
Archive for Mathematical Logic (2020) 59:703–713
https://doi.org/10.1007/s00153-020-00712-z Mathematical Logic

The noneffectivity of Arslanov’s completeness criterion
and related theorems

Sebastiaan A. Terwijn1

Received: 4 May 2018 / Accepted: 10 January 2020 / Published online: 22 January 2020
© The Author(s) 2020

Abstract
We discuss the (non)effectivity of Arslanov’s completeness criterion. In particular, we
show that a parameterized version, similar to the recursion theorem with parameters,
fails. We also discuss the effectivity of another extension of the recursion theorem,
namely Visser’s ADN theorem, as well as that of a joint generalization of the ADN
theorem and Arslanov’s completeness criterion.

Keywords Recursion theorem · ADN theorem · Arslanov completeness criterion ·
Uniformity

Mathematics Subject Classification 03D25 · 03D28 · 03B40

1 Introduction

Kleene’s recursion theorem [8] states that every computable operation on codes of
partial computable functions has a fixed point. That is, for every computable func-
tion f there exists a number e such that ϕ f (e) = ϕe. Here ϕe denotes the e-th partial
computable function. Kleene actually proved a more general version of this theorem
with parameters:

Theorem 1.1 (Recursion theorem with parameters, Kleene [8]) Let h(n, x) be a com-
putable binary function. Then there exists a computable function f such that for all n,
ϕ f (n) = ϕh(n, f (n)).

This result shows that the recursion theorem is effective, in the sense that the fixed
points of a computable sequence of functions can be found in a uniformly computable
way. We refer to Moschovakis [10] for an overview of some of the applications of this

B Sebastiaan A. Terwijn
terwijn@math.ru.nl

1 Department of Mathematics, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen,
The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-020-00712-z&domain=pdf
http://orcid.org/0000-0002-1464-6908

704 S. A. Terwijn

classic result. (Note that Kleene referred to Theorem 1.1 as the first recursion theorem,
whereas Moschovakis proposes to call it the second recursion theorem, to contrast it
with the simpler nonuniform statement.)

The recursion theorem has been extended in several ways. We refer the reader to
Soare [12] for a general discussion. In this paper we discuss the effectivity of two
extensions, namely Arslanov’s completeness criterion (Sects. 2 and 3) and Visser’s
ADN theorem (Sects. 4 and 5). In particular we show that the parameterized ver-
sions of these extensions, analogous to Theorem 1.1, fail. Finally, we discuss a joint
generalization of Arslanov’s completeness criterion and the ADN theorem from [13].
Though the ADN theorem does not have a parameterized version, it is uniform in
certain other respects. In Sect. 6 we show that this uniformity does not hold for the
joint generalization.

Our notation fromcomputability theory ismostly standard. Partial computable (p.c.)
functions are denoted by lower case Greek letters, and (total) computable functions
by lower case Roman letters. ω denotes the natural numbers, ϕe denotes the e-th p.c.
function, and We denotes the domain of ϕe. We write ϕe(n) ↓ if this computation is
defined, and ϕe(n)↑ otherwise. ∅′ denotes the halting set. For unexplained notions we
refer to Odifreddi [11] or Soare [12].

In the discussion below we will use the following notions from the literature:

• A function f is called fixed point free, or simply FPF, if W f (n) �= Wn for every n.
We will also use this terminology for partial functions, see Definition 4.1 below,
but by FPF function we will always mean a total function, unless explicitly stated
otherwise.

• A function g is called diagonally noncomputable, or DNC, if g(e) �= ϕe(e) for
every e.

Though the notions of FPF and DNC function are different, it is well-known that they
coincide on Turing degrees, cf. Jockusch et al. [5]. Namely, a set computes a FPF
function if and only if it computes a DNC function. Moreover, this is also equivalent
to computing a function f such that ϕ f (e) �= ϕe for every e.

DNC functions played an important role in Kučera’s alternative solution to Post’s
problem [9]. In the paper by Kjos-Hanssen et al. [7], the notion of DNC function is
linked to sets with high initial segment Kolmogorov complexity.

