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Abstract
The idea of this paper is to explore the existence of canonical countably saturated
models for different classes of structures. It is well-known that, under CH, there exists
a unique countably saturated linear order of cardinality c. We provide some exam-
ples of pairwise non-isomorphic countably saturated linear orders of cardinality c,
under different set-theoretic assumptions. We give a new proof of the old theorem of
Harzheim, that the class of countably saturated linear orders has a uniquely determined
one-element basis. From our proof it follows that this minimal linear order is a Fraïssé
limit of certain Fraïssé class. In particular, it is homogeneous with respect to countable
subsets. Next we prove the existence and uniqueness of the uncountable version of the
random graph. This graph is isomorphic to (H(ω1),∈ ∪ �), where H(ω1) is the set
of hereditarily countable sets, and two sets are connected if one of them is an element
of the other. In the last section, an example of a prime countably saturated Boolean
algebra is presented.

Keywords Linear order · Countably saturated · Homogeneous object · Random graph

Mathematics Subject Classification 03C55 · 06A05 · 05C63

1 Introduction

It is a general theorem ofmodel theory, that for any first-order theorywhich has infinite
models, all countably saturated models of cardinality c are isomorphic, as long as we
assume CH. The definition of countable saturation and the proof of this theorem can
be found in any textbook on model the ory, for example [7]. However, we will not
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190 Z. Kostana

bother with realization of types in general, and focus on some particular cases. These
cases are:

• (Hausdorff) Assume CH. Then all countably saturated linear orders (see next
section for the definition) of cardinality c are isomorphic.

• Assume CH. There exists a unique up to isomorphism graph G of cardinality c,
with the property that for any countable, disjoint subsets A, B ⊆ G, there exists a
vertex in G \ (A ∪ B) connected to every vertex in A and none of the vertices in
B.

• (Parovičenko) Assume CH. Then all Boolean algebras of cardinality c with the
strong countable separation property are isomorphic. (for the definition see [8] or
Section 3 of this article).

All of the above claims are proved using so-called back-and-forth argument, and
all of them fail without CH. The fact that Parovičenko Theorem is equivalent to CH
was proved by van Douwen and van Mill in [15]. The fact that each of the other two
claims is equivalent to CH is much easier to see. However, it turns out that some
applications of back-and-forth argument can be carried out only assuming that c is
regular, or even in ZFC alone. For example, Avilés and Brech generalized Parovičenko
Theorem, by introducing a property stronger than the countable separation property,
which guarantees the uniqueness of certain Boolean algebra with this property, when c
is regular [1]. A different generalizationwas obtained byDow andHart [2].Majority of
structures obtained this way are examples of uncountable Fraïssé limits, which general
theory is described in [9]. The aim of this paper is to study possible generalizations of
the above results in the absence of CH.

Theorem 1 (Harzheim, [5]). There exists a unique up to isomorphism linear order of
cardinality c, which is countably saturated, and embeds into any countably saturated
linear order.

Theorem 2 There exists a unique up to isomorphism graph G of cardinality c, such
that

• For any disjoint sets A, B ⊆ G, |A| ≤ ω, |B| < c, there exist a vertex g ∈
G \ (A ∪ B), such that g is connected to every element of A and none of the
elements in B,

• G embeds into any graph with the above property.

Theorem 3 There exists a unique up to isomorphism directed graph
←−
G of cardinality

c, such that

• For any countable set A ⊆ ←−
G there exist c-many g ∈ ←−

G , such that A = {a ∈←−
G | (g, a) ∈ E(

←−
G )},

• For any g ∈ G, the set A = {a ∈ ←−
G | (g, a) ∈ E(

←−
G )} is countable,

• ←−
G embeds into any graph with the above properties.

The author would like to thank Wiesław Kubiś for inspiring conversations and
asking many good questions which laid foundation for this work, and the anonymous
referee for pointing out numerous mistakes in the first version of the paper. Also some
credit goes to Arturo Martinez Celis, who came up with the idea of representation of
the graph from Theorem 2.
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2 Countably saturated linear orders

In this section we give the definition and introduce some examples of countably satu-
rated linear orders. Next, we introduce the notion of linear dimension, which we use
to characterize those countably saturated linear orders, which are embeddable into
any countably saturated linear order. Finally, we prove that the linear order with this
property is unique up to isomorphism.

We use the distinction non-decreasing/increasing rather than increasing/strictly
increasing. For linear orders (K ,≤K ), (L,≤L), we define K + L as {0} × K ∪
{1} × L , with the lexicographic order. For A, B ⊆ L , by A < B, we denote that
∀x∈A∀y∈Bx < y. Later, whenever a product of linear orders is considered, we equip
it with lexicographic order without mentioning it. By symbol K ↪→ L we denote that
there is an increasing function from K to L . By L∗ we denote L with the reversed
order, i.e. (L,≤)∗ = (L,≥).

A linear order is compact, if it is compact in the order topology, i.e. every set has
both supremum and infimum, in particular both endpoints exist. We often call such
orders compact lines.

A linear order is a linearly ordered continuum, if it is compact and connected in the
order topology, i.e. it is compact and dense as a linear order.

A linear order L has character at most κ , if for each l ∈ L , there exists subsets
A, B ⊂ L of cardinality at most κ , such that A < B,
and {x ∈ L| A < {x} < B} = {l}. As to be expected, L has character κ , if κ is the
least cardinal, such that L has character at most κ . We will make use of the following
observation a few times. The proof is left for the Reader.

Proposition 1 If a linear order L has uncountable character, then ω1 ↪→ L or ω∗
1 ↪→

L.

2.1 Basic examples

Definition 1 We say that a linear order (L,≤) is countably saturated, if for any count-
able linear orders a, b, and increasing functions i : a → b, f : a → L , there exists
f̃ : b → L , such that f̃ ◦ i = f .

a L

b

f

i
f̃

Moreover, L is prime countably saturated, if any countably saturated linear order
contains an isomorphic copy of L .

The following simple Lemma provides more operational characterization, and jus-
tifies the name “saturated”—it is just saturation in the usual, model-theoretic sense.

Lemma 1 A linear order is countably saturated if and only if

• it is dense, without the least and the greatest element,
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192 Z. Kostana

• no countable increasing sequence has supremum,
• no countable decreasing sequence has infimum,
• there are no (ω, ω)-gaps: for any two sequences {xn}n<ω, {yn}n<ω such that

∀n < ω xn < xn+1 < yn+1 < yn, exists z s.t. ∀n < ω xn < z < yn .

