 A. Freund

provide “the right" generalization? Our reconstruction shows that, in a certain precise
sense, the answer is positive.

Let us emphasize that previous work of Hasegawa, Weiermann and van der Meeren
is fundamental for the present paper. The concrete results that we derive on lin-
earizations of the gap condition for sequences—in particular Corollaries 5.11, 5.20
and 5.21—were first shown by Rathjen, Weiermann and van der Meeren [20]. Beyond
these concrete results, our approach is heavily informed by the many insights from
the PhD thesis of van der Meeren [13] and his papers with Rathjen and Weiermann
[22, 23] on the gap condition for trees. The achievement of the present paper is that
it develops these insights in terms of dilators, which provide a framework that is both
rigorous and very general.

In order to indicate that our constructions cover a larger range of applications, we
sketch two possible modifications. In the first of these we put T0 = T00 and Tn+1 =
Tn ◦ T−

n+1, where T
−
n+1 is defined as the Bachmann–Howard derivative of Tn (note the

similarity with the clause Tn+1 = Tn ◦ T
−
n+1 from the discussion of [14] above). It

seems that Tn(1) is a linearization of the order Sn from [20], which is more liberal
than the order Sn[0]. For the second modification, consider a dilator S that linearizes
the PO-dilator Seq from above (e. g. take S = ω2 as below). Let D0 be the identity
on linear orders, define D−

n+1 as the Bachmann–Howard derivative of S ◦ Dn , and
set Dn+1 := Dn ◦ D−

n+1. Since the construction is entirely parallel to the one from
[14] (discussed above), this should yield a linearization of Friedman’s gap condition
on trees. We expect that the linear orders Dn(0) are closely related to the iterated
collapsing functionswith addition that are studied in [21].Details of bothmodifications
remain to be checked. We have sketched them to indicate the potential breadth of our
approach.

As observed by van der Meeren, Rathjen and Weiermann [20], the linearization of
S0n(1) ∼= Sn[0] by T0n(1) ∼= Tn[0] does not have maximal order type. It is expected that
this phenomenon is specific to the case of sequences, i. e., that collapsing functions do
exhaust the maximal order type for trees. Our approach provides some justification for
this expectation, or at least a systematic explanation. To present the latter, we consider
sequences on a more concrete level: The elements of S0n(X) can be represented in the
form 〈i1, . . . , ik, x〉 with i1 = 0 and x ∈ X (and with some further conditions, see
Definition 5.1 below). In view of (1.1), the fact that S0n+1 is the Kruskal derivative
of S0n is witnessed, amongst others, by injections

κn
X : S0n(S0n+1(X)) → S0n+1(X).

We will see that these functions are given by

κn
X (〈i1, . . . , ik, 〈 j1, . . . , jl , x〉 〉) = 〈0, i1 + 1, . . . , ik + 1, j1, . . . , jl , x〉.

Note that j1 is the second entry on the right that is equal to zero, which guarantees
that κn

X is injective. To generalize the construction from sequences to trees, think of
the last entry of an element 〈i1, . . . , ik, x〉 ∈ S0n(X) as a leaf labelled by x . Indeed, the
ordersTn(X) from above (studied in [14]) consist of trees with labels from {0, . . . , n−
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Bachmann–Howard derivatives 585

1}∪ X , where labels from X are allowed at leaves only. We can now point out a crucial
difference between sequences and trees: A sequence different from 〈〉 (the empty
sequence) has a single leaf with known location (the last entry). This means that it
suffices to record the leaf label and the rest of the sequence or, more formally, that we
have a bijection

{〈〉} ∪
(
X × S0n({�})

) ∼= S0n(X),

〈x, 〈i1, . . . , ik, �〉 〉 �→ 〈i1, . . . , ik, x〉.

In the case of trees, there aremany possible locations for leaf labels, and a similar bijec-
tion does not appear to be available. It turns out that we get an alternative construction
of the gap condition on sequences (but not on trees). To describe this construction, we
recall that the set Seq(Z) of finite sequences in Z is the initial Kruskal fixed point of
the transformation X �→ 1 + Z × X , i. e., that we have

Seq(Z) = T W (0) with W (X) = 1 + Z × X .

Here Z × X is the usual product of partial orders, where (z, x) ≤Z×X (z′, x ′) is
equivalent to the conjunction of z ≤Z z′ and x ≤X x ′. The order 1+ Z × X contains a
further element but no other strict inequalities.Wewill see that there is an isomorphism

S0n+1(1) ∼= Seq(S0n(1)) (1.2)

of partial orders, for each n ∈ N. Together with (1) to (3) from above, this yields a
second construction of sequences with gap condition in terms of Kruskal derivatives
(or fixed points). While the two constructions coincide for partial orders, it turns out
that they differ in the linear case. Given a linear order Z , we define ω2(Z) as the initial
Bachmann–Howard fixed point of the transformation X �→ 1 + Z × X , i. e., we set

ω2(Z) = ϑD(0) with D(X) = 1 + Z × X . (1.3)

Note that, in the linear case, the single element of 1 lies below all elements of Z × X ,
while (z, x) ≤Z×X (z′, x ′) holds if we have z <Z z′ or (z = z′ and x ≤X x ′). More
concretely, one can represent ω2(Z) by the set of finite sequences in Z , as one checks
with the help of Theorem 2.9 below. With z0�〈z1, . . . , zk〉 := 〈z0, . . . , zk〉, the order
on ω2(Z) is characterized by the following clauses (as before Theorem 2.2 in [24]):

(i) we always have 〈〉 < z�σ and σ < z�σ ,
(ii) given (z, σ ) < (z′, σ ′) in Z × ω2(Z) and σ < z′�σ ′, we get z�σ < z′�σ ′.

To turn ω2 into a dilator (see Definition 2.1 below), it suffices to set

ω2( f )(〈z0, . . . , zk−1〉) := 〈 f (z0), . . . , f (zk−1)〉,
suppZ (〈z0, . . . , zk−1〉) := {z0, . . . , zk−1}.
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586 A. Freund

For an ordinal α and a number n ∈ N, the ordinal ωα
n is explained by the recursive

clauses ωα
0 = α and ωα

n+1 = ωωα
n (towers of exponentials in the sense of ordinal

arithmetic). The resulting ordinal ωα
2 is isomorphic to the order ω2(1+ α) from (1.3),

as shown in [24]. We now define linear orders OT0n by the recursive clauses

OT00 = 1 and OT0n+1 = ω2(OT0n). (1.4)

As we will see, OT0n coincides with the order OTn[0] from [20, Section 5] (up to a
typo in the cited reference, see Sect. 5 below). Important results of the cited paper
can now be deduced from general facts about Bachmann–Howard fixed points: First,
the parallel between (1.2) and (1.4) ensures that OTn[0] linearizes S0n(1) ∼= Sn[0].
Secondly, iterated applications of the result from [24] show that OTn[0] has order
type ω2n−1 := ω1

2n−1 = ω0
2n , for any n > 0. In [20] this fact was established by

explicit computations that involve the addition-freeVeblen functions, whichmay seem
somewhat ad hoc. Let us recall that ω2n−1 is the maximal order type of the partial
order S0n(1) ∼= Sn[0], as shown in [20] (based on results from [12]).

To summarize, the present paper introduces the general notion of Bachmann–
Howard derivative. The latter allows us to give two systematic reconstructions of the
gap condition on finite sequences. While the two constructions yield the same result
in the case of partial orders, the versions for linear orders lead to two different systems
of collapsing functions, both of which have been studied in [20]. The first construction
does not realize the maximal order type (in the case of sequences) but seems to be
of greater general interest, since it is readily extended from sequences to trees (cf.
[14]). The second construction exploits a property that is specific to sequences, and it
realizes the maximal order type.

2 Theory, part 1: Bachmann–Howard derivatives

In this section we define the notion of Bachmann–Howard derivative, by making the
informal explanation from the introduction precise. We then give a proof of existence
and uniqueness, including a criterion that is useful for applications.

To recall the definition of dilators, we need some terminology: Write [X ]<ω for the
set of finite subsets of a set X . Each f : X → Y induces a function

[ f ]<ω : [X ]<ω → [Y ]<ω with [ f ]<ω(a) = { f (x) | x ∈ a}.

This yields an endofunctor [·]<ω on the category of sets. Given a ∈ [X ]<ω, we will
write ιa : a ↪→ X for the inclusion map, provided that X is clear from the context. Let
LO be the category of linear orders and order embeddings. We will omit the forgetful
functor from orders to sets (and thus apply [·]<ω to orders). Conversely, a subset of an
order will often be considered as a suborder. Finally, let us agree that rng( f ) denotes
the range (in the sense of image) of f .
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Bachmann–Howard derivatives 587

Definition 2.1 An LO-dilator consists of a functor D : LO → LO and a natural trans-
formation supp : D ⇒ [·]<ω such that the so-called support condition

suppY (σ ) ⊆ rng( f ) ⇒ σ ∈ rng(D( f ))

holds for any LO-morphism f : X → Y and any σ ∈ D(Y ). If, in addition, D(X) is
well founded for any well order X , then (D, suppD) is called aWO-dilator.

Note that the converse of the implication in the definition is automatic since supp
is natural. There is at most one natural transformation supp : D ⇒ [·]<ω that satisfies
the support condition, since suppX (σ ) is determined as the minimal a ⊆ X with
σ ∈ rng(D(ιa)). Furthermore, such a natural transformation exists if, any only if, D
preserves pullbacks and direct limits, as verified in [16, Remark 2.2.2]. This means
that our definition ofWO-dilators coincides with Girard’s definition of dilators [5].We
have added the prefix WO for clarity, since we will later consider variants of dilators
on partial orders.

As supports are uniquely determined, we often write D instead of (D, supp). Some-
times (but not always) we then write suppD to refer to supp. Let us write

σ = NFD(ιa)(σ0) with a ∈ [X ]<ω and σ0 ∈ D(a)

if the equality holds and we have suppa(σ0) = a. This notation allows us to formulate
a version of Girard’s normal form theorem:

Lemma 2.2 Consider an LO-dilator D and a linear order X. Each σ ∈ D(X) has a
unique normal form σ = NFD(ιa)(σ0). The latter satisfies a = suppX (σ ).

Proof For σ = D(ιa)(σ0) we have suppX (σ ) = suppa(σ0) by naturality. Now the
existence of a normal form with a = suppX (σ ) follows from the support condition.
Uniqueness holds as σ determines a and as the embedding D(ιa) is injective. ��

As observed byGirard, the normal form theorem entails that dilators are determined
(up to natural isomorphism) by their restrictions to the category of finite linear orders.
Since this category is essentially small, these restrictions can be represented by sets
(rather than proper classes). A formalization in second order arithmetic is available
for the countable case (see e. g. [19] for details). In the present paper we do not work
in a specific base theory.

To define the Bachmann–Howard derivative ϑD of an LO-dilator D we must, in
particular, specify a transformation X �→ ϑD(X) of linear orders. The following
definition constructs the required orders from syntactic material. A more abstract
characterization, which can be easier to handle in applications, will be given later. We
point out that the orders ϑD(X) are relativized versions of the Bachmann–Howard
fixed points that we have constructed in [19].

Definition 2.3 Let us consider an LO-dilator D. For each linear order X , we define a set
ϑD(X) of terms and a binary relation <ϑD(X) on that set by simultaneous recursion.
The set ϑD(X) is generated by the following clauses:
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588 A. Freund

(i) For each element x ∈ X we have a term x ∈ ϑD(X).
(ii) Given a finite set a ⊆ ϑD(X) that is linearly ordered by <ϑD(X), we add a term

ϑ〈a, σ 〉 for each element σ ∈ D(a) with suppDa (σ ) = a.

For s, t ∈ ϑD(X) we stipulate that s <ϑD(X) t holds if, and only if, one of the
following clauses applies:

(i’) We have s = x and t = y with x <X y.
(ii’) The term s is of the form x while t is of the form ϑ〈b, τ 〉.
(iii’) We have s = ϑ〈a, σ 〉 and t = ϑ〈b, τ 〉, the restriction of <ϑD(X) to a ∪ b is a

linear order, and one of the following holds:

– We have D(ιa)(σ ) <D(a∪b) D(ιb)(τ ) for the inclusions ιa : a ↪→ a ∪ b and
ιb : b ↪→ a ∪ b. Furthermore, we have s′ <ϑD(X) t for all s′ ∈ a.

– We have s ≤ϑD(X) t ′ for some t ′ ∈ b (i. e., we have s <ϑD(X) t ′ or s and t ′
are the same term).

