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Abstract
In the framework of Stewart Shapiro, computations are performed directly on strings
of symbols (numerals) whose abstract numerical interpretation is determined by a
notation. Shapiro showed that a total unary function (unary relation) on natural num-
bers is computable in every injective notation if and only if it is almost constant or
almost identity function (finite or co-finite set). We obtain a syntactic generalization
of this theorem, in terms of quantifier-free definability, for functions and relations
relatively intrinsically computable on certain types of equivalence structures. We also
characterize the class of relations and partial functions of arbitrary finite arities which
are computable in every notation (be it injective or not).We consider the same question
for notations in which certain equivalence relations are assumed to be computable.
Finally, we discuss connections with a theorem by Ash, Knight, Manasse and Sla-
man which allow us to deduce some (but not all) of our results, based on quantifier
elimination.
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1 Introduction and overview

Philosophical analyses of the concept of computation often involve, more or less
explicitly, the syntactical layer of numerals and the semantical layer of abstract natu-
ral numbers (see, e.g., [6, 7, 11, 20, 21]). This distinction is justified by the intuition,
already present in some of the founding works of computability theory [16, 26], that
algorithms are performed directly on strings of symbols, while the notion of comput-
ing on numbers is established indirectly by assuming an appropriate mapping from
strings to numbers. Stewart Shapiro formalized this idea by introducing the concept
of notation—an injective function from a recursive set of numerals onto natural num-
bers [23]. Each notation determines the class of functions and relations computable
in it. Shapiro showed that, in general, computability of a number-theoretic function
or relation is not an invariant property across all notations. Classical computability
theory may be viewed as a theory of partial functions and relations computable in an
acceptable notation, where acceptable means with computable successor.

While searching for the characterization of the class of acceptable notations, Shapiro
proved the following.

Theorem 1 (Shapiro [23])The only unary total functions computable in every injective
notation are almost constant and almost identity functions. The only subsets of natural
numbers whose characteristic functions are computable in every injective notation are
finite and co-finite sets.1

Shapiro concluded that partial recursive functions and relations are not the same as
partial functions and relations computable in every injective notation. This was suf-
ficient as an intermediate step in finding criteria for acceptability of notations which
was Shapiro’s primary goal.

It might be argued that Theorem 1 has some depth on its own, regardless of nota-
tions’ acceptability. It indicates that effectiveness has a representationally independent
core—the class of functions and relations computable in every injective notation. This
idea is familiar in computable structure theory (for a general introduction see, e.g. [3,
17]). Given a computable structureA (i.e. a relational structure whose domain and all
basic relations are uniformly computable) and a computable relation R, we say that R
is intrinsically computable onA if the image of R is computable in every computable
isomorphic copy ofA (see, e.g., [2]). It is easy to observe that injective notations corre-
spond directly to isomorphisms between structures, as known in computable structure
theory, and thus both perspectives lead to the same problems, though manifested dif-
ferently. For example, functions computable in every injective notation are the same
as functions intrinsically computable on plain natural numbers (a structure consisting
of natural numbers with no additional structure).

In this paper, we consider two groups of results inspired by Shapiro’s Theorem1 and
the notion of intrinsic computability. One concerns the problem of relative intrinsic
computability on certain types of equivalence structures. Equivalence relation may
seem a simple structural addition but it leads to rich theory (see, e.g., [4, 5, 8, 9, 12,
13, 19]).We say that R is relatively intrinsically computable on a computable structure

1 On a side note, Theorem 1 can be deduced from some results on automorphic triviality in computable
structure theory [15].
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A if in every copy B of A the image of R is computable relative to B. This problem
is tackled in Sect. 3 and some related observations are given in Sect. 4. An important
result in this area is that of Ash et al. (Theorem 17) [1]. Some but not all of our results
can be deduced from it. This is discussed in the final section.

The second group of results concerns arbitrary notations, i.e. notations that may be
noninjective. Under a noninjective notation numbers are allowed to have more than
one name. This minor change is not irrelevant (see, e.g., [27–29]). We consider the
following problem: which functions are computable in every notation? In Sect. 5,
using a long inductive argument, we demonstrate that the class in question consists of
the empty function, constant functions and projections. A similar problem arises for
equivalence structures: which functions are computable in every notation in which a
given equivalence relation is computable? It seems that this notion has no clear equiv-
alent in computable structure theory, though similarities with the notion of intrinsic
computability are evident. We also describe functions computable in every notation if
arities of input and output are not fixed.

We wrap up our work in Sect. 6 which concerns related work and open questions.

2 Background

Familiarity with basic concepts from model theory and recursive function theory is
assumed. We review notions that are necessary to follow the proofs. For more infor-
mation, we refer the reader to textbooks [10, 22, 25].

The set of natural numbers is denoted by ω. � stands for a finite alphabet, �∗
for the set of all words (finite sequences) over �. Letters α, β, . . . , possibly with
subscripts, refer to words. A characteristic function of a relation R is denoted by χR .
We sometimes confuse R with its characteristic function χR which makes writing
R(x1, . . . , xk) = 1 or R(x1, . . . , xk) = 0 meaningful. Finite lists v1, v2, . . . , vk of
elements of a given set are abbreviated by �v.
Definition 1 ([14, 18]) A function f : ωk → ω is learnable (in B) if there exists a
uniformly computable family of computable (in B) functions { ft }t∈ω such that for
every �n = n1, n2, . . . , nk : f (�n) = limt→∞ ft (�n). A relation R ⊆ ωk is learnable (in
B) if its characteristic function χR is learnable in B.

Theorem 2 (Limit Lemma [24]) f : ωk → ω is learnable in B if and only if f ≤ B ′.
Similarly, a relation A ⊆ ωk is learnable in B if and only if A ≤ B ′.

Consider a first-order language with variables V = {x1, x2, . . . }, individual con-
stants C = {c1, c2, . . . } and no functional or relational symbols (except the logical
predicate =). Sometimes we also consider one relational binary predicate E . The
set of formulae is defined in a standard way. If we write ϕ(z1, z2, . . . , zk), all the
free variables of ϕ occur among z1, z2, . . . , zk . A model for our language is a pair
M = (M, {cMi : i ∈ ω}), where M is a non-empty set and cMi ∈ M is the distin-
guished element named by ci , for i ∈ ω. If the language contains E , then the model is
of the form M = (M, EM , {cMi : i ∈ ω}), where EM is the interpretation of E . Any
function a : V → M is called an assignment. The satisfaction relation |
 between
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a model M, formula ϕ and an assignment a, is defined in a standard way. We write
M |
 ϕ[a] to say that ϕ is satisfied in M under the assignment a. Given a formula
ϕ(z1, . . . , zk), it is customary to writeM |
 ϕ[a1, . . . , ak] where ai is understood as
the element assigned to zi .

If E is an equivalence relation, the equivalence class of an element e is denoted
by [e]E , or [e] if E is clear from context. By an equivalence structure we mean
(ω, E) where E is an equivalence relation. The character of such structure is the set
A consisting of all such (k, n) ∈ ω2 that E has at least n equivalence classes of
size k. We will consider mainly two types of equivalence relations. The first type are
equivalence relations of finite character. Such equivalence relations have finitely many
finite equivalence classes. The second type are equivalence relations of unbounded
character. We say that the character of E is bounded if there is some finite k such
that all finite classes have size at most k. Otherwise, we say that the character of E is
unbounded. E of unbounded character has arbitrarily large finite classes.

2.1 Notations for natural numbers

The following notion is a slight generalization of that of Shapiro. Note that Shapiro
used the term notation to mean 1-1 notation.

Definition 2 (Shapiro [23]) Let � be a finite alphabet. (S, σ ) is a notation (for ω) if
S ⊆ �∗ is computable, σ : S → ω is onto. If σ is one-one, then (S, σ ) is called
injective or 1-1.

Elements of S are referred to as numerals. The standard notation and standard
numerals are understood as the usual decimal notation and its numerals, respectively.
When we refer to numerals rather than numbers, we put bars over them: n is the
standard decimal numeral for the number n. However, in a non-standard notation it
may represent a different number, or it may not be a valid numeral at all.

Definition 3 ([29]) Let (S, σ ) be a notation and let f : ωn → ω be a partial func-
tion. Let f σ be the class of all partial functions F : Sn → S such that for any
α1, . . . , αn, β ∈ S the following condition is satisfied:

(α1, . . . , αn) ∈ dom(F) ⇐⇒ (σ (α1), . . . , σ (αn)) ∈ dom( f ),

F(α1, . . . , αn) = β 
⇒ f (σ (α1), . . . , σ (αn)) = σ(β).

If a notation is noninjective, then there might be multiple functions in f σ . For a 1-1
notation, f σ is a singleton and we identify f σ with its sole element.

If some function from f σ is computable, we say that f σ is computable or that f
is computable in (S, σ ).

There is going to be a certain ambiguity when we talk about computing f σ . Unless
explicitly stated otherwise, it shall be synonymous with computing any function from
the class f σ . However, sometimes,when a concrete function from this class has already
been specified, it can refer to computing this specific function.
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Definition 4 Let (S, σ ) be a notation and let R ⊆ ωn . Let Rσ ⊆ Sn be defined in the
following way:

(α1, . . . , αn) ∈ Rσ ⇐⇒ (σ (α1), . . . , σ (αn)) ∈ R,

for all α1, . . . , αn ∈ S. We say that R is computable (or c.e.) in (S, σ ) if Rσ is
computable (or c.e.).

The above definitionsmight be summarized as follows. Computability of a number-
theoretic function (or relation) in a notation is understood as the existence of a program
which acts on numerals and outputs numerals (or truth values) such that the underlying
referents agree with the function (relation) being computed.

Definition 5 Let (S, σ ) be an injective notation. A function f : ωk → ω is learnable
in (S, σ ) if f σ is learnable. Similarly, a relation R ⊆ ωk is learnable in (S, σ ) if Rσ

is learnable.

The notion of learnability in arbitrary notations is not considered in this paper. This
concept can be defined in a few non-equivalent ways. In fact, our notion of computable
enumerability for arbitrary notations (Definition 4) is just one possible.

3 Some generalizations for injective notations

In this section we consider the problem of relative intrinsic computability of functions
on certain types of computable equivalence structures. We obtain a solution for total
functions and relations (Theorems 4, 5 and Corollary 1).

It might be tempting to conjecture that Theorem 1 holds for functions and relations
of higher arities. However, this is not the case, as demonstrated by Proposition 3.

Definition 6 We say that a function f : ωk → ω is almost constant if there exists
y ∈ ω such that f (x1, . . . , xk) = y holds for all but finitely many tuples (x1, . . . , xk).
Similarly, a function f : ωk → ω is said to be almost projection if there exists i
such that 1 ≤ i ≤ k and f (x1, . . . , xk) = xi holds for all but finitely many tuples
(x1, . . . , xk).

Proposition 3 There exists a total function which is computable in every injective
notation but is neither almost constant nor almost projection.