Proof Suppose, that L satisfies all of the above, a and b are countable, and f : a → L
is an embedding, which we want to extend to f̃ : b → L . Notice, that it is sufficient
to show this in case, when b is a one-point extension of a, since then we can do so
for any countable linear order by induction. But conditions from the Lemma assure
exactly, that any one-point extension of a can be realized in L .
In the other direction, verification is straightforward. ��

Linear orders with this property were investigated already by Hausdorff [6], under
the name η1-orders, and later by Harzheim [5]. A brief survey with substantial bibli-
ography can be found in Chapter 9 of the book by Rosenstein [13].

Since each one-point extension of a countable subset of countably saturated linear
order is realised, each linear order of cardinality at most ω1 can be embedded into
any countably saturated linear order. Moreover, the following stregthening of this
observation is attributed to Hausdorff in [14], and [13] p.164.

Theorem 4 A countably saturated linear order contains a copy of any linear order,
which doesn’t have a copy of ω1 or ω∗

1 .

In particular, each countably saturated linear order contains an isomorphic copy of
the real line order type, therefore has cardinality at least c.

Let us nowdefine a linear order, whichwill turn out to be prime countably saturated.

L
ω1 = {x ∈ [−1, 1]ω1 | |{α < ω1 : x(α) �= 0}| ≤ ω}.

If D is a compact linear order and d0 ∈ D is neither the least, nor the greatest element
of D, then we define

L
ω1
(D,d0)

= {x ∈ Dω1 | |{α < ω1 : x(α) �= d0}| ≤ ω}.

The case D = {−1, 0, 1} and d0 = 0 is the classical construction by Hausdorff, and
is described in [5]. Theorem 5 is therefore a slightly more general version of Theorem
3.22 therein, and Theorem 7—a version of Theorem 3.13.

Theorem 5 L
ω1 and L

ω1
(D,d0)

are countably saturated.

This follows in fact almost immediately from a theorem of Novák.

Theorem 6 (Novák, [11]) Let L be a compact line. Then for any ordinal α, Lα is
compact. If L was moreover a continuum, then so is Lα .

Proof We prove the theorem by induction on α. Case α = 1 is trivial, and for the
succesor step it is sufficient to show that the product of two compact linear orders is
compact, and the product of two continua is a continuum.
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On countably saturated linear orders and certain class of… 193

Let (K ,≤K ) and (L,≤L) be compact lines. Surely (min K ,min L) is the minimal
element of K × L , and (max K ,max L) is the greatest element. Let S ⊆ K × L be
a non-empty set. We aim to find the least upper bound for S. If projection on the first
coordinate projK S has no maximal element, then (sup projK S,min L) is the least
upper bound for S. If projK S has a maximal element, say sK , then let sL be the least
upper bound of {x ∈ L| (sK , x) ∈ S}. Then (sK , sL) is the least upper bound for S in
K × L . In a similar way we prove that S has the greatest lower bound.
Assume now that α is a limit ordinal, and for every β < α, each lexicographic
power Lβ is compact. Then the space

∏
β<α Lβ with the product topology (not the

lexicographic power) is a compact Hausdorff space, and so the set

P = {x ∈
∏

β<α

Lβ | ∀β1 < β2 < αx(β2) � β1 = x(β1)}

is also compact, as a closed subset of a compact space. It is then sufficient to show
that the lexicographic power Lα is a continuous image of P . The obvious function
witnessing that is given by π(x)(β) = x(β + 1)(β). To see that π is continuous, it
is enough to check that π−1[{x ∈ Lα| x > a}] is open for every a ∈ Lα . But since
inequality x > a must be true already between some initial segments of x and a, it is
easy to check that

π−1[{x ∈ Lα| x > a}] = {x ∈
∏

β<α

Lβ | ∃γ < α x(γ ) > a � γ } ∩ P.

The latter set is clearly open in P . The claim about continua is straightforward, given
that a compact line is a continuum if and only if it is dense in itself. ��
Proof of Theorem 5 Notice, that Lω1 = ⋃

α<ω1
[−1, 1]α . We check conditions from

Lemma 1. Density is clear. For verification of the last condition, take two sequences
· · · < xn < xn+1 < · · · < yn+1 < yn < · · · . There is some level α, such that all xn
and yn belong to [−1, 1]α . Since it is compact, we can take supremum of {xn}n<ω in
this set, and it will clearly separate each xn from each yn .
The only problematic case iswhenwewant to separate an increasing sequence {xn}n<ω

from x̃ = supn<ω xn , where supremum is taken in some [−1, 1]α , big enough to
contain x̃ and each xn . But then it is clear, that x̃
−1 ∈ [−1, 1]α+1 is a good separating
element. Proof for Lω1

(D,d0)
goes exactly the same way. ��

Theorem 7 L
ω1 is prime countably saturated. Likewise, if D is a separable compact

line, and d0 ∈ D is neither the least, nor the greatest element, then L
ω1
(D,d0)

is prime
countably saturated.

L
ω1 = {x ∈ [−1, 1]ω1 | |{α < ω1 : x(α) �= 0}| ≤ ω} is (isomorphic to) an

increasing sum
⋃

α<ω1
[−1, 1]α . If X is any countably saturated linear order, we build

an embedding L
ω1 → X by induction on α, using the Lemma below.

Lemma 2 Let (X ,≤X ) be any countably saturated linear order, (L,≤L ) a linear order
of countable character, and (E,≤E ) be separable linear order with distinguished
element e0. Then each embedding i : L � L × {e0} → X extends to ĩ : L × E → X.
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194 Z. Kostana

Proof Det E0 ⊆ E be a countable dense subset. Fix l ∈ L and sequencesαn increasing,
βn decreasing, witnessing countable character of l. Then, there exists an extension:

({l} ∪ {αn, βn| n < ω},≤L) X

({αn}n<ω,≤L) + E0 + ({βn}n<ω,≤L)

i

j il

where j(l) = e0, j(αn) = αn . and j(βn) = βn for every n.
Next, we extend

il : ({αn}n<ω,≤L) + E0 + ({βn}n<ω,≤L) → X ,

to

ĩl : ({αn}n<ω,≤L) + E + ({βn}n<ω,≤L).

This, in turn, can be done, because E0 is countable and dense in E . Finally, we set
ĩ(l, e) = il(e). ��

Now we only need to know, that the sets [−1, 1]α have countable character.

Proposition 2 If α is a countable ordinal, then [−1, 1]α doesn’t contain any copy of
ω1 or ω∗

1 . In particular, it has countable character.