2 Arslanov’s completeness criterion

By the recursion theorem, and the equivalence quoted above, no FPF function is
computable. It is easy to see that the halting set ∅′ computes a FPF function, as ∅′
can list all computable functions. However, by the low basis theorem [6], there also
exist FPF functions of low degree. The next result shows that FPF functions cannot
have incomplete c.e. degree. (On the other hand, by Kučera [9], any FPF degree below
∅′ bounds a noncomputable c.e. degree.) This shows that the recursion theorem can
be extended from computable functions to functions bounded by an incomplete c.e.
degree.

123

The noneffectivity of Arslanov’s completeness criterion 705

Theorem 2.1 (Arslanov completeness criterion [1]) A c.e. set A is Turing complete if
and only if A computes a FPF function.

Proof Suppose A is c.e. and incomplete, and f ≤T A. Then f has a computable
approximation f̂ (n, s), and there is an A-computable modulus function m(n) such
that ∀s ≥ m(n)

(
f (n) = f̂ (n, s)

)
. By the recursion theorem with parameters (Theo-

rem 1.1), let h be a computable function such that

Wh(n) =
{
W f̂ (h(n),sn)

if n ∈ ∅′ and sn is minimal such that n ∈ ∅′
s,

∅ otherwise.

Then there exists n ∈ ∅′ such that f̂ (h(n), sn) = f (h(n)), so that h(n) is a fixed point
of f . Namely, if this were not the case, then we would have that for all n, if n ∈ ∅′,
then m(h(n)) > sn , and hence n ∈ ∅′

m(h(n)). Thus we would have ∅′ ≤T A, contrary
to assumption. ��

The proof given here is basically the contrapositive of the proof in Soare [12]. The
proof above already suggests that the result is not effective: It does not give a fixed
point effectively, but merely produces a c.e. set, namely

{
h(n) | n ∈ ∅′}, at least one

of the elements of which is a fixed point. That this is necessarily so follows from the
result in the next section.

3 The failure of Arslanov’s completeness criterion with parameters

Let h be a computable function of two arguments. Since for every fixed n the function
h(n, x) is a computable function of x , by the recursion theorem we have

∀n∃x ϕx = ϕh(n,x).

When we Skolemize this formula we obtain:

∃ f ∀n ϕ f (n) = ϕh(n, f (n)).

The recursion theorem with parameters tells us that we can take f computable here.
In other words, the recursion theorem holds uniformly.

Now consider the Arslanov completeness criterion. Let A be an incomplete c.e. set,
and let h ≤T A be a binary function. By Theorem 2.1 we have

∀n∃x ϕx = ϕh(n,x)

and Skolemization gives

∃ f ∀n ϕ f (n) = ϕh(n, f (n)).

123

706 S. A. Terwijn

We prove that in general we cannot take f computable in this case. This even fails
when A is of low Turing degree. Note that by relativizing the recursion theorem with
parameters, there always exists an A-computable Skolem function f .

Theorem 3.1 (Failure of Arslanov with parameters) There exist a low c.e. set A and
an A-computable binary function h such that for every computable f , there exists n
with

W f (n) �= Wh(n, f (n)).

Proof We build A c.e. and h ≤T A total using a finite injury construction.The require-
ments for the construction are:

Re : f = {e} is total �⇒ ∃n W f (n) �= Wh(n, f (n)),

Le : ∃∞s {e}As
s (e)↓ �⇒ {e}A(e)↓.

The requirements Le guarantee that A is low (cf. Soare [12]), and clearly the require-
ments Re are sufficient to prove the theorem. We give the requirements the following
priority ordering:

L0 > R0 > L1 > R1 > L2 > · · ·

To satisfy Le we do not have to enumerate anything into A, we onlymaintain a restraint
function r(e, s) to preserve computations in the usual way. Let us consider the strategy
for Re in isolation. Suppose we have picked n as a potential witness for Re.

Step 1. Suppose we see at stage s such that f (n) = {e}s(n)↓.
If W f (n),s �= ∅ we let Wh(n, f (n)) = ∅, thus satisfying Re forever.
If W f (n),s = ∅ we let Wh(n, f (n)) �= ∅.
Step 2. Suppose that at a later stage t > s we see W f (n),t = Wh(n, f (n)) �= ∅.