Proof Take the function f : ω2 → ω defined by f (x1, x2) = 0 if x1 = 0 ∨ x2 = 0
and f (x1, x2) = 1 if x1 �= 0 ∧ x2 �= 0. ��

Generalizing Shapiro’s theorem to arbitrary partial functions and relations requires
a slightly different perspective. Consider the first-order language L = (E) with a
binary relational symbol E (and the logical predicate =), with x1, x2, . . . as variables
and 0, 1, . . . as constants. Definition of first-order formulae is standard. We say that
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a formula φ(x1, . . . , xk, y) defines a function f : ωk → ω in an L-model A =
(ω, E A) if for all n1, . . . , nk,m ∈ ω: A |
 φ(x1, . . . , xk, y)[n1, . . . , nk,m] ⇐⇒
f (n1, . . . , nk) = m. We assume that a constant n is interpreted as n. A model for L
will be written as (ω, E), innocuously confusing E with its denotation.

Also, the following a bit technical notion will be quite handy.

Definition 7 Let (ω, E) be an equivalence structure and let X ⊆ ωn . We say that
f : X → ω is an E-projection if there exists e ∈ ω such that for every �x ∈ X ,
f (�x) > e, f (�x)Ee, f (�x) /∈ �x and |[e]E ∩ (e,∞)| = |{xi : xi Ee ∧ xi > e}| + 1.

Below we define a family of equivalence relations (indexed by subsets of the uni-
verse) over tuples of an equivalence structure. This notion allow us to encapsulate
certain cumbersome details in Lemmas 1, 2 and 4 which will be used in the proof of
Theorems 4 and 5 .

Definition 8 Let X = (X , E) be an equivalence structure and F ⊆ X . We say that
�a, �b ∈ Xk are of the same F-type (in symbols: �a ∼F �b) if, for every i, j : �a, �b and
x ∈ F satisfy (i-iv).

ai ∈ F ⇐⇒ bi ∈ F, (i)

ai ∈ F 
⇒ ai = bi , (ii)

ai = a j ⇐⇒ bi = b j , (iii)

ai Ea j ⇐⇒ bi Eb j , (iv)

ai Ex ⇐⇒ bi Ex . (v)

(For X = ω and C = {0, 1, . . . , c} we shall write small subscripted c instead of big
subscripted C .) If Y = (Y , F) is another equivalence structure, h : X ∼= Y , g ⊆ h,
�a ∈ Xk, �b ∈ Y k , we use the notation �a ∼h

g
�b tomean that h(�a) = (h(a1), . . . , h(ak)) ∈

Y k is of the same img(g)-type as �b or, equivalently, that h−1(�b) ∈ Xk is of the same
dom(g)-type as �a.

Intuitively, �a, �b ∈ Xk are of the same C-type if: (i) the positions at which elements
fromC occur are the same, (ii) at those positions, both �a and �b have precisely the same
values, (iii-iv) the same equalities and equivalences hold within �a, �b, position-wise,
and, finally, (v) the positions at which elements equivalent to something fromC occur,
contain equivalent elements.

Lemma 1 Let (X , E) be an equivalence structure and letC ⊆ X.∼C is an equivalence
relation on Xk. Moreover, if C is finite, then Xk/ ∼C is finite.

Proof Consider possible arrangements of elements of C in k-tuples, possible arrange-
ments of pairs of indices from the set {1, 2, . . . , k} for which equality or equivalence
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holds, as well as possible arrangements of pairs (c, i)with c ∈ C and i ∈ {1, 2, . . . , k}
for which we could have c equivalent to the number at position i . ��

Lemma 2 Let X = (X , E), Y = (Y , F) be equivalence structures, h : X ∼= Y ,
g ⊆ h. Let �a, �b ∈ Xk, �c ∈ Y k. If �a ∼dom(g) �b and �c ∼h

g �a then �c ∼h
g

�b.

Proof Assume �a ∼dom(g) �b and �c ∼h
g �a. By definition of ∼h

g , h
−1(�c) ∼dom(g) �a. By

transitivity of ∼dom(g), h−1(�c) ∼dom(g) �b. Hence, �c ∼h
g

�b. ��

Lemma 3 Let φ(�x, �d) be a quantifier-free formula in the language L = {E}. If E
is of finite or unbounded character then there exists c such that, for every �a ∼c �b:
(ω, E) |
 φ[�a] ⇐⇒ (ω, E) |
 φ[�b].

Proof Let φ(�x, �d) be a quantifier-free formula. For equivalence structure (ω, E) with
unbounded character choose c as the maximum over (the values of) all constants
occurring in φ and over the maxima of finite [x]E such that x ≤ some constant in
φ. For (ω, E) with finite character, we choose c as the maximum over (the values
of) all constants occurring in φ and over the maxima of all finite equivalence classes.
The rest of the paragraph applies to both types of equivalence relations, with c chosen
appropriately.

Let �a ∼c �b. We show that (ω, E) |
 φ[�a] ⇐⇒ (ω, E) |
 φ[�b]. It suffices to
prove this for atomic formulae ψ in φ. The cases ψ := (d = d ′) and ψ := (dEd ′)
are obvious. Note that, for any d occurring in φ, d ≤ c which, by Definition 8(i-ii),
implies that ai = d ⇐⇒ bi = d and, by Definition 8(v), ai Ed ⇐⇒ bi Ed. This
is sufficient for cases ψ := (xi = d) and ψ := (xi Ed). Cases ψ := (xi = x j ) and
ψ := (xi Ex j ) are evident by Definition 8(iii-iv).

��

Lemma 4 Let (ω, E) be an equivalence structure and f : ωn → ω.

(a) If E is of finite character then f is definable in (ω, E) by a quantifier-free formula
with parameters iff for some c every f � [�x]∼c is constant or a projection.

(b) If E is of unbounded character then f is definable in (ω, E) by a quantifier-free
formula with parameters iff for some c every f � [�x]∼c is constant, projection or
an E-projection.

Proof Let f be definable in (ω, E) by a quantifier-free formula φ(�x, y, �d). Choose c
as in Lemma 3, according to the type of equivalence relation. Fix �n and let f (�n) = m.

We consider case (a) and show that if m does not occur in �n then m ≤ c. The
proof is by contradiction: our assumption is that m does not occur in �n but m > c.
Observe that [m]E is not finite because otherwise we would have m ≤ c by the
choice of c (see Lemma 3). Therefore [m]E is infinite. But then there exists m′ >

max{c,m, n1, . . . , nk} such that m′Em. We have (�n,m) ∼c (�n,m′) and thus, by
Lemma 3, (ω, E) |
 φ[�n,m] ⇐⇒ (ω, E) |
 φ[�n,m′] so f (�n′) = m �= m′ = f (�n′)
which is impossible.

We continue the left-to-right implication for the case (a).
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First, suppose m occurs in �n and m ≤ c. We show that f � [�n]∼c are constant. Let
�n′ ∼c �n. Clearly, m must occur in �n′ in exactly the same places as in �n. Therefore,
(�n′,m) ∼c (�n,m). Since (ω, E) |
 φ[�n,m], by Lemma 3 we also have (ω, E) |

φ[�n′,m], and thus f (�n′) = m so f � [�n]∼c is constant.

Second, suppose that m occurs in �n and m > c. We show that f � [�n]∼c are
projections. Let �n′ ∼c �n. Choose i ∈ {1, 2, . . . , k} such that ni = m. Observe that we
have (�n′, n′

i ) ∼c (�n, ni ). But (ω, E) |
 φ[�n, ni ] holds, so, by Lemma 3, (ω, E) |

φ[�n′, n′

i ] holds as well. Therefore, f (�n′) = n′
i which proves that f � [�n]∼c is a

projection.
Finally, we consider the case when m does not occur in �n and m ≤ c.
We want to show that f � [�n]∼c is constant. Let �n′ ∼c �n. Observe that (�n,m) ∼c

(�n′,m) by Definition 8(v) applied to �n, �n′. Therefore, by Lemma 3, f � [�n]∼c is
constant.

We proceed to (b). Suppose E is an equivalence relation of unbounded character.
We want to show that f � [�n]∼c is constant, projection or an E-projection.

We begin with the case m /∈ �n and m > c.
First, consider the sub-case when m is E-equivalent to some ni but ni is not

E-equivalent with any element ≤ c. Clearly, every element of [m]E is > c. Let
ni1 , ni2 , . . . , nik be all elements of �n that are E-equivalent with m. We find u > c
with all elements of [u]E being > c and such that |[u]E | ≥ k + 2. We can pick
�u = u1, u2, . . . , uk ∈ [u]E so that �n ∼c �n′, where �n′ = �n[u1/ni1 , . . . , uk/nik ]. Let
v, v ∈ [u]E such that v �= v′ and v /∈ �u, v′ /∈ �u. Observe that (�n,m) ∼c (�n′, v) ∼c

(�n′, v′) which leads to f (�n′) = v �= v = f (�n′) which is a contradiction.
Second, consider the sub-case when m is not E-equivalent with any ni nor with

any element ≤ c. Find v such that all elements of [v]E are > c and v is not E-
equivalent to m nor to any ni . Observe that (�n,m) ∼c (�n, v). Hence, by Lemma 3,
f (�n) = m �= v = f (�n) which is impossible.
Third, we consider the sub-case when m is E-equivalent to some element ≤ c but

is not E-equivalent to any ni . We observe that there is no m′ > c with m �= m′ and
mEm′. Otherwise, we would have (�n,m) ∼c (�n,m′) which, by Lemma 3, breaks
functionality of f . Let �n ∼c �n′. Note that m is not E-equivalent to any n′

i because
otherwisewewould have, for some n′

i , n
′
i Em but sincem is equivalent to some element

≤ c and �n ∼c �n′, would would also have, by Definition 8(v), ni Em which contradicts
our assumption. Therefore, it is clear that (�n,m) ∼c (�n′,m). By Lemma 3, f (�n′) = m,
so f � [�n]∼c is constant.

The last sub-case is as follows: m is E-equivalent to some element e ≤ c and is
E-equivalent to some ni (assume e is the largest such number≤ c). Let ni1 , . . . , nik be
all elements of �n that are E-equivalent to m. Clearly, we must have |{u : uEm ∧ u >

c}| = k+1 for otherwise there would bem′ > c different fromm, ni1 , . . . , nik and E-
equivalent to m which would lead to (�n,m) ∼c (�n,m′) thus breaking functionality of
f . Now, given any �n′ ∼c �n, each n′

i j
, for j = 1, . . . , k, must land in [m]E . If such n′

i j
is ≤ c then clearly ni j = n′

i j
. If such n′

i j
is > c then n′

i j
∈ {u : uEm ∧ u > c}. Given

any such arrangement of n′
i j
s there always remains one vacant number, denote it by

m′, different from any n′
i j
with m′ ∈ {u : uEm ∧ u > c}. We observe that (�n,m) ∼c

(�n′,m′). Hence, by Lemma 3, f (�n′) = m′. We also have m′ > c,m′Ee,m /∈ �n and
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|[e]E ∩ (e,∞)| = |{ni : ni Ee ∧ ni > e}| + 1 which means that f � [�n]∼c is an
E-projection.