Proof It is sufficient to prove that 2γ doesn’t contain copy of ω1, for any countable
ordinal γ . Assume otherwise, and let γ < ω1 be minimal, such that ω1 ↪→ 2γ .
Suppose that γ is limit. It is easy to check that the set

2<γ = {x ∈ 2γ | ∃β<γ ∀β < δ < γ x(δ) = 0} =
⋃

δ<γ

2δ

is dense in 2γ , and so if 2γ has an uncountable well-ordered sequence, so does 2<γ .
But then for some β < γ , 2β has uncountably many elements of that sequence, which
itself constitute a copy of ω1. This contradicts the minimality of γ .
Suppose now that γ is successor. If 2γ has an uncountable well-ordered sequence,
then either ω1 of its elements has 0 on the last coordinate, or ω1 of its elements has
1 on the last coordinate. Either way, their restriction to the first γ − 1 coordinates
constitute an uncountable well-ordered sequence in 2γ−1. This again contradicts the
minimality of γ . ��

We address the question of uniqueness of a prime countably saturated order. This
question is completely settled under CH, and it was proved by Hausdorff. It is in fact
a particular case of a much more general phenomenon. Namely, given any first order
theory, all κ-saturated models of cardinality κ are pairwise isomorphic. For the proof
of this well-known fact, we refer to for example [7], or to [9] for a more general
approach, using the language of category theory.
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Theorem 8 Assume CH. Then every two countably saturated linear orders of cardi-
nality c are isomorphic.

Let us note, that this is not true without CH. Namely, if 2ω ≥ ω2, then both

{x ∈ [−1, 1]ω1 | |{α < ω1 : x(α) �= 0}| ≤ ω},

and

{x ∈ [−1, 1]ω2 | |{α < ω2 : x(α) �= 0}| ≤ ω},

are countably saturated linear orders of cardinality continuum, but are not isomor-
phic, since the latter contains an isomorphic copy of the ordinal ω2. This was noted
already in [4]. In many cases we can provide somewhat better example. For the forcing
terminology we refer the reader to [10].

Theorem 9 It is relatively consistent with ZFC that there exist two non-isomorphic,
countably saturated linear orders of cardinality c, none of which contains copy of
neither ω2 nor ω∗

2 .

Proof We start with some countable transitive model V |� ZFC + CH . The idea is
that we will find two linear orders satisfying conditions of the Theorem, but only one
will contain a copy of some linear order of cardinality ω2 from V. Let P ∈ V be any
c.c.c. forcing notion which forces c > ω1 (for example a finite support iteration of the
Cohen forcing, of length ω2). Denote by V

P the corresponding generic extension.

Lemma 3 InVP,Lω1 doesn’t contain copy of any linear order of cardinalityω2, which
is in V.

Proof Suppose that (ω2,�) ∈ V is a linear order, and that

P � “ ḟ : (ω2,�) ↪→ L
ω1 is increasing”.

For any α ∈ ω2, in the generic extension f (α) is a sequence of reals of length ω1,
which is constantly equal zero from some point. From the Maximum Principle, there
exists a name ḃα for which P � ∀ω1 > δ > ḃα ḟ (α)(δ) = 0. Since P is c.c.c. there
are at most countably many possible values of the ordinal ḃα , and so we can define
cα = sup {β < ω1| ∃p ∈ P p � ḃα = β}.
There is some β < ω1, for which the set {α < ω2| cα = β} has cardinality ω2. Denote
this set by S. Note, that in this case

P � ḟ [S] ↪→ [−1, 1]β.

The set S was defined in V, so S ∈ V, and given that |S| = ω2, S must contain an
uncountable well-ordered or reversed well-orered sequence (this is a standard appli-
cation of the Erdös-Rado Theorem in V). But [−1, 1]β doesn’t contain uncountable
(reversed) well-ordered sequences, by Proposition 2. This is a contradiction. ��
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196 Z. Kostana

The Theorem is now proved as follows. We work in VP. As one example take Lω1 .
For the other, let R0 ⊆ (2ω1)V be of cardinality ω2, and R0 ∈ V. Define inductively a
sequence (Rα)α≤ω1 , such that for each α < ω1, Rα+1 patches Rα (see Definition 3 in
the next section), and Rα = ⋃

β<α Rβ for limit α. Moreover, we assure that |Rα| ≤ c
for each α. It is clear, that Rω1 is countably saturated linear order of cardinality c. ��

2.2 Linear dimension

We will use the notion of dimension, introduced by Novák in [11], for further classi-
fication of linear orders. Some time ago, it was also investigated by Giarlotta, under
the name representability number [3]. Let 2 denote the 2-element linear order.

Definition 2 (Novák, [11]) Let L and X be linear orders, and |L| ≥ 2. The dimension
of X with respect to L is defined as

L-dim X = min{α ∈ ON | X ↪→ Lα}.

Let us write down some easy observations.

Proposition 3 For any linear orders L, L1, L2, X, the following holds.

• If X1 ↪→ X2, then L-dim X1 ≤ L-dim X2.
• If L1 ↪→ L2, then L1 − dimX ≥ L2 − dimX.
• If L1 ↪→ L2 and L2 ↪→ L1, then for every X, L1 − dimX = L2 − dimX.

In particular, the notions of 2ω − dimX , I-dim X , and R− dimX coincide. We will
denote them I-dim X .

Proposition 4 If A and B are subsets of some linear order, I-dim A < ω1, and
I-dim B < ω1, then I-dim (A ∪ B) < ω1.

Proof Because A∪ B = (A \ B) ∪ (A∩ B) ∪ (B \ A), and the sum is clearly disjoint,
we can restrict ourselves to the case when A and B are disjoint. For b0, b1 ∈ B we
set b0 ∼ b1 iff [b0, b1] ∩ A = ∅ ([b0, b1] actually means [min{b0, b1},max{b0, b1}],
but this is a harmless abuse of notation, and we won’t bother with it anymore). This
is a convex equivalence relation on B. Let i A : A → I α , and iB : B → I β be
embeddings. We aim to extend i A to ĩ : A ∪ B → I α+1+β . It is sufficient to define
ĩ on each equivalence class separately. Let S ⊆ B be a selector of ∼. For s ∈ S we
choose i ′(s) ∈ I α+1, so that

{i A(a)| a < s} < {i ′(s)} < {i A(a)| s < a}.

Keeping in mind that Iα is a linearly ordered continuum of countable character, it
requires only standard verifiation, that this can be done, and it is left to the Reader.
Let i ′(a) = i A(a) for a ∈ A. Then, having i ′ : A ∪ S → I α+1, we extend it to
ĩ : A ∪ B → I α+1+β , via the formula

ĩ(b) = i ′(sb)
iB(b),

123



On countably saturated linear orders and certain class of… 197

for sb ∼ b, and sb ∈ S. ��
Theorem 10 (Novotný [12], Novák [11]) Let L be a linearly ordered continuum. Then
for any ordinal α, L-dim Lα = α.