Now we change h(n, f (n)) so that Wh(n, f (n)) = ∅ by changing A below the use of h.
Since the definition ofWh(n, f (n)) needs to be adapted at most twice (from empty to

nonempty to empty), we can get by by letting h use only two bits of A. We define h
as follows. We use a standard computable pairing function 〈·, ·〉 to denote coded pairs
and triples. For ease of notation, we write A(x, y, z) instead of A(〈x, y, z〉). We let h
be an A-computable function such that

Wh(n,x) = ∅ ⇐⇒ A(n, x, 0) = A(n, x, 1),

Wh(n,x) �= ∅ ⇐⇒ A(n, x, 0) �= A(n, x, 1).

Clearly such a function h can be defined from A. (As the computation of h(n, x) uses
only two bits from A, this is even a btt-reduction.)

We construct A in stages. Le requires attention at stage s if e < s, {e}As
s (e)↓, and

r(e, s) = 0. (This means that a restraint should be set to preserve the computation.)
Re requires attention at stage s if e < s and one of the following holds:

(a) Re does not have a witness at stage s, that is, ne,s is undefined. Required action in
this case: pick n larger than all current restraints r(i, s), i ≤ e, and also different
from all other witnesses ni,s that are currently defined, and let ne,s+1 = n.

123

The noneffectivity of Arslanov’s completeness criterion 707

(b) n = ne,s is defined, f (n) = {e}s(n)↓, and one of the following subcases applies:
(b.1) W f (n),s = ∅ and As(n, f (n), 0) = As(n, f (n), 1) = 0. Required action:

Define A(n, f (n), 0) = 1.
(b.2) W f (n),s �= ∅, As(n, f (n), 0) = 1, and As(n, f (n), 1) = 0. Required action:

Define A(n, f (n), 1) = 1.

Also, if either A(n, f (n), 0) = 1 or A(n, f (n), 1) = 1 is set at stage s, we define
r(i, s + 1) = 0 for all i > e.1

Construction Initially A is empty: A0 = ∅. At stage s > 0, pick the highest priority
requirement Re or Le, if any, that requires attention. If there is none, proceed to the
next stage. If Le is picked, set r(e, s+1) equal to the use of {e}As

s (e) (this computation
converges since Le requires attention). Also, initialize all lower priority Ri by letting
all witnesses ni,s+1 with i ≥ e be undefined, and proceed to the next stage. If Re

is picked, perform the actions indicated above under (a) and (b). This concludes the
construction of A = ⋃

s As .
VerificationWe verify that all requirements are satisfied. For Le, note that the only

requirements that can injure it are the Ri with i < e, and by induction each of these
enumerates at most finitely many numbers into A, so Le is injured at most finitely
often, and hence is eventually satisfied.

For Re, suppose that f = {e} is total. By induction, assume that no higher priority
requirement Li or Ri requires attention after stage t . Let r be the maximum of all
higher priority restraints:

r = max
i≤e

lim
s→∞ r(i, s).

Note that since by assumption every Li , i ≤ e, acts only finitely often, this limit exists
and is finite. By the construction and (a) above, at some stage s after the last stage
that a requirement Li with i ≤ e acts, n = ne,s > r is defined, which is then never
redefined later. We have the following cases.

If W f (n) = ∅, then Re acts exactly once after the stage s where n is defined, the
clause (b.1) applies at that stage, and we have A(n, f (n), 0) = 1 and A(n, f (n), 1) =
0. Hence Wh(n, f (n)) �= ∅, and Re is satisfied.

If W f (n) �= ∅ then we have two subcases:

• After the stage s where n is defined, Re never requires attention. In this case
we have A(n, f (n), 0) = A(n, f (n), 1) = 0, hence Wh(n, f (n)) = ∅, and Re is
satisfied.