We continue with (b) by considering the casem ∈ �n andm ≤ c. It is easy to observe
that for any �n′ ∼c �n we have (�n,m) ∼c (�n′,m). Therefore, by Lemma 3, f � [�n]∼c is
constant.

The next case is m ∈ �n and m > c. Let �n′ ∼c �n. Observe that (�n, ni ) ∼c (�n′, n′
i ).

Therefore, by Lemma 3, f (�n′) = n′
i so f � [�n]∼c is a projection.

The last case is as follows:m /∈ �n and m ≤ c. Let �n′ ∼c �n. It is easy to observe that
(�n,m) ∼c (�n′,m). Therefore, by Lemma 3, f (�n′) = m so f � [�n]∼c is constant.

To prove (⇐) in (a), assume that there exists c ∈ ω such that for every equivalence
class N of∼c, f � N is constant or a projection. Choose an appropriate c. ByLemma1,
let N1, N2, . . . , Np be all equivalence classes of ∼c. Observe that for each Ni there
exists a quantifier-free formula with parameters φi (�x) defining Ni in (ω, E). Now,
if f � Ni is constant and f (�n) = d for all �n ∈ Ni , let ψi := (φi ⇒ y = d). If
f � Ni is a projection, i.e. for some j ∈ {1, 2, . . . , k}, f (�n) = n j , for all �n ∈ Ni , let
ψi := (φi ⇒ y = x j ). Finally, let φ(�x, y) := ψ1 ∧ ψ2 ∧ . . . ∧ ψp. Formula φ is
quantifier-free and defines f in (ω, E).

Finally, we consider the case (b). We choose c such that each f � [�n]∼c is constant,
projection or an E-projection. Again, let N1, . . . , Np be all equivalence classes of ∼c

and let φ1, . . . , φp be their defining quantifier-free formulae. If f � Ni is constant or
a projection, we proceed as in the paragraph above and obtain a suitable ψi . Suppose
f � Ni is neither constant nor projection but an E-projection. Let �n ∈ Ni and m =
f (�n). By the definition of E-projection, we choose e ≤ c such that f (�n)Ee ∈ [e]E .
We also know that f (�n) /∈ �n and that |[e]E ∩ (c,∞)| = |{ni : ni Ee ∧ ni > c}| + 1.
Let d0, . . . , dk be all numbers > c and E-equivalent to e. Hence, f (�n) must be one of
d0, . . . , dk . We construct formulae ξ j , for j = 0, . . . , k:

ξ j (�x, y) = (
∧

1≤t≤k

xit �= d j ) 
⇒ y = d j .

Now, ψi := (φi 
⇒ ∧
1≤t≤k ξt ). Finally, we let φ(�x, y) := ψ1 ∧ . . . ∧ ψp. φ is

quantifier-free and defines f in (ω, E). ��
Theorem 4 Let f be a total function of arbitrary arity. Let (ω, E) be a computable
equivalence structure with no infinite classes and such that there exist arbitrarily
large cardinalities, each assumed by infinitely many classes. Then the following are
equivalent:

(1) f is relatively intrinsically computable on (ω, E),
(2) f is definable in (ω, E) by a quantifier-free formula with parameters.

Proving (2) ⇒ (1) is rather easy. A quantifier-free formula φ(�x, y) that defines f in
(ω, E) gives rise to a simple programwhich, if provided with Eσ as oracle, where σ is
any 1-1 notation, computes f σ : on input �α, search for the unique β such that φ(�α, β)

holds (in this φ parameters are replaced by their names according to σ ).
To prove (1) ⇒ (2), suppose f is not definable in (ω, E) by any quantifier-

free formula with parameters. We will construct a notation (T , τ ) such that f is
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not computable in (T , τ ) relative to (ω, E). Let T ⊆ �∗ be an infinite computable set
with 1-1 recursive enumeration β0, β1, . . . .

Construction.

At stage n + 1 we have a finite injection τn : [0, ln] → T which we extend to a
finite injection τn+1 : [0, ln+1] → T , ln ≤ ln+1. τn+1 is chosen so that the following
requirement is satisfied:

Rn : for each 1-1 notation (T , σ ) such that σ � τn+1, Φn(Eσ ) �� f σ .

We say that x is non-fresh if x < |τn|. Otherwise, x is called fresh. A fresh element
that is E-equivalent to some element< |τn| is referred to as an orbital one. Otherwise,
it is said to be free. A tuple �x ∈ ωn is said to be fresh if some number occurring in �x
is fresh. Similarly, we say that a numeral α is fresh if α does not occur in τn . A tuple
�α = α1, . . . , αn is said to be fresh if some numeral occurring in �α is fresh. Given an
injection σ mapping a number x to a numeral α, we sometimes write xσ to denote α,
and ασ to denote x .

Extensions of τns are chosen so that each element of T occurs in some τn . The
final notation is defined by τ = ⋃

n∈ω τn (or, rather, τ−1, to remain consistent with
Definition 2).

Occasionally, we may write xE �x to mean that x is equivalent to some element in
�x . ¬xE �x means that x is not E-equivalent to any element from �x . Given a notation σ ,
we may sometimes write αEx or αEβ, etc. Strictly speaking, we should write αExσ

or αEσ β, respectively. But this should be clear, given the underlying isomorphism σ .
In the construction we use a certain condition for which we introduce the following

abbreviation:

α, x, τn) := ∀α j α((∀γ ∈ τn¬α j Eγ ) α j ]E | ≤ |[x j ]E |). ( )

Below we describe the method of swap-and-transfer which is used throughout the
construction. After that we proceed to the construction itself.

Swap-and-transfer We are given a notation σ � τn , �α and �x ∼σ
τn

�α with

ΦEσ

n (�α) ↓= β. First, we take a sufficiently large ρ, τn � ρ ≺ σ , so thatΦEρ

n (�α) ↓= β

with ρ containing all αi s, xi s, β and, additionally, including each class [αi ], [xi ], [β],
if it happens to be finite. We want to transform ρ into ρ̃ such that ΦE ρ̃

n (�α) ↓= β with
each αi sitting on xi in ρ̃. Non-fresh elements α j remain untouched. We perform the
algorithms described below in the order listed. Along the way, we keep changing ρ

(we store the changes in the variable ρ′, initially ρ′ = ρ) until the final ρ̃ is reached
which is ρ′ after performing all modifications. Below, we say that α j is bad if the
position of α j in ρ′ is different from x j . Otherwise α j is good.

Swapping. As long as there is some bad orbital element α j ∈ �α, or some bad free
element α j ∈ �α with α j Ex j : pick such a bad α j and swap the places of α j and
ρ′(x j ).
We note that, before the swap, when dealing with a bad orbital α j , the position of

α j is E-equivalent to x j with x j being also a fresh orbital element. We also see that
Eρ′

is the same for ρ′ before and after the swap and that α j is good after the swap.
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After swapping, all bad α j s in the current ρ′ have the following property: [α j ] �=
[x j ].

Transferringmoves bad α j s and transfers numerals from [α j ] � ρ′ to good positions
in [x j ]. We should be careful, because the numerals taken out from the positions in
[x j ] � |ρ′| may want to find their good positions as well (transferring is a kind of
iterative process). We highlight that ρ′ might become incomplete before transfer is
completed. Incompleteness means that some intermediate positions may be empty.
Eventually, however, once the transfer is complete, the resulting ρ̃ does not have any
empty intermediate positions.

Transferring. First, we construct a transfer graph containing information about all
necessary transfers. Nodes of the graph are [α j ]Eσ � ρ for all bad α j and corre-
sponding [x j ]E � |ρ|. Note that for an infinite equivalence class [α j ]Eσ or [x j ]E ,
the corresponding node contains only finitelymany representatives of the class that
happen to be in ρ. For convenience, we refer to nodes of the graph as if they were
full classes. However, one should bear in mind that, strictly speaking, it is not true.
For each node node [α j ] we add a directed edge [α j ] → [x j ]. It means that the
elements of [α j ] � ρ′ should be placed at positions [x j ]. We can safely assume that
|[α j ]| ≤ |[x j ]| because swap-and-transfer will be only run when such a condition
is satisfied. For nodes [αp], [xq ] such that [αp] = [xq ]σ (notice that p �= q) we add
an undirected edge [αp] − [xq ]. It means that the numerals from [αp] � ρ′ which
currently reside at positions from [xq ] should be transferred to position from some
class other than [xq ] but, also, that numerals other than [αp] should be transferred
to positions from [xq ]. This ends the description of the transfer graph.

We say that a node [α j ] is an origin if it is not connected with any [xl ] by an
undirected edge. Practically, it means that no bad element should be transferred to
positions at which currently the elements of [α j ] reside and, therefore, that the transfer
can start from [α j ].

Figure 1 shows three simple examples of such graphs with an overall idea of how
the transfer should work for them.

Transferring algorithm uses the following three procedures. Sometimes, we write
[A]E to mean the closure of A with respect to E .

Subst(ρ′, A, X) If there are numerals at positions X in ρ′, cut them and store them in
A′ (otherwise A′ will be empty). If the elements of A are in ρ′, cut them from ρ′,
along with the elements equivalent to those from A in ρ′ (we call these additional
elements companions). Paste the elements of A (with companions) on positions
from X so that each α j ∈ A lands on position x j . Now, we have two cases. The
first case is that there are not enough positions in X to accommodate all members
of A (with companions). In this situation, we find enough positions outside ρ′
equivalent to those from X to accommodate the rest of A (with companions),
thus extending ρ′ and filling intermediate empty positions with fresh numerals, if
necessary. The second case is that there are enough positions in X to accommodate
all members of A (with companions). In this situation, we accommodate them and
if after that there remain empty positions in X , we fill them with fresh numerals.
Output A′.
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Fig. 1 G1 has two origins: α1 and α2. Elements of [α1] should be cut and pasted to positions from [x1],
empty positions should be filled with fresh numerals while the numerals taken out from the positions in
[x1] should be placed on some fresh equivalence class. The same applies to α2 and x2. G2 has one origin:
α2. Elements of [α2] should be cut and pasted to positions from [x2], numerals taken out from [x2] (i.e.
elements of [α1]) should be placed at positions from [x1], while the numerals taken out from [x1] should
be moved to some fresh equivalence class. Finally, empty positions (after cutting [α2]) should be filled with
fresh numerals. G3 has no origin. We pick an arbitrary node [αi ], say [α1]. We perform the same actions as
above, i.e. elements of [α1] are moved to positions from [x1], numerals taken out from [x1] (i.e. elements
of [α2]) are moved to the positions from [x2]. Here, no empty intermediate positions will be left

Trans f er(ρ′, A) Let X = [x] � |ρ′| be such that [A] → [x] is in the transfer
graph. Let A′ := Subst(ρ′, A, X). If [A′] contains a node of the transfer graph
(i.e., some node ⊆ [A′])2 then run Trans f er(ρ′, A′). Otherwise, if A′ �= ∅, run
Finali ze(ρ′, A′).