Once we are familiar with the theorem of Novák, this result is an immediate con-
sequence of a Lemma due to Novotný, which has quite pleasant proof. Since it was
originally published in Czech, we quote it here.

Lemma 4 (Novotný, [12]) Let (X ,≤) be a linearly ordered continuum, and A be a
disjoint family of closed, not-single-point intervals in X. The relation ≤ induces a
linear order ≤̃ on A, via the formula I ≤̃J iff max I < min J . Then (X ,≤) does not
embed into (A, ≤̃).

Proof Suppose otherwise, that i : (X ,≤) → (A, ≤̃) is an embedding. Let A = {x ∈
X | x < min i(x)}. A is nonempty, because X has the least element, so let a = sup A.
We have two cases.

(a) Assume a ∈ A. Then a < min i(a), but for any a′ ∈ i(a) this is the case as well.
Since a′ ∈ i(a) is greater than a, this contradicts the definition of a.

(b) Assume a /∈ A. Then a ≥ min i(a). If a < max i(a), then let a′ ∈ (a,max i(a)).
Then a′ < max i(a) < min i(a′), so a′ ∈ A, and this is a contradiction. The only
way out is a ≥ max i(a). But notice, that in this case for any a′ ∈ (min i(a), a),
we have a′ /∈ A. Therefore sup A ≤ min i(a) < a, which is again a contradiction.

��
Corollary 1 If α is an ordinal with the property, that ω · α = α, then I-dim 2α = α.

Proof Clearly 2ω ↪→ I , so

2α � 2ω·α � (2ω)α ↪→ I α

In the other direction,

I α ↪→ (2ω)α � 2ω·α � 2α.

��
Theorem 11 Assume c = 2ω1 . Let X = Iω1 . Then L

ω1
(X ,0) is a countably saturated

linear order of cardinality c, character ω1, and I-dim = ω2
1. In particular Lω1

(X ,0) is
not isomorphic to L

ω1 .

Proof For every ordinal α < ω1,L
ω1
(X ,0) contains a copy of X

α . Xα is a linearly ordered
continuum, so I-dim Xα = I-dim Iω1·α = ω1 · α. Since α was arbitrary, this shows
that I-dimL

ω1
(X ,0) ≥ ω2

1.

In the other direction, Lω1
(X ,0) ↪→ Xω1 ↪→ Iω1·ω1 , so I-dimL

ω1
(X ,0) = ω2

1. ��
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198 Z. Kostana

2.3 Uniqueness of the prime countably saturated linear order

The assumption of CH is not needed if we take into account only linear orders which
are in some sense minimal.

Theorem 12 (Harzheim, [5]) All prime countably saturated linear orders are isomor-
phic.

The order type of the unique prime countably saturated order is in fact the order
type h1 in the language of [5]. Theorem 12 follows from Theorems 3.13 and 3.17
there. We give a proof in a slightly different language.

Definition 3 For two linear orders A ⊆ B, we will say, that B patches A, if for any two
countable sets a0, a1 ⊆ A, if a0 < a1, there exists b ∈ B, such that a0 < {b} < a1.

One can easily verify, that this comes down to patching gaps of four different types:
(1, 1), (ω, 1), (1, ω), and (ω, ω), which correspond to situations, where respectively

• a0 has the greatest element, and a1 has the least element,
• a0 doesn’t have the greatest element, but a1 has the least element,
• a0 has the greatest element, but a1 doesn’t have the least element,
• neither a0 has the greatest element, nor a1 has the least element.

Lemma 5 If I-dim A < ω1, then there exists B ⊇ A patching A, such that I-dim B <

ω1.

Proof Let α = I-dim A. Then A ↪→ I α , so we can assume that A ⊆ I α . This order
clearly patches gaps of the form (1, 1) and (ω, ω). To take care of (1, ω)- and (ω, 1)-
gaps, we replace every point of Iα with a unit interval.

A ⊆ I α � I α × {0} ⊆ I α+1.

��
Definition 4 If L is a countably saturated linear order, we define a filtration of L , as a
sequence of subsets of L , {Lα}α<ω1 , with the following properties:

• {Lα}α<ω1 is increasing with respect to inclusion,
• for each α < ω1, Lα+1 patches Lα ,
• ⋃

α<ω1
Lα = L ,

• for each α < ω1, I-dim Lα < ω1.

The next Lemma is the key tool in the proof of Theorem 12. It should be noted,
that its first part as actually a direct consequence of Theorem 3.6 p. 81 [5].

Lemma 6 (On Bounded Injectivity) Assume, that A and B are linear orders with
I-dim A, I-dim B < ω1, and L is countably saturated. Let f : A ↪→ L, and i : A ↪→ B
be increasing functions. Then
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(a) There exists an increasing mapping f̃ : A ↪→ L, such that f̃ ◦ i = f .

A L

B

f

i
f̃

(b) If L has a filtration {Lα}α<ω1 , and there is an index α < ω1, for which f [A] ⊆ Lα ,
then we can choose f̃ bounded, i.e. f̃ [B] ⊆ Lβ , for some β < ω1.

Proof Without loss of generality we may assume that A ⊆ B, and i is the identity
mapping. For b0, b1 ∈ B \ A, we set b0 ∼ b1 iff [b0, b1] ∩ A = ∅. This clearly
defines a convex equivalence relation on B \ A, and it is sufficient to define f̃ on each
equivalence class separately. a) For any b ∈ B \ A,

{a ∈ A| a < b} < [b]∼ < {a ∈ A| b < a}.

Since any linear order of countable I-dim has character ω, both these sets have count-
able cofinality and coinitiality respectively. Therefore, this is also the case for

{ f (a)| a < b, a ∈ A} < { f (a)| b < a, a ∈ A},

so L will contain a point between them. Since it will contain a point, it will contain an
interval, and this interval will be countably saturated itself. Since it will be countably
saturated, it will contain a copy of Lω1 , and in turn a copy of any order of countable
I -dimension, in particular [b]∼. We set f̃ to isomorphically map [b]∼ onto that copy.
The “bounded” variant will require more care.

Sublemma Let {Lα}α<ω1 be a filtration. Then for every α < ω1, ω ≤ γ < ω1, and
for all a0 < a1 ∈ Lα , (a0, a1) ∩ Lα+γ+1 contains a copy of 2γ .

