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Abstract
A Kaufmann model is an ω1-like, recursively saturated, rather classless model of PA
(orZF). Suchmodelswere constructed byKaufmann under the combinatorial principle
♦ω1 and Shelah showed they exist in ZFC by an absoluteness argument. Kaufmann
models are an important witness to the incompactness of ω1 similar to Aronszajn
trees. In this paper we look at some set theoretic issues related to this motivated by
the seemingly naïve question of whether such a model can be “killed” by forcing
without collapsing ω1. We show that the answer to this question is independent of ZFC
and closely related to similar questions about Aronszajn trees. As an application of
these methods we also show that it is independent of ZFC whether or not Kaufmann
models can be axiomatized in the logic Lω1,ω(Q) where Q is the quantifier “there
exists uncountably many”.
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1 Introduction

A Kaufmann model is an ω1-like, recursively saturated, rather classless model (these
terms are defined below). Kaufmann first constructed such models for PA in [6] under
the combinatorial principle ♦ω1 and noted in that paper that a similar construction
works for models of ZF. In [12] Shelah showed that Kaufmann models (for PA and ZF)
exist in ZFC by an absoluteness argument. These structures form an important class
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1092 C. B. Switzer

of models of arithmetic (and set theory) that have been extensively studied, see [9,
Chapter 10] and the references therein. There are several reasons for this. First of all
a Kaufmann model represents a counterexample to the analogue of several theorems
about countable recursively saturatedmodels ofPA (andZF) holding at the uncountable
including most notably the fact that countable recursively saturated models of PA have
inductive partial satisfaction classes, see [9, Theorem 1.9.3, Proposition 1.9.4]. They
also are a witness to set theoretic incompactness at ω1. For instance, the following is
immediate from the fact that all countable, recursively saturated models of PA have
satisfaction classes and Tarski’s theorem on the undefinability of truth.

Proposition 1.1 LetM be a Kaufmann model of PA. By rather classlessnessM cannot
have a partial inductive satisfaction class. However, there is a club of countable
elementary submodels N ≺ M so that N carries a satisfaction class.

Of course the above proposition is also true for models ZF with the analogue of a
“partial inductive satisfaction class” defined appropriately, see below.

Kaufmann models are also very closely related to trees. This was used in Shelah’s
absoluteness proof and also features prominently in Schmerl’s work on generalizations
of Kaufmann models to higher cardinals [11]. The analogy with trees is the jumping
off point for the current work. Our naïve question that started this work was whether
there could be a Kaufmann model which could be killed by forcing without collapsing
ω1. Note that this is similar to asking whether there is an Aronszajn tree to which an
uncountable branch can be added by forcing with out collapsing ω1. The answer in
that case is independent of the axioms of ZFC: if there is a Souslin tree the answer
is “yes” while if all Aronszajn trees are special the answer is “no”. In the case of
Kaufmann models the answer turns out to be the same. Specifically we prove the
following theorem (proved as Theorems 3.1 and 4.1 respectively).

Main Theorem 1.2 Let T be any consistent completion of either PA or ZF.

(1) Assume MAℵ1 holds. If M |� T is a Kaufmann model and P is a forcing notion
so that �P“M is not Kaufmann” then P collapses ω1.

(2) Assume the combinatorial principle ♦ω1 holds. There is a Kaufmann model M |�
T and a Souslin tree S so that forcing with S adds a satisfaction class to M.

It remains unclear whether the property of “being destructible by ω1-preserving
forcing” has a completely combinatorial or model theoretic characterization but the
models used in the proof of Main Theorem 1.2 can be used to show the following,
which is the second main theorem of this paper (See Theorem 5.3 below).

Main Theorem 1.3 Let Q be the quantifier “there exists uncountably many …” and
Lω1,ω(Q) be the infinitary logic Lω1,ω enriched by this quantifier. The following hold:

(1) Under MAℵ1 there is an Lω1,ω(Q) sentence ψ in the language of PA (respectively
ZF) enriched with a single unary function symbol f ,LPA( f ) (respectivelyLZF( f )),
so that a model M |� PA (M |� ZF) is Kaufmann if and only if there is an
expansion of M to an LPA( f )-structure (respectively to a LZF( f )) satisfying ψ .

(2) Under the combinatorial princple ♦ω1 there is a Kaufmann modelM so that given
any expansion L′ of the language of PA (respectively ZF) and any expansion of
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Destructibility and axiomatizability of Kaufmann models 1093

M to an L′-structure, M′, and any countable set X of Lω1,ω(Q) sentences in the
signature L′ there is a model N which agrees with M′ about the truth of every
sentence in X but carries a satisfaction class for its L-reduct. In particular, the
L-reduct of N is not rather classless.

Informally the Main Theorem 1.3 can be phrased as saying it is independent of ZFC
if Kaufmann models can be axiomatized by an Lω1,ω(Q) sentence. This logic is a nat-
ural one to consider in the context of such models since being ω1-like and recursively
saturated are expressible here hence the question is really about (in)expressibility of
rather classlessness.Moreover this logic plays an important role in Shelah’s aforemen-
tioned absoluteness result, [12, Theorem 6], and is used in several other applications
of abstract model theory to ω1-like structures, see [7]. In fact, part 1 can be deduced
as an immediate corollary of the proof of [12, Theorem 6]. I do not know if this was
observed by Shelah at the time. Part 2, as far as I know, is completely new.

A first draft of this paper focused solely on the case of models of arithmetic. The
anonymous referee astutely observed that in fact many of the results presented extend
to a broader class of models which can be described in terms of tree-like models
satisfying the collection scheme (see [8] and the definitions in subsection 2.1 below). In
particular all the results applied to models of ZF. Following the referee’s suggestion, in
this version we have reworded several of the results to accommodate this more general
perspective. Specifically, we give the basic set up for tree-like models in Sect. 2 and
then couch proofs for the rest of the paper in terms of PA and ZF. Presumably many of
the ideas presented here could be applied to other “foundational theories” including
weaker set theories, however we leave the investigation of which specific theorems
apply to which specific weak theories for later work.

The rest of this paper is organized as follows. In Sect. 2 we give some basic defini-
tions and background that will be used throughout. In Sect. 3 Part 1 of Main Theorem
1.2 is proved. In Sect. 4 Part 2 of Main Theorem 1.2 is proved. In Sect. 5 Main Theo-
rem 1.3 is proved. Section 6 concludes with some open questions and lines for further
research.

2 Tree-like models and basic definitions

Throughout we will be interested in the languages LPA of PA, andLZF of ZFwhich for
us, in the case ofPA, includes a symbol≤ for the natural ordering definable inPA. All of
the results below work equally well for any countable extension of LPA (respectively
LZF) and any theory PA∗, that is PA in that language with induction extended to
formulas in that language (respectively ZF∗, that is ZF with the comprehension and
replacement schemes expanded to include all formulas in this language). Given a first
order structure such asM, N ,Mα etc we always let the associated non-calligraphic
letter, M , N , Mα etc denote the universe of the model. When it won’t cause confusion
this won’t be stated explicitly. Also, when it will not cause confusion we will refer
somewhat ambiguously to a language L which could be either LPA or LZF depending
on the context. Since many of the proofs work mutatis mutandis for the two theories
we will prove the statements once in this general setting. For ease of notation by a
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1094 C. B. Switzer

model we will always mean an L structure M modeling PA (respectively ZF) unless
otherwise stated.Also, throughout definablemeans definablewith arbitrary parameters
unless specified otherwise. Since we’re looking at applications of set theory to model
theory, and hoping to appeal to researchers in both these fields, we have included
more definitions and proof sketches than usual in order to make this paper more self
contained for the readerwho is an expert in only one of these subjects. For all undefined
terms in the model theory of PA we suggest the reader consult [9]. For set theory we
recommend [10].