• In the opposite case, Re does require attention after stage s. In this case, Re will act
precisely twice after stage s. The first time, at stage s′ say, since As(n, f (n), 0) = 0
we will haveW f (n),s′ = ∅ (for otherwise Re would not require attention) and case
(b.1) will apply. The second time will occur at a stage s′′ > s′ that is large enough
to see that W f (n),s′′ �= ∅. Since now As′′(n, f (n), 0) = 1, case (b.2) applies, and
we will have A(n, f (n), 0) = A(n, f (n), 1) = 1. Hence Wh(n, f (n)) = ∅, and Re

is satisfied.

1 That is, if Re enumerates an element into A, we drop the restraints of all lower priority requirements Li .
This is overkill since the action may not actually injure all of these, but it is just as easy.

123

708 S. A. Terwijn

So we see that Re acts at most twice after the last time it is initialized, and is eventually
satisfied. ��

4 The ADN theorem

It is well-known that Kleene found the recursion theorem by studying the λ-calculus.
(See for example Crossley [4] for some historical comments.) Also motivated by the
λ-calculus, arithmetic provability, and the theory of numerations, Visser [14] proved
the following generalization of the recursion theorem. It has interesting applications in
the theory of numerations, see for example Bernardi and Sorbi [3] and Barendregt [2].
ADN theorem stands for “anti diagonal normalization theorem”.

Definition 4.1 We extend the definition of FPF function to partial functions. We call
a partial function δ FPF if it is fixed point free on its domain, i.e. for every n,

δ(n)↓ �⇒ Wδ(n) �= Wn . (4.1)

Theorem 4.2 (ADN theorem, Visser [14]) Suppose that δ is a partial computable FPF
function. Then for every partial computable function ψ there exists a computable
function f such that for every n,

ψ(n)↓ �⇒ W f (n) = Wψ(n) (4.2)

ψ(n)↑ �⇒ δ(f (n))↑ (4.3)

If (4.2) holds for every n, we say that f totalizes ψ , and if in addition (4.3) holds, we
say that f totalizes ψ avoiding δ.

Just as the Arslanov completeness criterion extends the recursion theorem from
computable functions to functions computable from any incomplete c.e. degree, The-
orem 4.2 can be extended to such degrees. This gives the following joint generalization
of the ADN theorem and the Arslanov completeness criterion:

Theorem 4.3 (Joint generalization [13]) Suppose A is a c.e. set such that A <T ∅′.
Suppose that δ is a partial A-computable FPF function. Then for every partial com-
putable function ψ there exists a computable function f totalizing ψ avoiding δ, i.e.
such that for every n (4.2) and (4.3) above hold.

Note that Theorem 4.3 implies Theorem 2.1, because if δ were total then (4.3) could
not hold. Hence no total FPF function of incomplete c.e. degree can exist.

Thus we have the picture of generalizations of the recursion theorem from Fig. 1.
All of these generalizations can be proved using the recursion theoremwith parameters
(Theorem 1.1). This prompts the question whether any of these generalizations have
a parameterized version. The negative answer for Arslanov’s completeness criterion
was already given in Sect. 3. We discuss the ADN theorem in the next section.

123

The noneffectivity of Arslanov’s completeness criterion 709

recursion theorem

ADN theorem Arslanov

Theorem 4.3

Fig. 1 Generalizations of the recursion theorem

5 The ADN theoremwith parameters

The ADN theorem is uniform in codes of ψ , as is easy to see, cf. [14]. In fact, one
may assume without loss of generality that the function ψ is universal. Also, from
the proof of the ADN theorem from the recursion theorem with parameters, given in
[13], it is clear that the code of the function f depends effectively on a code for δ.
Hence the result is uniform in bothψ and δ. However, that the result is effective in this
sense does not mean it has a parameterized version analogous to the recursion theorem
with parameters. As the ADN theorem is a statement about partial FPF functions, and
hence in a way a contrapositive of the recursion theorem, it is not even immediately
clear what the statement of the ADN theorem with parameters should be. At least it
should imply Theorem 1.1.

To formulate the analog of Theorem 1.1 for the ADN theorem, we define the
following notion.

Definition 5.1 A partial binary function δ(n, x) is FPF+ if for every computable func-
tion g there exists n such that either δ(n, g(n))↑ or ϕg(n) �= ϕδ(n,g(n)).