To justify the recursion in detail, one can argue as follows: In a first step, ignore
the reference to <ϑD(X) in order to generate a larger set ϑ0D(X) ⊇ ϑD(X). More
precisely, declare that ϑ0D(X) contains ϑ〈a, σ 〉 whenever a ⊆ ϑ0D(X) is finite and
σ ∈ D(a) holds with respect to some linear order on a. Then define a length function
l : ϑ0D(X) → N by recursion over terms, stipulating

l(x) = 0 and l(ϑ〈a, σ 〉) = 1 +
∑
r∈a

2 · l(r).

Finally, decide r ∈ ϑD(X) and s <ϑD(X) t by simultaneous recursion on l(r) and
l(s) + l(t), respectively. For example, we can decide r ∈ ϑD(X) for r = ϑ〈a, σ 〉 as
follows: Recursively decide a ⊆ ϑD(X) and compute the restriction of <ϑD(X) to a.
If the latter is a linear order, then check σ ∈ D(a) and suppDa (σ ) = a with respect to it.
At various places inDefinition 2.3, we have required that certain restrictions of<ϑD(X)

are linear. The purpose was to ensure that D : LO → LO is only applied to (morphisms
of) linear orders. Ex post, linearity is automatic by the following proposition, which
is proved as in the non-relativized case (see [19, Proposition 4.1]).

Proposition 2.4 The relation <ϑD(X) is a linear order on ϑD(X).

The syntactic construction of ϑD(X) can be hard to apply, even in simple cases.
For this reason, we now develop a more abstract characterization.

Definition 2.5 Consider an LO-dilator D and a linear order X . A Bachmann–Howard
fixed point of D over X consists of a linear order Z and functions ι : X → Z and
ϑ : D(Z) → Z with the following properties:

(i) The function ι : X → Z is an order embedding.
(ii) We have ι(x) <Z ϑ(σ) for all x ∈ X and σ ∈ D(Z).
(iii) If we have σ <D(Z) τ as well as z <Z ϑ(τ) for all z ∈ suppDZ (σ ), then we have

ϑ(σ) <Z ϑ(τ). Furthermore, z <Z ϑ(σ) holds for any z ∈ suppDZ (σ ).

Let us extend the syntactic orders ϑD(X) into Bachmann–Howard fixed points:

123



Bachmann–Howard derivatives 589

Definition 2.6 To define ιX : X → ϑD(X) and ϑX : D(ϑD(X)) → ϑD(X), we
stipulate ιX (x) = x and ϑX (σ ) = ϑ〈a, σ0〉 for σ = NFD(ιa)(σ0).

As expected, we obtain the following:

Proposition 2.7 The tuple (ϑD(X), ιX , ϑX ) explained by Definitions 2.3 and 2.6 is a
Bachmann–Howard fixed point of D over X.

Proof It is immediate that conditions (i) and (ii) from Definition 2.5 are satisfied.
Concerning condition (iii), we point out that s <ϑD(X) ϑX (σ ) is immediate for a term
of the form s = x , by clause (ii’) of Definition 2.3. The remaining conditions are
verified as in the non-relativized case, for which we refer to [19, Theorem 4.1]. ��

In the non-relativized case, [19, Theorem 4.2] shows that ϑD(0) can be embedded
into any Bachmann–Howard fixed point of D over the empty set. Here we establish
a stronger categorical property, which will be useful below (see [14, Section 3] for
parallel constructions in the context of partial orders).

Definition 2.8 ABachmann–Howard fixed point (Z , ι, ϑ) of D over X is called initial
if any Bachmann–Howard fixed point (Z ′, ι′, ϑ ′) of D over X admits a unique order
embedding f : Z → Z ′ such that

Z D(Z)

X

Z ′ D(Z ′)

f

ϑ

D( f )

ι

ι′
ϑ ′

is a commutative diagram.

By the usual categorical argument, initial Bachmann–Howard fixed points are
unique up to isomorphism. The following yields existence and a useful criterion.

Theorem 2.9 Consider an LO-dilator D and a linear order X. For any Bachmann–
Howard fixed point (Z , ι, ϑ) of D over X, the following are equivalent:

(i) We have Z = rng(ι) ∪ rng(ϑ), and there is a function h : Z → N such that
z ∈ suppDZ (σ ) entails h(z) < h(ϑ(σ )), for any σ ∈ D(Z).

(ii) The Bachmann–Howard fixed point (Z , ι, ϑ) is initial.

Furthermore, the Bachmann–Howard fixed point from Proposition 2.7 is initial.

Proof We first assume (i) and derive (ii). Aiming at the latter, we consider an arbitrary
Bachmann–Howard fixed point (Z ′, ι′, ϑ ′) of D over X . The diagram from Defini-
tion 2.8 commutes if, and only if, we have

f (ι(x)) = ι′(x) for all x ∈ X ,

f (ϑ(σ )) = ϑ ′(D( f ◦ ιa)(σ0)) for any σ = NFD(ιa)(σ0) ∈ D(Z).
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590 A. Freund

The idea is to read these equations as a recursive definition of f , which is possible in
view of the following observations: First, ι and ϑ are injective by clauses (i) and (iii) of
Definition 2.5 (see also [16, Lemma 2.1.7]). Secondly, the union Z = rng(ι)∪ rng(ϑ)

is necessarily disjoint, by clause (ii) of the same definition. Finally, the composition
f ◦ ιa does only depend on values of f on arguments z ∈ a = suppDZ (σ ), for which
a recursive call is justified due to h(z) < h(ϑ(σ )). In view of these observations,
there can be at most one embedding f : Z → Z ′ with the required properties. To
show that there is one, we first define a length function l : Z → N by the recursive
clauses l(ι(x)) = 0 and l(ϑ(σ )) = 1 + ∑

z∈suppDZ (σ ) 2 · l(z), which are justified as
above. By simultaneous induction on l(z) and l(z0) + l(z1) one can now check that
f (z) ∈ Z ′ is defined and that z0 <Z z1 entails f (z0) <Z ′ f (z1). The motivation for
the simultaneous verification is that f ◦ ιa needs to be an embedding for D( f ◦ ιa) to
be defined. The only interesting case in the induction concerns an inequality

z0 = ϑ(σ) <Z ϑ(τ) = z1.

Crucially, we must have z <Z ϑ(τ) for all elements z ∈ suppDX (σ ), since ϑ(τ) ≤Z z
would entailϑ(τ) <Z ϑ(σ), by clause (iii) ofDefinition 2.5. If σ <D(Z) τ fails, we get
ϑ(σ) ≤Z z′ for some z′ ∈ suppDZ (τ ), for the same reason. Writing σ = NFD(ιa)(σ0)

and τ = NFD(ιb)(τ0), we can use the induction hypothesis to show that one of the
following must hold (write f ◦ ιa = f �(a ∪ b) ◦ ι′a with ι′a : a ↪→ a ∪ b):

– We have D( f ◦ ιa)(σ0) <D(Z ′) D( f ◦ ιb)(τ0) and z <Z ′ f (ϑ(τ)) = ϑ ′(D( f ◦
ιb)(τ0)) for all z ∈ [ f ]<ω(suppDZ (σ )) = suppDZ ′(D( f ◦ ιa)(σ0)).

– We have ϑ ′(D( f ◦ ιa)(σ0)) ≤Z ′ z′ for some z′ ∈ suppDZ ′(D( f ◦ ιb)(τ0)).

In either case, clause (iii) of Definition 2.5 yields

f (z0) = ϑ ′(D( f ◦ ιa)(σ0)) <Z ′ ϑ ′(D( f ◦ ιb)(τ0)) = f (z1).

Next, we use the criterion provided by (i) to show that the Bachmann–Howard fixed
point (ϑD(X), ιX , ϑX ) from Proposition 2.7 is initial. To see that we have

ϑD(X) = rng(ιX ) ∪ rng(ϑX ),

it suffices to observe that the same condition suppDa (σ ) = a appears in clause (ii)
of Definition 2.3 and in the definition of normal forms (as given in the paragraph
before Lemma 2.2). Let us now define h : ϑD(X) → N by recursion over terms,
setting h(x) = 0 and h(ϑ〈a, σ0〉) = 1 + max{h(s) | s ∈ a}. To see that this function
has the required property, it suffices to recall that σ = NFD(ιa)(σ0) ∈ D(ϑD(X))

entails suppDϑD(X)(σ ) = a, by Lemma 2.2. Finally, it is now easy to conclude that (ii)
implies (i), because any initial Bachmann–Howard fixed point must be isomorphic
to (ϑD(X), ιX , ϑX ) (see the proof of [14, Theorem 3.5] for details). ��

Now that we have established existence and uniqueness up to isomorphism, we
will sometimes speak of ‘the’ initial Bachmann–Howard fixed point of D over X and
denote ‘it’ by ϑD(X) (i. e., this notation is no longer reserved for the specific term
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systems fromDefinition 2.3). In [14]we have introduced a notion ofKruskal derivative
for dilators of partial orders. We now define the corresponding notion in the context
of linear orders.

Definition 2.10 A Bachmann–Howard derivative of an LO-dilator D consists of an
LO-dilator ϑD and natural families of functions

ιX : X → ϑD(X) and ϑX : D ◦ ϑD(X) → ϑD(X)

such that (ϑD(X), ιX , ϑX ) is an initial Bachmann–Howard fixed point of D over X ,
for each linear order X .

To avoid misunderstanding, we point out that the functions ϑX need not be order
embeddings. Hence we do not have a natural transformation ϑ : D ◦ ϑD ⇒ ϑD
between endofunctors of linear orders (but the naturality condition is the same).

Proposition 2.11 Assume that, for each linear order X, we are given an initial
Bachmann–Howard fixed point (ϑD(X), ιX , ϑX ) of D over X. There is a unique
way to extend this data into a Bachmann–Howard derivative of D.

Proof We first show that the given map X �→ ϑD(X) can be uniquely extended into
a functor. Given an embedding f : X → Y of linear orders, it is straightforward to
check that (ϑD(Y ), ιY ◦ f , ϑY ) is a Bachmann–Howard fixed point of D over X . Since
(ϑD(X), ιX , ϑX ) is initial, there is a unique embedding ϑD( f ) : ϑD(X) → ϑD(Y )

such that the following is a commutative diagram:

ϑD(X) D(ϑD(X))

X

ϑD(Y ) D(ϑD(Y ))

ϑD( f )

ϑX

D(ϑD( f ))

ιX

ιY ◦ f

ϑY

The very same diagram (with the triangle written as a square) must commute if the
functions ιX and ϑX are to be natural in X . Hence there is a unique extension into
a functor ϑD : LO → LO with the required properties. It remains to consider the
extension into an LO-dilator. First observe that the required functions

suppϑD
X : ϑD(X) → [X ]<ω

are necessarily unique, as naturality and the implication from Definition 2.1 require

suppϑD
X (σ ) =

⋂
{a ∈ [X ]<ω | σ ∈ rng(ϑD(ιa))},

where ιa : a ↪→ X are the inclusions. For existence we use the characterization from
part (i) of Theorem 2.9. It allows us to define supports by the recursive clauses

suppϑD
X (ιX (x)) = {x},
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suppϑD
X (ϑX (σ )) =

⋃
{suppϑD

X (s) | s ∈ suppDϑD(X)(σ )}.

Naturality and the implication fromDefinition 2.1 are checked by induction. For details
we refer to the analogous argument for partial orders (see [14, Theorem 4.2]). ��

Together with the last sentence of Theorem 2.9, we get existence:

Corollary 2.12 Any LO-dilator has a Bachmann–Howard derivative.

By an isomorphism between LO-dilators (D, suppD) and (E, suppE ) we simply
mean a natural isomorphism η : D ⇒ E of functors. This is justified because the
supports are automatically respected, i. e. we have suppE ◦η = suppD . For an isomor-
phism this is particularly easy to see (cf. the paragraph before [14, Theorem 4.4]). It
is also true but more subtle when η is merely a natural transformation (see [5]). We
can now formulate the appropriate uniqueness result:

Proposition 2.13 If (ϑ0D, ι0, ϑ0) and (ϑ1D, ι1, ϑ1) are two Bachmann–Howard
derivatives of the same LO-dilator D, then there is a unique natural isomorphism
η : ϑ0D ⇒ ϑ1D such that the diagram

ϑ0D(X) D(ϑ0D(X))

X

ϑ1D(X) D(ϑ1D(X))

ηX

ϑ0
X

D(ηX )

ι0X

ι1X

ϑ1
X

commutes for every linear order X.