2.1 Tree-likemodels

Webegin with a brief overview of the vocabulary of tree-likemodels. Tree-likemodels
were first introduced and studied in depth byKeisler in [8] and the reader is encouraged
to look to that article for more details and background. Recall that a tree-like order
T = 〈T ,≤T 〉 is a partial order with the additional property that given any t ∈ T the
set R(t) := {u ∈ T | u ≤T t} is linearly ordered by ≤T . As is standard, when it
will cause no confusion we will confuse a tree-like order with its universe T . A tree
is a tree-like order T with the additional property that ≤T is well-founded. A branch
B ⊆ T is a maximal, linearly ordered subset of T . Throughout this article we will be
interested in tree-like orders with the following additional properties.

(1) (Rooted) There is a unique t0 ∈ T which is minimal with respect to ≤T .
(2) (Normal) For every t ∈ T there are s, u ∈ T so that t ≤T s, u and s and u are

incomparable with respect to ≤T .

Note that Item 2 implies that in particular there are no maximal elements of T . From
now on we will assume that all of our tree-like orders are rooted and normal.

Definition 2.1 A ranked tree is a structure T = 〈T ,≤T , O,≤O , r〉 so that
(1) 〈T ,≤T 〉 is a rooted, normal tree-like order,
(2) 〈O,≤O 〉 is a linear order
(3) r : T → O is a function, called a ranking function, so that t ≤T u implies

r(t) ≤O r(u) with equality holding on the left if and only if it holds on the right.
(4) For each t ∈ T , the image of {u ∈ T | u ≤T t or t ≤T u} under r maps onto O .

Given a ranked tree T = 〈T ,≤T , O,≤O , r〉 and a branch B ⊆ T . We say that B
is cofinal if its image under r surjects onto O . Throughout this paper we will only be
interested in cofinal branches and “branch” will mean cofinal branch unless otherwise
stated. If κ is a cardinal, we say that ranked tree T is κ-like if O has size κ but for
each a ∈ O the set of t ∈ T so that r(t) ≤O a has size <κ .

Definition 2.2 Let κ be a cardinal.

(1) A structure A = 〈A, T A,≤T , O A,≤O , r , P1, . . .〉 is called a tree-like model if
T A = 〈T A,≤T , O A,≤O , r〉 is a ranked tree.

(2) If A is any L0-structure for any first-order language L0 we will equally call A a
tree-like model if there are (parametrically) definable predicates T A, O A, definable
relations ≤T , ≤O and a definable function r so that A enriched with this extra
structure form a tree-like model in the obvious way.
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Destructibility and axiomatizability of Kaufmann models 1095

(3) A tree-like model (in either sense) is κ-like if its associated ranked tree is κ-like.
(4) A tree-like model is rather branchless if every cofinal branch is definable.

For most “foundational theories”, every model can be thought of as a tree-like
model. We give the details explicitly for ZF and PA since these are the theories we are
focusing on in this paper.

Example 2.3 Any model of either ZF or PA is tree-like as witnessed by the tree-like
structures defined below.

(1) In the case of ZF define the tree-like by saying x ∈ T if and only if x codes a
pair (a, α) where α is an ordinal and a ⊆ Vα . We let x ≤T y if and only if x
codes (a, α), y codes (b, β) and α < β and b ∩ Vα = a. The linear order is the
ordinals of the model and the ranking function is simply r(a, α) = α. Given a
model M |� ZF we will refer to the version of this tree-like order defined in M
by T M

ZF .
(2) In the case of PA the tree-like order is simply the tree of finite binary sequences

coded in the model. Given two such sequences s, t we let s ≤T t just in case t is
an end extension of s. The linear order is the order of the model and the ranking
function is just the length of the sequence. Given a modelM |� PA we will refer
to the version of this tree-like order defined in M as T M

PA .

If T is a theory for which every model can be construed as a tree-like model as in the
above example we will refer to T as a tree-like theory. Thus the above shows that PA
and ZF are tree-like theories.

We finish this subsection with the introduction of one more idea. Given a tree-like
model A we say that A satisfies the collection scheme if it satisfies the following
scheme of sentences (which range of all formulas ϕ(x̄)):

∀x ∈ T ∃z ∈ T ∀t ∈ R(x) [∃u ∈ T ϕ(t, u, . . .) → ∃u ∈ R(z) ϕ(t, u, . . .)]

where z does not occur in ϕ(x̄). Recall here that R(x) is the set of predecessors of x
in the tree ordering. In words the collection scheme asserts roughly that for all x ∈ T ,
if ϕ(t, . . .) has a witness for each t ∈ R(x) then we can collect all of these witnesses
together and they live in some bounded region of the tree.

Fact 2.4 [See Example 3.2 of [8]] Every model of ZF or PA satisfies the collection
scheme with the tree-like structures described above.

As mentioned in the introduction many of the results of this paper apply to theo-
ries all of whose models are tree-like and satisfy the collection scheme, however for
definiteness we will primarily stick to ZF and PA from now on.

2.2 Basic definitions for models of PA and ZF

Importing the definitions from the previous section we here give an account of what
we will need about model theory of ZF and PA for the rest of the paper. Throughout
the rest of the paper, when discussing a model M of ZF if we refer to an ordinal in

123



1096 C. B. Switzer

M we mean an element a ∈ M so thatM |�“a is an ordinal” (and not necessarily an
ordinal of the meta-theory).

First let us note that for a cardinal κ a model M of PA is κ-like if it has size κ but
for all a ∈ M |[0, a]| < κ . A modelM of ZF is κ-like if there are κ-many ordinals in
M but for every ordinal α ∈ M the set Vα (as defined in M) has size less than κ and
in particular the set of ordinals less than α has size less than κ .

Definition 2.5 Let κ be a cardinal.

(1) By arithmetizing the language of arithmetic and/or set theory we can think of
L-formulas as coded computably by natural numbers. As such it makes sense to
talk about a set of formulas as being e.g. computable, arithmetic etc. A modelM
(of either PA or ZF) is recursively saturated if it realizes every computable type
with finitely many parameters.

(2) If M is a model of PA, then a class is a subset A ⊆ M so that for all a ∈ M the
set A ∩ a := {b ∈ A | M |� b < a} is definable inM (parameters allowed).

(3) If M |� ZF then a class is a subset A ⊆ M so that for all ordinals α ∈ M we
have that A ∩ Vα := {b ∈ A | M |� b ∈ Vα} is definable in M. In other words
(A ∩ Vα, α) ∈ T M

ZF .
(4) A model M (of PA or ZF) is rather classless if every class is definable.
(5) A κ-Kaufmann Model (of PA or ZF) is a model M which is κ-like, recursively

saturated and rather classless. If κ = ω1 then we simply say M is a Kaufmann
model.

Note that a model of PA (respectively ZF) is rather classless if and only if every
branch of the tree defined in Example 2.3 is definable. In other words being rather
classless is a particular example of being rather branchless.

