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Abstract
Let ˜M = 〈M,G〉 be an expansion of a real closed field M by a dense subgroup G
of 〈M>0, ·〉 with the Mann property. We prove that the induced structure on G byM
eliminates imaginaries. As a consequence, every small set X definable in M can be
definably embedded into some Gl , uniformly in parameters. These results are proved
in a more general setting, where ˜M = 〈M, P〉 is an expansion of an o-minimal
structure M by a dense set P ⊆ M , satisfying three tameness conditions.

Keywords Mann pairs · Elimination of imaginaries · Small sets

Mathematics Subject Classification Primary 03C64; Secondary 06F20

1 Introduction

This note is a natural extension of the work in [6]. In that reference, expansions
˜M = 〈M, P〉 of an o-minimal structure M by a dense predicate P ⊆ M were
studied, and under three tameness conditions, it was shown that the induced structure
Pind on P by M eliminates imaginaries. The tameness conditions were verified for
dense pairs of real closed fields, for expansions ofM by an independent set P , and for
expansions of a real closed fieldM by a dense subgroup P of 〈M>0, ·〉with the Mann
property (henceforth called Mann pairs), assuming P is divisible. As pointed out in
[6, Remark 4.10], without the divisibility assumption in the last example, the third
tameness condition no longer holds, and in [6, Question 4.11] it was asked whether in
that case Pind still eliminates imaginaries. In this note, we prove that it does. Indeed,
we replace the third tameness condition by a weaker one, which we verify for arbitrary
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318 P. E. Eleftheriou

Mann pairs, and prove that together with the two other tameness conditions it implies
elimination of imaginaries for Pind .

Let us fix our setting. Throughout this text, M = 〈M,<,+, 0, . . .〉 denotes an
o-minimal expansion of an ordered group with a distinguished positive element 1. We
denote by L its language, and by dcl the usual definable closure operator in M. An
‘L-definable’ set is a set definable in M with parameters. We write ‘LA-definable’
to specify that those parameters come from A ⊆ M . It is well-known that M admits
definable Skolem functions and eliminates imaginaries ( [4, Chapter 6]).

Let D, P ⊆ M . The D-induced structure on P by M, denoted by Pind(D), is a
structure in the language

Lind(D) = {Rφ(x)(x) : φ(x) ∈ LD},

whose universe is P and, for every tuple a ⊆ P ,

Pind(D) |� Rφ(a) ⇔ M |� φ(a).

If Q ⊆ Pn , by a trace on Q we mean a set of the form Y ∩ Q, where Y is L-definable.
We call Y ∩ Pn a full trace. We call a set Q ⊆ Pn fiber-dense if for every x in the
projection π(Q) of Q onto the first n − 1 coordinates, the fiber Qx is dense in P .

For the rest of this paper we fix some P ⊆ M and denote ˜M = 〈M, P〉. We
let L(P) denote the language of ˜M; namely, the language L augmented by a unary
predicate symbol P .We denote by dclL(P) the definable closure operator in ˜M. Unless
stated otherwise, by ‘(A-)definable’ we mean (A-)definable in ˜M, where A ⊆ M . We
use the letter D to denote an arbitrary, but not fixed, subset of M .

Tameness Conditions (for ˜M and D):
(OP) (Open definable sets are L-definable.) For every set A such that A\P is dcl-
independent over P , and for every A-definable set V ⊂ Mn , its topological closure
V ⊆ Mn is LA-definable.

(dcl)D Let B,C ⊆ P and

A = dcl(BD) ∩ dcl(CD) ∩ P.

Then

dcl(AD) = dcl(BD) ∩ dcl(CD).