Proof Existence and uniqueness of isomorphisms ηX : ϑ0D(X) → ϑ1D(X) as in
the diagram are due to the assumption that (ϑ0D(X), ι0X , ϑ0

X ) and (ϑ1D(X), ι1X , ϑ1
X )

are initial Bachmann–Howard fixed points of D over X . The non-trivial claim of
the proposition is that these isomorphisms are natural in X . This is shown as in the
corresponding result for partial orders, for which we refer to [14, Theorem 4.4]. ��

In the next section we will want to take iterated Bachmann–Howard derivatives. To
see that the result is still unique, one should check that the derivatives of isomorphic
LO-dilators are isomorphic. This follows from the previous result and the following
observation, which is shown as in the partial case (see [14, Proposition 4.6]).

Lemma 2.14 If (ϑE, ι, ϑ) is a Bachmann–Howard derivative of E and η : D ⇒ E is
a natural isomorphism, then (ϑE, ι, ϑ • η) is a Bachmann–Howard derivative of D,
where ϑ • η : D ◦ ϑE ⇒ ϑE is given by (ϑ • η)X = ϑX ◦ ηϑE(X).

Having established existence and uniqueness, we will speak of ‘the’ Bachmann–
Howard derivative of D and denote ‘it’ by ϑD. To complete the basic theory of
Bachmann–Howard derivatives, we should show that ϑD is a WO-dilator (i. e., pre-
serves well foundedness) when the same holds for D. Since a particularly short proof
of this fact exploits the connection with partial orders, we defer this result until Corol-
lary 4.3 below.
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3 Application, part 1: unary collapsing functions

In the introduction we have described a recursive construction of LO-dilators T0n .
Starting with the identity functor T00 : LO → LO (which is an LO-dilator with support
functions suppX : T00(X) = X → [X ]<ω given by suppX (x) = {x}), we have defined
T0n+1 as the Bachmann–Howard derivative of T0n . This construction is explained and
justified by the results of Sect. 2. Also in the introduction, we have claimed that T0n(1)
coincides with the order Tn[0] from [20] (where 1 is the order with a single element).
This claim will be proved in the present section.

Due to the uniqueness results from Sect. 2 we can argue ‘the other way around’.
This means that we will not, at first, consider T0n as given by a recursive construction.
Instead, wewill give an ad hoc definition of T0n , which extends the definition of the term
systems Tn[0] ∼= Tn(1) from [20]. In a second step, we will define transformations
ιn : Id ⇒ T0n+1 and ϑn : T0n ◦ T0n+1 ⇒ T0n+1 that turn T0n+1 into a Bachmann–Howard
derivative of T0n . By Proposition 2.13 and Lemma 2.14, this will entail that our ad hoc
definition and the recursive construction yield the same result after all (up to natural
isomorphism).

Definition 3.1 Given a linear order X , we generate a set T(X) of terms and a function
S : T(X) → N ∪ {−1} by simultaneous recursion:

(i) For each x ∈ X , include a term x ∈ T(X) with S(x) = −1.
(ii) Given s ∈ T(X) and i ≥ max{S(s) − 1, 0}, add ϑi s ∈ T(X) with S(ϑi s) = i .

For each i ∈ N ∪ {−1}, let ki : T(X) → T(X) be given by the recursive clauses

ki (x) = x and ki (ϑ j s) =
{

ϑ j s if j ≤ i,

ki (s) if j > i .

To define a binary relation <T(X) on T(X), we declare that s <T(X) t holds if, and only
if, one of the following clauses applies:

(i’) We have s = x and t = y with x <X y.
(ii’) The term s is of the form x while t is of the form ϑ j t ′.
(iii’) We have s = ϑi s′ and t = ϑ j t ′, and one of the following holds:

– We have i < j .
– We have i = j , s′ <T(X) t ′ and ki (s′) <T(X) t .
– We have i = j and s ≤T(X) k j (t ′).

Concerning the last clause, we clarify that s ≤T(X) t abbreviates the disjunction of
s <T(X) t and the statement that s and t are the same term.

To justify the definition of <T(X) one can employ the function h : T(X) → N given
by h(x) = 0 and h(ϑi s) = h(s) + 1. An easy induction shows h(ki (s)) ≤ h(s). It
follows that s <T(X) t can be decided by recursion on h(s) + h(t).

Lemma 3.2 The relation <T(X) on T(X) is a linear order.
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Proof For a term s = ϑi s′ ∈ T(X), the s-secure subterms of s are defined as follows:
The term s′ is s-secure. And if ϑ j t with j ≥ i is s-secure, then so is t . More intuitively,
t is s-secure if we have s′ = ϑ j1 . . . ϑ jn t with j1, . . . , jn ≥ i . If t is s-secure for
s = ϑi s′, then the following holds: First, ki (t) is s-secure. Secondly, we either have
ki (t) = ki (s′), or t is ki (s′)-secure with ki (s′) = ϑi s′′ for the same i . We will
establish the following two statements simultaneously by induction on s. To see that
the restriction to s-secure subterms is necessary, consider the counterexample that
would arise from s = ϑ1ϑ0ϑ1ϑ10 and t = ϑ1ϑ10 = k1(t).

(1) If t is s-secure with s = ϑi s′, then we cannot have s ≤T(X) ki (t).
(2) We do not have s <T(X) s.

In the induction step for (1), we use side induction on t . We may write ki (t) = ϑi t ′,
because the conclusion is trivial when ki (t) has a different form. Let us exclude all
reasons for which s ≤T(X) ki (t) could hold: First, note that h(ki (t)) ≤ h(t) < h(s)
excludes equality. Secondly, given that t is s-secure, the same holds for t ′. Thus the
side induction hypothesis excludes s ≤T(X) ki (t ′). Finally, the only remaining reason
would involve ki (s′) <T(X) ki (t). The latter entails that ki (s′) and ki (t) are different,
by part (2) of the simultaneous induction hypothesis. It follows that t is ki (s′)-secure,
so that the main induction hypothesis excludes ki (s′) <T(X) ki (t). Concerning the
induction step for (2), we note that only terms of the form s = ϑi s′ are interesting.
Since the induction hypothesis excludes s′ <T(X) s′, the inequality s <T(X) s would
require s ≤T(X) ki (s′). This, however, is excluded by part (1). Trichotomy and transi-
tivity are readily established by induction on the combined term complexity (e. g., on
h(s) + h(t) for trichotomy between s and t). ��

Together with trichotomy, statement (1) from the previous proof yields:

Corollary 3.3 We have ki (s) <T(X) ϑi s whenever ϑi s ∈ T(X).

We will be particularly interested in the following suborders of T(X).

Definition 3.4 For n ∈ N and a linear order X , define Tn(X) ⊆ T(X) as the suborder of
terms that contain indices below n only. Equivalently, Tn(X) is generated just as T(X),
but with the additional restriction i < n in clause (ii) of Definition 3.1. Furthermore,
we define T0n(X) = {s ∈ Tn(X) | S(s) ≤ 0} as the suborder of terms that have the form
x or outer index 0. We will also write <T(X) (or just <) for the restriction of this order
to Tn(X) and T0n(X).

As mentioned before, we have the following connection:

Corollary 3.5 The orders Tn and Tn[0] from [20, Section 2.3.3] coincide with our
orders Tn(1) and T0n(1), respectively (where 1 is the order with a single element).

Proof If we write 1 = {0} and identify 0 ∈ Tn(1)with 0 ∈ Tn , the definitions coincide
except at one point: Definition 27 of [20] declares that s > t and ϑi s ≤ ki (t) imply
ϑi s < ϑi t . In the corresponding clause (iii’) of our Definition 3.1, we have omitted the
condition s > t , because it turns out to be superfluous: According to [20, Lemma 9]
(cf. also Corollary 3.3 above) we have ki (t) < ϑi t . Hence it follows from transitivity
that ϑi s ≤ ki (t) alone entails ϑi s < ϑi t . ��
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We want to show that T0n+1 is a Bachmann–Howard derivative of T0n . Officially,
this claim does only make sense once we have specified a dilator T0n that extends
the transformation X �→ T0n(X) of linear orders. We defer this extension until later,
because we want to start with the most interesting part of the construction:

Definition 3.6 For each number n ∈ N and any linear order X , we define a function
σ n
X : Tn ◦ T0n+1(X) → Tn+1(X) by the recursive clauses

σ n
X (r) = r (with r ∈ T0n+1(X)) and σ n

X (ϑi s) = ϑi+1σ
n
X (s).

Now we define ϑn
X : T0n ◦ T0n+1(X) → T0n+1(X) by setting ϑn

X (s) = ϑ0σ
n
X (s). Finally,

let ιnX : X → T0n+1(X) be given by ιnX (x) = x .

Note that elements r = x ∈ T0n+1(X) give rise to elements r = x ∈ Tn ◦ T0n+1(X).
We have

S(σ n
X (s)) =

{
S(s) = −1 if s is of the form x,

S(s) + 1 otherwise.

For i ≥ 0, it follows that the condition i ≥ S(s) − 1 from Definition 3.1 is equivalent
to i + 1 ≥ S(σ n

X (s)) − 1. This justifies the second clause in the definition of σ n
X . To

justify the definition of ϑn
X , it suffices to note that s ∈ T0n ◦ T0n+1(X) entails S(s) ≤ 0

and hence 0 ≥ S(σ n
X (s)) − 1. To formulate the next result, we need one new piece of

notation: For s ∈ T(X), the value k−1(s) ∈ T(X) is always of the form x with x ∈ X .
We define k : T(X) → X by setting

k(s) = x for k−1(s) = x .

In particular, s ∈ T0n ◦ T0n+1(X) yields k(s) ∈ T0n+1(X). We will see that the following
proposition ensures the crucial clause (iii) of Definition 2.5.

Proposition 3.7 The function σ n
X : Tn ◦T0n+1(X) → Tn+1(X) is an order isomorphism,

for each n ∈ N and any linear order X. Furthermore, the following holds for all
s, t ∈ T0n ◦ T0n+1(X):

– If we have s < t and k(s) < ϑn
X (t), then we have ϑn

X (s) < ϑn
X (t).

– We have k(s) < ϑn
X (s).

Proof An easy induction over an arbitrary term r ∈ Tn+1(X) shows that it lies in the
range of σ n

X . As preparation for the rest of the proof, one inductively shows

ki+1(σ
n
X (s)) = σ n

X (ki (s))

for i ∈ N ∪ {−1}. In the crucial case of a term s = r , this follows from ki (s) = s and
σ n
X (s) = r = ki+1(r), where the latter relies on S(r) ≤ i + 1 due to r ∈ T0n+1(X).

Now an easy induction on h(s) + h(t) shows that s < t implies σ n
X (s) < σ n

X (t).
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This implication does automatically upgrade to an equivalence, as we are concerned
with linear orders. In particular σ n

X is injective, and indeed an order isomorphism.
Concerning the claims about ϑn

X , we first note that k(s) < ϑn
X (t) entails

k0(σ
n
X (s)) = σ n

X (k−1(s)) = k(s) < ϑ0σ
n
X (t).

Since we already know that s < t entails σ n
X (s) < σ n

X (t), we get

ϑn
X (s) = ϑ0σ

n
X (s) < ϑ0σ

n
X (t) = ϑn

X (t)

under the given assumptions. Arguing as before, we see that the remaining claim
amounts to k0(σ n

X (s)) < ϑ0σ
n
X (s), which holds by Corollary 3.3. ��

As promised, we now extend T0n (and in the process also Tn) into an LO-dilator.

Definition 3.8 For each embedding f : X → Y of linear orders, we define a function
T( f ) : T(X) → T(Y ) by the recursive clauses

T( f )(x) = f (x) and T( f )(ϑi s) = ϑiT( f )(s).

Furthermore, we define functions suppTX : T(X) → [X ]<ω by setting

suppTX (s) = {k(s)}.

We will also write suppTX for the restrictions of this function to Tn(X) and to T0n(X).
By Tn( f ) : Tn(X) → Tn(Y ) and T0n( f ) : T0n(X) → T0n(Y ) we denote the restrictions
of T( f ) with (co-)domains as given.

It is immediate that we have S(T( f )(s)) = S(s), which confirms that the functions
T( f ), Tn( f ) and T0n( f ) are well-defined with the indicated codomains. We have given
recursive definitions because they easily generalize from sequences to more compli-
cated data types (cf. the treatment of trees in [14]). In the present case, it may simplify
matters if we observe

T( f )(ϑ j1 . . . ϑ jn x) = ϑ j1 . . . ϑ jn f (x) and suppTX (ϑ j1 . . . ϑ jn x) = {x}.