The notion of aKaufmannmodel can be defined for other theories aswell and in fact
every tree-like theory satisfying the collection scheme has Kaufmann models (with
“rather classless” replaced with “rather branchless”). In particular there are Kaufmann
models of PA and ZF. As mentioned above, this was shown by Kaufmann in [6]
under the assumption that the combinatorial principle ♦ω1 holds and the additional
set theoretic assumption was eliminated by Shelah in [12]. Presently we recall a brief
sketch of the existence of Kaufmann models for PA and ZF under the combinatorial
principle ♦ω1 as ideas from these arguments will be used repeatedly throughout the
paper. Recall that ♦ω1 is the statement that there is a sequence {Aα | α < ω1} so
that for all α < ω1 Aα ⊆ α and for every A ⊆ ω1 the set {α | A ∩ α = Aα} is
a stationary subset of ω1. A sequence such as {Aα | α < ω1} as described above
is called a ♦-sequence. From now on we will shorten the phrase “the combinatorial
principle ♦ω1” to read simply “♦”.

Theorem 2.6 (Kaufmann [6]) If ♦ holds then every countable, recursively saturated
model has an elementary end extension which is Kaufmann.

Before sketching the proof we need to note a few things. First, recall that in the
context of PA, given two models M and N we say that N is an elementary end
extension ofM, denotedM ≺end N ifM ≺ N and for every y ∈ N \ M and x ∈ M
we have N |� x ≤ y, i.e. (M,≤) is an initial segment of (N ,≤). The foundational
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Destructibility and axiomatizability of Kaufmann models 1097

MacDowell–Specker theorem states that every model of PA has an elementary end
extension, see [9, Theorem 2.2.8]. In the context of ZF, a model N is an elementary
end extension of M, in symbols M ≺end N , if M ≺ N and for all x, y ∈ N with
N |� x ∈ y, if y ∈ M then x ∈ M . Briefly ifN adds no new elements to sets inM.1

Analogues of the MacDowell–Specker theorem for ZF are more complicated, see [3]
for more details.

The proof of Theorem2.6 uses the following lemma,which is also due toKaufmann.

Lemma 2.7 (Kaufmann [6]) Let M be a countable recursively saturated model of
PA (respectively ZF) and A ⊆ M. If A is not definable, then there is a countable,
recursively saturated model N so that M ≺end N and A is not coded into N i.e.
there is no a ∈ N so that a codes an N -finite sequence sa (respectively is an element
of N) and M ∩ sa = A (respectively M ∩ {b ∈ N | N |� b ∈ a} = A).

Both Lemma 2.7, and Theorem 2.6 are proved explicitly in [6] for models of PA
however, as Kaufmann remarks on [6, p. 332] they applymore generally to all tree-like
models satisfying the collection scheme, with “rather classless” replaced by “rather
branchless”. In particular, the proofs apply mutatis mutandis to models of ZF.

Proof of Theorem 2.6 Fix a countable recursively saturated model M0 and a ♦
sequence �A = 〈Aα | α < ω1〉. We want to define a continuous chain 〈Mα | α < ω1〉
of countable, recursively saturated models so that Mα ≺end Mα+1 for all α < ω1
and the union of all theMα’s will be a Kaufmannmodel. This is done recursively. The
universe of each model will be a countable ordinal. Note that there will necessarily
be a club of δ < ω1 so that Mδ = δ.2 At limit stages we have to take unions since
the chain is continuous so it remains to say what to do at successor stages. Suppose
Mα has been defined. If Aα ⊆ Mα is undefinable let Mα+1 be as in Lemma 2.7,
namely a countable, recursively saturated elementary end extension of Mα in which
Aα is not coded. If Aα is not an undefinable subset of Mα (either because it’s not a
subset or because it’s definable) then let Mα be any countable, recursively saturated
elementary end extension of Mα . This completes the construction.

Let M = ⋃
α<ω1

Mα . Clearly this model is an ω1-like, recursively saturated
elementary end extension of M0. The hard part is to show that it is rather classless.
This is shown as follows: suppose A ⊆ M is an undefinable class. It’s straightforward
to show that the set of α so that A ∩ Mα is undefinable in Mα is club, thus by ♦
there is an α so that A ∩ Mα = Aα . But then A ∩ Mα is not coded intoMα+1 by our
construction contradicting the assumption that A is a class.

1 The definitions for end extension for these two theories can be unified in the language of tree-like models.
Namely, ifA is a tree-like model andA ≺ B (which will also be a tree like model) then B end-extendsA
if and only if for all a ∈ T A and b ∈ T B if b ≤TB a then b ∈ T A , i.e. T A is an initial segment of T B , as
a partial order.
2 Here Mδ is the universe of Mδ , conforming to the convention mentioned in the first paragraph of this
subsection.
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The sequence above 〈Mα | α < ω1〉 is commonly called a continuous, end-
extensional filtration. For short we will refer to such a sequence as simply a filtration.3

Definition 2.8 A filtration is an ω1-length sequence 〈Mα | α < ω1〉 of countable
models so that forα < β, Mα ≺end Mβ and for limit ordinalsλ < ω1 Mλ = ⋃

ξ<λ Mξ .
The filtration is said to be recursively saturated if every Mα is recursively saturated.

We will need the notion of a (partial amenable) satisfaction class for models of
arithmetic and set theory. This idea has generated an enormous amount of research
and is central in the study of models of PA (and, to a lesser extent models of ZF). We
will only need a few facts, which we cherry pick below, and refer the reader to the
excellent monograph [9] for more details. Unfortunately the definitions of PA and ZF
are different enough that they have to be handled individually. We first present the
more well-known case of PA and discuss its augmentation for ZF.

First, let us define an inductive, partial satisfaction class for a model of PA. The
definition we give, which comes from [11], is not standard but it’s easily seen that a
model has a partial inductive satisfaction class in the sense below if and only if it has
one in the sense defined e.g. in [9, Definition 1.9.1]. Recall that for each standard
n < ω there is (provably, in PA and ZF) a �n formula T rn(x, y) so that for all �n

formulas ϕ(z) PA � ∀y[ϕ(y) ↔ T rn(ϕ, y)]. Given a modelM |� PA let W M
n denote

the set of pairs (ϕ, a) so that ϕ(x) is a �n formula with one free variable from the
point of view of M and M |� T rn(ϕ, a) i.e.M thinks that a satisfies ϕ.

Definition 2.9 Let M be a model of PA. A set S ⊆ M2 is called a partial inductive
satisfaction class if

(1) For all x ∈ M Sx := {y | 〈x, y〉 ∈ S} is a set of pairs (ϕ, a) so that ϕ is a formula
from the point of view ofM and a ∈ M .

(2) For all n < ω we have Sn = Wn .
(3) (M, S) satisfies the induction scheme in the language expanded with a predicate

for S.

Partial inductive satisfaction classes are the only types of satisfaction classes that will
be discussed in this paper so we drop the qualifiers and refer to them simply as “satis-
faction classes”. Note that the definition above is unchanged if we fix a nonstandard
a ∈ M and insist that for every b ≥ a the set Sb = ∅.

Asmentioned above κ-Kaufmannmodels can be seen as awitness to incompactness
at a cardinal κ . Schmerl has formalized this in the following striking way.

Theorem 2.10 (Schmerl, Theorem 3 of [11]) If there is a κ-Kaufmann model, then
there is a κ-Aronszajn tree.

Roughly speaking the tree is the “tree of attempts to build a satisfaction class”.

Proof LetM be a κ-Kaufmann model. We will define a subset T ⊆ M and a tree-like
order on T so that the levels of T are indexed by the elements ofM, T has sequences

3 Without the extra qualifiers this is not entirely standard, but this is the only type of filtration we will
consider in this paper so no confusion will arise.
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Destructibility and axiomatizability of Kaufmann models 1099

of every order type in M, the set of such sequences in a given order type has size
less than κ , and there is no subset B ⊆ T in order type ≤M . Clearly then any cofinal,
well-founded subset of this “tree” will be a κ-Aronszajn tree.