Proof We proceed by induction on γ .
γ = ω. Lα+ω ∩ (a0, a1) contains copy of rationals, so Lα+ω+1 ∩ (a0, a1) contains a
copy of reals, and in particular 2ω.
successor step. Assume that i : 2γ ↪→ (a0, a1) ∩ Lα+γ+1.For every x ∈ 2γ , there
exists vx ∈ Lα+γ+2, such that

i(x) < vx < i[{y ∈ 2γ | y > x}],

because the set on the right has countable coinitiality. We set ĩ(x
0) = i(x), and
ĩ(x
1) = vx .
limit step. Fix an increasing sequence {γn}n<ω, cofinal on γ . Let

2<γ = {x ∈ 2γ | ∃β < γ∀β < δ < γ x(δ) = 0} =
⋃

n<ω

2γn .

By induction we define embeddings jn : 2γn ↪→ (a0, a1) ∩ Lα+γn+1, such that jn ⊆
jn+1. j0 : 2γ0 → (a0, a1) ∩ Lα+γ0+1 exists by induction hypothesis. Assume, that we
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have jn defined, and look at x ∈ 2γn . Since Lα+γn+2 patches Lα+γn+1, there exist vx ,
such that

jn(x) < vx < jn[{y ∈ 2γn | y > x}],

and ( jn(x), vx ) ⊆ (a0, a1) (this is automatic, unless {y ∈ 2γn | y > x} = ∅). By the
induction hypothesis we can find l : 2γn+1\γn ↪→ ( jn(x), vx ) ∩ Lα+γn+1+1. We define,
for w �= 0, jn+1(x
w) = l(w). Notice, that x
w ∈ 2γn × 2γn+1\γn = 2γn+1 .
Finally, we see that

⋃
n<ω jn : 2<γ ↪→ Lα+γ , and so 2γ ↪→ Lα+γ+1. ��

b) Assume that {Lα}α<ω1 is a filtration of L , and f [A] ⊆ Lβ . Then there exists
u, v ∈ Lβ+2, such that

{ f (a)| a < b} < u < v < { f (a)| b < a}.

By the Sublemma, (u, v)∩Lβ+ω·γ+1 contains a copy of 2ω·γ , so also I γ , for any given
γ . If γ = max{I-dim B, ω}, then in particular (u, v)∩ Lβ+2+ω·γ+1 contains a copy of
[b]∼. We define f̃ the same way as before, but making sure, that f̃ [B] ⊆ Lβ+ω·γ+1.

��
Proposition 5 A countably saturated linear order is prime if and only if it has a
filtration.

Proof Assume, that L is prime countably saturated. Then without loss of generality,
we can assume, that L ⊆ L

ω1 . Denote

Iα = {x ∈ L
ω1 | ∀β ≥ α x(β) = 0}.

Notice, that the sequence {Iα}α<ω1 constitutes a filtration of Lω1 . We define a
filtration {Lα}α<ω1 of L by induction.

• L0 = I0 ∩ L ,
• Assume we have Lγ constructed. Using Lemma 5, we can find L̃γ ⊆ L

ω1 , with
I-dim L̃γ < ω1, which patches Lγ . Define Lγ+1 = L̃γ ∪ (L∩ Iγ ). By Proposition
4, I-dim Lγ+1 < ω1.

• When γ < ω1 is limit, we set Lγ = ⋃
α<γ Lα.

Suppose now that L is countably saturated, and has a filtration {Lα}α<ω1 . Let X be
any countably saturated linear order. Using Lemma On Bounded Injectivity, we can
easily build an ⊆-increasing sequence of increasing mappings iα : Lα ↪→ X . Its sum
will be an embedding of L into X . ��
Proof of Theorem 12 Consider two prime countably saturated linear orders. They both
admit filtrations, so, using the Lemma On Bounded Injectivity, we can use back-and-
forth argument, to inductively build an isomorphim between them. ��

We can characterize the prime countably saturated linear order using the dimension.
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Proposition 6 Let (L,≤) be a countably saturated linear order. The following are
equivalent:

• L is prime countably saturated;
• L is an increasing sum

⋃
α<ω1

Lα , where 2-dim Lα < ω1, for each α < ω1;
• L is an increasing sum

⋃
α<ω1

Lα , where I-dim Lα < ω1, for each α < ω1.

Proof 1 ⇒ 2. If L is prime countably saturated, then
L � L

ω1 = ⋃
α<ω1

[−1, 1]α ↪→ ⋃
α<ω1

2ω·α .
2 ⇒ 3. Clear.
3 ⇒ 1. If X is any countably saturated linear order, we construct an embedding
L ↪→ X by induction, using the Lemma on Bounded Injectivity. ��
This should by compared with the Characterization Theorem of Harzheim [5].

Proposition 7 (Harzheim, [5]) Let (L,≤) be a countably saturated linear order. The
following are equivalent:

• L is prime countably saturated;
• L is an increasing sum

⋃
α<ω1

Lα , where Lα doesn’t contain a copy of ω1 or ω∗
1 ,

for each α < ω1.

There is one more propery of Lω1 , which follows from the Lemma on Bounded
Injectivity.

Proposition 8 Any isomorphism between subsets of Lω1 of countable I-dim extends
to an automorphism of Lω1 . In particular, any automorphism between countable sub-
orders extends to an automorphism of Lω1 .

Proof Let φ : X ↪→ Y be in isomorphism, where X ,Y ⊆ L
ω1 , and I-dim(X) < ω1,

I-dim(Y ) < ω1. We can define two filtrations (Xα)α<ω1 , (Yα)α<ω1 , such that X =
X0, Y = Y0. Then we successively extend the automorphism, using the Lemma on
Bounded Injectivity. ��

As a matter of fact, Lemma on Bounded Injectivity basically proves that Lω1 is a
Fraïssé limit of length ω1, as defined in [9], of the class of linear orders of countable
I-dim.

3 (!1, c)-saturated graphs

We investigate existence and uniqueness of graphs with certain homogeneity proper-
ties. All graphs denoted by G or H are undirected, those ones denoted by

←−
G or

←−
H

are directed, and if
←−
G is a directed graph, then G is the corresponding undirected

graph, i.e. {a, b} ∈ E(G) if and only if (a, b) ∈ E(
←−
G ) or (b, a) ∈ E(

←−
G ). By N (g),

where g is a vertex of some graph, we denote the set of all vertices connected to g (in
whichever direction, in case the graph is directed). By Nz(g) we denote the set of all
vertices connected with g by an arrow starting in g.
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Definition 5 Let λ and κ be any cardinal numbers. A graph G is (λ, κ)-saturated if for
any A, B ⊂ G, |A| < λ, |B| < κ , A ∩ B = ∅, there exists a vertex v ∈ G such that
A ⊆ N (v), B ∩ N (v) = ∅.