Note that by negating the property from the definition, δ is not FPF+ if there exists
a computable function g such that for every n, δ(n, g(n)) is defined and ϕg(n) =
ϕδ(n,g(n)). This expresses that g uniformly computes fixed points for the family of
functions δ(n, x). By the recursion theorem with parameters, every total computable
δ is not FPF+.

We can now formulate the analog of the recursion theorem with parameters as
follows.

Statement 5.2 (ADN theorem with parameters) Suppose that δ is a binary partial
computable FPF+ function. Then for every partial computable function ψ there exists
a computable function f such that for every n,

ψ(n)↓ �⇒ W f (n) = Wψ(n) (5.1)

ψ(n)↑ �⇒ δ(n, f (n))↑ (5.2)

To show that this is the proper analog of Theorem 1.1 for the ADN theorem, we
show that Statement 5.2 both implies Theorem 1.1 and the ADN theorem. We then
proceed to show that it is false.

123

710 S. A. Terwijn

Statement 5.2 implies Theorem 1.1: Note that for the statement to hold, δ cannot
be total (for then (5.2) could not hold in case ψ is nontotal). So if δ is total, it is not
FPF+. As already observed above, this means that there is a computable function g
such that for every n, ϕg(n) = ϕδ(n,g(n)), which is the statement of Theorem 1.1.

Statement 5.2 implies Theorem 4.2: Given a unary p.c. FPF function δ, consider
the function defined as δ̂(n, x) = δ(x) for every n and x . Note that δ̂ is FPF+: For
every computable function g and every n, δ̂(n, g(n)) = δ(g(n))↑ or ϕg(n) �= ϕδ(g(n))

since δ is FPF. Applying Statement 5.2 to δ̂ gives, for a given p.c. ψ , a computable f
totalizing ψ such that

ψ(n)↑ �⇒ δ̂(n, f (n))↑ �⇒ δ(f (n))↑

for every n, hence Theorem 4.2 holds for δ.

Proposition 5.3 Statement 5.2 is false.

Proof We construct δ p.c. and FPF+ and ψ p.c. to diagonalize against all computable
f = ϕe, ensuring that (5.2) fails. Constructing aFPF+ function is very easy:According
to Definition 5.1 we simply have so make sure that for every computable g we have
a point n such that δ(n, g(n)) is undefined. The construction is as follows. Let ψ be
totally undefined. For every f = ϕe pick two witnesses ne andme such that all ne and
me are different, e.g. ne = 2e and me = 2e + 1. Define δ to be a partial computable
function such that

δ(n, x)↓ ⇐⇒ n = ne ∧ ϕe(ne)↓= x . (5.3)

Now suppose that f = ϕe is total. Then f (ne)↓, so by (5.3)we have δ(ne, f (ne))↓.
Hence f fails to satisfy (5.2), because ψ(ne)↑.

To finish the proof, all that remains is to verify that δ is FPF+. Note that (5.3)
implies that δ(me, x)↑ for every e and x . So if f = ϕe is total, we have in particular
that δ(me, f (me))↑, which by Definition 5.1 makes δ an FPF+ function. ��

6 The nonuniformity of the joint generalization

As remarked in Sect. 5, the dependence of f on ψ and δ in Theorem 4.2 is uniform
in codes of ψ and δ. This prompts the question whether a similar uniformity holds for
the joint generalization Theorem 4.3. Indeed, Theorem 4.3 is also uniform in ψ , as
is easy to check, using the same argument as for Theorem 4.2. As for δ, as this is no
longer a p.c. function, we first have to specify what exactly we mean by uniformity in
this case. The weakest form of uniformity, using the strongest possible assumption,
would be to give f codes of both A and δ, i.e. codes a and d such that A = Wa and
δ = {d}A. Uniformity then means that there is a computable function h such that an
f as in the theorem is given by

f = ϕh(a,d,b), (6.1)

where b is a code such that ψ = ϕb. Note that h is total, but f only has to satisfy the
theorem in case A is incomplete and δ is FPF. Instead of issuing f with a code b of ψ ,

123

The noneffectivity of Arslanov’s completeness criterion 711

we could alternatively simply assume that ψ is universal. This amounts to the same
thing, but in the construction below it will be easier to work with b.