Fix a ∈ M non-standard. Let Wn denote the complete �n-set (as defined in M),
whichwe think of an anM-indexed list of 0’s and1’s corresponding to its characteristic
function on the set of pairs consisting of �n formulas and elements of M (using some
standard pairing function). The tree T is the set of b ∈ M so that there is a d ∈ M
and b codes a d × a sized matrix whose entries are 0 or 1 and for which for each
natural number n < ω the nth-column of b is an M-finite initial segment of Wn . For
elements b0, b1 ∈ T coding matrices of size d0 × a and d1 × a respectively we let
b0 �T b1 if d0 < d1 and b0 = b1 � (d0 × a). In words, b0 is below b1 if and only if b1
codes a larger matrix whose restriction to the coordinates (d0 × a) is b0 (end extend
each column). This is clearly a tree like order, it remains to see that it forms a tree as
described in the first paragraph.

First let’s see that the levels have size <κ . Let Td := {b ∈ T | b codes a binary
matrix of size d × a}. Then since b ∈ Td implies b ∈ M and codes a sequence of size
d × a there are at most 2d×a elements of Td (as computed in M) so by κ-likeness
|Td | < κ .

Now lets see that the tree has height κ . This follows immediately by recursive satu-
ration. For each b ∈ T and i < a let bn denote the nth column of the matrix coded by
b. For any d ∈ M consider the type pd(x) := {∃e > d (x codes a matrix of size e ×
a)} ∪ {xn ⊆ Wn | n < ω}. Clearly this is a finitely consistent, recursive type so it has
a realization inM. But any such realization is an element of height greater than d.

Finally there is no cofinal branch. This follows by rather classlessness: from any
cofinal branch we could define a satisfaction class by the definition of the tree, but
since any satisfaction class is undefinable this can’t exist. See [11, Lemma 4.1] for
a more detailed discussion of this last point. Note that if κ is an uncountable regular
cardinal then any class is inductive, see [9, pp. 258–259]. ��

As Schmerl notes, what the proof above shows is that if κ has the tree property
then every κ-like recursively saturated model has a satisfaction class. Regardless of
the properties of the order type of M, the proof shows that given any recursively
saturated model M, there is an associated tree T M

sat whose levels are cofinal in the
model. Moreover, if M is κ-like for some regular κ then T M

sat has a cofinal branch if
and only ifM has a satisfaction class. We will call such a tree the satisfaction tree for
M (relative to a).

Now let us handle the case ofmodels of ZF. For any defined term t in ZF, ifM |� ZF
let tM denote the corresponding term in ZF e.g. ωM, VM

α etc. Theorem 2.10 holds
almost verbatim for models of ZF, however this seems to be folklore and we could
not find a proof so we write out the details here. First we need an augmentation of
Definition 2.9. Recall that if M |� ZF then for any integer n ∈ ωM we can define
in the model a truth predicate for �n-truth i.e. the class {(ϕ(x), a) | ϕ(x) is �n and
M |�“ϕ(a) holds”}. Let us call this class W M

n in analogy with the arithmetic case. If
α ∈ M is an ordinal in M then let W M

n � α consist of the set of all (ϕ(x), a) ∈ W M
n

so that a ∈ VM
α . Note that this is a set from the point of view of M.
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Definition 2.11 LetM |� ZF. A subset S ⊆ ωM × M is a partial amenable satisfac-
tion class if the following hold.

(1) For all x ∈ M Sx := {y | 〈x, y〉 ∈ S} is a set of pairs (ϕ, a) so that ϕ is a formula
from the point of view ofM and a ∈ M .

(2) For all standard n < ω we have Sn = W M
n .

(3) (M, S) satisfies the replacement and comprehension schemes in the language
expanded with a predicate for S.

Note that by a diagonal argument similar to the classic one used in Tarski’s undefinabil-
ity of truth no partial amenable satisfaction class can be definable. As in the case of PA
this definition is not standard. However, in the terminology of [5, Definition 2.2 d)], if
M is ω-nonstandard then for any a ∈ ωM nonstandard if S is an a-satisfaction class,
then the set {(k, ϕ(x), a) | ϕ(a) ∈ S is �k} is a partial amenable satisfaction class in
our sense and, conversely, by overspill, if S is a partial amenable satisfaction class as
defined above then there is a nonstandard a ∈ ωM so that

⋃
b<a Sb is an a-satisfaction

class in the sense of [5, Definition 2.2, d)]. Therefore, for ω-nonstandard models the
existence of a partial amenable satisfaction class is equivalent to the existence of an
a-satisfaction class for some nonstandard a.

Let us now explain how to define the analogue of T M
sat for a model of ZF. The

construction of the tree is enough to imply that Schmerl’s Theorem 2.10 holds for
models of ZF. In any case it is the construction of the tree that we will need moving
forward.

Let M |� ZF and for each n ∈ ωM, let �M
n be the set of �n-formulas of LZF

as defined in M. In an abuse of notation, for each infinite α ∈ O NM and standard
n < ω let us associate W M

n � α with its characteristic function χn : �M
n × VM

α → 2.
Now, for each ordinal α in M let T M

α consist of all t ∈ M so that t ∈ ωM × M2

so that for all n ∈ ωM standard we have that tn = W M
n � α and for all n ∈ ωM we

have that tn is a function mapping �M
n × VM

α → 2. Let T M
sat = ⋃

α∈O NM T M
α . If

t, s ∈ T M
sat we let t ≤sat s if and only if t ∈ T M

α , s ∈ T M
β with α < β ∈ O NM and

for each n ∈ ωM we have that sn � �M
n × Vα = tn . In other words, in each column,

the restriction of s to parameters in VM
α is exactly t . Clearly this is a tree like order

with a ranking function in the ordinals of M.
Now an essentially verbatim proof to the one given for Theorem 2.10 shows that

if M is recursively saturated then T M
α is non-empty for every α ∈ O NM, if M is

κ-like for some regular cardinal κ then |T M
α | < κ for each α ∈ O NM and any cofinal

branch through T M
sat codes a partial amenable satisfaction class forM so ifM is rather

classless then T M
sat has no cofinal branch. In total, if M is a κ-Kaufmann model then

T M
sat is a κ-Aronszajn tree.
The tree T M

sat will be discussed in Sects. 4 and 5. There it will not matter whether we
are discussing models of PA or ZF since, in light of the above discussion these ideas
can be defined equally for both. Therefore, given a Kaufmann modelM of either PA
or ZF we will define T M

sat to mean the corresponding tree depending on the theory
without much further comment.

Fix a Kaufmann model M of any tree-like theory. Suppose P is a forcing notion,
when does �P “M̌ is not Kaufmann” ? Obviously, if P collapses ℵ1 to be countable,
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then ω1-likeness is killed. What about if P does not collapse ω1? This motivates the
following definition.

Definition 2.12 A Kaufmann model M is destructible if there is an ω1-preserving
forcing notion P so that �P “M̌ is not Kaufmann”.

In this language, an immediate corollary of Main Theorem 1.2 is the following.

Corollary 2.13 The existence of destructible Kaufmann models for PA and ZF is inde-
pendent of ZFC.

Before ending this section, let us make one observation about destructibility of
Kaufmann models that will guide the rest of the paper. Suppose M is a Kaufmann
model of PA or ZF and P is an ω1-preserving forcing notion. Then in V P M is still
ω1-like, and by absoluteness, there cannot be any new recursive types, so M is still
recursively saturated. Therefore, if P kills the Kaufmann-ness of M it’s because it
added an undefinable class. This is what we will use to kill Kaufmann models.