Finali ze(ρ′, A) Find a sufficiently large new equivalence class (i.e. not intersected
by the current ρ′) and place the elements from A on it. Fill empty intermediate
positions with fresh numerals.

Now, the overall transferring for the whole graph works as follows. We set ρ′ = ρ.
If the graph has no origins, we pick an arbitrary node A and we run Trans f er(ρ′, A).
Otherwise, for every origin node A, we run Trans f er(ρ′, A) in succession. This way,
we transform ρ into ρ̃.

We see that E ρ̃ � ρ is the same as Eρ and that each α j is good in ρ̃.

���

Stage 0. Set τ0 = ∅.
Stage n + 1. In the questions below, Q1-Q5, σ ranges over notations, so it is an

infinite object.

1. Check whether

∃σ � τn∃�α∃�x ∼σ
τn

�α[ΦEσ

n (�α) ↓=: β, β ∈ τn, βσ �= f (�x), �(�α, �x, τn)]. (Q1)

If not, go to Q2. Otherwise, we choose σ, �α, �x as above and we perform swap-and-
transfer. This gets us ρ̃ � τn such that ΦE ρ̃

n (�α) ↓=: β with each αi sitting on xi
but the position of β in σ and ρ̃ is the same. Hence, βρ̃ = βσ �= f (�x) = f (�αρ̃),
soRn is satisfied with τn+1 = ρ̃.

2 Observe that transferring may add to ρ′ some elements which are equivalent to α j in ρ′ but which were
not present in ρ and thus are not included in the node [α j ]Eσ � ρ. To transfer such α j we obviously cut all
elements from ρ′ which are equivalent to α j and proceed accordingly.
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2. Check whether

∃σ � τn∃ fresh �α∃ free β /∈ �α [ΦEσ

n (�α) ↓= β]. (Q2)

If not, go to Q3. Choose σ, �α, β as above. Let ρ be such that τn ≺ ρ ≺ σ ,
ΦEρ

n (�α) = β and ρ includes β, every α j and every [α j ]Eσ (if finite). Our goal

is to modify ρ and obtain ρ̃ � τn which preserves the computation ΦE ρ̃

n (�α) = β

and f (�x) �= βρ̃ . This way, Rn will be satisfied. Clearly, [β]Eρ consists of free
elements (notice that [β]Eρ might contain some elements of �α). We find large
enough new equivalence class of cardinality ≥ |[β]Eρ |+1 and we put all elements
of [β]Eρ on the positions from the new class with one fresh extra numeral to cover
the additional element. Empty positions are handled as usual. This way, we obtain
ρ′ � τn satisfying Eρ = Eρ′ � ρ which preserves the computation. Now, we
compute f (�αρ′). If this is βρ′ , then we swap β with the extra numeral and denote
the result by ρ̃. Notice that, since β /∈ �α, moving β does not affect the position of �α.
Clearly, E ρ̃ preserves the computation and we have βρ̃ �= f (�αρ̃), thus satisfying
Rn . Hence, we can set τn+1 := ρ̃. If f (�αρ′) �= βρ′ , we can immediately set
τn+1 := ρ′.

3. Check whether

∃σ � τn∃ fresh �α∃ �x ∼σ
τn

�α∃ i[ΦEσ

n (�α) ↓=: αi , f (�x) �= xi , �(�α, �x, τn)]. (Q3)

If not, go to Q4. Otherwise, choose σ, �α, �x and i as above and we perform swap-
and-transfer to get ρ̃. We have ΦE ρ̃

n (�α) = β with each α j sitting on x j . Therefore,
f (�αρ̃) �= αi ρ̃ .

4. Check whether

∃σ � τn∃ fresh �α∃ orbital β /∈ �α[ΦEσ

n (�α) ↓=: β, (Q4)

|[β] − τn| > |{fresh αi : αi Eβ}| + 1].

If not, go to Q5. Choose σ, �α, β as above. Let ρ be such that τn ≺ ρ ≺ σ ,
ΦEρ

n (�α) = β and ρ includes β with every [α j ]Eσ . Observe that there is another
orbital numeral γ �= β (different from any αi Eβ, if there is any such αi ) such
that γ Eβ. This follows from |[β] − τn| > |{fresh αi : αi Eβ}| + 1. We check
whether f (�αρ) �= βρ . If so, we set τn+1 = ρ̃. Otherwise, we set τn+1 as ρ with
γ, β swapped (clearly, this does not affect the computation). Rn is satisfied.

5. Check whether

∃σ � τn∃ fresh �α∃ �x ∼σ
τn

�α∃ orbital β /∈ �α[ΦEσ

n (�α) = β, (Q5)

¬ f (�x)Eβσ ∨ ∃i( f (�x) = xi ∧ xi Eβσ ), �(�α, �x, τn)].

Choose σ, �α, �x, β as above. We apply swap-and-transfer which yields ρ̃. Clearly,
βρ̃ lands on the same equivalence class as βσ . If ¬ f (�αρ̃)Eβσ , then, in particular,
f (�αρ̃) �= βρ̃ and we set τn+1 = ρ̃. If ∃i( f (�x) = xi ∧ xi Eβσ ) then we let
αi1 , . . . , αil be all numerals from �α occupying the same E-equivalence class as β.
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270 D. Kalociński, M. Wrocławski

After swap-and-transfer, each αi j , j = 1, . . . , l, sits on xi j in ρ̃. But β is different
from each αi j , for j = 1, . . . , l, and, therefore, βρ̃ �= f (�x), so we can set τn+1 = ρ̃.

Verification.

The following lemmas imply that for every n, for every 1-1 notation σ � τn+1,
Φn(Eσ ) �� f σ . Since each τn+1 is a prefix of τ , we have ΦEτ

n �� f τ for every n, as
needed.

Lemma 5 If at stage n + 1 some question Q1-Q5 is answered affirmatively, then for
every 1-1 notation σ � τn+1, if ΦEσ

n is total then ΦEσ

n �= f σ .

Proof This should be obvious by the construction. The first question with positive
answer at stage n + 1 leads to τn+1 such that, for some �α, ΦEτn+1

n (�α) ↓�= f τn+1(�α). ��
Lemma 6 If questionsQ1-Q5 are all answered negatively at stage n+1, then for every
1-1 notation σ � τn+1, ΦEσ

n is not total.

Proof Fix n. At stage n + 1 we already have τn . Fix σ ∈ T ω such that σ � τn .
Suppose that questions Q1-Q5 are all answered negatively at stage n + 1. Towards a
contradiction, suppose that ΦEσ

n is total. We will show that f is definable in (ω, E)

by a quantifier-free formula with parameters. In general, our aim is to obtain suitable
quantifier-free definitions of each f � [�n]∼c .

Fix �n. Let c = |τn| − 1. Clearly, if �n is not fresh, [�n]∼c is a singleton and thus
f � [�n]∼c is constant. In the reminder, �n is fresh.
Let l be the number of all free classes having representatives in �n and let

ni1 , ni2 , . . . , nil be such representatives from �n, one for each free class (observe
that these representatives must be pair-wise non-E-equivalent). We may assume
i1 < i2 < · · · < il . For each i j , j = 1, 2, . . . , l, we take ki j = |{p : n pEni j }|.
Below we show how to select numbers k′

i j
for j = 1, . . . , l. Numbers k′

i j
will play an

important role later.
Suppose we want to select k′

i j
. Observe that there is a cardinality ≥ ki j that is

realized infinitely often by free equivalence classes. We choose k′
i j
to be the least such

cardinality. If some cardinalities k, ki j ≤ k < k′
i j
, are realized by free equivalence

classes then, by the choice of k′
i j
, they are realized only finitely often. All free classes

that realize such cardinalities are referred to as i j -exceptions. Let Ci j be the set of all
i j -exceptions.

Now, we define B j
[�n]∼c

, for j = 1, . . . , l, as the set of all �m ∼c �n such that
each free mp satisfying mi j Em p belongs to some i j -exception. We see that the set

B[�n]∼c
= ⋂l

j=1 B
j
[�n]∼c

is finite.

In the remainder of the proof we examine what happens with f � ([�n]∼c − B[�n]∼c
).

Eventually we will see that this restriction is definable in (ω, E) by a quantifier-free
formula with parameters.

Consider an arbitrary J ⊆ {1, . . . , l}. For such J we define a family B�n
J of all

injections g : J → ⋃
j∈J Ci j satisfying g( j) ∈ Ci j . Now, for each J ⊆ {1, . . . , l}
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with nonempty B�n
J , for every g ∈ B�n

J , we select �αg in the following way. If free n p is
not E-equivalent with any ni j for j ∈ J , then we take αh

p from a free E-equivalence
class of cardinality k′

i j
. We also guarantee that for any other free nq non-E-equivalent

to any ni j for j ∈ J but satisfying n pEnq , α
g
q is taken from the same E-class as n p.

Now, if free n p is E-equivalent to ni j for some j ∈ J , then we take α
g
p sitting on

the E-class g( j). We see that such �αg can be selected in the above way and satisfy
�n ∼σ

τn
�αg . One can easily observe that there are only finitely many such functions g

and thus only finitely many corresponding �αgs. We also define �α∅ which we associate
with J = ∅: we simply take free α∅

p from an E-class of cardinality k′
i j
, if n pEni j .

Again, such �α∅ can be selected as advised and satisfy �n ∼σ
τn

�α∅. We note that when
selecting non-free αh

p or α∅
p, it must be τn(n p) if it is non-fresh, and it must sit on the

same class as n p, if it is orbital.
Observe that given any �m ∈ [�n]∼c − B[�n]∼c

we have two possibilities. First is that
�m ∈ H∅, where H∅ := { �m : �m ∼c �n ∧ ∀lj=1mi j /∈ ⋃

Ci j } and in that case each
�m ∈ H∅ satisfies �m ∼σ

τn
�α∅. The second possibility is that there exists J ⊆ {1, . . . , l},

non-empty B�n
J and g ∈ B�n

J such that �m ∼σ
τn

�αg . We always choose maximal such
J in the sense that if we see that mi j belongs to one of i j -exceptions, j is added to
J . Moreover, we can see that the set H∅ and sets Hg = { �m : �m ∼σ

τn
�αg ∧ mi j ∈

g( j), for j ∈ dom(g)} are definable by a quantifier-free formulae with parameters.
Notice that [�n]∼c without any free elements is finite (by the definition of ∼c and

the fact that all classes of E are finite). In that case, f � [�n]∼c is trivially definable by
a quantifier-free formula.

Let [�n]∼c be such that �n has some free elements. Let �m ∈ [�n]∼c −B[�n]∼c
and choose

�αg accordingly. Recall that ΦEσ

n is total so let β = ΦEσ

n (�αg). By the negative answer
to Q2, β is not free or β ∈ �αg .