(ind)D Let X ⊆ Pn be definable in Pind(D). Then X is a finite union of traces on
sets which are ∅-definable in Pind(D) and fiber-dense. That is, there are L-definable
sets Y1, . . . ,Yl ⊆ Mn , and sets Q1, . . . , Ql ⊆ Pn that are ∅-definable in Pind(D) and
fiber-dense, such that

X =
⋃

i

(Yi ∩ Qi ).
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Small sets in Mann pairs 319

Conditions (OP) and (dcl)D are the same with those in [6], and are already known
to hold for Mann pairs ( [6, Remark 4.11]). Condition (ind)D is weaker than the
corresponding one in [6], in three ways: (a) X is now a finite union of traces (instead
of a single trace), (b) the traces are on subsets of Pn (instead of on the whole Pn),
and (c) there is no control in parameters for the Yi ’s (although we achieve this in
Corollary 3.5 below). These differences result in several non-trivial complications in
the proof of our main theorem, which are handled in Sect. 3. For now, let us state the
main theorem.

Theorem 1.1 Assume (OP), (dcl)D and (ind)D, and that D is dcl-independent over P.
Then Pind(D) eliminates imaginaries.

Condition (ind)D is modelled after the current literature on Mann pairs, which
we now explain. Assume M = 〈M,<,+, ·, 0, 1〉 is a real closed field, and G a
dense subgroup of 〈M>0, ·〉. For every a1, . . . , ar ∈ M , a solution (q1, . . . , qr ) to the
equation

a1x1 + · · · + ar xr = 1

is called non-degenerate if for every non-empty I ⊆ {1, . . . , r}, ∑i∈I aiqi �= 0. We
say that G has theMann property, if for every a1, . . . , ar ∈ M , the above equation has
only finitelymany non-degenerate solutions (q1, . . . , qr ) inGr .1 Let us call such a pair
〈M,G〉 aMann pair. Examples of Mann pairs include all multiplicative subgroups of
〈R>0, ·〉 of finite rank [8], such as 2Q and 2Z3Z. Van den Dries–Günaydin [5, Theorem
7.2] showed that in a Mann pair, where moreover G is divisible (such as 2Q), every
definable set X ⊆ Gn is a full trace; in particular, (ind)D from [6] holds. Without
the divisibility assumption, however, this is no longer true. Consider for example
G = 2Z3Z and let X be the subgroup of G consisting of all elements divisible by 2.
That is, X = {22m32n : m, n ∈ Z}. This set is clearly dense and co-dense in R, and
cannot be a trace on any subset of G.

A substitute to [5, Theorem 7.2] was proved by Berenstein-Ealy-Günaydin [1], as
follows. Consider, for every d ∈ N, the set G[d] of all elements of G divisible by d,

G[d] = {x ∈ G : ∃y ∈ G, x = yd}.

Under the mild assumption that for every prime p, G[p] has finite index in G, [5,
Theorem 7.5] provides a near model completeness result, which is then used in [1]
to prove that every definable set X ⊆ Pn is a finite union of traces on ∅-definable
subsets of Pn (Fact 3.10 below). Note this mild assumption is still satisfied by all
multiplicative subgroups of 〈R>0, ·〉 of finite rank (as noted in [9]).

Corollary 1.2 Assume ˜M = 〈M,G〉 is a Mann pair, such that for every prime p, G[p]
has finite index in G. Let D ⊆ M be dcl-independent over P. Then (OP), (dcl)D and
(ind)D hold. In particular, Pind(D) eliminates imaginaries.

1 The original definition only involved equations with coefficients ai in the prime field of M, but, by [5,
Proposition 5.6], the two definitions are equivalent.
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320 P. E. Eleftheriou

Observe that Corollary 1.2 stands in contrast to the current literature, as it is
known that in Mann pairs both existence of definable Skolem functions and elimi-
nation of imaginaries (for ˜M) fail ( [2]). Note also that the assumption of D being
dcl-independent over P is necessary; namely, without it, Pind(D) need not eliminate
imaginaries ( [6, Example 5.1]).

Theorem 1.1 has the following important consequence. Recall from [3] that a set
X ⊆ Mn is called P-bound over A if there is anLA-definable function h : Mm → Mn

such that X ⊆ h(Pm). The recent work in [7] provides an analysis for all definable
sets in terms of ‘L-definable-like’ and P-bound sets. Using Theorem 1.1, we further
reduce the study of P-bound sets to that of definable subsets of Pl .