Finally, let us note that some similar ideas to those presented here were previously
explored by Enayat in [4]. In particular, in Theorem 4.2 of that paper Enayat observes
that there are rather classless models of ZFC− + V = Hℵ1 which remain rather
classless in any forcing extension preserving ω1. Thus in the language of this paper
Enayat shows that there is always an indestructible model of ZFC− + V = Hℵ1 .

3 Killing destructible Kaufmannmodels

In this section we prove the first part of Main Theorem 1.2. Specifically we show the
following, which is much more general.

Theorem 3.1 Assume MAℵ1 . Let A = 〈A, T A,≤T , O A,≤O , r , P1, . . .〉 be a tree-like
model which is ω1-like and rather branchless. If P is a forcing notion so that �P“Ǎ
is not rather branchless” then P collapses ω1.

In particular there are no destructible Kaufmann models of any tree-like theory
satisfying the collection scheme.

For the “in particular” part in the case of PA or ZF note that since forcing cannot add
elements to old models, adding a class to a modelM of either PA or ZF is equivalent
to adding a cofinal branch to T M

PA or T M
ZF .

The rest of this section is devoted to proving Theorem 3.1. Fix an ω1-like, rather
branchless tree-like model A = 〈A, T A,≤T , O A,≤O , r , P1, . . .〉 for the rest of the
section. Note that since A is ω1-like, T A has uncountably many levels but each level
is countable. We will show that in any forcing extension ifA has a new class, then ω1
is collapsed. To begin we need a few more definitions about trees.

Definition 3.2 Let T = 〈T ,≤T 〉 be a tree-like order.
(1) If T isω1-like we say that T is Aronszajn if it has no uncountable, linearly ordered

subset.
(2) We say that T is special if there is a function f : T → ω so that if x ≤T y then

f (x) �= f (y).
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(3) We say that T is weakly special if there is a function f : T → ω so that if
x ≤T y, z and f (x) = f (y) = f (z) then y and z are comparable in the ≤T

ordering.

The application ofMAℵ1 needed to prove Theorem 3.1 is the following fact, due to
Baumgartner, Malitz and Reinhardt.

Fact 3.3 (Theorem 4 of [1]) Assume MAℵ1 . Let T be an ω1-like tree-like partial order
of size ℵ1. If T is Aronszajn then T is special.

We also need the following, well known fact.

Lemma 3.4 Suppose T is an ω1-like tree-like order. If T is weakly special then any
forcing adding a cofinal branch collapses ω1.

Proof Suppose f : T → ω witnesses that T is weakly special, P is a forcing notion
and �P “ḃ ⊆ Ť is a new, cofinal branch”. Let G ⊆ P be generic over V and let
b = ḃG . We claim that (in the extension) for each n < ω the set f −1({n}) ∩ b is
bounded. Note that this implies the lemma since we will have that b, which is a set of
size ℵV

1 can be covered by countably many countable sets.
To see the claim, suppose for some n < ω we have that p � f̌ −1“({ň}) ∩ ḃ

is unbounded”. By strengthening if necessary, we may assume that p decides some
x ∈ T is in ḃ and f (x) = n. Now since ḃ is forced to be new there are incompatible
extensions p0 and p1 of p and incompatible elements x0 and x1 extending x so that
for i < 2 pi � xi ∈ ḃ and f (xi ) = n. But this contradicts the defining property of f .

��
Lemma 3.5 MAℵ1 implies that T A is weakly special.

The proof of this lemma uses the fact that if the conclusion of Fact 3.3 holds then any
tree of cardinality ℵ1 with at most ℵ1 many uncountable branches is weakly special.
For (well-founded) trees, this result is well known, see [2, Corollary 7.8]. The proof
goes through verbatim for ranked trees T A which appear as the tree-like order of an
ω1-like tree-like modelA, but we give the details below for the sake of completeness,
as well as to present the proof to model theorists who may not be as familiar with
these ideas as set theorists.

Proof Since A is rather branchless T A has only ℵ1-many branches. Enumerate all
the uncountable branches by B = {bα | α < ω1}. Fix an injection g : B → T A so
that for each α g(bα) ∈ bα . By [2, Lemma 7.6], one can choose g so that whenever
g(bα) < f in g(bβ) then g(bβ) /∈ bα . Now let S = {t ∈ T A | ∀b ∈ B if t ∈
b then t ≤T g(b)}. This is a tree-like orderwith the order inherited from T A.Moreover,
it’s uncountable since it contains the range of g. It has no uncountable branches. To
see this, towards a contradiction, suppose that b were an uncountable branch through
S. Let b̄ = {t ∈ T | ∃s ∈ b t <T s} i.e. the downward closure of b in T A. This must
be an uncountable branch through T . But then since g(b̄) ∈ b̄ we get an s ∈ b with
g(b̄) ≤T s contradicting the definition of S.

Applying Fact 3.3, MAℵ1 implies that S is special. Let f : S → ω be such a
specializing function. Let t ∈ T A \ S. We extend f to include t as follows. Since
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t /∈ S there is a branch b so that t ∈ b but g(b) ≤T t . This branch is unique:
If g(bα) <T g(bβ) <T t with t ∈ bα ∩ bβ then in particular g(bβ) ∈ bα which
contradicts the choice of g. Now let f (t) = f (g(b)) for this unique branch b. ��
Claim 3.6 f : T → ω has the property that if f (s) = f (t) = f (u) and s ≤T t, u
then t and u are comparable, i.e. it witnesses that T A is weakly special.

Proof Let s ≤T t, u be as in the claim. Since f (t) = f (s) at least one of t and s
is not in S since f is injective on chains in S. In fact neither s nor t are in S unless
s = g(b) for some b. To see this, first note that if s ∈ S then, since t /∈ S we would
have that there is some b so that b is the unique branch with t ∈ b and g(b) ≤T t
and, since s ∈ b as well and s ∈ S we have that s ≤T g(b) and so either s = g(b) or
f (s) �= f (g(b)) = f (t) which is a contradiction. Similarly if t ∈ S then since s /∈ S
there is some branch c so that s ∈ c but g(c) ≤T s and since g(c), t ∈ S and g(c) <T t
we have that f (g(c)) �= t but this is a contradiction since f (g(c)) = f (s) = f (t).

Now, let b be the unique branch so that t ∈ b and g(b) ≤T t . As noted before, s ∈ b
as well. If s <T g(b) then there is a branch c �= b so that s ∈ c and g(c) ≤T s (since
either s = g(c) or is above it, by the argument in the previous paragraph). But now
g(c), g(b) ∈ S and g(c) <T g(b) so f (g(c)) �= f (g(b)) but this is a contradiction
since f (s) = f (g(c)) and f (t) = f (g(b)). Therefore g(b) ≤T s, b = c and hence
s ∈ b. A symmetric argument allows one to conclude the same for u so t, s, u ∈ b
and hence are comparable. ��

Since the claim is proved the lemma is as well. ��
Let’s now conclude the proof of Theorem 3.1.

Proof of Theorem 3.1 AssumeMAℵ1 . If P forces thatA is not rather branchless then P

adds a branch to T A. But by Lemma 3.5 we have that T A is weakly special and hence
by Lemma 3.4 P collapses ω1. ��

Beforemoving on to the proof of the second part ofMain Theorem 1.2, let’s observe
some easy extensions of Theorem 3.1. These involve the following two observations
from the proof: first was that we did not needMAℵ1 only that every Aronszajn, ω1-like
tree-like partial order of cardinality ℵ1 which embeds into an ω1-like tree-like partial
order with countable levels is special and second is that we didn’t use the fact that A
was rather branchless, only that it had ≤ ℵ1-many classes. Therefore we actually have
the following result which gives a stronger conclusion from a weaker hypothesis.