Let us now verify the following:

Proposition 3.9 The previous definition extends Tn and T0n into LO-dilators.

Proof A straightforward induction over s ∈ T(X) shows ki (T( f )(s)) = T( f )(ki (s)).
Given an order embedding f : X → Y , one can now check

s <T(X) t ⇒ T( f )(s) <T(Y ) T( f )(t)

by induction over h(s) + h(t) (for h : T(X) → N as given after Definition 3.1). Two
more easy inductions show that T respects identity morphisms and compositions. It
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follows that Tn and T0n are endofunctors of linear orders. By the definition of k and the
first line of this proof, we have k(T ( f )(s)) = f (k(s)). This yields

suppTY ◦T( f )(s) = {k(T ( f )(s))} = [ f ]<ω({k(s)}) = [ f ]<ω ◦ suppTX (s),

so that suppT is natural. To conclude that Tn is a dilator, we show

suppTY (r) ⊆ rng( f ) ⇒ r ∈ rng(Tn( f ))

by induction over r ∈ Tn(Y ), still for f : X → Y . In the base case of a term r = y
we observe suppTY (r) = {k(y)} = {y}. By the antecedent of our implication we may
write y = f (x), which yields r = Tn( f )(x) as desired. In the step for r = ϑi r ′ we
note that k−1(r) = k−1(r ′) entails suppTY (r) = suppTY (r ′). Given the antecedent of
our implication, we can thus invoke the induction hypothesis to get r ′ = Tn( f )(r ′

0)

for some r ′
0 ∈ Tn(X). In view of S(r ′

0) = S(T( f )(r ′
0)) = S(r ′) we may form the

term ϑi r ′
0 ∈ Tn(X) to get r = Tn( f )(ϑi r ′

0) ∈ rng(Tn( f )). In order to deduce the
analogous implication for T0n , we need only observe that Tn( f )(r0) = r ∈ T0n(Y )

entails S(r0) = S(r) ≤ 0 and hence r0 ∈ T0n(X) ⊆ Tn(X). ��
The following theorem is the main result of this section. We write ιn and ϑn for the

families of functions ιnX : X → T0n+1(X) and ϑn
X : T0n ◦ T0n+1(X) → T0n+1(X), which

are indexed by the linear order X (cf. Definition 3.6).

Theorem 3.10 The Bachmann–Howard derivative of T0n is given by (T0n+1, ι
n, ϑn), for

each number n ∈ N.

Proof A straightforward induction over terms shows that the functions σ n
X from Defi-

nition 3.6 are natural in X . One can conclude that the same holds for ιnX andϑn
X . In view

of Definition 2.10, it remains to show that (T0n+1(X), ιnX , ϑn
X ) is an initial Bachmann–

Howard fixed point of T0n over X , whenever X is a linear order. Clauses (i) and (ii)
of Definition 2.5 are immediate by our constructions. Clause (iii) holds by Proposi-
tion 3.7 and the definition of suppT. To complete the proof, we verify the criteria from
part (i) of Theorem 2.9. The first criterion demands

T0n+1(X) = rng(ιnX ) ∪ rng(ϑn
X ).

To see that this holds, consider a term ϑ0s ∈ T0n+1(X). We note that s ∈ Tn+1(X)

must satisfy S(s) ≤ 1, due to Definition 3.1. From Proposition 3.7 we know that σ n
X

is surjective, which yields s = σ n
X (s′) for some s′ ∈ Tn ◦ T0n+1(X). By the paragraph

after Definition 3.6 we get S(s′) = −1 or S(s′) = S(s) − 1 ≤ 0, which means that
we even have s′ ∈ T0n ◦ T0n+1(X). We now see

ϑ0s = ϑ0σ
n
X (s′) = ϑn

X (s′) ∈ rng(ϑn
X ) with ϑn

X : T0n ◦ T0n+1(X) → T0n+1(X),

as required. The second criterion requires a function h : T0n+1(X) → N with

h(r) < h(ϑn
X (s)) for any s ∈ T0n ◦ T0n+1(X) and r ∈ suppT

T0n+1(X)
(s).
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We show that this holds for (the restriction of) the function h : T(X) → N from the
paragraph after Definition 3.1. By our definition of supports, the only possibility is
r = k(s). By induction over s ∈ Tn ◦ T0n+1(X) one can verify h(k(s)) ≤ h(σ n

X (s)). In
view of h(ϑn

X (s)) = h(ϑ0σ
n
X (s)) = h(σ n

X (s)) + 1 this yields the claim. ��

The LO-dilator T0n has been defined in two different ways: First, we have constructed
T0n in terms of iterated Bachmann–Howard derivatives, according to steps (1) and (2)
from the introduction. Secondly, we have given an ad hoc construction of T0n in Defini-
tions 3.1, 3.4 and 3.8. The results of the two constructions coincide by Theorem 3.10,
as explained in the first two paragraphs of this section. Let us point out that there
is, nevertheless, an interesting difference: For the ad hoc definition of T0n , we needed
to define Tn as an auxiliary construct (which also appears in many inductive veri-
fications). In contrast, the recursive construction via Bachmann–Howard derivatives
yields T0n directly.

4 Theory, part 2: connecting with Kruskal derivatives

In Sect. 2 we have introduced the Bachmann–Howard derivative ϑD of an LO-
dilator D. A parallel construction on the level of partial orders was previously studied
in [14]: For each suitable dilator W on partial orders, it yields the so-called Kruskal
derivative T W . In the present section we establish fundamental connections between
Bachmann–Howard and Kruskal derivatives, i. e., between the linear and the partial
case.

Important notions from [14] will be recalled informally, but the reader may need to
consult the cited reference for precise definitions. A function f : X → Y between par-
tial orders is a quasi embedding if it is order reflecting, i. e., if f (x) ≤Y f (x ′) implies
x ≤X x ′. We consider the category PO of partial orders with the quasi embeddings as
morphisms. A PO-dilator is a functor W : PO → PO that satisfies certain conditions,
in particular a support condition as in Definition 2.1 above (see [14, Definition 2.1]
for details). We call W a WPO-dilator if, in addition, W (X) is a well partial order
whenever the same holds for X . By W � LO : LO → PO we denote the restriction
of a PO-dilator W to the category of linear orders. Also, we sometimes consider an
LO-dilator D as a functor D : LO → PO, i. e., we implicitly compose it with the
inclusion LO ↪→ PO. We can then consider ν as in the following:

Definition 4.1 By a quasi embedding of an LO-dilator D into a PO-dilatorW wemean
a natural transformation ν : D ⇒ W �LO.

Note that ν consists of a quasi embedding νX : D(X) → W (X) for each linear
order X . If a PO-dilator W satisfies a certain normality condition, then it has an
essentially unique Kruskal derivative T W (see Definition 2.3 and Section 4 of [14]).
The latter comes with natural families of functions

ιWX : X → T W (X) and κW
X : W ◦ T W (X) → T W (X),

123
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indexed by the partial order X . From Sect. 2 above we recall that the Bachmann–
Howard derivative ϑD of an LO-dilator D comes with functions

ιDX : X → ϑD(X) and ϑD
X : D ◦ ϑD(X) → ϑD(X),

where X does now range over linear orders. Together with Theorem 4.8 below, the
following result provides the connection between Kruskal and Bachmann–Howard
derivatives. The theorem extends [4, Theorem 4.5], in which ν+

X is only constructed
for the empty order X = 0. Even though the main idea remains the same, we provide
full details, as the setting and notation in [4] are somewhat different.

Theorem 4.2 Let ν : D ⇒ W � LO be a quasi embedding of an LO-dilator D into a
normal PO-dilator W. There is a unique quasi embedding ν+ : ϑD ⇒ T W �LO such
that the diagram

ϑD(X) D ◦ ϑD(X)

X

T W (X) W ◦ T W (X)

ν+
X

ϑD
X

W (ν+
X )◦νϑD(X)

ιDX

ιWX
κW
X

commutes for each linear order X.

Proof By Lemma 2.2, each σ ∈ D ◦ ϑD(X) has a normal form σ = NFD(ιa)(σ0)

with a ⊆ ϑD(X) and σ0 ∈ D(a). Note that νϑD(X) ◦ D(ιa) = W (ιa) ◦ νa holds since
ν is natural. Hence the diagram in the theorem commutes if, and only if, we have

ν+
X (ιDX (x)) = ιWX (x) for x ∈ X ,

ν+
X (ϑD

X (σ )) = κW
X ◦ W (ν+

X ◦ ιa) ◦ νa(σ0) for σ = NFD(ιa)(σ0).

The idea is to read these equations as recursive clauses, which is justified as follows:
According to Definition 2.10, the tuple (ϑD(X), ιDX , ϑD

X ) is an initial Bachmann–
Howard fixed point of D over X . By (the proof of) Theorem 2.9, it follows that the
functions ιDX and ϑD

X are injective, and that ϑD(X) is the disjoint union of their ranges.
Furthermore, the same theorem yields a function h : ϑD(X) → N such that

s ∈ suppDϑD(X)(σ ) ⇒ h(s) < h(ϑD
X (σ ))

holds for any element σ ∈ D ◦ ϑD(X). Here suppD is the support that comes with
the LO-dilator D (see Definition 2.1 and the discussion that follows it). Now recall
that σ = NFD(ιa)(σ0) entails suppDϑD(X)(σ ) = a, by Lemma 2.2. This means that the

clauses above define ν+
X (s) by recursion over h(s). More precisely, a straightforward

induction on h(s) shows that the value ν+
X (s) is uniquely determined, i. e., that there

is at most one quasi embedding ν+
X such that the diagram in the theorem commutes.

The proof of existence is somewhat more subtle, since we must simultaneously show
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that ν+
X is a quasi embedding, in order to ensure that W (ν+

X ◦ ιa) is defined. Let us
define l : ϑD(X) → N by stipulating l(ιDX (x)) = 0 and

l(ϑD
X (σ )) = 1 + ∑

s∈a 2 · l(s) for σ = NFD(ιa)(σ0),

which is itself a recursion based on h. By simultaneous induction on the values l(r)
and l(s) + l(t) one can now show that ν+

X (r) ∈ T W (X) is defined and that we have

ν+
X (s) ≤T W (X) ν+

X (t) ⇒ s ≤ϑD(X) t .

To establish this implication, we distinguish cases according to the forms of s and t .
First assume s = ιDX (x) and t = ιDX (y). Then the antecedent of our implication
amounts to ιWX (x) ≤T W (X) ιWX (y). According to [14, Definition 3.1] we get x ≤X y.
Now s ≤ϑD(X) t follows by clause (i) of Definition 2.5 above. By the same definition,
we always have s ≤ϑD(X) t for terms of the form s = ιDX (x) and t = ϑD

X (τ ). For
terms s = ϑD

X (σ ) and t = ιDX (y), say with σ = NFD(ιa)(σ0), we have

ν+
X (s) = κW

X ◦ W (ν+
X ◦ ιa) ◦ νa(σ0) �T W (X) ιWX (x) = ν+

X (t),

again by [14, Definition 3.1]. It remains to compare terms s = ϑD
X (σ ) and t = ϑD

X (τ ).
We write σ = NFD(ιa)(σ0) and τ = NFD(ιb)(τ0) and assume

κW
X ◦ W (ν+

X ◦ ιa) ◦ νa(σ0) = ν+
X (s) ≤T W (X) ν+

X (t) = κW
X ◦ W (ν+

X ◦ ιb) ◦ νb(τ0).

According to [14, Definition 3.1], this inequality can hold for two different reasons.
In the first case we have ν+

X (s) ≤T W (X) t ′ for some element

t ′ ∈ suppWT W (X)

(
W (ν+

X ◦ ιb) ◦ νb(τ0)
) = [ν+

X ◦ ιb]<ω
(
suppWb (νb(τ0))

)
.

By [4, Lemmas 4.2 and 4.4] any quasi embedding of an LO-dilator into a PO-dilator
respects supports. This means that we have suppWb (νb(τ0)) = suppDb (τ0) = b, where
the last equality comes from the normal form condition (see the paragraph before
Definition 2.2). We can thus write t ′ = ν+

X (t ′0) for some t ′0 ∈ b. The latter entails
that we have l(t ′0) < l(t), so that we get s ≤ϑD(X) t ′0 by induction hypothesis. By
Lemma 2.2 we have b = suppDϑD(X)(τ ), so that clause (iii) of Definition 2.5 allows us

to conclude t ′0 <ϑD(X) ϑD
X (τ ) = t . Now transitivity yields s ≤ϑD(X) t , as desired (in

fact the inequality is strict in this case). In the remaining case, the above inequality
ν+
X (s) ≤T W (X) ν+

X (t) holds because we have

W (ν+
X ◦ ιa) ◦ νa(σ0) ≤W◦T W (X) W (ν+

X ◦ ιb) ◦ νb(τ0).