Corollary 1.3 Assume (OP), (dcl)D and (ind)D hold for every D ⊆ M which is dcl-
independent over P. Let X ⊆ Mn be an A-definable set. If X is P-bound over A, then
there is an A ∪ P-definable injective map τ : X → Pl . If A itself is dcl-independent
over P, then the extra parameters from P can be omitted.

Note that the assumption of Corollary 1.3 holds for ˜M as in Corollary 1.2. Note
also that allowing parameters from P is standard practice when studying definability
in this context; see for example [7, Lemma 2.5 and Corollary 3.26].

Structure of the paper. In Sect. 2, we fix notation and recall some basic facts. In Sect. 3,
we prove our results.

2 Preliminaries

We assume familiarity with the basics of o-minimality and pregeometries, as can be
found, for example, in [4] or [10]. Recall that M = 〈M,<,+, 0, . . .〉 is our fixed o-
minimal expansion of an ordered groupwith a distinguished positive element 1 and dcl
denotes the usual definable closure operator. We denote the corresponding dimension
by dim. If A, B are two sets, we often write AB for A ∪ B. We denote by �( f ) the
graph of a function f . If T ⊆ Mm × Mn and x ∈ Mn , we write Tx for the fiber

{b ∈ Mm : (b, x) ∈ T }.

The topological closure of a set Y ⊆ Mn is denoted by Y and its frontier Y\Y by
fr(Y ). If X ⊆ Y , the relative interior of X in Y is denoted by intY (X). It is not hard to
see that:

intY (X) = {x ∈ X : there is openB ⊆ MncontainingxwithB ∩ Y ⊆ X}.

We will need the following fact.

Fact 2.1 ( [4, Ch. 4 (1.3)]) Let X ⊆ Y ⊆ Mn be two L-definable sets. Then

dim(X\ intY (X)) < dim Y .
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Small sets in Mann pairs 321

2.1 Elimination of imaginaries

Werecall that a structureN eliminates imaginaries if for every∅-definable equivalence
relation E on Nn , there is a ∅-definable map f : Nn → Nl such that for every
x, y ∈ Nn ,

E(x, y) ⇔ f (x) = f (y).

In the ordered setting, we have the following criterion (extracted from [10, Section 3];
for a proof see [6, Fact 2.2]).

Fact 2.2 Let N be a sufficiently saturated structure with two distinct constants in its
language. Suppose the following property holds.

(*) Let B,C ⊆ N and A = dclN (B) ∩ dclN (C). If X ⊆ Nn is B-definable and
C-definable, then X is A-definable.

Then N eliminates imaginaries.

2.2 The induced structure

Recall from the introduction that

Pind(D) = 〈P, {R ∩ Pl : R ⊆ MlLD − definable, l ∈ N}〉.

Remark 2.3 For A ⊆ P , we have:

(1) if Q ⊆ Pn is A-definable in Pind(D), and Y ⊆ Mn is LAD-definable, then Q ∩ Y
is A-definable in Pind(D). Indeed, Q ∩ Y = Q ∩ (Y ∩ Pn).

(2) in general, if Q ⊆ Pn is A-definable in Pind(D), then it is AD-definable. The
converse will be true for Mann pairs, by Corollary 3.11 below.

3 Proofs of the results

In this section we prove elimination of imaginaries for Pind(D) under our assumptions
(Theorem 1.1) and deduce Corollaries 1.2 and 1.3 from it. Our goal is to establish
(*) from Fact 2.2 for N = Pind(D) (Lemma 3.8 below). As in [6], the strategy is to
reduce the proof of (*) to [10, Proposition 2.3], which is an assertion of (*) for M.
This reduction takes place in the proof of Lemma 3.8 below, and requires the key
Lemma 3.4. The analogous key lemma in [6] (namely, [6, Lemma 3.1]) cannot help
us here, because its assumptions are not met in the proof of Lemma 3.8. Furthermore,
the proof of Lemma 3.4 requires an entirely new technique.

We begin with some preliminary observations.

Fact 3.1 Assume (OP). Then for every A ⊆ P, dclL(P)(A) = dcl(A).