Theorem 3.7 Assume every tree-like Aronszajn order which embeds into an ω1-like
ranked tree is special. If A = 〈A, T A,≤T , O A,≤O , r , P1, . . .〉 is an ω1-like tree-like
model so that T A has ≤ℵ1-many uncountable branches, then there is no ω1-preserving
forcing adding a branch to T A.

In particular, if M |� PA is ω1-like, T M
PA has ≤ ℵ1-many classes and every Aron-

szajn subtree of T M
PA is special then no forcing notion can add a class to M without

collapsing ω1. The same is true for M |� ZF with T M
PA replaced by T M

ZF .

Using the forcing of [13], the above hypothesis can be forced over a model of CH
without adding reals so it’s consistent with CH that there are no destructible Kaufmann
models. In fact the following is consistent.
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Corollary 3.8 If ZF is consistent then so is ZFC+CH and for all ω1-like tree-like models
A = 〈A, T A,≤T , O A,≤O , r , P1, . . .〉, if T A has ≤ℵ1-many branches then there is
no ω1-preserving forcing adding a branch to T A. In particular if T is a consistent
completion of PA or ZF and ZF is consistent then so is ZFC + CH and for all ω1-like
models M |� T with ≤ℵ1-many classes there is no ω1 preserving forcing adding a
class to M.

Finally let us note that if there is anω1-like tree-likemodel withmore thanℵ1-many
branches then the tree is a Kurepa tree. Since it’s consistent (relative to an inaccessible)
that there are no Kurepa trees it’s consistent that there is no ω1-preserving forcing
notion adding a class to any ω1-like tree-like model.

Corollary 3.9 If ZF plus “there is an inaccessible cardinal” is consistent, then ZFC
plus “any forcing notion adding a branch to an ω1-like tree-like model collapses ω1”
is consistent both with CH and the negation of CH.

In particular, if ZF plus “there is an inaccessible cardinal” is consistent then ZFC
both with CH and its negation are consistent with “no ω1-like model of PA or ZF can
have a class added to it by forcing without collapsing ω1”.

Proof By what has been said it suffices to note that from an inaccessible,MAℵ1 can be
forced alongside the failure of Kurepa’s hypothesis and (for the CH case) a countable
support iteration of the main forcing from [13] of length κ for κ inaccessible plus
some routine bookkeeping works. ��

Note that it was observed by Keisler [8] that if there is a Kurepa tree, then there is
a model M so that T M

PA is Kurepa, so the inaccessible is needed.

4 Building a destructible Kaufmannmodel

In this section we prove the second part of Main Theorem 1.2. Specifically we show
the following.

Theorem 4.1 Assume ♦. Then (for ZF and PA) there is a Kaufmann model M so that
the satisfaction tree T M

sat contains a Souslin subtree and hence is destructible.

The “hence” part follows by observing that forcing with the Souslin tree is ccc, and
therefore ω1-preserving, but the generic branch will define a satisfaction class forM
as explained in the proof of Theorem 2.10. The idea behind the proof is to use the
diamond sequence to weave together Kaufmann’s original argument for the existence
of a Kaufmann model with Jensen’s classic argument of the existence of a Souslin
tree.

Proof Fix a diamond sequence �A = 〈Aα | α < ω1〉, a countable, recursively saturated
model M0 and, if M0 |� PA (as opposed to ZF), a nonstandard element a ∈ M0.
Other than this one sentence, the proof is verbatim the same whether we work with
ZF or PA so we remain ambiguous from now on. The only thing we really need is the
construction of the satisfaction tree as in Theorem 2.10 and the proceeding discussion
of its analogue for models of ZF.
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As in the proof of Theorem 2.6, we will build a filtration of countable, recursively
saturated models 〈Mα | α < ω1〉 however this time we will also build a ⊆-increasing
continuous sequence of sets 〈Sα | α < ω1〉 so that for all α < ω1 we have Sα ⊆ Mα ,
andM = ⋃

α<ω1
Mα is a Kaufmann model and S := ⋃

α<ω1
Sα is a Souslin subtree

of T M
sat relative to a.
We construct (Mα, Sα) recursively. The construction essentially mirrors Kauf-

mann’s original construction of a Kaufmann model from ♦ done at the same time as
Jensen’s original construction of a Souslin tree from ♦. Given anyMα let T α

sat be the
satisfaction tree for Mα relative to a. We already gave M0, let S0 be T 0

sat . Assume
that we have constructed (Mξ , Sξ ) for all ξ < α, and that for each ξ < α Mξ is
a countable recursively saturated end extension of is predecessors, Sξ is a subset of

T ξ
sat which intersects every level d ∈ Mξ and so that each t ∈ Sξ has extensions on

all levels above it. Without loss, we can assume that each Mξ is a set of countable
ordinals. As before there will be a club of ξ so that Mξ = ξ .
Case 1: α is a limit ordinal. By the requirements we have, Mα = ⋃

ξ<α Mξ and
Sα = ⋃

ξ<α Sξ .
Case 2: α = β +1 for some β. If Aβ ⊆ Mβ is an undefinable class then extendMβ as
in Lemma 2.7 so that Aβ is not coded intoMα . Otherwise letMα be any countable,
recursively saturated end extension. Note the priority: we haveMα now and will use
it to define Sα .

If Aβ ⊆ Sβ is a maximal antichain, then do as follows. First choose a level b ∈
Mα \ Mβ and, for each of the countably many t ∈ Sβ choose exactly one st ∈ Aβ

comparable with t and one element ust ,t ∈ T α
sat on the bth level that extends both st

and t . Note that by the maximality of Aβ there is such an s for each t and by recursive
saturation in Mα there is such a ust ,s . The set of all such ust ,t will be the bth level of
the Souslin tree we’re constructing. Specifically, let S−

α = Sβ ∪ {ust ,t | t ∈ Sβ} and
let Sα be the downward closure of S−

α in T α
sat alongside every extension of an element

in S−
α in T α

sat to the levels b′ > b in Mα .
If Aβ is not a maximal antichain of Sβ then let Sα be simply the collection of all

extensions in T α
sat of every node in Sβ to every level in Mα \ Mβ . This completes the

construction.
LetM = ⋃

α<ω1
Mα and let S = ⋃

α<ω1
Sα . The verification thatM is Kaufmann

is verbatim as in Theorem 2.6.
To see that S is a Souslin tree, suppose that A ⊆ S is a maximal antichain. I claim

that there is a club of ξ so that A ∩ Sξ is a maximal antichain in Sξ . Let C denote the
set of all such ξ . Clearly C is closed since any increasing union of maximal antichains
will again be a maximal antichain. To see that C is unbounded, fix an ordinal ξ := ξ0.
If A ∩ Sξ is not maximal then, for each of the countably many elements t ∈ Sξ not
comparable with anything in A ∩ Sξ find some element at ∈ A which is comparable
with them. Let ξ1 > ξ0 be such that A ∩ Sξ1 contains all of these at (ξ1 is countable
since there are only countably many things to add). Continuing in this way, recursively
define for each n < ω a countable ordinal ξn+1 > ξn so that every a ∈ A ∩ Sξn is
comparable with something in A ∩ Sξn+1 . Finally let ξω := supn∈ωξn . Clearly A ∩ Sξω

is maximal by the continuity requirement of the construction.
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It follows by ♦ that there is an ξ so that Aξ = A ∩ Sξ . But then there is a level
d ∈ Mξ+1 so that every element of Aξ is comparable with a node t of height d by our
construction so if s ∈ T M

sat is of height greater than d then s /∈ A since it’s comparable
with some node in Aξ ⊆ A. Thus A is bounded and therefore countable. ��
As a remark, let us note that the above construction can also be done via forcing: let
(M0, S0, a) be as above and P be the set of pairs (M, SM ) so that M0 ≺ M, M
is recursively saturated, countable, S0 ⊆ SM and SM ⊆ T M

sat , which has non-empty
intersection with every level in M . The order is pairwise by elementary end extension
and end extension as a partially ordered set. This forcing is countably closed and
the verification that it adds a destructible Kaufmann model goes through exactly as
in the proof of the theorem, replacing the ♦ construction by a collection of density
arguments. I do not know if the second coordinate is necessary or if forcing with the
models alone will make the resulting generic Kaufmann model destructible, though
I suspect that this is the case. However, this forcing construction is weaker than the
proof from diamond since the forcing, being countably closed and adding a subset to
ω1, adds a diamond sequence.