It is long andwell-known, that all countable (ω, ω)-saturated graphs are isomorphic.
Under suitable cardinal arithmetic this result can be generalized to higher cardinali-
ties. In particular if CH holds, then all (ω1, ω1)-saturated graphs of cardinality c are
isomorphic.

Definition 6 We introduce some classes of graphs, useful for our purposes.

• A graph G is of the first type, if there exists a bijective enumeration G = {gα| α <

c}, such that:

1. |N (gα) ∩ {gβ |β < α}| ≤ ω, for all α < c;
2. for each countable A ⊆ G, there are continuum many indices α, such that

N (gα) ∩ {gβ |β < α} = A.

• A graph
←−
G is strictly saturated, if

1. |Nz(v)| ≤ ω, for each v ∈ ←−
G ;

2. for each countable A ⊆ ←−
G , there are |←−G |-many g ∈ ←−

G , such that Nz(g) = A.

As in the case of linear orders, a graph from some class of graphs C is prime, if it
embeds into every graph from C. We aim to prove the existence and uniqueness of the
prime (ω1, c)-saturated graph.

Recall, that the colouring number, denoted Col(G) of a graphG is the least cardinal
κ , such that there exists a well-ordering (G,�), with the property

|{h � g| {g, h} ∈ E(G)}| < κ,

for all g ∈ G. In follows from the definition, that any graph of the first type has
colouring number ω1.

Proposition 9 If a graph G is of the first type, then the edges of G can be directed in
such a way, that the resulting directed graph is strictly saturated, and doesn’t have an
infinite path.

Proof Fix a well-ordering, which witnesses that G is of the first type, and then direct
every edge in a decreasing manner with respect to that ordering. ��

This is an important observation, and this is why.

Lemma 7 If
←−
G and

←−
H are strictly saturated graphs of cardinality c without infinite

paths, then they are isomorphic.

The proof will slightly resemble the proof of Mostowski Collapse Lemma.

Proof Let {gα|α < c} and {hα|α < c} be any bijective enumerations of
←−
G and

←−
H

respectively. By induction we construct an isomorphism φ : ←−
G → ←−

H . Assume, that
we are in step η < c.
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• If η is even, then choose the least α such that φ(gα) has not yet been defined,
but φ � Nz(gα) is defined (such element always exists, because there’s no infinite
path). By strict saturation we can choose h ∈ ←−

H , for which φ−1(h) is not yet
defined, and Nz(h) = φ[Nz(gα)]. Set φ(gα) = h.

• If η is odd, then choose the least α, such that φ−1(hα) is has not been defined, but
φ−1 � Nz(hα) is defined. Again, by strict saturation we can choose g ∈ ←−

G , which
hasn’t yet been used, and Nz(g) = φ−1[Nz(hα)]. Set φ(g) = hα .

A standard verification shows that φ is indeed a bijection between
←−
G anf

←−
H . Indeed,

suppose that some vertex x0 ∈ ←−
G somehow evaded being assigned the image φ(x0).

Then, there must be some x1 ∈ ←−
G , such that x0 → x1, and which shared this fate.

If not, then φ � Nz(x0) would have been defined, and since cf c > ω = |Nz(x0)|, it
would have been defined at a certain step. From that moment on, x0 would be ready
to be chosen next. Since there are less than c elements with priority below x0, and c
future steps, its turn would eventually arrive. But then we apply the same argument to
x1, getting x1 → x2, and so on, producing an infinite path. Because of symmetry of
the construction, the same argument shows, that φ is onto.

We will check, that it is a homomorphism. Fix an arrow gα → gβ in
←−
G . The

construction assures, that φ(gβ) is defined before φ(gα).

1. Suppose, that we are defining φ(gα) in an even step. Then φ(gα) → φ(gβ) is in←−
H , by the definition of φ(gα).

2. Suppose, that we are defining φ(gα) in an odd step. Then, in this step we are setting
φ−1(hγ ) = gα for some γ < c. Then gβ ∈ Nz(gα) = φ−1[Nz(hγ )]. Therefore,
φ(gβ) ∈ Nz(hγ ), and hγ = φ(gα). So φ(gα) → φ(gβ) is in

←−
H .

Because the construction was symmetric, exactly the same argument shows that if gα

and gβ were not connected, φ(gα) and φ(gβ) are not connected either. This finishes
the proof. ��

We can now give the internal characterization of prime strictly saturated graphs.

Theorem 13 A strictly saturated graph of cardinality c is prime if and only if it has no
infinite path.

Proof ⇒ . The property of having no infinite path is hereditary, so if some strictly
saturated graph has this property (and we will soon see, that it has), then so does
every prime one.
⇐ . We do the same construction as in the proof above, but only in one direction,
so that we obtain an embedding instead of an isomorphism. The only thing which
is not immediate, is why if gα and gβ are not connected, φ(gα) and φ(gβ) are
not connected either. But we are choosing φ(gα) in a way that Nz(φ(gα)) =
φ[Nz(gα)]. gβ /∈ Nz(gα), so φ(gβ) /∈ Nz(φ(gα)). ��

Corollary 2 All prime strictly saturated graphs are isomorphic.

From Proposition 9 follows
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Corollary 3 All graphs of the first type are isomorphic.

Theorem 14 There exists a prime strictly saturated graph without an infinite path.
Moreover, a graph G is of the first type if and only if it can be assigned a direction of
edges, such that the resulting directed graph is prime strictly saturated.

Proof All graphs of the first type are isomorphic, and also all prime strictly saturated
graphs are isomorphic. We therefore need only to find some strictly saturated graph←−
G with no infinite path, such that G is of the first type. We apply a bookkeeping
argument, similar to the one used in the proof of existence of Avilés–Brech Boolean
algebra in [1]. Let {�α|α < c} be a partition of c into sets of cardinality c, and such
that min�α ≥ α.

• G0 = {0}, and for γ ∈ �0, we set Sγ = {0}.
• If α is a limit ordinal, let Gα = ⋃{Gβ |β < α}, and {Sγ |γ ∈ �α} be an enumera-
tion of all countable subsets of Gα , in which every set appears c many times.

• Assume that Gα and Sγ , for γ ∈ ⋃ {�β |β ≤ α}, have been defined. We set
Gα+1 = Gα ∪ {α}, and {α, g} ∈ Gα+1 iff g ∈ Sα , where g ∈ Gα . Finally, we use
�α+1 to list all countable subsets of Gα+1, and each of them c-many times.