Let us factor ιa = ιa∪b ◦ ι′a and ιb = ιa∪b ◦ ι′b with ιa∪b : a ∪ b ↪→ ϑD(X). The
induction hypothesis ensures that ν+

X ◦ ιa∪b is a quasi embedding, which allows us to
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form the quasi embedding W (ν+
X ◦ ιa∪b). The previous inequality thus entails

W (ι′a) ◦ νa(σ0) ≤W (a∪b) W (ι′b) ◦ νb(τ0). (4.1)

Due to the naturality of ν, we get νa∪b ◦ D(ι′a)(σ0) ≤W (a∪b) νa∪b ◦ D(ι′b)(τ0). Since
νa∪b reflects the order while D(ιa∪b) preserves it, this entails

σ = D(ιa)(σ0) = D(ιa∪b) ◦ D(ι′a)(σ0) ≤D◦ϑD(σ ) D(ιa∪b) ◦ D(ι′b)(τ0) = τ.

In order to conclude s = ϑD
X (σ ) ≤ϑD(X) ϑD

X (τ ) = t by clause (iii) of Definition 2.5,
it remains to show that we have

r <ϑD(X) ϑD
X (τ ) for all r ∈ suppDϑD(X)(σ ) = a.

Analogous to the above, we get

a = suppDa (σ0) = [ι′a]<ω
(
suppWa (νa(σ0))

)
= suppWa∪b

(
W (ι′a) ◦ νa(σ0)

)
,

as well as b = suppWa∪b
(
W (ι′b) ◦ νb(τ0)

)
. Due to inequality (4.1) and the assumption

that W is normal (cf. [14, Definition 2.3]), it follows that any r ∈ a admits an r ′ ∈ b
with r ≤ϑD(X) r ′ (note that the inequality holds in ϑD(X) because a∪b is a suborder
of the latter). Once again, clause (iii) of Definition 2.5 yields r ′ <ϑD(X) ϑD

X (τ ). Now
transitivity allows us to conclude r <ϑD(X) ϑD

X (τ ), as needed. This completes the
simultaneous proof that ν+

X is well defined and a quasi embedding. It remains to show
naturality. Given a quasi embedding f : X → Y , we prove

ν+
Y ◦ ϑD( f )(s) = T W ( f ) ◦ ν+

X (s)

by induction over h(s), for h : ϑD(X) → N as above. The crucial case concerns a
term s = ϑD

X (σ ), say with σ = NFD(ιa)(σ0). Using the naturality of ϑD , we get

ϑD( f )(s) = ϑD( f ) ◦ ϑD
X ◦ D(ιa)(σ0) = ϑD

Y ◦ D(ϑD( f ) ◦ ιa)(σ0).

In order to apply ν+
Y to the expression on the right side, we need to determine the

normal form of D(ϑD( f ) ◦ ιa)(σ0). Consider the restriction ϑD( f )�a : a → b with
codomain b := [ϑD( f )]<ω(a). In view of ϑD( f ) ◦ ιa = ιb ◦ (ϑD( f )�a) we get

D(ϑD( f ) ◦ ιa)(σ0) = D(ιb)(σ1) for σ1 := D(ϑD( f )�a)(σ0) ∈ D(b).

This expression is in normal form, since the naturality of supports yields

suppDb (σ1) = [ϑD( f )�a]<ω
(
suppDa (σ0)

)
= [ϑD( f )�a]<ω(a) = b,
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where suppDa (σ0) = a comes from the normal form condition for σ = NFD(ιa)(σ0).
By the recursive definition of ν+

Y , we now obtain

ν+
Y ◦ ϑD( f )(s) = κW

Y ◦ W (ν+
Y ◦ ιb) ◦ νb(σ1).

The naturality of ν yields νb(σ1) = W (ϑD( f )�a) ◦ νa(σ0) and hence

W (ιb) ◦ νb(σ1) = W (ιb ◦ (ϑD( f )�a)) ◦ νa(σ0) = W (ϑD( f ) ◦ ιa) ◦ νa(σ0).

Since r ∈ a entails h(r) < h(s), we have ν+
Y ◦ ϑD( f ) ◦ ιa = T W ( f ) ◦ ν+

X ◦ ιa by
induction hypothesis. Putting things together, we can finally conclude

ν+
Y ◦ ϑD( f )(s) = κW

Y ◦ W (T W ( f ) ◦ ν+
X ◦ ιa) ◦ νa(σ0)

= T W ( f ) ◦ κW
X ◦ W (ν+

X ◦ ιa) ◦ νa(σ0) = T W ( f ) ◦ ν+
X (s),

as needed for the inductive proof that ν+ is natural. ��
We now deduce the result that was promised at the end of Sect. 2. Our proof is

somewhat indirect but nevertheless instructive, as it connects several fundamental
facts. Even though we do not formalize the present paper in a specific meta theory,
we point out that the following argument uses �1

1-comprehension, in the form of the
minimal bad sequence lemma. This is unavoidable by the results of [17, 19].

Corollary 4.3 If D is a WO-dilator (i. e., preserves well foundedness), then so is its
Bachmann–Howard derivative ϑD.

Proof That ϑD is an LO-dilator is guaranteed by Definition 2.10 (but see also Propo-
sition 2.11). It remains to show that ϑD(X) is a well order when the same holds for X .
According to [4, Section 5] there is a quasi embedding ν : D ⇒ WD � LO into a
normal WPO-dilator WD . By the previous theorem we get a quasi embedding

ν+
X : ϑD(X) → T WD(X)

for each linear order X . Assume that X is a well order and hence a well partial order.
Then T WD(X) is also a well partial order, by [14, Proposition 2.7] (which is proved by
the minimal bad sequence method of Nash-Williams [3]). Given an infinite sequence
s0, s1, . . . in ϑD(X), we get a sequence ν+

X (s0), ν
+
X (s1), . . . in T WD(X). Since the

latter is a well partial order, there are i < j such that we have ν+
X (si ) ≤T WD(X) ν+

X (s j ).
We can infer si ≤ϑD(X) s j , as ν+

X is a quasi embedding and hence order reflecting.
This shows that ϑD(X) is a well order. ��

As an immediate consequence of our general approach, we re-obtain the following
known result about the orders Tn[0] from [20, Section 2.3.3].

123



Bachmann–Howard derivatives 603

Corollary 4.4 The order Tn[0] is well founded for each n ∈ N.

Proof In the previous section we have studied LO-dilators T0n with Tn[0] ∼= T0n(1). It
suffices to show that these are WO-dilators. We argue by induction on n. In the base
we need only observe T0n(X) ∼= X . The step is covered by the previous corollary, as
T0n+1 is the Bachmann–Howard derivative of T0n , by Theorem 3.10. ��

Let f : X → Y be a quasi embedding between partial orders. If X is linear and
f is surjective, then we call f a linearization (of Y by X ). This coincides with the
usual notion if we identify X with its image under f . Linearizations are particularly
important, as they are related to maximal order types and independence results (see
e. g. [11, 25–27]). We introduce the corresponding functorial notion:

Definition 4.5 Consider an LO-dilator D and a PO-dilator W . A quasi embedding
ν : D ⇒ W � LO is called a linearization (of W by D) if νX : D(X) → W (X) is
surjective for each linear order X .

Our next goal is to identify a condition which ensures that the quasi embedding
ν+ : ϑD ⇒ T W �LO from Theorem 4.2 is a linearization. As the following example
shows, the assumption that ν : D ⇒ W �LO is a linearization does not suffice.

Example 4.6 We define a transformation X �→ W (X) of partial orders by

W (X) = {(x, x ′) ∈ X2 | x ′
�X x},

(x, x ′) ≤W (X) (y, y′) ⇔ x ≤X y and x ′ ≤X y′.

If f : X → Y is a quasi embedding, then x ′
�X x implies f (x ′) �Y f (x). We thus

get a function W ( f ) : W (X) → W (Y ) by setting W ( f )(x, x ′) = ( f (x), f (x ′)). Let
us also define functions suppWX : W (X) → [X ]<ω by putting suppWX (x, x ′) = {x, x ′}.
It is straightforward to verify that this data constitutes a normal PO-dilator. Here it is
crucial that the support condition

suppWY (σ ) ⊆ rng( f ) ⇒ σ ∈ rng(W ( f ))

is only required when f : X → Y is an embedding, rather than just a quasi embedding
(see [14, Definition 2.1]). In the present case, the support condition does in fact imply
that f is order preserving. For each linear order X , we put

D(X) = {(x, x ′) ∈ X2 | x <X x ′},
(x, x ′) ≤D(X) (y, y′) ⇔ x <X y or (x = y and x ′ ≤X y′).

Given that X is linear, the underlying sets of D(X) and W (X) are equal. We may
thus declare that D( f ) : D(X) → D(Y ) and suppDX : D(X) → [X ]<ω coincide
with W ( f ) and suppWX , respectively, for any embedding f : X → Y of linear orders.
It is easy to see that this yields an LO-dilator. The identity maps νX : D(X) →
W (X) constitute a linearization ν : D ⇒ W � LO. Theorem 4.2 gives rise to a quasi
embedding ν+ : ϑD ⇒ T W �LO, which we shall now describe concretely. For each
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partial order X , we consider a collection B(X) of structured binary trees with leaf
labels from X , which is recursively generated as follows:

– For each x ∈ X we have an element x ∈ B(X) (a single node with label x).
– Given s, s′ ∈ B(X) we add an element ◦(s, s′) ∈ B(X) (the tree in which the root
has immediate subtrees s and s′).

To extend B into a functor (currently on sets but later on orders), we stipulate

B( f )(x) = f (x) and B( f )(◦(s, s′)) = ◦(B( f )(s),B( f )(s′)).

We also define support functions suppBX : B(X) → [X ]<ω by setting

suppBX (x) = {x} and suppBX (◦(s, s′)) = suppBX (s) ∪ suppBX (s′).

To describe the Kruskal derivative T W of W , we first define a partial order ≤W
B(X)

on B(X). The latter coincides with the usual embeddability relation for labelled trees,
which can be given by the following recursive clauses:

(i) If we have x ≤X y, then we have x ≤W
B(X)

y.

(ii) We have s ≤W
B(X)

◦(s, s′) and s′ ≤W
B(X)

◦(s, s′).
(iii) If we have s ≤W

B(X)
t and s′ ≤W

B(X)
t ′, then we have ◦(s, s′) ≤W

B(X)
◦(t, t ′).

One can check that this turns B into a normal PO-dilator. Indeed, B is the Kruskal
derivative of X �→ X2, where the order on X2 extends the one on W (X) in the
obvious way. In view ofW (X) � X2, we now define T W (X) ⊆ B(X) as the smallest
suborder that contains all elements x and contains ◦(s, s′) for any s, s′ ∈ T W (X)with
s′

�
W
B(X)

s. We can turn T W into a normal PO-dilator by restricting the constructions
from above. Let us define

ιWX : X → T W (X) and κW
X : W ◦ T W (X) → T W (X)

by setting ιWX (x) = x and κW
X (s, s′) = ◦(s, s′). As one readily verifies, these functions

witness that T W is the Kruskal derivative of W (so that the notation T W is indeed
justified). To describe the Bachmann–Howard derivative ϑD of D, we first refine
≤W
B(X)

into a linear order ≤D
B(X)

on B(X). The latter is characterized by the following

clauses together with (i-iii) above (with ≤D
B(X)

at the place of ≤W
B(X)

):

(iv) We have x <D
B(X)

◦(t, t ′) for any terms of the given forms.

(v) If we have s <D
B(X)

t and s′ <D
B(X)

◦(t, t ′), we have ◦(s, s′) <D
B(X)

◦(t, t ′).

Analogous to the above, let ϑD(X) ⊆ B(X) be the smallest (linear) suborder that
contains all elements x and contains ◦(s, s′) for any s, s′ ∈ ϑD(X) with s <D

B(X)
s′.