Proof Take x ∈ dclL(P)(A). That is, the set {x} is A-definable in ˜M. By (OP), we
have that {x} is LA-definable. But {x} = {x}. ��
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322 P. E. Eleftheriou

Lemma 3.2 Assume (OP). Let X ⊆ Mn be an L-definable set which is also
C-definable, for some C ⊆ M with C\P dcl-independent over P. Then X is LC-
definable.

Proof We work by induction on k = dim X . If X = ∅, the statement is obvious.
Assume k ≥ 0. By (OP), X is LC -definable. By o-minimality, dim fr(X) < k. Since
fr(X) = X\X is both L-definable and C-definable, by inductive hypothesis, it is
LC -definable. So X = X\ fr(X) is LC -definable. ��
Lemma 3.3 Let C ⊆ M and

X =
m
⋃

i=1

(Zi ∩ Ri ),

where Z1, . . . , Zm ⊆ Mn are LC-definable sets, and R1, . . . , Rm ⊆ Pn are ∅-
definable in Pind(D) and fiber-dense. Then

X =
l

⋃

i=1

(Yi ∩ Qi ),

for some LC-definable disjoint sets Y1, . . . ,Yl ⊆ Mn, and sets Q1, . . . , Ql ⊆ Pn

which are ∅-definable in Pind(D) and fiber-dense.

Proof For σ ⊆ {1, . . . ,m}, let

Qσ =
⋃

i∈σ

Ri

and

Yσ =
(

⋂

i∈σ

Zi

)

\
⎛

⎝

⋃

j /∈σ

Z j

⎞

⎠ .

Clearly, Qσ is fiber-dense. It is also easy to check that for any two distinct σ, τ ⊆
{1, . . . ,m}, we have Yσ ∩ Yτ = ∅, and that

X =
⋃

σ⊆{1,...,m}
(Yσ ∩ Qσ ),

as required. ��
Now, the key technical lemma.

Lemma 3.4 Assume (OP) and (ind)D, and that D is dcl-independent over P. Let
B,C ⊆ P and X ⊆ Pn be B-definable and C-definable in Pind(D). Then there
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Small sets in Mann pairs 323

are W1, . . . ,Wl ⊆ Mn, that are both LBD-definable and LCD-definable, and sets
S1, . . . , Sk ⊆ Pn, that are ∅-definable in Pind(D) and fiber-dense, such that

X =
l

⋃

i=1

Wi ∩ Si .

Proof First note that X is both BD-definable and CD-definable in 〈M, P〉. Since
B,C ⊆ P , by (OP) it follows that X is LBD-definable and LCD-definable.

We perform induction on the dimension of X . For X = ∅, the statement is obvious.
Suppose now that dim X = k ≥ 0. By (ind)D and Lemma 3.3, there are L-definable
disjoint sets Z1, . . . , Zm ⊆ Mn , and sets R1, . . . , Rl ⊆ Pn , each ∅-definable in
Pind(D) and fiber-dense, such that

X =
l

⋃

i=1

(Zi ∩ Ri ).

For every i , define

Ti = {x ∈ X : there is relatively openV ⊆ Xaroundx,withV ∩ Ri ⊆ X}.

Let T = ⋃

i Ti . It is immediate from the definition, that each Ti , and hence T , is
relatively open in X . Therefore, by (OP), it is L-definable. On the other hand, each Ti
is BD-definable and CD-definable, because X is, and Ri is D-definable. Hence, by
Lemma 3.2, each Ti , and hence T , is LBD-definable and LCD-definable.

Claim. dim X\ ⋃

i (Ti ∩ Ri ) < k.

Proof Observe first that X ⊆ ⋃

i Zi , and hence it suffices to show that for each i ,

dim
(

(Zi ∩ X)\(Ti ∩ Ri )
)

< k.

We may write

(Zi ∩ X)\(Ti ∩ Ri ) = (

(Zi ∩ X)\ intX (Zi ∩ X)
) ∪ (

intX (Zi ∩ X)\(Ti ∩ Ri )
)

,

By Fact 2.1, it suffices to show that intX (Zi ∩X) ⊆ (Ti ∩Ri ). Clearly, intX (Zi ∩X) ⊆
intX (Zi ) ∩ X , and hence it suffices to show:

intX (Zi ) ∩ X ⊆ Ti ∩ Ri .