A natural ordering of G given by the well-ordering of the ordinal cwitnesses, thatG is
of the first type, and therefore can be directed into

←−
G , strictly saturated graph without

infinite path, by directing every edge downwards with respect to the well-ordering of
c. ��

Note, that this argument actually shows, that for any cardinal κ such that κω = κ ,
there exists a strictly saturated graph of cardinality κ without an infinite path, and all
such graphs are isomorphic.

We obtain an internal characterization of prime (ω1, c)-saturated graphs.

Theorem 15 An (ω1, c)-saturated graph is prime (ω1, c)-saturated if and only if it is
of the first type.

Proof ⇐ . Let G be the graph of the first type. For simplifying notation, let us assume
that V (G) = c, and its natural well-ordering witnesses the first type of G.
First, we check that if G is of the first type, it is actually (ω1, c)-saturated. Let A ⊆ G
be countable and B ⊆ G be of cardinality less than c, disjoint with A. For all b ∈ B,
let Cb = N (b) ∩ b, and S = ⋃{Cb| b ∈ B}. |S| < c, so there exists g ∈ G \ S, such
that N (g) ∩ g = A. Clearly N (g) ∩ B = ∅.
Verification that G embeds into any (ω1, c)-saturated graph is proved by a standard
transfinite induction argument.
⇒ . Consider a prime (ω1, c)-saturated graph. Without loss of generality we can
assume that it is an induced subgraph of G. Our goal for the moment is to prove, that
we can direct its edges in such a way, that we obtain the prime strictly saturated graph.
The property of being of the first type is not hereditary, but (ω1, c)-saturated subgraph
of G will be satisfying some property close enough to being of the first type.

Lemma 8 Let G be (ω1, c)-saturated, such that V (G) = c, and for any α ∈ G,
|N (α) ∩ α| ≤ ω. Then G can be directed into the prime strictly saturated graph.
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Proof At the beginning, we direct all edges of G downwards with respect to the well-
ordering of c. We will inductively redirect some edges, ensuring that every countable
subset will appear as Nz(α), but no infinite path will be added.
So assume that

←−
G is our graph G with edges directed downwards. Denote by A(β)

the set of all vertices accessible via a finite, decreasing path from β (note that adjective
“decreasing” may sound superfluous, since all edges are directed downwards, but by
the inductive procedure we will perform, some arrows will be reversed). It is clearly
countable. Let {Cα}α<c be an enumeration of all countable subsets of c, such that
each set appears c many times. By induction we will choose the sequence (xα)α<c,
satisfying what follows.

1. xα /∈ {xβ | β < α};
2. Cα ⊆ N (xα) ∩ xα;
3. N (xα) ∩ ⋃

η≤α

⋃
β∈Cη

(A(β) \ Cα) = ∅;
4. (N (xα) \ Cα) ∩ ⋃{N (xβ) ∩ xβ | β < α} = ∅;
5. xα /∈ ⋃

β<α N (xβ) ∩ xβ ;
6. N (xα) ∩ ({xβ | β < α} \ Cα) = ∅.
At each step the choice can be made because of (ω1, c)-saturation. Once xα has been
chosen, we reverse all arrows c ← xα for c ∈ N (xα)∩ xα \Cα . It follows from 2. that
every countable subset of c will appear as Nz(α) for cmany α. The only things which
are left to check, is that we won’t produce an infinite path, and that we will preserve
the property |Nz(α)| ≤ ω for α < c. Since in the α-th step we reverse only arrows
from N (xα) ∩ xα \ Cα , for the second part, it is sufficient to prove

Claim 1 The sets N (xα) ∩ xα \ Cα are pairwise disjoint for α < c.

Proof Follows directly from 4. ��
Claim 2 Each arrow was reversed no more than once.

Proof If we are in step α and the arrow c ← xα is about to be reversed for the second
time, then clearly c = xβ for some β < α. But this contradicts 6. ��
Claim 3 There is no situation where α < β < γ < c, and α → β → γ .

Proof Suppose otherwise. Then β = xδ and γ = xη, for some δ, η < c. If δ < η, then
β ∈ ({xρ | ρ < η} \Cη)∩N (xη), contradicting 6. If η < δ, then β = xδ ∈ N (xη)∩ xη,
which contradicts 5. ��
Claim 4 If α < β, γ < β, γ < δ, and we have arrows α → β, γ → δ, and a finite,
decreasing path from β to γ . Then there exists η, θ < c, such that xη = β, xθ = δ,
and θ < η.

Proof Existence is clear, since otherwise the corresponding arrows wouldn’t be
reversed. Suppose, that θ ≥ η. Then γ ∈ N (xθ ) ∩ ⋃

ε∈Cη
A(ε) \ Cθ . But this contra-

dicts 3. ��
Claim 5 The graph G has no infinite path.
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Proof Follows from the previous three Claims, and the fact that c is well-ordered. ��
This concludes the proof of the last Claim. ��
Theorem 15 follows at once from Lemma 8. ��
Putting everything into one place, we obtain

Theorem 16 Let G be an (ω1, c)-saturated graph. The following are equivalent.

1. G is prime (ω1, c)-saturated.
2. Col(G) = ω1.
3. G is of the first type.

4. G has a direction of edges such that
←−
G is prime strictly saturated.

5. G has a direction of edges such that
←−
G is strictly saturated, without an infinite

path.

Moreover, any of these properties determines the graph G uniquely up to isomorphism.

The natural question that arises, is whether similar conclusion holds for (ω1, ω1)-
saturated graphs.

Theorem 17 The prime (ω1, ω1)-saturated graph exists only if c = ω1.

Proof Let ·̄ denote the complement of a graph. Let G be the prime (ω1, c)-saturated
graph. Of course both G and Ḡ are (ω1, ω1)-saturated, so it is enough to prove, that
no graph of cardinality ω2 appears as an induced subgraph of both of them. Notice,
that if S were such graph, then Col(S) ≤ ω1 and Col(S̄) ≤ ω1. So it is sufficient to
show, that this cannot be the case.
Suppose otherwise, that S is a graph of cardinalityω2, with Col(S) ≤ ω1 andCol(S̄) ≤
ω1. Fix well-orderings S = {sα| α < ω2} = {tα| α < ω2} witnessing the colouring
number of S and S̄ respectively, and denote by σ : ω2 → ω2 the bijection given by
∀α<ω2sα = tσ(α). Finally, fix an ordinal γ > ω1, for which also σ(γ ) > σ [ω1].
Let A = {α < ω1| {sα, sγ } ∈ E(S)}, and B = {α < ω1| {sα, sγ } /∈ E(S)}. Clearly A is
countable. Also B = {α < ω1|{tσ(α), tσ(γ )} /∈ E(S)} = σ−1[{α ∈ σ [ω1]|{tα, tσ(γ )} /∈
E(S)}], which is countable. But A ∪ B = ω1, which is a contradiction. ��

3.1 The concrete representation

Consider the set of all hereditarily countable sets H(ω1), i.e. the countable sets, of
which every element is countable, and every element of element is countable, and so
forth. This structure, and its higher analogs H(κ), appear in the axiomatic set theory,
because (H(κ),∈) is a natural model of ZFC without the powerset axiom, for any
uncountable, regular κ . For more elaborated introduction, we refer the reader to [10].
It was noticed by Arturo Martinez-Celis, that the prime (ω1, c)-saturated graph we
have been studying is isomorphic to the graph where set of vertices is H(ω1), and an
edge is drawn between x and y if and only if x ∈ y or y ∈ x .