Suppose β ∈ �αg . Choose i such that ΦEσ

n (�αg) = α
g
i . Observe that by the negative

answer to Q3 the following holds: ∀ �x ∼σ
τn

�αg[ΦEσ

n (�αg) ↓=: α
g
i ∧ f (�x) �= xi 
⇒

¬�(�αg, �x, τn)]. We are interested in �x such that �x ∈ Hg .
Let us unpack ¬�(�αg, �x, τn):

∃α
g
j αg((∀γ ∈ τn¬α

g
j E

σ γ ) ∧ |[αg
j ]Eσ | > |[x j ]E |). (¬ )

Can it be the case that f (�x) �= xi? Suppose, towards a contradiction, that f (�x) �= xi .
But then (¬�) holds. We show that it cannot be the case. For let xr by any free element
of �x . If xr Exi j for some j ∈ dom(g), then |[αg

r ]| = |[xr ]| because, by the definition of
Hg ,α

g
r sits on the class g( j) and this is precisely the class onwhich xr sits. Sowe cannot

have |[αg
r ]| > |[xr ]| for such xr . The remaining case is when xr is not E-equivalent to

any xi j with j ∈ dom(g). Since J is maximal (see one of the paragraphs above), xr
does not come from any i j -exception satisfying xr Exi j . Therefore, |[xr ]| ≥ k′

i j
. But,

by the construction of �αg , αg
r sits on an E-equivalence class of cardinality k′

i j
. Hence,

again, we cannot have |[αg
r ]| > |[xr ]|. We have arrived at a contradiction. Therefore,

f � Hg is a projection.
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272 D. Kalociński, M. Wrocławski

The remaining case is that β /∈ �αg . By the negative answer to Q2, β is not free.
If β ∈ τn , then by the negative answer to Q1, every �x ∼σ

τn
�αg satisfies f (�x) = βσ

(otherwise, we would have ¬� which is impossible by similar argument as above).
Hence, f � Hg is constant.

Finally, we consider the case when β /∈ �αg , β is not free and β /∈ τn .
Hence, β is an orbital. By the negative answer to Q5, ∀�x ∼σ

τn
�αg[ΦEσ

n (�αg) =
β ∧ (¬ f (�x)Eβσ ∨ ∃i( f (�x) = xi ∧ xi Eβσ )) 
⇒ ¬�(�αg, �x, τn)]. We cannot have
¬ f (�x)Eβσ ∨ ∃i( f (�x) = xi ∧ xi Eβσ , because then ¬�(�αg, �x, τn) and we obtain a
contradiction as before. Therefore, ¬(¬ f (�x)Eβσ ∨ ∃i( f (�x) = xi ∧ xi Eβσ ) which
is equivalent to f (�x)Eβσ ∧ ∀i(xi Eβσ 
⇒ f (�x) �= xi ). Now, we use the negative
answer to Q4. It follows that |[β] − τn| ≤ |{fresh α

g
i : α

g
i Eβ}| + 1 which means

that the number of orbitals E-equivalent to β is precisely equal to the number of
such orbitals in �αg plus one. Note that f (�x) is uniquely determined. It follows that
f � Hg is an E-projection, because for some e ≤ c, f (�x) ∈ [e]E , f (�x) /∈ �x and
|[e]E ∩ (c,∞)| = |{xi : xi Ee ∧ xi > c}| + 1.

Now, we shall put everything together to show that f is definable (ω, E) by a
quantifier-free formula. First, recall that by Lemma 1 there are only finitely many
classes of the form [�n]∼c and let [�n(1)]∼c , [�n(2)]∼c , . . . , [�n(k)]∼c be all of them. Each
class [�n(i)]∼c can be defined by some quantifier-free formula αi . We look at the behav-
ior of f � [�n(i)]∼c .

Let [1, k] = O ∪ F , where O ∩ F = ∅ and O consists of precisely all i ∈ [1, k]
such that �n(i) has no free elements.

If i ∈ O , then we have already seen that f � [�n(i)]∼c is definable by a quantifier
free formula, say ψi .

Now, we consider i ∈ F . Obviously, we have ([�n(i)]∼c − B[�n(i)]∼c
) ∪ B[�n(i)]∼c

.
Recall that B[�n(i)]∼c

is finite, hence definable by a quantifier-free formula, say βi .
Also, f � B[�n(i)]∼c

is definable by a quantifier-free formula, say β ′
i . Now, we look at

f � ([�n(i)]∼c − B[�n(i)]∼c
). Notice that the set [�n(i)]∼c − B[�n(i)]∼c

is a finite disjoint

union of H∅ and sets Hg for g ∈ ⋃
J∈2[1,l] B�ni

J which is finite. Note that H∅ and sets
Hg are definable by quantifier-free formulae (this is obvious by looking at how these

sets are defined), say θ∅, θg , for g ∈ ⋃
J∈2[1,l] B�ni

J . We have shown that each f � Hg ,

for g ∈ {∅} ∪ ⋃
J∈2[1,l] B�ni

J , is constant, projection or an E-projection. Therefore, by
Lemma 4, each such f � Hg is definable by a quantifier-free formula, say ψh . Now,
the overall formula defining f as as follows:

∧

i∈O
(αi ⇒ ψi ) ∧

∧

i∈F
{(αi ∧ βi ⇒ β ′

i ) ∧ [(αi ∧ ¬βi ) ⇒
∧

g∈⋃
J⊆[1,l] B�ni

J

(θg ⇒ ψg)]}

��
This completes the verification.

The following result can be deduced from Theorem 17 (discussed in conclusions).
A relatively easy application of the techniques developed for the previous theorem
achieves it as well.
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Theorem 5 Let f be a total function of arbitrary arity. Let (ω, E) be a computable
equivalence structure with finite character. Then the following are equivalent:

(1) f is relatively intrinsically computable on (ω, E),
(2) f is definable in (ω, E) by a quantifier-free formula with parameters.

Proof We apply the same construction as in Theorem 4 with two exceptions. First, at
the initial stage we start with τ0 sufficiently large that every n ≥ |τ0| belongs to an
infinite E-equivalence class. Second, instead of � we use a stronger condition:

(α, x, τn) := ∀α j α(α j /∈ τn α j ]E | ≤ |[x j ]E |). ( )

Its negation, used in verification, is as follows:

∃α j α(α j /∈ τn ∧ |[α j ]Eσ | > |[x j ]E |). (¬ )

Lemma 5 remains unchanged. The proof of Lemma 6 is simpler. The first two
paragraphs of its proof remain the same and we start from there.

We want to show that f � [�n]∼c , where �n is fresh, is definable by a quantifier-free
formula with parameters.

We take �α such that �n ∼σ
τn

�α.
Suppose that ΦEσ

n (�α) = αi . We use the negative answer to Q3: ∀ �x ∼σ
τn

�α[ΦEσ

n (�α) ↓=: αi ∧ f (�x) �= xi 
⇒ ¬�′(�α, �x, τn)]. We claim that f (�x) = xi for
every such �x . For suppose it is not the case. Then we have¬�′. But this is not possible,
because each αp /∈ τn , as well as corresponding xp, sits on an infinite E-equivalence
class. Therefore, we cannot have |[α j ]Eσ | > |[x j ]E |. Hence, f � [�n]∼c is a projection.

Suppose ΦEσ

n (�α) ↓= β /∈ �α. By the negative answer to Q2, β is not free.
We show that β must occur in τn . Assume otherwise. Hence, β is an orbital. By the

negative answer to Q4: ∀ orbital β /∈ �α[ΦEσ

n (�α) ↓=: β 
⇒ |[β]−τn| ≤ |{fresh αi :
αi Eβ}| + 1]. Therefore, |[β] − τn| ≤ |{fresh αi : αi Eβ}| + 1] which is impossible
because |{fresh αi : αi Eβ}| + 1] < ∞ while β sits on an infinite equivalence class.

We work with ΦEσ

n (�α) ↓= β /∈ �α such that β ∈ τn . We use the negative answer
toQ1:∀�x ∼σ

τn
�α[ΦEσ

n (�α) ↓=: β, β ∈ τn, βσ �= f (�x) 
⇒ ¬�′(�α, �x, τn)]. However,
¬�′ cannot hold for the same reason as before. Therefore, βσ = f (�x). Hence, f �
[�n]∼c is constant.

Application of Lemma 4 finishes the proof. ��

Corollary 1 A total function is intrinsically computable on ω iff it is definable in ω by
a quantifier-free formula with parameters.

Proof Take (ω, E) where E is a trivial computable equivalence relation E = ω2. For
such E , the term ’relatively’ can be safely omitted in Theorem 5 because E (and =) is
always computable regardless of isomorphism. Hence, by Theorem 5, f is definable
in (ω, E) by a quantifier-free formula with parameters. Clearly, any atomic formula
including the symbol E can be easily eliminated, and we are left with a formula in the
empty language. ��
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4 Learnability and other types of functions

Consider the following question: does replacing the notion of computability in every
notation by learnability in every notation gives usmore functions? In other words, does
the class of relatively intrinsically learnable functions extend the class of relatively
intrinsically computable ones? A natural notion of relative intrinsic learnability could
be as follows: R is relatively intrinsically learnable on a computable structure A if in
all copies B of A, the image of R is learnable in B, i.e. Δ0

2(B).
The answer to the above question depends on the underlying structure. Here, wewill

focus on computable equivalence structrue (ω, E)where E has finite character. By the
results of Ash et al. [1] (see, also, Theorem 10.1 in [3]), if R is relatively intrinsically
learnable on (ω, E) then it is definable in (ω, E) by a computable �2 formula (see,
Chapter 7 in [3]). The theory of this structure (with countably many constants naming
each element from the universe) has quantifier elimination. Hence, a computable �2
formula which defines R in (ω, E) can be transformed (using quantifier elimination
and contraction of countable disjuctions/conjuctions of quantifier-free formulae to
finitary quantifier-free formulae) to a quantifier-free formula. Hence, R is definable in
(ω, E) by a quantifier-free formulawith parameters. Therefore, by Theorem 5, on such
(ω, E), every relatively intrinsically learnable relation is also relatively intrinsically
computable.

Previous section partially characterizes relative intrinsic computability of total
functions (and, by an obvious extension, for relations)3 over computable equivalence
structures. In this section we also consider related questions about partial functions,
vector-valued functions and functions of non-fixed arity.

Proposition 1 Let (ω, E) be a computable equivalence structure and let the character
of E be finite. The class of partial functions relatively intrinsically computable on
(ω, E) is the class of partial functions definable (ω, E) by quantifier-free formula
with parameters.

Proof The proof of (⇐) is easy—consider the program based on a quantifier-free
formula that defines f .