Let x ∈ intX (Zi )∩X . Since x ∈ intX (Zi ), there is a relatively open V ⊆ X containing
x , with V ⊆ Zi , and hence V ∩Ri ⊆ Zi ∩Ri ⊆ X . Therefore x ∈ Ti . Since x ∈ X∩Zi

and the Z j ’s are disjoint, we must also have x ∈ Ri . Hence x ∈ Ti ∩ Ri , as needed. ��

123



324 P. E. Eleftheriou

By Remark 2.3(1), the set X\ ⋃

i (Ti ∩ Ri ) is both B-definable and C-definable in
Pind(D). Hence, by inductive hypothesis and the claim, the conclusion holds for this
set. Now, for each i , by definition of Ti , we have Ti ∩ Ri ⊆ X . Hence

X =
(

X\
⋃

i

(Ti ∩ Ri )

)

∪
⋃

i

(Ti ∩ Ri ),

and we are done. ��
Corollary 3.5 Assume (OP) and (ind)D, and that D is dcl-independent over P. Let
A ⊆ P and X ⊆ Pn be A-definable in Pind(D). Then there are LAD-definable sets
W1, . . . ,Wl ⊆ Mn, and sets S1, . . . , Sl ⊆ Pk that are ∅-definable in Pind(D) and
fiber-dense, such that

X =
⋃

i

(Wi ∩ Si ).

Proof By Lemma 3.4 for B = C = A. ��
Our next goal is to prove the promised Lemma 3.8. Denote by clD the definable

closure operator in Pind(D). We first prove that, under (OP) and (ind)D , clD defines a
pregeometry (Corollary 3.7).

Lemma 3.6 Assume (OP) and (ind)D, and that D is dcl-independent over P. Let
f : Pn → P be an A-definable map in Pind(D). Then there are LAD-definable maps
F1, . . . , Fl : Mn → Mk, such that for every x ∈ Pn, there is i = 1, . . . , l, with
f (x) = Fi (x).

Proof By Corollary 3.5, there are finitely many LAD-definable sets W1, . . . ,Wl ⊆
Mn+1 and sets S1, . . . , Sl ⊆ Pn+1 which are ∅-definable in Pind(D) and fiber-dense,
such that �( f ) = ⋃

i Wi ∩ Si . Fix i , and let fi be the map whose graph equalsWi ∩ Si .
It suffices to prove that the graph of fi is contained in finitely many graphs of LAD-
definable maps. To simplify the notation, we set f = fi , S = Si and W = Wi . So
�( f ) = W ∩ S, where f : X ⊆ Pn → P is A-definable, W ⊆ Mn+1 is LAD-
definable, and S ⊆ Pn+1 is ∅-definable in Pind(D) and fiber-dense. By o-minimality,
for every x in the projection π(W ) ofW onto the first n coordinates, each fiberWx is a
finite union of open intervals and points. Since for every x ∈ X , (W ∩ S)x = { f (x)},
and the fiber Sx is dense in P , it follows thatWx is finite, with only one of its elements
belonging to P . Let

T = {x ∈ π(W ) : Wx is finite}.

So, X ⊆ T . Moreover, T is LAD-definable. Now, by o-minimality W ∩ (T × M) is a
finite union of LAD-definable maps that contains �( f ), as needed. ��
Corollary 3.7 Assume (OP) and (ind)D, and that D is dcl-independent over P. Then
for every A ⊆ P, clD(A) = dcl(AD) ∩ P. In particular, clD defines a pregeometry.
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Small sets in Mann pairs 325

Proof The inclusion ⊇ is immediate from the definitions, whereas the inclusion ⊆ is
immediate from Lemma 3.6. Since dcl(−D) defines a pregeometry in M, it follows
easily that so does clD(−) in Pind(D). ��
Lemma 3.8 Assume (OP), (dcl)D and (ind)D, and that D is dcl-independent over P.
Let B,C ⊆ P and A = clD(B) ∩ clD(C). If X ⊆ Pn is B-definable and C-definable
in Pind(D), then X is A-definable in Pind(D).