To turn ϑD into an LO-dilator, it suffices to restrict the functions B( f ) and suppBX
from above. We define

ιDX : X → ϑD(X) and ϑD
X : D ◦ ϑD(X) → ϑD(X)
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as the restrictions of ιWX and κW
X , i. e. by ιDX (x) = x and ϑD

X (s, s′) = ◦(s, s′). These
functions witness that ϑD is the Bachmann–Howard derivative of D. Since ≤D

B(X)

refines ≤W
B(X)

, we have ϑD(X) ⊆ T W (X). One can verify that the inclusion maps

ν+
X : ϑD(X) ↪→ T W (X)

satisfy the conditions from Theorem 4.2, which characterize ν+ uniquely. We now
consider X = {0, 1, 2} with the usual linear order. The element ◦(◦(0, 1), 2) ∈ B(X)

is contained in T W (X) but not in ϑD(X), so that ν+
X is not surjective. This means

that ν+ : ϑD ⇒ T W �LO is no linearization, even though ν : D ⇒ W �LO is one.

The previous example suggests the following notion:

Definition 4.7 A PO-dilator W is called flat if the support condition

suppWY (σ ) ⊆ rng( f ) ⇒ σ ∈ rng(W ( f ))

holds for any quasi embedding f : X → Y between partial orders (recall that [14,
Definition 2.1] does only require this condition for embeddings).

As expected, we get the following (cf. Theorem 4.2):

Theorem 4.8 Consider a linearization ν : D ⇒ W �LO of a normal PO-dilator W by
an LO-dilator D. If W is flat, then ν+ : ϑD ⇒ T W �LO is again a linearization.

Proof Given a linear order X , we need to show that ν+
X : ϑD(X) → T W (X) is

surjective. According to [14, Definition 4.1], the order T W (X) comes with functions
ιWX : X → T W (X) and κW

X : W ◦ T W (X) → T W (X) that turn it into an initial
Kruskal fixed point. By [14, Theorem 3.5] we get a function h : T W (X) → N with

r ∈ suppWT W (X)(σ ) ⇒ h(r) < h(κW
X (σ )).

For s ∈ T W (X) we shall now show s ∈ rng(ν+
X ) by induction on h(s). Also by [14,

Theorem 3.5], it suffices to consider the following two cases: First, let us look at an
element s = ιWX (x). Here we obtain s = ν+

X (ιDX (x)) ∈ rng(ν+
X ) by the diagram in

Theorem 4.2. Secondly, consider s = κW
X (σ ). The induction hypothesis yields

suppWT W (X)(σ ) ⊆ rng(ν+
X ).

Let us recall that ν+
X is a quasi embedding but no embedding (unless T W (X) is linear).

Hence the support condition from [14, Definition 2.1] does not apply. But since W is
flat we get σ ∈ rng(W (ν+

X )) anyway. We also know that νϑD(X) is surjective, by the
assumption that ν is a linearization. Thus we may write

σ = W (ν+
X ) ◦ νϑD(X)(σ0) for some σ0 ∈ D ◦ ϑD(X).
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Due to the diagram in Theorem 4.2, we then obtain

s = κW
X (σ ) = ν+

X ◦ ϑD
X (σ0) ∈ rng(ν+

X ),

as needed to complete the inductive proof. ��
In the following section we will construct sequences with gap condition via iter-

ated Kruskal derivatives. The following result will ensure that all PO-dilators in this
construction are flat.

Proposition 4.9 We consider a normal PO-dilator W. If W is flat, then so is its Kruskal
derivative T W.

Proof Given a quasi embedding f : X → Y , we need to prove the support condition

suppT W
Y (s) ⊆ rng( f ) ⇒ s ∈ rng(T W ( f ))

for arbitrary s ∈ T W (Y ). Similarly to the previous proof, this can be achieved by
induction on h(s), where h : T W (Y ) → N with

r ∈ suppWT W (Y )(σ ) ⇒ h(r) < h(κW
Y (σ ))

is provided by [14, Theorem 3.5]. An element s = ιWY (y) has support {y}, by the proof
of [14, Theorem 4.2]. Given that the premise of the support condition holds, we thus
get y = f (x) for some x ∈ X . The diagram in [14, Definition 4.1] yields

s = ιY ◦ f (x) = T W ( f ) ◦ ιX (x) ∈ rng(T W ( f )),

as required. It remains to consider an element s = κW
Y (σ ). Here we have

suppT W
Y (s) =

⋃
{suppT W

X (r) | r ∈ suppWT W (X)(σ )},

again by the proof of [14, Theorem4.2].Assuming the premise of the support condition
for s, we can thus invoke the induction hypothesis to get

suppWT W (X)(σ ) ⊆ rng(T W ( f )).

Using the assumption that W is flat, we obtain

σ = W ◦ T W ( f )(σ0) for some σ0 ∈ W ◦ T W (X).

Now the diagram in [14, Definition 4.1] yields

s = κW
Y (σ ) = T W ( f ) ◦ κW

X (σ0) ∈ rng(T W ( f )),

as needed for the inductive proof that T W is flat. ��
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5 Application, part 2: linearizing the gap condition for sequences

As shown in Sect. 3, one can reconstruct certain collapsing functions by taking iterated
Bachmann–Howard derivatives (of dilators on linear orders). In the present section we
show that sequences with Friedman’s gap condition arise from a completely parallel
construction in terms of Kruskal derivatives (of dilators on partial orders). This con-
firms that there is an extremely tight connection between collapsing functions and the
gap condition. Also in this section, we give a second iterative construction that yields
the same gap condition but different collapsing functions. This explains a phenomenon
from [20], as discussed in the introduction of the present paper.

Definition 5.1 For each partial order X , let S(X) and S : S(X) → N ∪ {−1} be
generated by clauses (i) and (ii) from Definition 3.1 (with S at the place of T, so that
S(X) = T(X) when X is linear). Also, let ki : S(X) → S(X) for i ∈ N ∪ {−1} be
given as in the cited definition. To define a binary relation ≤S(X) on S(X), we declare
that s ≤S(X) t holds if, and only if, one of the following clauses is satisfied:

(i’) We have s = x and t = y with x ≤X y.
(ii’) We have t = ϑ j t ′ with s ≤S(X) k j (t ′) (where s can be of the form x or ϑi s′).
(iii’) We have s = ϑi s′ and t = ϑi t ′ (for the same i) with s′ ≤S(X) t ′.

Furthermore, let Sn(X) ⊆ S(X) consist of the terms with indices i < n only, and
put S0n(X) = {s ∈ Sn(X) | S(s) ≤ 0} (cf. Definition 3.4). We will always consider
these subsets with (the restrictions of) the relation ≤S(X) (sometimes written as ≤).

Let h : S(X) → N be given as in the paragraph after Definition 3.1. Once again we
have h(ki (s)) ≤ h(s), so that s ≤S(X) t can be decided by recursion on h(s) + h(t).
Let us begin with a preparatory result:

Lemma 5.2 If we have s ≤S(X) t , then we get ki (s) ≤S(X) ki (t) for any i ∈ N.

Proof We argue by induction on h(s) + h(t). First, assume that s ≤ ϑ j t ′ = t holds
because of s ≤ k j (t ′). We then get ki (s) ≤ ki (k j (t ′)) by induction hypothesis. For
j ≤ i we have ki (k j (t ′)) = k j (t ′), so that we obtain ki (s) ≤ k j (t ′) and then

ki (s) ≤ ϑ j t
′ = ki (ϑ j t

′) = ki (t).

For j > i we get ki (k j (t ′)) = ki (t ′) and thus ki (s) ≤ ki (t ′) = ki (t). Secondly, assume
that s = ϑ j s′ ≤ ϑ j t ′ = t holds because of s′ ≤ t ′. For i < j we have ki (s) = ki (s′)
and ki (t) = ki (t ′), so that it suffices to invoke the induction hypothesis. For i ≥ j we
have ki (s) = s and ki (t) = t , which means that the claim is trivial. ��

The following is known for X = 1 = {0} (see e. g. [20]), but the author has not
found a reference for the (straightforward) generalization.

Lemma 5.3 The relation ≤S(X) on S(X) is a partial order.

Proof Reflexivity is immediate by induction over terms. To establish antisymmetry
one first shows that s ≤ t entails h(s) ≤ h(t), by induction over h(s) + h(t). The
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point is that t ≤ s becomes impossible if s ≤ t = ϑ j t ′ holds by clause (ii’) above,
since we then have

h(s) ≤ h(k j (t
′)) ≤ h(t ′) < h(t).

Antisymmetry between s and t is now straightforward by induction on h(s)+h(t). To
show that r ≤ s and s ≤ t imply r ≤ t , one uses induction on h(r)+h(s)+h(t). In the
most interesting case we have r ≤ s = ϑi s′ because of r ≤ ki (s′), while s ≤ t = ϑi t ′
is due to s′ ≤ t ′. The previous lemma ensures ki (s′) ≤ ki (t ′). Using the induction
hypothesis, we get r ≤ ki (t ′) and then r ≤ ϑi t ′ = t . ��

For X = 1 = {0} we get 0 ≤S(1) s by a straightforward induction over s ∈ S(X).
This means that our order (Sn(1),≤S(1)) coincides with the order (Tn,�) defined in
[20, Section 2.3.3]. According to [20, Lemma 10], we thus have the following (see the
cited reference for a precise definition of the gap condition):

Corollary 5.4 If we identify ϑi1 . . . ϑin0 ∈ Sn(1) with the sequence 〈i1, . . . , in〉, then
≤S(1) coincides with the strong gap embeddability relation due to H. Friedman.

Analogous to Sect. 3, we will show that S0n+1 is the Kruskal derivative of S
0
n . Let us

first turn Sn and S0n into PO-dilators.

Definition 5.5 For each quasi embedding f : X → Y between partial orders, let
S( f ) : S(X) → S(Y ) be defined by the clauses from Definition 3.8 (with S at the
place of T). Let k : S(X) → X be given as in the paragraph before Proposition 3.7.
For a partial order X , we now define suppSX : S(X) → [X ]<ω by suppSX (s) = {k(s)}.
We will also write suppSX for the restrictions of this function to Sn(X) and to S0n(X).
Furthermore, we write Sn( f ) : Sn(X) → Sn(Y ) and S0n( f ) : S0n(X) → S0n(Y ) for the
restrictions of S( f ) with the indicated (co-)domains.

As expected, we have the following:

Proposition 5.6 Definition 5.5 extends Sn and S0n into normal PO-dilators.

Proof Most verifications are completely parallel to the proof of Proposition 3.9, but
two additional observations are needed: First, the map f �→ S( f ) on morphisms
preserves not only embeddings but also quasi embeddings, as required by clause (i)
of [14, Definition 2.1]. Secondly, normality amounts to the implication

s ≤S(X) t ⇒ k(s) ≤X k(t),

which holds by Lemma 5.2 (since we have k(r) = x for k−1(r) = x). ��
Let us now describe the extension into a Kruskal derivative:

Definition 5.7 For each number n ∈ N and any partial order X , let

σ n
X : Sn ◦ S0n+1(X) → Sn+1(X)
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be given by the clauses from Definition 3.6. Now define functions

κn
X : S0n ◦ S0n+1(X) → S0n+1(X) and ιnX : X → S0n+1(X)

by setting κn
X (s) = ϑ0σ

n
X (s) and ιnX (x) = x .

Arguing as in the proof of Proposition 3.7, one can show the following:

Proposition 5.8 The function σ n
X : Sn ◦S0n+1(X) → Sn+1(X) is an order isomorphism,

for each number n ∈ N and any partial order X.

Proof To show that σ n
X is surjective and order preserving, one argues as in the proof

of Proposition 3.7. It remains to show that σ n
X reflects the order, i. e., that

σ n
X (s) ≤ σ n

X (t) ⇒ s ≤ t

holds for s, t ∈ Sn ◦ S0n+1(X). We argue by induction on h(s) + h(t) and discuss the
two most interesting cases: First consider terms of the form s = r and t = ϑ j t ′. In
view of r ∈ T0n+1(X) we have r = x or ϑ0r ′, which means that

σ n
X (s) = r ≤ ϑ j+1σ

n
X (t ′) = σ n

X (t)

can only be due to σ n
X (s) ≤ k j+1(σ

n
X (t ′)) = σ n

X (k j (t ′)), where the equality comes
from the proof of Proposition 3.7. By induction hypothesis we get s ≤ k j (t ′) and then
s ≤ ϑ j t ′ = t , as desired. Let us also consider s = ϑi s′ and t = r . For terms of these
forms, the inequality s ≤ t is always false. To show that σ n

X (s) ≤ σ n
X (t) is false as

well, we observe

S(σ n
X (s)) = S(ϑi+1σ

n
X (s′)) = i + 1 > 0 ≥ S(r) = S(σ n

X (t)),

where S(r) ≤ 0 is due to r ∈ T0n(X). On the other hand, a straightforward induction
on h(s0) + h(t0) shows that s0 ≤ t0 implies S(s0) ≤ S(s1). ��

In the following, ιn and κn denote the families of functions ιnX : X → S0n+1(X)

and κn
X : S0n ◦ S0n+1(X) → S0n+1(X), respectively, indexed by the partial order X .