To prove the left-to-right implication, let f be a partial function relatively intrinsi-
cally computable on (ω, E). Observe that in every copy (ω, E ′) of (ω, E), the image
of dom( f ) is c.e. in E ′ and hence learnable in E ′. Therefore, dom( f ) is relatively
intrinsically learnable on (ω, E). By the paragraph preceding Proposition 1, dom( f )
can be defined in (ω, E) by some quantifier-free φ(�x). Choose α0 ∈ S. Observe that,
in every copy (ω, E ′) of (ω, E), following function g is computable in E ′:

g(�n) =
{
f (�n) if (ω, E) |
 φ(�x)[�n],
σ (α0) otherwise.

3 We note that in injective notations, computing a relation is equivalent to computing its characteristic
function. However, this property does not hold anymore in noninjective notations (see Theorem 2.9 in
[29]).
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g is total. By Theorem 5, choose a quantifier-free formula ψ(�x, y) which defines g in
(ω, E). The following quantifier-free formula defines f in (ω, E):

[φ(�x) ⇒ ψ(�x, y)] ∧ [¬φ(�x) ⇒ y �= y]. (1)

��
Corollary 2 A partial function is intrinsically computable on ω iff it is definable in ω

by a quantifier-free formula with parameters.

We proceed to consider vector-valued functions and functions with non-fixed arity.
For any partial function f : ωn → ωm we use f j (for 1 ≤ j ≤ n) to denote the
projection of the value of f on j-th coordinate.

Theorem 6 A partial function f : ωn → ωm is computable in every injective notation
iff f is definable in ω by a quantifier-free formula with parameters.

Proof It is an easy consequence of Corollary 2 and the fact that, in injective notations,
computability of a relation is equivalent to computability of its characteristic function
(consider k = n + m).

��
Belowwe show yet another generalisation of Shapiro’s theorem.We consider func-

tions f : ω∗ → ω∗. These are functions whose both arguments and values are finite
sequences of natural numbers, of non-fixed arity. Observe that all the functions con-
sidered above are special cases of this notion.

To deal with such functions, we need a first-order logic over the same alphabet
as described above but with a certain modification. We need to allow some infinite
formulae. A formula

∨
i∈ω ϕi , where each ϕi is a finite (quantifier-free) formula, is an

infinite (quantifier-free) alternative. If for each finite formula ϕ it can be determined
whether there is such i that ϕ = ϕi , then the infinite formula is recursive.

Theorem 7 A partial function f : ω∗ → ω∗ is computable in every injective notation
iff it is qf-definable with parameters by a recursive infinite alternative.

Proof (⇐) For any a1, . . . , an search for such formula ϕi in the infinite alternative
and such b ∈ ω that N |
 ϕ(a1, . . . , an, b). When you encounter such b, return
f (a1, . . . , an) = b.

(⇒)Denote f i, j to be f restricted to all the arguments of arity i such that the value
of the function is of arity j . Observe that if f is computable in every notation, then so
is every f i, j . By earlier theorem each f i, j is then qf-definable by a certain formula
ϕi, j . Then f is qf-definable by

∨
i, j∈ω ϕi .

��

5 Generalizations for (not necessarily injective) notations

Many results contained in this part of the article were earlier published in the PhD
thesis [29].
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Theorem 8 The only unary functions computable in every notation are constant and
identity functions.

Proof It is clear that all constant and identity functions are computable in every nota-
tion. We need to prove that only these functions are. Suppose f is neither constant nor
identity. Thanks to the Theorem 1, we only need to consider the following two cases:

1. f is almost constant but not constant,
2. f is almost identity but not identity.

Case 1 We construct a notation (S, σ ) in which f is not computable. Let S be
the standard set of numerals. Let k be the value of f for nearly all arguments and
a0, . . . , am be all arguments for which f takes values other than k.

Let A ⊆ ω be a set not computable in the standard notation. We construct σ as
follows:

σ(0) = k.

Let b0, b1, b2, . . . be an enumeration of all numbers from A \ {0} and c0, c1, c2, . . .
— an enumeration of all numbers from (ω \ A) \ {0}.

For i ∈ ω, to each of the numerals bi , function σ assigns one of numbers a0, . . . , am
and to each of the numerals ci it assigns one of numbers from the set ω \ {a0, . . . , am}.
It is done in such a way that function σ is surjective and for every positive natural
number t : σ(t) �= k.

This is possible unless k is the only argument for which f assumes a value different
from k. We deal with this case later.

Suppose that f is computable in (S, σ ). We show that, contrary to our assumption,
A is computable in the standard notation.

The algorithm provided below only works for n �= k but that does not need to
bother us since the answer for k can be given explicitly.

Let n ∈ ω \ {k}. We want to know whether n ∈ A. We calculate f σ (n). The
following are equivalent:

1. f σ (n) �= 0,
2. f (σ (n)) �= k,
3. σ(n) ∈ {a0, a1, . . . , am},
4. n ∈ {bi : i ∈ ω},
5. n ∈ {bi : i ∈ ω},
6. n ∈ A.

Analogously, we can prove that n /∈ A ⇔ f σ (n) = 0 and we have obtained a
contradiction.

To complete the proof of the first case, we need to consider f of the following
form:

f (n) =
{
k if n �= k,

l if n = k,
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where k �= l. This is because in such a case it is not possible to construct σ in the way
described above.

Let A ⊆ ω be a set of natural numbers not computable in the standard notation. Let
a0, a1, a2, . . . be an enumeration of all numbers from A \ {0} and b0, b1, b2, . . .—an
enumeration of all numbers from (ω \ A) \ {0}.

We construct a notation (S, σ ) in which f is not computable. Let S be the standard
set of numerals. We construct σ as follows:

σ(0) = l,

σ (ai ) = k, for all i ∈ ω,

and to all the numerals b0, b1, b2, . . . we assign all the numbers other than k and l.
Suppose that f is computable in (S, σ ). We show that, contrary to our assumption,

A is computable in the standard notation.
The algorithm provided below works only for n �= 0 but that does not need to

bother us because we can give the answer for 0 explicitly.
Let n ∈ ω \ {0}. We want to know whether n ∈ A. We calculate f σ (n). The

following are equivalent:

1. f σ (n) = 0,
2. f (σ (n)) = l,
3. σ(n) = k,
4. n ∈ {ai : i ∈ ω},
5. n ∈ {ai : i ∈ ω},
6. n ∈ A.

Analogously, we can prove that n /∈ A ⇔ f σ (n) �= 0 and we have obtained a
contradiction.

Case 2 Assume that f is almost identity but not identity. Let A ⊆ ω be a set
of natural numbers not computable in the standard notation. Let a0, a1, a2, . . . be
an enumeration of all numbers from A and b0, b1, b2, . . .—an enumeration of all
numbers from ω \ A.

We construct a notation (S, σ ) in which f is not computable. S is the standard set of
numerals. Let c0, c1, . . . , cm be natural numbers such that f (ci ) �= ci for i = 0, . . . ,m
and let them be the only natural numbers with such a property.

Now let us construct σ . To each of the numerals ai , σ assigns one of the numbers
ci and to each of the numerals bi , σ assigns one of the other numbers. This is done in
such a way that each natural number is assigned to at least one numeral.

Suppose for the sake of contradiction that f is computable in (S, σ ). We provide
an algorithm for A. Let n ∈ ω. We want to know whether n ∈ A. We calculate f σ (n).
For any n, the following conditions are equivalent:

1. f σ (n) �= n,
2. σ(n) ∈ {c0, c1, . . . , cm},
3. n ∈ {ai : i ∈ ω},
4. n ∈ {ai : i ∈ ω},
5. n ∈ A.
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Analogously, for every natural number n the following holds:

f σ (n) = n ⇔ n /∈ A.

Therefore we have obtained a contradiction.
It follows that the only functions computable in every notation are constant and

identity functions.
��

Definition 9 A function f : ωk → ω is a projection if there exists i ∈ {1, . . . , k} such
that:

∀x1 . . . ∀xk f (x1, . . . , xk) = xi .

Theorem 9 The only total functions f : ωk → ω computable in every notation are
constant functions and projections.

Proof The implication (⇐) is obvious.
Weprove the implication (⇒)by induction over k. The previous theoremconstitutes

the base case for this induction. Now suppose that the only functions of k arguments
computable in every notation are constant functions and projections. Let f : ωk+1 →
ω be a function computable in every notation.Wewant to show that it is either constant
or a projection. In this proof we utilise Lemmas 7, 8, 9 and 10 , included below.

For every 1 ≤ i ≤ k + 1 and every j ∈ ω, let us define a function:

fi, j : ωk → ω

such that for all x1. . . . , xi−1, xi+1, . . . , xk+1:

fi, j (x1. . . . , xi−1, xi+1, . . . , xk+1) = f (x1. . . . , xi−1, j, xi+1, . . . , xk+1),

i.e. a function obtained by substituting the value j for the variable xi in f .
All functions fi, j are computable in every notation because they are obtained by

substituting a value for a variable in f , and f is computable in every notations.
Therefore, by inductive assumption, each of them is either constant or a projection.

We want to show that f is either a constant function or a projection. We have two
cases to consider.

Case 1 Suppose that among all functions fi, j there is at least one projection fi0, j0 =
xl . Then by Lemmas 7 and 8 , every function fi, j is also a projection on the same
coordinate xl , unless i = l. Hence, for any i �= l and any x1, . . . , xk+1:

f (x1, . . . , xk+1) = fi,xi (x1. . . . , xi−1, xi+1, . . . , xk+1) = xl .

Therefore, f is a projection on xl .
Case 2 Suppose that all functions fi, j are constant. Then by Lemmas 9 and 10 all

these functions are identical and always equal to the same value c. Hence f is also
constant and equal to c. ��
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Note that functions fi, j mentioned in subsequent lemmas are those defined in the
proof of Theorem 9.

Lemma 7 If fi1, j1 is a projection on xl and i2 �= l , then fi2, j2 is also a projection.

Proof Suppose to the contrary that the function fi2, j2 is not a projection, i.e. it is
constant. Assume that for all arguments:

fi1, j1(x1, . . . , xk+1) = xl

and

fi2, j2(x1, . . . , xk+1) = c.

Let us consider the following cases:
Case 1 Suppose that i1 �= i2. We know that for every sequence of arguments:

fi1, j1(x1, . . . , xi1−1, xi1+1, . . . , xi2−1, xi2 , xi2+1, . . . , xk+1) = xl .

In particular, for xi2 = j2:

fi1, j1(x1, . . . , xi1−1, xi1+1, . . . , xi2−1, j2, xi2+1, . . . , xk+1) = xl .

But this is also the value of fi2, j2 , with j1 substituted for xi1 . This is however a
contradiction since this is always equal to xl , and we assumed that fi2, j2 is constant.
Therefore, fi2, j2 must be a projection.

Case 2 Suppose that i1 = i2. If j1 = j2, then it is trivial. Hence suppose that
j1 �= j2.
Let A ⊆ ω be uncomputable. We construct a notation (S, σ ). Let S be the standard

set of decimal numerals and let

σ(2n) =

⎧
⎪⎨

⎪⎩

c if n = 0,

j1 if n > 0 ∧ n ∈ A,

j2 if n > 0 ∧ n /∈ A.