Finally we note that even though♦ implies CH, it’s consistent that there are destruc-
tible Kaufmann models and the continuum is arbitrarily large.

Proposition 4.2 Assume ♦, then there is a destructible Kaufmann model in the exten-
sion by any number of Cohen reals.

Proof SupposeM and S are as in the proof of Theorem 4.1 (the♦ hypothesis guaran-
tees their existence). Let P be the forcing to add λ many Cohen reals for your favorite
λ. Since P is ccc, it preserves ω1 hence M remains an ω1-like recursively saturated
model. Moreover, Cohen forcing neither kills Souslin trees nor adds branches to ω1-
trees (like T M

PA /T
M
ZF ) so it cannot add a class toM nor kill the Souslin-ness of S. Hence

M is still a Kaufmann model and S is still a ccc forcing adding a satisfaction class. ��

5 Axiomatizability of Kaufmannmodels

In this section we prove Main Theorem 1.3. The proof involves the logic, Lω1,ω(Q)

the infinitary logic Lω1,ω enriched with the quantifier Q where the interpretation of
Qxϕ(x) is “there exist uncountably many x so that ϕ(x) holds”. Recall from [7] that
a standard model of Lω1,ω(Q) is a structure M = 〈M, [M]≥ω1, . . .〉 so that for any
formula ϕ(x̄, y) and any ā ∈ Mln(x̄) we have that M |� Qyϕ(ā, y) if and only if the
set {y ∈ M | M |� ϕ(ā, y)} is uncountable. There is also a relatively straightforward,
Hilbert-style notion of proof for this logic, see [7, p. 69]. In [7, Theorem 4.10] Keisler
proved the following completeness theorem.

Theorem 5.1 (Keisler) For any sentence of Lω1,ω(Q) ψ we have that � ψ if and only
if for every standard model M in the vocabulary of ψ we have M |� ψ .

Note that this theorem implies that if an Lω1,ω(Q) sentence from V has a model in
some forcing extension, then it has one in the ground model via generic absoluteness.
This is the key step in Shelah’s argument that there are Kaufmann models in ZFC. One
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thing to note is that formulas of Lω1,ω(Q) are coded by reals so in forcing extensions
adding reals, one adds new formulas.

I will need the following, elementary observation.

Observation 5.2 Suppose M is an L-structure for some L and P is a forcing notion
that preserves ω1. Then for any Lω1,ω(Q) formula ψ(x̄) and any tuple ā in M we
have that M |� ψ(ā) if and only if �P“M̌ |� ψ(ā)”.

Roughly this observation amounts to saying that Lω1,ω(Q) truth cannot be changed
by ω1-preserving forcing.

Proof The proof is by induction on ψ . Since Lω1,ω satisfaction is absolute between
forcing extensions and grounds the only non obvious case is when ψ is of the form
Qxϕ(x, ȳ). However, this follows immediately by the inductive hypothesis and the
fact that P preserves ω1. ��

Using these results and the proofs of Theorems 3.1 and 4.1 we will show the
following.

Theorem 5.3 Let T be any consistent completion of either PA or ZF. Let L be the
language of T .

(1) Under MAℵ1 there is an Lω1,ω(Q) sentence ψT
4 in the language L enriched with

a single unary function symbol f , L( f ), so that a model M |� T is Kaufmann if
and only if there is an expansion of M to an L( f )-structure satisfying ψT .

(2) Under ♦ there is a Kaufmann model M |� T so that given any expansion L′ of the
language L, and any expansion of M to an L′-structure, M′, and any countable
set X of Lω1,ω(Q) sentences in the signature L′ there is a model N which agrees
with M′ about the truth of every sentence in X but carries a satisfaction class for
its L-reduct. In particular, the L-reduct of N is not rather classless.

Remark 5.4 The wording of Part 2 is a little verbose. The point is that, even enriching
M with any amount of extra structure, we can always find a model which agrees with
M on any Lω1,ω(Q) sentence and has a satisfaction class. Thus, in contrast to the case
underMAℵ1 , no amount of extra structure suffices to axiomatize Kaufmann models in
Lω1,ω(Q).

As mentioned in the introduction Part 1 of the above theorem can be inferred easily
from the proof of [12, Theorem 6]. I’m not sure if this was observed at the time.
We give a complete, self contained proof here however for the convenience of the
reader. Note that in the proof we will often write sentences in the signature of LPA
(respectively LZF) involving natural numbers, n < ω. By this we will always mean
the formal term n := S(S(. . . (S(0)) . . .)) (with n iterations of the successor function
S) if working in LPA or in LZF the formal term for the von Neumann ordinal n. Since
every model of PA or ZF contains a copy of the natural numbers there is no ambiguity
in this.

4 Of course, ψT depends on T .
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Proof of Part 1 of Theorem 5.3 Assume MAℵ1 holds. For the sake of definiteness we
will prove the theorem for a consistent, completion T of PA however, replacing T M

PA
and all related vocabulary with that of T M

ZF proves the case of ZF. In fact the proof
of this part is valid for any tree-like theory satisfying the collection scheme which is
formalizable in a computable language.5

First observe that if M |� T then one can easily write down being ω1-like and
recursively saturated in Lω1,ω(Q) (in any language) as follows.

(1) M is ω1-like if and only if it satisfies Qx(x = x) ∧ ∀y¬Qx(x ≤ y)

(2) M is recursively saturated if and only if it satisfies

∀ȳ
∧

p(x,ȳ) a computable type
⎛

⎝
∧

(x,ȳ) finite subset of p(x,ȳ)

∃x(x, ȳ) → ∃x
∧

ϕ(x,ȳ)∈p(x,ȳ)

ϕ(x, ȳ)

⎞

⎠

Therefore,whatwe need to show is that there is a sentenceψ in the languageLPA( f )

so that a model M is rather classless if and only if there is a function f M : M → M
so that 〈M, . . . , f M 〉 |� ψ . The idea is that f will be a weak specializing function for
the tree T M

PA (which exists byMAℵ1 ) and using this function we will be able to say that
all uncountable branches are definable. Shelah’s sentence from [12] says more or less
the same, though because we’re not working in the general setup he works in there we
can simplify things slightly. First note that f being weakly special can be expressed
as follows6:

W S( f ) := ∀x

[
∨

n<ω

f (x) = n

]

∧ ∀s, t, u [ f (s) = f (t)

= f (u) ∧ s ≤PA t, u → (t ≤PA u ∨ u ≤PA t)]