We recall from [14, Section 4] that Kruskal derivatives are essentially unique. Hence
the following means that the recursive construction from the introduction is uniquely
realized by the normal PO-dilators S0n that we have defined in the present section.

Theorem 5.9 The Kruskal derivative of S0n is given by (S0n+1, ι
n, κn).

Proof Part (i) of [14, Definition 4.1] requires that (S0n+1(X), ιnX , κn
X ) is an initial

Kruskal fixed point of S0n over X , for each partial order X . The most interesting con-
ditions from the definition of Kruskal fixed point (see [14, Definition 3.1]) demand

x ≤ κn
X (t) ⇔ x ≤ k(t),

κn
X (s) ≤ κn

X (t) ⇔ s ≤ t or κn
X (s) ≤ k(t)
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for x ∈ X and s, t ∈ S0n ◦ S0n+1(X). In view of κn
X (t) = ϑ0σ

n
X (t), the left side of the

first equivalence is indeed equivalent to

x ≤ k0(σ
n
X (t)) = σ n

X (k−1(t)) = k(t),

as in the proof of Proposition 3.7. Similarly, the left side of the second equivalence is
equivalent to the disjunction of σ n

X (s) ≤ σ n
X (t) and κn

X (s) ≤ k(t). This is equivalent
to the right side, as σ n

X is an order embedding. To show that our fixed point is initial
we use the criterion from [14, Theorem 3.5], which demands that we have S0n+1(X) =
rng(ιnX ) ∪ rng(κn

X ) and h(k(s)) < h(κn
X (s)) for some h : S0n+1(X) → N. These

requirements can be verified as in the proof of Theorem 3.10. It remains to show that
part (ii) of [14, Definition 4.1] is satisfied, i. e., that the functions ιnX and κn

X are natural
in X . This is readily reduced to the naturality of σ n

X , which can be established by
induction over terms, as in the proof of Theorem 3.10. ��

We can now use our general approach to re-derive two results that were previously
shown by explicit computations. In view of Corollaries 3.5 and 5.4, we focus on
the case of X = 1. The following is a special case of H. Friedman’s result on tree
embeddings with the gap condition (see [11]). For the case of sequences, the result
was analyzed by Schütte and Simpson [12] (see also [20, Section 2.2]).

Corollary 5.10 The order S0n(1) (sequences with gap condition, cf. Corollary 5.4) is a
well partial order for each n ∈ N.

Proof We argue by induction on n to show that X �→ S0n(X) preserves well partial
orders. The base case is immediate in view of S0n(X) ∼= X . The induction step is
covered by [14, Corollary 4.5], given that S0n+1 is the Kruskal derivative of S

0
n . ��

As in the previous section, a surjective quasi embedding f : X → Y between
a linear order X and a partial order Y is called a linearization. The following result
was first established by a concrete verification in [20, Lemma 11], which provides
additional information: it shows that one can take νn1 to be the identity on the under-
lying set T0n(1) = S0n(1). This information could also be tracked through our general
constructions, but we will not do so: the forte of our approach is precisely that fewer
concrete computations are necessary.

Corollary 5.11 For each n ∈ N we have a linearization νn1 : T0n(1) → S0n(1) of
the partial order S0n(1) (sequences with gap condition) by the linear order T0n(1)
(collapsing functions, cf. Sect.3).

Proof As preparation, we use induction on n to show that S0n is flat in the sense of
Definition 4.7. The induction step is covered by Proposition 4.9. For the base case we
recall S00(Y ) = {y | y ∈ Y }. Given f : X → Y with

suppSY (y) = {k(y)} = {y} ⊆ rng( f ),

we write y = f (x) to get y = f (x) = S00( f )(x) ∈ rng(S00( f )). The point is that
this works for any quasi embedding f , not just for embeddings. By recursion on n,
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we now construct linearizations νn : T0n ⇒ S0n �LO in the sense of Definition 4.5. For
n = 0 we can define ν0X as the identity map on T00(X) = {x | x ∈ X} = S00(X). In the
step we define νn+1 as the quasi embedding (νn)+ from Theorem 4.2. This is justified
because T0n+1 and S0n+1 are the Bachmann–Howard and Kruskal derivative of T0n and
S0n , respectively, by Theorems 3.10 and 5.9. From Theorem 4.8 we learn that νn+1 is
a linearization, given that the same holds for νn and that S0n is flat. ��

The linearization of S0n(1) by T0n(1) does not realize the maximal order type, as
shown in [20] (see also the introduction of the present paper). We will now present a
different construction of S0n(1) in terms of iterated Kruskal fixed points. Interestingly,
the parallel construction in terms of Bachmann–Howard fixed points yields the order
OTn[0] from [20, Section 5], which differs from T0n(1) and does realize the maximal
order type of S0n(1). The idea is to consider the following transformations Wn , which
are readily shown to be normal PO-dilators.

Definition 5.12 For each n ∈ N and any partial order X we put

Wn(X) = 1 + S0n(1) × X = {0} ∪ {(s, x) | s ∈ S0n(1) and x ∈ X}.

To define a partial order on Wn(X), we declare that 0 is incomparable to all other
elements, and that we have

(s, x) ≤Wn(X) (s′, x ′) ⇔ s ≤S(1) s
′ and x ≤X x ′.

Given a quasi embedding f : X → Y , we define Wn( f ) : Wn(X) → Wn(Y ) by
Wn( f )(0) = 0 and Wn( f )(s, x) = (s, f (x)). Also, let suppX : Wn(X) → [X ]<ω be
given by suppX (0) = ∅ and suppX (s, x) = {x}.

We will show that S0n+1(1) is the initial Kruskal fixed point ofWn over 0 = ∅. This
gives rise to a recursive construction, since Wn does only depend on S0n(1), and since
initial objects are unique up to isomorphism.

Definition 5.13 To construct a function πn : Sn(1) × S0n+1(1) → Sn+1(1), we define
πn(s, t) by recursion over the term s, setting

πn(0, t) = t and πn(ϑi s, t) = ϑi+1πn(s, t).

We then define κn : Wn(S0n+1(1)) → S0n+1(1) by κn(0) = 0 and κn(s, t) = ϑ0πn(s, t).
Let us also agree to write ιn : 0 → S0n+1(1) for the empty function.

To see that the definition of πn is justified, one should observe that we have

S(πn(s, t)) =
{
S(t) ≤ 0 if s = 0,

S(s) + 1 otherwise.

This also shows that s ∈ S0n(1) entails S(πn(s, t)) ≤ 1, as needed to justify the
definition of κn . As promised, we have the following:
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Theorem 5.14 The tuple (S0n+1(1), ιn, κn) is the initialKruskal fixedpoint ofWn over0,
for each number n ∈ N.

Proof Let us abbreviate Z = S0n+1(1). To show that we have a Kruskal fixed point,
we need to prove that the equivalence

κn(σ ) ≤Z κn(τ ) ⇔ σ ≤Wn(Z) τ or κn(σ ) ≤Z t for some t ∈ suppZ (τ )

is satisfied for all σ, τ ∈ Wn(Z) (cf. [14, Definition 3.1]). For σ = 0, both sides of
the equivalence hold, since we have 0 ≤Z t for any t ∈ Z (see the paragraph before
Corollary 5.4). For σ �= 0 and τ = 0, both sides of the equivalence fail. Now consider
σ = (s, t) and τ = (s′, t ′). Then our equivalence amounts to

ϑ0πn(s, t) ≤Z ϑ0πn(s
′, t ′) ⇔ (s ≤S(1) s

′ and t ≤Z t ′) or ϑ0πn(s, t) ≤Z t ′.

Given that t ′ ∈ S0n+1(1) entails ki+1(t ′) = t ′, an auxiliary induction over s′ yields

ki+1(πn(s
′, t ′)) = πn(ki (s

′), t ′).

For i = −1 we get k−1(s′) = 0 and hence k0(πn(s′, t ′)) = πn(0, t ′) = t ′. In view of
Definition 5.1, this entails that the last equivalence reduces to

πn(s, t) ≤S(1) πn(s
′, t ′) ⇔ s ≤S(1) s

′ and t ≤Z t ′.

The latter can be shown by induction over h(s) + h(s′), where we admit s, s′ from
the bigger set Sn(1) ⊃ S0n(1) to make the induction go through. For s = 0 = s′, both
sides of our equivalence amount to t ≤Z t ′. Now consider s = 0 and s′ = ϑ j r ′. In
view of S(πn(s, t)) = S(t) ≤ 0 < j + 1 and πn(s′, t ′) = ϑ j+1πn(r ′, t ′), the left side
of the desired equivalence is equivalent to

πn(s, t) ≤S(1) k j+1(πn(r
′, t ′)) = πn(k j (r

′), t ′).

Inductively, this is equivalent to the conjunction of s ≤S(1) k j (r ′) and t ≤Z t ′. We can
conclude since both s ≤S(1) s′ and s ≤S(1) k j (r ′) are automatic for s = 0. If we have
s = ϑi r and s′ = 0, then both sides of the desired equivalence fail. To see this, note
that we have

S(πn(s, t)) = S(ϑi+1πn(r , t)) = i + 1 > 0 ≥ S(t ′) = S(πn(s
′, t ′))

and S(s) = i > −1 = S(s′). At the same time, a straightforward induction shows
that s0 ≤S(1) s1 entails S(s0) ≤ S(s1). Finally, consider s = ϑi r and s′ = ϑ j r ′. The
left side of the desired equivalence can hold for two reasons: First, assume that we
have πn(s, t) ≤S(1) k j+1(πn(r ′, t ′)). As before, we get s ≤S(1) k j (r ′) and t ≤Z t ′.
The former entails s ≤S(1) s′, as needed for the right side. Now assume that the left
side holds because we have i = j and πn(r , t) ≤S(1) πn(r ′, t ′). Inductively we get
r ≤S(1) r ′ and t ≤Z t ′, and the former entails s ≤S(1) s′. By reading the given argument
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backwards, one obtains the implication from right to left. To show that our Kruskal
fixed point is initial, we apply the criterion from [14, Theorem3.5]. As preparation, one
shows that any r ∈ Sn+1(1) lies in the range of πn , using induction over r . To conclude
that κn is surjective, it suffices to observe that ϑ0r ∈ S0n+1(1) requires S(r) ≤ 1, so
that r = πn(s, t) forces S(s) ≤ 0 and hence

(s, t) ∈ S0n(1) × S0n+1(1) ⊆ Wn(S0n+1(1)).

Finally, we need to verify that

r ∈ suppZ (σ ) ⇒ h(r) < h(κn(σ ))

holds for all σ ∈ Wn(Z) = Wn(S0n+1(1)). For σ = 0 we have suppZ (σ ) = ∅, so that
the condition is void. For σ = (s, t) we have suppZ (σ ) = {t}, which means that the
claim amounts to h(t) < h(κn(s, t)). This reduces to h(t) ≤ h(πn(s, t)), which is
readily established by induction over s. ��

We have just seen a reconstruction of S0n(1) via iterated Kruskal fixed points. In the
following, we show that the parallel construction for Bachmann–Howard fixed points
yields the orders OTn[0] from [20, Section 5]. Let us first recall the latter.

Definition 5.15 For each n ∈ Nwe construct a setOTn of terms. Simultaneously, each
term s ∈ OTn is associated with a number S(s) ∈ {−1, . . . , n − 1} and finite subsets
Ki (s) ⊆ OTn for i ≥ −1, according to the following clauses:

(i) We have a term 0 ∈ OTn with S(0) = −1 and Ki (0) = ∅.
(ii) Given s, t ∈ OTn and i < n with i ≥ max{S(s) − 1, S(t), 0} and Ki (s) = ∅, we

add a term θi st ∈ OTn with S(θi st) = i and

K j (θi st) =
{

{θi st} if i ≤ j,

K j (s) ∪ K j (t) otherwise.

To define a binary relation <OT on OTn , we declare that r <OT r ′ holds if, and only
if, one of the following clauses applies:

(i’) We have r = 0 and r ′ �= 0.
(ii’) We have r = θi st and r ′ = θ j s′t ′ with i < j .
(iii’) We have r = θi st and r ′ = θi s′t ′, and one of the following holds:

– We have s <OT s′ and t <OT r ′ = θi s′t ′.
– We have s = s′ and t <OT t ′.
– We have θi st = r ≤OT t ′ (i. e. r <OT t ′ or r = t ′ as terms).