Assign the remaining numbers to numerals of the form 2n + 1 in any injective way.
To obtain a contradiction, we want to construct an algorithmwhich decides whether

n ∈ A. The answer for n = 0 is given explicitly as a special case. Assume n > 0. Since
f is computable in every notation, we compute the value of f σ , where we substitute
the numeral 2n for xi1 (which is the same variable as xi2 ), the numeral 1 for xl , and
for other variables we substitute any numerals.

Due to the construction of σ and because n > 0, the numeral substituted for xi1
represents either j1 or j2. If it represents j1, then f is a projection on xl and it has to
return a numeral which represents the same number as the numeral 1; hence it has to
return the numeral 1, since no other numeral represents the same number. If, on the

123
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other hand, the numeral substituted for xi1 represents j2, then f is a constant function
always equal to c and in this case the algorithm returns the numeral 0.

Therefore, if the algorithm returns 1, n ∈ A. If it returns 0, n /∈ A. ��
Lemma 8 If fi1, j1 and fi2, j2 are both projections, then they are projections on the
same coordinate.

Proof Suppose that fi1, j1 = xl1 and fi2, j2 = xl2 are different projections, i.e. l1 �= l2.
Let us consider the following cases:

Case 1 Suppose that i1 �= i2. We know that for every sequence of arguments:

fi1, j1(x1, . . . , xi1−1, xi1+1, . . . , xi2−1, xi2 , xi2+1, . . . , xk+1) = xl1 .

In particular, for xi2 = j2:

fi1, j1(x1, . . . , xi1−1, xi1+1, . . . , xi2−1, j2, xi2+1, . . . , xk+1) = xl1 .

But this is also equal to fi2, j2 , with j1 substituted for xi1 , hence it is always equal to
xl2 . This is a contradiction since we can substitute different values for xl1 and xl1 .

Case 2 Suppose that i1 = i2. If j1 = j2, then it is trivial. Hence suppose that
j1 �= j2. Let A ⊆ ω be a set uncomputable in the standard notation. We construct a
notation (S, σ ). Let S be the standard set of numerals and let:

σ(2n) =
{
j1 if n ∈ A,

j2 if n /∈ A.

Assign the rest of numbers to the remaining numerals in any injective way.
To obtain a contradiction, we construct an algorithm which decides whether

n ∈ A. Since f is computable in every notation, we are going to compute f σ , with
2n substituted for xi1 (which is equal to xi2 ), 1 — for xl1 and 3— for xl2 . If the output
numeral is 1, then the algorithm has computed projection on coordinate xl1 . Then
σ(2n) = j1 and n ∈ A. Analogously, if the output numeral is 3, then n /∈ A. Hence A
is computable in the standard notation and we have obtained a contradiction.

��
Lemma 9 If i1 �= i2 and functions fi1, j1 = c1 and fi2, j2 = c2 are constant, then
c1 = c2.

Proof Let these functions be constant and assume values, respectively, c1 and c2.
Without loss of generality assume that i1 < i2. We show that c1 = c2. Then for any
x1, …, xk+1:

c1 = fi1, j1(x1, . . . , xi1−1, xi1+1, . . . , xi2−1, j2, xi2+1, . . . , xk+1)

= f (x1, . . . , xi1−1, j1, xi1+1, . . . , xi2−1, j2, xi2+1, . . . , xk+1)

= fi2, j2(x1, . . . , xi1−1, j1, xi1+1, . . . , xi2−1, xi2+1, . . . , xk+1)

= c2.

��
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Lemma 10 If fi0, j0 = c is constant, then:

1. fi0, j = c, for every j , if all the functions fi, j are constant,
2. fi0, j = j , for every j , if at least one function fi, j is a projection.

Proof First note that if fi0, j0 = c is constant, then fi0, j must be constant for every
j . Otherwise fi0, j would be a projection, for some j , and then, by Lemma 7, fi0, j0
would also be a projection. That would be a contradiction because fi0, j0 is constant.

Suppose that all the functions fi, j are constant. Consider the function fi1, j1 such
that i1 �= i0. By Lemma 9, it is also equal to c. Then, for any j we can again apply
Lemma 9 to fi1, j1 and fi0, j and we conclude that fi0, j = c, for every j .

Now suppose that the function fi1, j1 is a projection on xl . Then, by Lemmas 7
and 8 , all functions fi, j are projections on xl unless i = l. Since all functions fi0, j
are constant, it follows that l = i0. Then for all i �= i0 and all j , functions fi, j are
projections on xi0 , and for all j , functions fi0, j are constant and equal to j .

��
Definition 10 Let the notation (S, σ ) of ω be defined as follows:

The alphabet� consists of standard digits 0, . . . , 9, brackets (, ) and a comma. The
set of numerals S consists of all inscriptions of the form (a, b), where a, b are standard
numerals.

Let B ⊆ ω be such that neither B nor ω \ B is c.e. in the standard notation. We
define σ as follows:

σ((a, b)) =
{
a if b /∈ B,

a + 1 if b ∈ B.

Lemma 11 (S, σ ) defined as above is a correct notation for ω.

Proof The only condition that might not be obvious is that for every natural number n
there is a numeral (a, b) ∈ S representing n. Let n ∈ ω. Since B is not c.e., it follows
that B �= ω. Let b ∈ ω \ B. Then σ((n, b)) = n.

��
Lemma 12 Let A ⊆ ω. Then A is c.e. in (S, σ ) if and only if A = ∅ or A = ω.

Proof The implication (⇐) is obvious. To prove (⇒), we show that if A is neither ∅
nor ω, then it is not c.e. in (S, σ ). Then there is such n that either n or n + 1 is in A
but not both of them.

Suppose to the contrary that A is c.e. in (S, σ ). If n ∈ A and n + 1 /∈ A, then
we enumerate all the elements of A and whenever we reach an element (n, a), we
know that it represents number n and hence a /∈ B. Hence ω \ B is c.e. and this is a
contradiction.

If n + 1 ∈ A and n + 1 /∈ A, then we enumerate the elements of A as above and
whenever we reach (n, a), we know that it represents number n + 1 and hence a ∈ B.
This means that B is c.e. and we obtain a contradiction.

��
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282 D. Kalociński, M. Wrocławski

Lemma 13 Let R ⊆ ωk . Then R is c.e. in a notation (S, σ ) if and only if R = ∅ or
R = ωk .

Proof The implication (⇐) is obvious. To prove (⇒), suppose that R �= ∅, R �= ωk

and that R is c.e. in (S, σ ).
For any (n1, . . . , nk), (n′

1, . . . , n
′
k) ∈ ωk , we call them neighbouring elements if

they differ only on one coordinate, and on this coordinate they differ only by 1, i.e. if
there is 1 ≤ i ≤ k such that ni = n′

i + 1 or n′
i = ni + 1 and for all 1 ≤ j ≤ k, if

j �= i , then n j = n′
j .

If R �= ∅ and R �= ωk , then there must obviously exist (n1, . . . , nk) and
(n′

1, . . . , n
′
k)—two neighbouring elements of ωk such that (n1, . . . , nk) ∈ R and

(n′
1, . . . , n

′
k) /∈ R. Without loss of generality we can assume that n1 = n′

1 + 1, and
that n j = n′

j , for 1 < j ≤ k. Let us fix n2, . . . , nk .
LetC = {a ∈ ω : (a, n2, . . . , nk) ∈ R}. SinceC is neither ∅, norω, it follows from

Lemma 12 that C is not c.e. in (S, σ ). Then R is not c.e. in (S, σ ) either. Thus we
have obtained a contradiction. Therefore the only relations c.e. in (S, σ ) are ∅ and ωk .

��
Theorem 10 The only relations on natural numbers whose characteristic functions
are c.e. in every notation are ∅ and ωk , for k ∈ ω.

Corollary 3 The only relations on natural numbers whose characteristic functions are
computable in every notation are ∅ and ωk , for k ∈ ω.

Lemma 14 If a nonempty partial function is computable in every notation, then it is
total.

Proof Suppose that such a function is not total. Then its domain is neither ∅ nor ω

and hence is not c.e. in (S, σ ) as described above. But if a function is computable in a
given notation, then its domain is c.e. in it. Hence this function is not computable in
(S, σ ). ��
Theorem 11 The only nonempty partial functions computable in every notation are
constant functions and projections.

Definition 11 R ⊆ ωk is qf-definable in terms of relations S1, . . . Sm (possibly
infinitely many) if R is definable by a quantifier-free formula in the first order logic
(without =) in which S1, . . . , Sm are the only non-logical symbols.

Theorem 12 If E ⊆ ω2 is an equivalence relation and R ⊆ ω, then R is computable
in every notation in which E is iff R is qf-definable in terms of E.

Proof The implication (⇐) is straightfoward. We wish to prove (⇒). Suppose that R
is not qf-definable in terms of E (by a finite formula).

First consider the case when E is not qf-definable by an infinite formula either. Enu-
merate all equivalence classes of E as P0, P1, . . . (possibly finitely many). Observe
that R is not a Boolean combination (finite or even infinite) of equivalence classes of
E . We wish to construct such (S, σ ) that E is computable in (S, σ ) but R is not.
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We can take S to be the standard set of decimal numerals. We divide S = ⋃
i∈I Si ,

where I is the set of indices of sets Pi and all Si are all infinite, pairwise disjoint and
uniformly computable. Each Si is going to denote numbers from the equivalence class
Pi .

Since R is not a Boolean combination of all Pi , then there is such j and such
a, b ∈ Pj , that a ∈ R and b /∈ R. We can assume without loss of generality that there
are also some other elements in Pj . Then divide S j = S1j ∪ S2j ∪ S3j (all these sets

being infinite and pairwise disjoint, S1j and S2j noncomputable and S3j computable).

Construct σ in such a way that numerals from S1j all denote a, numerals from S2j
denote b and numerals from S3j denote Pj \ {a, b}.

Observe that E is computable in (S, σ ) but R is not.
Now consider the case when R is an infinite (but not finite) Boolean combination

of equivalence classes. We are going to use a modified version of the above argument.
Divide S into infinitely many infinite, pairwise disjoint, uniformly computable sets Si .
Each of these sets is going to denote the equivalence class Pi . However, at this point
we still have not established the precise enumeration of classes - we wish to do it later.
We wish to construct (S, σ ) in which E is computable but R is not.

Observe that E is computable in (S, σ ). Now we wish to ensure that R is not. Since
R is an infinite but not a finite combination of classes Pi , there are infinitely many
classes contained in R (call them P1

1 , P1
2 , . . . ) and infinitely many not contained (call

them P2
1 , P2

2 , . . . ). To ensure that R is not computable in (S, σ ), take a noncomputable
set of indicesW ⊆ ω. Classes P1

i are going to be denoted by sets of numerals Si where
i ∈ W , the others by those where i /∈ W . Hence E is computable in (S, σ ) but R is
not.