So it remains to show that, for an weakly specializing function f , we can write
down that f witnesses that M is rather classless. The sentence is as follows, below
“RC” means “rather classless”:

RC( f ) := ∀s
∨

n<ω

( f (s) = n ∧ Qt( f (s) = f (t) = n ∧ s � f in t)) → ∃ā

∨

ϕ∈LPA

[∀yϕ(y, ā) ↔ ∃t(s ≤PA t ∧ t(y) = 1 ∧ f (t) = n)]

5 However, if the theory does not allow for definitions of each standard natural number like PA and ZF
do then constants for each one need to be added to the language as is done in [12, Theorem 6]. Also,
the restriction to computable languages is not needed except to make sense of the notion of “recursively
saturated”.
6 Note that to prove the theorem for models of ZF we replace the term ≤PA in the following displayed
sentence, and the one after, with ≤ZF.
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Note that since elements of T M
PA are (coded) binary sequences the notation “t(y) = 1”

makes sense.7 The reader should convince themself that in English the above says the
following:

“For all s, if for some n f (s) = n and there are uncountably many t so that
s ≤PA t and f (t) = n then there are an ā and a formula ϕ ∈ LPA so that for all
y ϕ(y, ā) if and only if t(y) = 1 for some t with s ≤PA t and f (t) = n.”

Since, by the proof of Theorem 3.1, we know that every Kaufmann model’s T M
PA

is weakly special, we need to show that M is Kaufmann if and only if its weakly
specializing function f satisfies RC( f ). Here are the details. First suppose that M
is an ω1-like, recursively saturated model of PA which has an expansion to LPA( f )

satisfying W S( f ) ∧ RC( f ). Fix such an f M : M → M . Let b be an uncountable
branch through T M

PA with s ∈ b so that there are uncountably many t ∈ b with
f (s) = f (t) = n. We need to show that there is a formula ϕ and a tuple ā so that for
all y ∈ M , ∪b(y) = 1 if and only if M |� ϕ(y, ā). By RC( f M ) then there is an ā
and a formula ϕ ∈ LPA so that for all y ϕ(y, ā) if and only if there is a t above s with
t(y) = 1 and f (t) = n. By the property of weak specializing functions, if s ≤PA t
and f (t) = n then t ∈ b. Therefore ∪b(y) = 1 if and only if ϕ(y, ā) as required.

For the converse, supposeM is a Kaufmann model and let f M be a weak special-
izing for T M

PA (which exists by MAℵ1 ). We claim that this f M satisfies RC( f ). To see
this, fix s ∈ T M

PA and n < ω and suppose that f M (s) = n and there are uncountably
many t above s in T M

PA with f M (t) = n. Then the set of these t must generate a cofinal
branch b by weak specialness so we can define that branch as ∪b(y) = 1 if and only
if M |� ϕ(y, ā) by rather classlessness, hence RC( f ) is satisfied. ��

Before continuing on to the proof of Part 2, let me comment on the relation between
this proof and Shelah’s [12, Theorem 6]. This theorem, despite being foundational in
the field seems to have been very rarely written down aside from in the original article.
Restricted to the case of Kaufmann models of PA and ZF, Shelah’s proof shows much
the same as what is shown above. The difference is that he replaces the application of
MAℵ1 by a concrete use of a ccc forcing to specialize T M

PA . As a result his proof shows (in
our language) that everyLPA reduct of amodel of E S( f )∧RC( f ) isKaufmann (this is
identical to the backward direction above) and, for everyKaufmannmodelM there is a
ccc forcing extension of V inwhichM has an expansion to amodel of E S( f )∧RC( f )

(usingMAℵ1 instead of forcing this is the forward direction). By composing this result
with Theorem 2.6 Shelah gets that every model of set theory has a forcing extension
in which there is a model of E S( f ) ∧ RC( f ). By Keisler’s completeness theorem
it follows that in V this sentence is consistent and hence has a model. But then that
model’s reduct to LPA (respectively LZF) is Kaufmann thus proving that ZFC suffices
to prove the existence of Kaufmann models. A natural question is whether the detour
through forcing extensions was necessary in this argument. Part 2 will show that, at
least sometimes, the answer is “yes”.

Proof of Part 2 of Theorem 5.3 Let T be a consistent completion of PA or ZF and let
L be its language. Let M |� T be the model constructed in the proof of Theorem

7 In the case of models of ZF we replace “t(y) = 1” by “y ∈ t”.
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4.1 and let S be the Souslin subtree of T M
sat . The existence of this model is the only

application of ♦. Let L′ ⊇ L be any language extending L andM′ be any expansion
ofM to an L′ structure. We need to show that there is anN which agrees withM′ on
any countably many Lω1,ω(Q) sentences but whose L-reduct has a satisfaction class
(and hence is not rather classless).

Since S is Souslin, the Lω1,ω(Q) theory of M is the same in V as in any generic
extension of V by S by Observation 5.2 plus the fact that, since any Souslin tree is
ω-distributive, S won’t add new reals and hence it won’t add new Lω1,ω(Q) sentences
either. Let G ⊆ S be generic and work in V [G]. In this model, the branch G codes a
satisfaction class AG for M. Consider a new theory, T ′ in the language L′ enriched
with a unary predicate A giving the Lω1,ω(Q) theory ofM′ inL′ plus “A is a satisfac-
tion class”. This theory is consistent, since 〈M ′, . . . , AG〉 is a model and, moreover, it
is in V since it’s the union of a theory in V with a simple set of additional sentences,
definable in any model of set theory. Since consistency is absolute between models of
set theory with the same natural numbers, V |�“T ′ is consistent”. Hence by Keisler’s
completeness theorem, any countable subtheory T̄ ⊆ T ′ has a model N with a satis-
faction class. Consider the reduct of N to L′. This model is exactly what we wanted
so the proof is complete.

It’s tempting to conclude in the above proof thatN can bemade to be fully Lω1,ω(Q)

equivalent toM′ but Keisler’s theorem is sentence by sentence and since Lω1,ω lacks
a compactness theorem, it’s not clear that this conclusion can be made, hence the
restriction to countable subtheories. I’m not sure whether the stronger conclusion is
consistent or not, though I suspect that it is.

6 Conclusion and open questions

There remain many open questions in this area. I want to finish this paper by listing
some. The most interesting is the following.

Question 1 Is there a non-forcing-theoretic characterization of destructible Kaufmann
models? Is this related to some sort of resplendency or something truth theoretic?

Regarding the construction of destructible Kaufmann models by forcing:

Question 2 Does forcing with countable, recursively saturated models ordered by end
extension add a Kaufmann model whose satisfaction tree is Souslin (not just having a
Souslin subtree)?

Also, it’s worth asking:

Question 3 What tree types can a satisfaction tree take? In particular, can the satisfac-
tion tree for a Kaufmann model be Souslin (and not just contain a Souslin subtree)?
What about trees types for trees of the form T M

PA /T
M
ZF ?

This paper is not the first to consider strong logics in the context of Kaufmann
models. Surprisingly though the following appears to be open.

Question 4 Which logics extending Lω,ω can axiomatize Kaufmann models provably
in ZFC? Consistently?
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Finally, while this entire discussion has concerned ℵ1-Kaufmann models, there
seems to be a wealth of possible directions in studying general κ-Kaufmann models.
Note that by Schmerl’s Theorem 2.10, if κ has the tree property then there are no
κ-Kaufmann models. The converse of this appears to be open.

Question 5 Does the statement “there are no ℵ2-Kaufmann models” imply the tree
property on ℵ2? What is the consistency strength of “there are no ℵ2-Kaufmann
models”?
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