Finally, we set OT0n = {s ∈ OTn | S(s) ≤ 0}. We will also write <OT for the restriction
of the given relation to this set.

The reader may have noticed that our definition of <OT looks somewhat different
from the one in [20, Definition 37]. This has the following context: First, the cited

123



614 A. Freund

reference also defines<OT on a larger set that contains terms θi st with Ki (s) �= ∅. This
leads to additional conditions that are void in our case. Secondly, we have declared
that θi st ≤OT t ′ entails θi st <OT θi s′t ′. In [20], this implication has s′ <OT s as
an additional assumption. At the same time, [20, Lemma 23] shows that t ′ < θi s′t ′
does always hold. As it is transitive, the order from [20] will thus satisfy our stronger
implication, so that the two definitions coincide.On a different note, [20,Definition 40]
declares that we have

OTn[0] ?= {s ∈ OTn | s <OT θ000}.

It is easy to see that this yields OTn[0] = {0}, which contradicts [20, Corollary 6].
Presumably, this is a typo that should be corrected into

OTn[0] = {s ∈ OTn | s <OT θ100}.

Strictly speaking, this is only explained when we have n > 1, so that θ100 is avail-
able. For the corrected definition one can show OTn[0] = OT0n by a straightforward
induction over terms. The following was left implicit in [20]:

Lemma 5.16 The relation <OT is a linear order on OTn, for each n ∈ N.

Proof Define h : OTn → N recursively by h(0) = 0 and h(θi st) = h(s) + h(t) + 1.
A straightforward induction over h(r) + h(s) + h(t) shows that the conjunction of
r <OT s and s <OT t implies r <OT t . We can now establish r �<OT r by induction
over h(r). This is readily reduced to r = θi st �OT t . In view of θi st ∈ OTn we must
have S(t) ≤ i , which leaves a term of the form t = θi s′t ′ as the only interesting
case (with the same i as in r = θi st). We trivially have θi s′t ′ ≤OT t , which provides
the inequality t = θi s′t ′ <OT θi st = r . Now if r ≤OT t was true, then transitivity
would yield t <OT t , which contradicts the induction hypothesis. Finally, trichotomy
between s and t follows by a straightforward induction over h(s) + h(t). ��

Parallel to the above, our aim is to show thatOT0n+1 is the initial Bachmann–Howard
fixed point of the following LO-dilators Dn over the empty order 0.

Definition 5.17 For each n ∈ N and any linear order X we put

Dn(X) = 1 + OT0n × X = {0} ∪ {(s, x) | s ∈ OT0n and x ∈ X}.

To define a linear order on Dn(X), we declare that 0 is the smallest element, and that
we have

(s, x) <Dn(X) (s′, x ′) ⇔ s <OT s
′ or (s = s′ and x <X x ′).

For any embedding f : X → Y , we define a function Dn( f ) : Dn(X) → Dn(Y ) by
Dn( f )(0) = 0 and Dn( f )(s, x) = (s, f (x)). Also, let suppX : Dn(X) → [X ]<ω be
given by suppX (0) = ∅ and suppX (s, x) = {x}.

Let us construct the functions that Definition 2.5 requires:
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Definition 5.18 Let the map OTn � s �→ s+ ∈ OTn+1 be given by the recursive
clauses 0

+ = 0 and (θi st)+ = θi+1s+t+. Now define ϑn : Dn(OT0n+1) → OT0n+1 by

ϑn(0) = 0 and ϑn(s, t) = θ0s
+t .

Let us also agree to write ιn : 0 → OT0n+1 for the empty function.

To justify the definition of s+ ∈ OTn+1, one should simultaneously check

Ki+1(s
+) = {t+ | t ∈ Ki (s)} and S(s+) =

{
S(s) = −1 if s = 0,

S(s) + 1 otherwise.

In particular we get K0(s+) = ∅, as an easy induction over s yields K−1(s) = ∅. For
s ∈ OT0n we also obtain S(s+) ≤ 1, so that we indeed have ϑn(s, t) = θ0s+t ∈ OT0n+1

for (s, t) ∈ Dn(OT0n+1). We can now establish the promised result:

Theorem 5.19 The tuple (OT0n+1, ιn, ϑn) is an initial Bachmann–Howard fixed point
of Dn over 0, for each number n ∈ N.

Proof As preparation one checks that s <OT t implies s+ <OT t+, by a straightforward
induction over h(s) + h(t) (cf. [20, Lemma 24]). Abbreviating Z = OT0n+1, we now
verify the two conditions from clause (iii) of Definition 2.5. First, we need to show
that z ∈ suppZ (σ ) implies z <Z ϑn(σ ), for any σ ∈ Dn(Z). In the case of σ = 0 we
have suppZ (σ ) = ∅, which means that the condition is void. For σ = (s, t) we have
suppZ (s, t) = {t}, so that the claim amounts to

t <Z ϑn(s, t) = θ0s
+t .

In the proof of Lemma 5.16 we have shown θ0s+t �OT t , which suffices due to
trichotomy (in view of S(t) ≤ 0 it is easy to give a direct argument as well). The
second condition from clause (iii) of Definition 2.5 does essentially amount to

(s0, t0) <Dn(Z) (s1, t1) and t0 <Z θ0s
+
1 t1 ⇒ θ0s

+
0 t0 <Z θ0s

+
1 t1.

Assuming that the left side holds, we have s+
0 = s+

1 and t0 <OT t1, or s
+
0 <OT s

+
1 and

t0 <Z θ0s
+
1 t1, using the fact that we have shown as preparation. In either case, the

right side follows by clause (iii’) of Definition 5.15. To show that our fixed point is
initial, we use the criterion from Theorem 2.9. Let us first observe

h(t) < h(s+) + h(t) + 1 = h(θ0s
+t) = h(ϑn(s, t)),

for h : OT0n+1 → N as in the proof of Lemma 5.16. It remains to show that the function
ϑn : Dn(OT0n+1) → OT0n+1 is surjective. An easy induction shows that any element
s ∈ OTn+1 with K0(s) = ∅ can be written as s = s+

0 for some s0 ∈ OTn . For S(s) ≤ 1
we get s0 ∈ OT0n , and it is straightforward to conclude. ��
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Finally, we use our general approach to re-derive two known results. The following
was first shown as a consequence of [20, Lemma 25].

Corollary 5.20 For each n ∈ N we have a linearization fn : OT0n → S0n(1) of the
partial order S0n(1) (sequences with gap condition) by the linear order OT0n (binary
collapsing functions, cf. [20, Section 5]).

Proof We construct fn by recursion over n ∈ N. In the base case, let f0 be the
identity on OT00 = {0} = S00(1). Given fn , we get a linearization ν : Dn ⇒ Wn

by setting νX (0) = 0 and νX (s, x) = ( fn(s), x). It is easy to see that Wn is flat
(cf. Definition 4.7). Theorems 4.2 and 4.8 yield a linearization ν+ : ϑDn ⇒ T Wn .
From Theorems 5.14 and 5.19 we know that T Wn(0) and ϑDn(0) coincide with
S0n+1(1) and OT0n+1, respectively (up to isomorphism). Hence setting

fn+1 = ν+
0 : OT0n+1 = ϑDn(0) → T Wn(0) = S0n+1(1)

completes the recursive construction. ��
The following result was first shown in [20, Corollaries 6 and 7]. The proof in the

cited paper goes via an addition-free variant of the Veblen functions. In the author’s
opinion, our general approach leads to a more transparent argument:

Corollary 5.21 For each n ≥ 1, the linear order OT0n has order type ω2n−1, which
means that it realizes the maximal order type of the partial order S0n(1).

Proof Recall that we have ωα
0 = α and ωα

n+1 = ωωα
n . We will show

OT0n ∼= 1 + ω0
2n

by induction over n ∈ N. This entails the first claim of the corollary, as n ≥ 1 yields

1 + ω0
2n = ω0

2n = ω1
2n−1 = ω2n−1.

In the base case of our induction, it suffices to recall OT00 = {0} and ω0
0 = 0. The

induction step relies on [24, Theorem 2.2]. To state the latter, consider an arbitrary
ordinal α. Analogous to Definition 5.17, we get an LO-dilator Dα with

Dα(X) = 1 + (1 + α) × X .

According to the cited theorem, we have ϑDα(0) ∼= ωα
2 . From Theorem 5.19 we

know OT0n+1
∼= ϑDn(0) with Dn(X) = 1 + OT0n × X . Now the induction hypothesis

provides a natural isomorphism Dn ∼= Dα for α = ω0
2n . In view of Lemma 2.14 (and

the uniqueness of initial fixed points), we obtain

OT0n+1
∼= ϑDn(0) ∼= ϑDω0

2n (0) ∼= ω
ω0
2n

2 = ω0
2(n+1) = 1 + ω0

2(n+1),
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as needed to complete the induction step. Finally, let us give references for the fact
that S0n(1) has maximal order type ω2n−1, for n ≥ 1. In the paragraph after Lemma 5.3
we have observed that our order S0n(1) coincides with the order (Tn[0],�) from [20,
Section 2.2.3]. The cited reference shows that this order is isomorphic to a certain col-
lection Sn[0] of sequences with the strong gap condition. According to [20, Lemma 3
and Corollary 2] (based on work by Schütte and Simpson [12]), that collection has
maximal order type ω2n−1, for n ≥ 1. ��
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Morley, M.D., Sčědrov, A., Simpson, S.G. (eds.) Harvey Friedman’s Research on the Foundations
of Mathematics, Studies in Logic and the Foundations of Mathematics, vol. 117, pp. 87–117. North-
Holland (1985)

12. Schütte, K., Simpson, S.G.: Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen
von natürlichen Zahlen. Archiv für Mathematische Logik und Grundlagenforschung 25, 75–89 (1985)

13. van der Meeren, J.: Connecting the two worlds: well-partial-orders and ordinal notation systems, PhD
thesis, Ghent University (2015)

14. Freund, A.: From Kruskal’s theorem to Friedman’s gap condition. Math. Struct. Comput. Sci. 8(30),
952–975 (2020)

123

http://creativecommons.org/licenses/by/4.0/


618 A. Freund

15. Rathjen, M., Weiermann, A.: Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure Appl.
Logic 60, 49–88 (1993)

16. Freund,A.: Type-TwoWell-OrderingPrinciples,Admissible Sets, and�1
1-Comprehension, PhD thesis,

University of Leeds. http://etheses.whiterose.ac.uk/20929/ (2018)
17. Freund, A.: �1

1-comprehension as a well-ordering principle. Adv. Math. 355, article no. 106767, 65
pages (2019)

18. Freund, A.: A categorical construction of Bachmann–Howard fixed points. Bull. Lond. Math. Soc.
51(5), 801–814 (2019)

19. Freund, A.: Computable aspects of the Bachmann–Howard principle. J. Math. Logic 20(2), article
no. 2050006, 26 pages (2020)

20. van derMeeren, J., Rathjen,M.,Weiermann, A.: Ordinal notation systems corresponding to Friedman’s
linearized well-partial-orders with gap-condition. Arch. Math. Logic 56, 607–638 (2017)

21. Weiermann, A., Wilken, G.: Ordinal arithmetic with simultaneously defined theta-functions. Math.
Logic Q. 57(2), 116–132 (2011)

22. van der Meeren, J., Rathjen, M., Weiermann, A.: Well-partial-orderings and the big Veblen number.
Arch. Math. Logic 54(1–2), 193–230 (2015)

23. van der Meeren, J., Rathjen, M., Weiermann, A.: An order-theoretic characterization of the Howard–
Bachmann–hierarchy. Arch. Math. Logic 56(1–2), 79–118 (2017)

24. Freund, A.: Predicative collapsing principles. J. Symb. Logic 85(1), 511–530 (2020)
25. de Jongh, D., Parikh, R.: Well-partial orderings and hierarchies. Indagationes Mathematicae 80(3),

195–207 (1977)
26. Aschenbrenner,M., Pong,W.Y.: Orderings ofmonomial ideals. FundamentaMathematicae 181, 27–74

(2004)
27. Knight, J.F.: Lange, K.: Lengths of developments in K ((G)). Selecta Mathematica 25, article no. 14,

36 pages (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://etheses.whiterose.ac.uk/20929/

	Bachmann–Howard derivatives
	Abstract
	1 Introduction
	2 Theory, part 1: Bachmann–Howard derivatives
	3 Application, part 1: unary collapsing functions
	4 Theory, part 2: connecting with Kruskal derivatives
	5 Application, part 2: linearizing the gap condition for sequences
	References