��
Theorem 13 If E ⊆ ω2 is an equivalence relation, R ⊆ ωn and R is computable in
every notation in which E is, then whenever (x1, . . . , xn) ∈ R and (y1, . . . , yn) /∈ R,
it follows that there is such i that ¬xi Eyi .

Proof Suppose that (x1, . . . , xn) ∈ R and (y1, . . . , yn) /∈ R but for all i ≤ n, xi Eyi .
We call equivalence classes of E as P0, P1, . . . (possibly finitely many). We wish to
construct (S, σ ) in which E is computable but R is not.

Observe that if there are such (x1, . . . , xn) ∈ R and (y1, . . . , yn) /∈ R that xi Eyi
for each i , then there are such (x ′

i , . . . , x
′
n) ∈ R and (y′

1, . . . , y
′
n) /∈ R that x ′

i Ey
′
i for

each i and there is a unique j such that x ′
j �= y′

j .
Suppose to the contrary this is not the case, hence whenever (x1, . . . xn) ∈ R,

(y1, . . . , yn) /∈ R and xi Eyi for all i , then they differ on multiple positions. Suppose
that k is the least number of positions on which each such pairs of tuples differ. We
can assume without loss of generality that xi �= yi for i ≤ k and xi = yi otherwise.

Then consider the tuple (x1, . . . xk−1, yk, xk+1, . . . xn). Since it differs from
(x1, . . . , xn) on less than k positions (and all the necessary elements are equivalent),
it belongs to R. However, it also differs from (y1, . . . , yn) on less than k positions,
hence it does not belong to R. This is a contradiction.

Now consider (x1, . . . xn) and (y1, . . . , yn) fixed at the beginning of the proof.
We can assume that they differ on a unique position j . Also, assume without loss of
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generality that j = n. Suppose that x1, . . . xn−1 are denoted by numerals α1, . . . , αn−1
and that both xn and yn belong to Pk . We use decimal numerals and we divide the
set of numerals S = ⋃

i∈I Si like in the previous proof. Each Si is going to denote
numerals from Pi .

We divide Sk = S1k ∪ S2k ∪ S3k similarly to the previous proof. The numerals from
S1k are going to denote xn , the numerals from S2k are going to denote yn and from S3k -
the remaining numbers from Pk . Recall that S1k and S2k are noncomputable. If R was
computable in (S, σ ), then for any β ∈ Sk , by asking whether Rσ (α1, . . . , αn−1, β),
we would be able to determine σ(β) belongs to which S j

k (assuming that σ(β) /∈ S3k
but this condition is decidable).

Hence E is computable in (S, σ ) but R is not.
��

Theorem 14 If E ⊆ ω2 is an equivalence relation with finitely many equivalence
classes and R ⊆ ωn, then R is computable in every notation in which E is iff R is
qf-definable in terms of E.

Proof The implication (⇐) is straightforward. Now we want to show (⇒). Suppose
that R is not qf-definable in terms of E . Then R is not qf-definable in terms of equiv-
alence classes of E . Then there are such (x1, . . . , xn) ∈ R and (y1, . . . , yn) /∈ R that
xi Eyi for all i ≤ n. Then it follows from the previous theorem that there is (S, σ ) in
which E is computable but R is not.

��
Definition 12 For any partial function f : ω∗ → ω∗, its type is a partial function
T f : ω2 → ω∗ defined as follows:

1. T f (i, j) = 0 iff f ij is constant,

2. T f (i, j) = k iff f ij is a projection on the k-th coordinate of the argument of f ,

3. T f (i, j) is undefined otherwise,

where f ij is the projection on the j-th coordinate of the value of f i , f i is f

restricted to arguments from ωi . We also define the following sets: Cons f = {a ∈
ω | ∃i, j ( f ij is constant and equal to a)}, C f

a = {(i, j) | f ij = a} for all a ∈ Cons f

and C f = ⋃
a∈Cons f C

f
a .

In a certain part of the proof of the theorem below we are going to use another
notion of computability.

Definition 13 A sequence f : ω → ω is computable in (S, σ ) if there is an algorithm
which produces (arbitrarily long initial segments) of a sequence of numerals (αn)n∈ω

such that for each n, σ(αn) = f (n).

When we wish to utilise the above notion of computability we are going to refer to
f as sequence rather than a function.

Theorem 15 A partial function f : ω∗ → ω∗ is computable in every notation iff the
following conditions are satisfied:
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1. for each i the arity of the value of f i is fixed and the function assigning such arity
to each i is computable,

2. each f ij is either constant, a projection or empty,

3. Cons f is finite and for every a ∈ Cons f , C f
a is c.e.,

4. T f is a partial computable function.

Proof We want to show (⇐). Fix any function f and notation (S, σ ). Consider
(α1, . . . , αi ) on the input. Condition 1 allows us to calculate arity of the output. Call
this arity m. Now we want to calculate values of every f ij for 1 ≤ j ≤ m.

Fix j . From condition 2 we know that f ij is either constant, a projection or empty.

From condition 4, we calculate T f (i, j).
If T f (i, j) = 0, then f ij is constant and we are able to determine the value of that

constant from Condition 3. If T f (i, j) = k > 0, then f ij is a projection on the k-th

coordinate of the argument. If the algorithm computing T f (i, j) does not halt, then f ij
is empty. In either of these cases, f ij is computable in every notation as a consequence
of Theorem 11.

We want to show (⇒). Suppose that f is computable in every notation.
We want to show condition 1. Consider a function fa : ωi → { j, j ′, k}, where

j and j ′ are some arities of f i , j �= j ′ and k is any number different from both of
them. fa assigns the value j or j ′ to any α ∈ ωi whenever f (α) ∈ ω j or f (α) ∈ ω j ′ ,
otherwise it assigns value k. Observe that if the range of a function is finite, then from
the point of view of computability it is irrelevant which notation is used for the output.
Hence we can conclude that if f is computable in any (S, σ ), then so is fa .

Since fa is not empty, it is either a projection or constant (as a consequence of
Theorem 11. However, the former is impossible since the domain of fa on every
coordinate contains numbers which are not in the range of this functions. Hence fa
is constant. But this is also impossible because both j and j ′ belong to its range and
j �= j ′. This is a contradiction.
To show that the function described in this condition is computable, consider an

alogrithm which calculates f on any input of length i supplied on the input. If it halts
with an output j , return j .

Condition 2 is straightforward from Theorem 11.
Wewish to prove condition 3.Observe that if f is computable in every notation, then

C f and eachC f
a are computable.Wewant to show thatCons f is finite. Suppose to the

contrary that it is infinite. Consider a set A ⊆ ω2 such that for each a ∈ Cons f there is
a unique pair (i, j) ∈ A such that f ij is constant and equal to a. Since f is computable
in every notation, there is a c.e. set A as described above. For brevity we can enumerate
elements of A with natural numbers and think of them as of natural numbers rather
than pairs. Thus we obtain a natural bijective sequence g : ω → Cons f . Since f is
computable in every notation, so is the sequence g. However, this would mean that
every permutation of the setCons f is computable but that is impossible because there
are uncountably many such permutations.

We wish to prove condition 4. For any i ∈ ω, calculate f (1, . . . , i) and
f (i + 1, . . . , 2i) (in the standard notation). We want to determine T f (i, j). Con-
sider the j-th coordinate of each of both obtained values. If they are both the same,
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286 D. Kalociński, M. Wrocławski

then f ij is constant, hence T f (i, j) = 0. If they are not, then the only possibility is
that in the former case we obtained the value k for some k ≤ i and in the latter we
obtained k + i , hence T f (i, j) = k. Observe that no other options are possible since
we have already determined in condition 2 what kind of function each f ij is and we
know that it is not undefined since i ∈ ω.

��
Theorem 16 A partial function f : ωn → ωm is computable in every notation iff for
every 1 ≤ i ≤ n, 1 ≤ j ≤ m, f ij is constant, a projection or empty.

Proof This is a direct consequence of Condition 2 from the previous theorem.
��

6 Discussion and concluding remarks

Shapiro’s result (see, Theorem 1) does not fully characterize (relative) intrinsic com-
putability over plain natural numbers (i.e., natural numberswith no additional structure
assumed)—it does so only for unary total functions. We have extended this result by
covering partial functions and relations of arbitrary finite arities and even when arities
of input and output are not fixed. By doing so, we contributed to the programme of
syntactic characterization of computational notions.

A separate path of investigation was to consider the class of functions computable
in notations (injective or not) in which it is assumed that a certain equivalence relation
is computable. The question we have asked is the following: let (S, σ ) be a notation in
which an equivalence relation E is computable. What other relations are guaranteed
to be computable in (S, σ )? Separately, we consider the problem of relative intrin-
sic computability on a given computable equivalence structure (ω, E): we ask what
relations are computable relative to E in every injective notation.

Results of this sort have been obtained in computable structure theory. For example,
the following theorem characterizes relative intrinsic computable enumerability of a
relation (which, by definition, is equivalent to the second condition below) on an
arbitrary computable structure.

Theorem 17 (Ash, Knight, Manasse and Slaman [1]) For a computable structure A
with a further relation R, the following are equivalent:

1. R is definable in A by a computable �1 formula,
2. in all copies B of A, the image of R is �0

1(B).

Recall Theorem 5 which characterizes total functions relatively instrinsically com-
putable on (ω, E), where E is a computable equivalence relation of finite character,
as those which are quantifier-free definable in (ω, E) (with parameters). This theorem
can be obtained from the above result based on the observation that the theory of
an equivalence structure of finite character has quantifier elimination.4 However, the

4 Take a computable �1 formula that defines R in (ω, E), replace each finitary �1 formula in it by an
equivalent quantifier-free formula and then observe that an infinite disjuction of quantifier-free formulae
is equivalent to a single quantifier-free formula (noting that, in total, only finitely many parameters are
allowed).

123



Generalization of Shapiro’s theorem to higher arities . . . 287

theory of a structure considered in Theorem 4 does not admit such elimination. There-
fore, Theorem 4 cannot be directly deduced from the above result based on simple
elimination-like argument.

There are a few immediate questions that we have not considered. Can a result
similar to Theorem 4 be obtained for computable E for which there is some finite k
such that E has infinitely many classes of size k, there exists l such that for every p,
if E has infinitely many classes of size p, then p ≤ l, and either of the following
conditions hold:

1. E has unbounded character,
2. E has an infinite class,
3. E has infinitely many classes of size k′, for some k′ �= k.

To the best of our knowledge, these structures do not admit quantifier elimination and
thus cannot be deduced this way from Theorem 17.

Another question concerning equivalence relations is related to noninjective nota-
tions. We wish to prove the following hypothesis: for any equivalence relation E and
any R ⊆ ωn , R is computable in every notation in which E is iff R is qf-definable in
terms of E . The case that we still have not proved is for some E with inifinitely many
equivalence classes and for n > 1.
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