Proof Let X ⊆ Pn be B-definable and C-definable in Pind(D). By Lemma 3.4,
there are W1, . . . ,Wl ⊆ Mn , each both LBD-definable and LCD-definable, and
S1, . . . , Sk ⊆ Pn , each ∅-definable in Pind(D), such that

X =
l

⋃

i=1

Wi ∩ Si .

By [10, Proposition 2.3], eachWi isL-definable over dcl(BD)∩dcl(CD). By (dcl)D ,
Wi isL-definable over dcl(BD)∩dcl(CD)∩PD. Hence X is definable over dcl(BD)∩
dcl(CD) ∩ P in Pind(D). But

dcl(BD) ∩ dcl(CD) ∩ P = clD(B) ∩ clD(C) = A,

and hence X is A-definable in Pind(D). ��
We can now conclude our results.

Proof of Theorem 1.1 By Fact 2.2 and Lemma 3.8.

For the proof of Corollary 1.3, we additionally need the following lemma.

Lemma 3.9 Assume (OP) and (ind)D, and that D is dcl-independent over P. LetM′
be the expansion of M with constants for all elements in P, and ˜M′ = 〈M′, P〉.
Then (ind)D holds for ˜M′ and D.

Proof Denote by P ′
ind(D) the D-induced structure on P by M′. Let X ⊆ Pn be A-

definable in P ′
ind(D). It follows that X is AP-definable in Pind(D). By Corollary 3.5,

there are LAPD-definable sets Y1, . . . ,Yl ⊆ Mn , and Q1, . . . , Ql ⊆ Pk , which are
∅-definable in Pind(D), such that

X =
⋃

i

(Yi ∩ Qi ).

Such Yi ’s are LAD-definable inM, and the Qi ’s are of course ∅-definable in P ′
ind(D),

as required. ��
Proof of Corollary 1.3 The proof when A is dcl-independent over P is identical to that
of [6, Theorem B]. The proof of the general case is identical to that of [6, Corollary
1.4], after replacing in [6, Lemma 3.4] the clause about (ind)D with Lemma 3.9 above.
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326 P. E. Eleftheriou

We finally turn to our targeted example of Mann pairs. The proof of Corollary 1.2
will be complete after we recall the fact below, which is extracted from [1]. First,
observe that if ˜M = 〈M,G〉 is a Mann pair, then for every d ∈ N, G[d] is ∅-
definable in Pind(∅). Indeed, G[d] is the projection onto the first coordinate of the set
{(xd , x) : x ∈ M} ∩ G2.

Fact 3.10 Let ˜M = 〈M,G〉 be a Mann pair, such that for every prime p, G[p] has
finite index in G. Let X ⊆ Gn a definable set. Then X is a finite union of traces on
sets which are ∅-definable in Gind(∅) and fiber-dense. That is, (ind)D holds.

Proof By [1, Corollary 57], X is as a finite union of traces on sets of the form g(G[d])n ,
d ∈ N. As pointed out in the proof of [1, Theorem 1], each such g can be chosen to
be ∅-definable (in ˜M). By Fact 3.1, g ∈ dcl(∅). By the above observation, g(G[d])n
is ∅-definable in Gind(∅). It is also fiber-dense. ��
Proof of Corollary 1.2 By Fact 3.10, (ind)D hold. By [6], as explained in Remark 4.11
therein, (OP) and (dcl)D holds. By Theorem 1.1, we are done.

A byproduct of our work is the following corollary.

Corollary 3.11 Let ˜M = 〈M,G〉 be a Mann pair, such that for every prime p, G[p]
has finite index in G. Let D ⊆ M be dcl-independent over P. Let X ⊆ Pn be AD-
definable, with A ⊆ P. Then X is A-definable in Pind(D). In particular, the conclusion
of Corollary 3.5 holds.

Proof By Corollaries 1.2 and 3.5 . ��
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