Theorem 18 Let (H(ω1),∈ ∪ �) be the graph defined above. It is prime (ω1, c)-
saturated.
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Proof First, let us check, that it is (ω1, c)-saturated. Let A, B ⊆ H(ω1), |A| ≤ ω,
|B| < c. We aim to find a countable set A′ ⊇ A, disjoint with B, and not belonging
to

⋃
B. But | ⋃ B| < c, and there are c-many different hereditarily countable sets

having A as a subset, and disjoint with B.
We now prove, that it is prime. It is sufficient to prove that for any strictly saturated
graph G, we have an embedding φ : (H(ω1),∈) ↪→ G. We define φ by the induction,
with respect to the ∈ relation. Suppose that x ∈ H(ω1), and for every y ∈ x , φ(y)
is defined. Set φ(x) = g, where Nz(g) = φ[x]. It is routine to check, that this is an
embedding. ��
Corollary 4 |H(ω1)| = c.

Note, that it is not even a priori clear, that H(ω1) is a set, not a proper class.

4 Boolean algebras with the strong countable separation property

In this section letters A, B,C always denote Boolean algebras.

Definition 7 An infinite Boolean algebra A has the strong countable separation prop-
erty if the following assertion holds:

Suppose F,G ⊆ A are countable sets with the property that for all nonempty, finite
subsets f ⊆ F , g ⊆ G,

∨
f <

∧
g. Then there exist a ∈ A, such that for all x ∈ F ,

and y ∈ G, x < a < y.

This is equivalent to being injective with respect to countable subalgebras.

Proposition 10 (5.29 in [8]) Assume that A has the strong countable separation prop-
erty, f : B → A is an embedding, and B ⊆ C is countable. Then f extends to an
embedding f̃ : C → A.

For exposition of general theory of Boolean algebras with the strong countable
separation property, we refer the reader to [8]. In case of Boolean algebras, we start
from the classical characterization of P(ω)/Fin by Parovičenko.

Theorem 19 (Parovičenko) Under CH, P(ω)/Fin is the unique Boolean algebra of
cardinality c, with the strong countable separation property.

In fact, this statement is equivalent to CH, as was proved by van Douwen and van
Mill [15]. In [1] Avilés and Brech consider Boolean algebras which realize extensions
by so-called posex’ (push-out separable extensions).

Definition 8 (Avilés–Brech, [1])Anembedding f : A → B is a posex, if the following
holds:

• for all b ∈ B \ f [A], the ideal {a ∈ A| f (a) < b} is countably generated,
• B is countably generated over f [A] (i.e. there exist a countable set S ⊆ B, such
that B is generated by f [A] ∪ S).
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Definition 9 (Avilés–Brech, [1]) A Boolean algebra A is tightly σ -filtered if there
exists a sequence of Boolean algebras (Aη)η≤ζ , such that

• A0 = {0, 1},
• Aη ⊆ Aη+1 is a posex, for η < ζ ,
• Aη = ⋃

α<η Aα , for limit η < ζ ,
• Aζ = A.

We call the sequence (Aη)η<ζ a filtration of A.

Theorem 20 (Avilés–Brech, [1]) Assume, that c is regular. Then there exists a unique
Boolean algebra A, such that:

• |A| = c,
• A is tightly σ -filtered,
• For any embedding f : B → A, where |B| < c, and any posex C ⊇ B, there
exists an embedding f̃ : C → A, extending f .

B A

C

f

i
f̃

We will call an algebra with these properties an Avilés–Brech algebra. Since any
extension between countable Boolean algebras is posex, the algebra defined above
clearly has the strong countable separation property. Moreover, it is prime with respect
to this property.

Theorem 21 The Avilés–Brech algebra defined above, embeds into any Boolean alge-
bra having the strong countable separation property.

Proof Let B be any Boolean algebra with the strong countable separation property.
Let A be an Avilés–Brech algebra, with filtration (Aα)α<c. We construct an increasing
sequence of embeddings fβ : Aβ → B, by induction on α, using the Corollary 5.8
from [8], quoted below.

Lemma 9 Let A be any Boolean algebra and A(x) its extension generated by A∪{x}.
Let f : A → B be an embedding, and let y ∈ B. Then f extends to an embedding
f̃ : A(x) → B, with f̃ (x) = y if and only if for all a, a′ ∈ A, a ≤ x ≤ a′ implies
f (a) ≤ y ≤ f (a′).

Suppose that fβ : Aβ → B is defined for all β < α < c. If α is limit, we
set fα = ⋃{ fβ : β < α}, so suppose that α = β + 1. Let S = {s0, s1, . . .}
be a set such that Aα = 〈Aβ ∪ S〉. We successively extend fβ to each of the
generators using the Lemma. More precisely, let f 0β = fβ , and assume that f iβ :
〈Aβ ∪ {s0, . . . , si−1}〉 → B is defined. Let {an| n < ω} be a set of generators of the
ideal {a ∈ 〈Aβ ∪ {s0, . . . , si−1}〉| f iβ(a) < si }, and let {a′

n| n < ω} be a set of gen-
erators of the ideal {a ∈ 〈Aβ ∪ {s0, . . . , si−1}〉| f iβ(a) < −si }. Because of the strong
countable separation property, there exists b ∈ B such that for all n < ω

f iβ(an) < b < − f iβ(a′
n).
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We extend f iβ to f i+1
β , so that f i+1

β (si ) = b. Finally, let fα = ⋃
i<ω f iβ . ��

A natural question arises.

Problem 1 Let A be a Boolean algebra with the strong countable separation property,
and such that whenever B has the strong countable separation property, then A embeds
into B. Does it follow that A is the Avilés–Brech algebra?
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