The proof of the joint generalization in [13] is not uniform. For A and δ as in the
theorem, the proof provides a family of functions fx , x ∈ ω, at least one of which
satisfies the theorem. That the proof is necessarily nonuniform is confirmed by the
next result.

Theorem 6.1 Uniformity of Theorem 4.3 in the sense of (6.1) does not hold.

Proof Assume for a contradiction that a computable function h as in (6.1) exists. We
will prove the existence of codes a, d, and b such that A = Wa is Turing incomplete,
δ = {d}A is a partial A-computable FPF function, and ψ = ϕb is partial computable,
such that f = ϕh(a,d,b) does not satisfy Theorem 4.3, contradicting the assumption.

The code d for δ will depend effectively on a and b, so that we have only two
parameters a and b in the construction. We will construct computable functions p
and q such that A = Wp(a,b) and ψ = ϕq(a,b). An application of the double recursion
theorem2 will provide us with codes a and b such thatWa = Wp(a,b) and ϕb = ϕq(a,b).

Construction of A, δ, andψ . We use a coding of δ in A similar to the one used for h
in the proof of Theorem 3.1. Namely, we let

δ(x)↑ ⇐⇒ A(x, 0) = A(x, 1),

δ(x)↓ ∧ Wδ(x) �= ∅ ⇐⇒ A(x, 0) = 1 ∧ A(x, 1) = 0.

Note that a code d of δ effectively depends on a code of A. Since A = Wp(a,b), there
is a computable function d such that d(a, b) is a code of δ.

Our assumption is that f = ϕh(a,d(a,b),b) satisfies Theorem 4.3. At the beginning
of the construction A is empty and ψ is totally undefined.

Step 1. Wait for f (0) to become defined. If this never happens, we automatically win,
and do not have to take further action.

Step 2. If f (0)↓, we let δ(f (0))↓ such thatWδ(f (0)) �= ∅ by defining A(f (0), 0) = 1.
This action would kill f by making (4.3) fail, but now there is the threat that
W f (0) = Wδ(f (0)) so that δ may fail to be FPF, hence we may have to take
further action to prevent this.

Step 3. Wait for W f (0) �= ∅. We take this as a sign that W f (0) might follow Wδ(f (0)),
so we redefine δ(f (0))↑, by defining A(f (0), 1) = 1. Also, we define ψ(0)
so that Wψ(0) = ∅. This kills f by making (4.2) fail.

This completes the construction. Note that the construction depends effectively on
the parameters a and b, so that there exist computable functions p and q such that
A = Wp(a,b) and ψ = ϕq(a,b). By the double recursion theorem there exist a and b
such that Wa = Wp(a,b) and ϕb = ϕq(a,b). We verify that A = Wa is incomplete,
δ = {d(a, b)}A is FPF, and that f = ϕh(a,d(a,b),b) does not satisfy the statement of
Theorem 4.3.

2 The double recursion theorem says that given binary computable functions p and q, there exists codes a
and b such that ϕa = ϕp(a,b) and ϕb = ϕq(a,b), cf. Odifreddi [11, p. 155]. Namely, by Theorem 1.1 there
exists a computable function g such that ϕg(x) = ϕp(g(x),x) for every x . By the recursion theorem there
exists b such that ϕb = ϕq(g(b),b). Now we can take a = g(b).

123

712 S. A. Terwijn

First note that A is finite, since at most the two numbers 〈 f (0), 0〉 and 〈 f (0), 1〉
are enumerated into A. In particular A is Turing incomplete.

If f (0) fails to become defined in step 1, it obviously fails the theorem by not being
total, so assume that f (0)↓.

In case W f (0) = ∅, by step 2 we have Wδ(f (0)) �= ∅, hence δ is FPF (note that it is
not defined on any other point). Also, the construction ends with this step, and f fails
to satisfy (4.3) since ψ(0)↑ and δ(f (0))↓.

If W f (0) �= ∅, by step 3 we have δ(f (0))↑, so again δ is FPF. Also, we now have
Wψ(0) = ∅, so f fails to totalize ψ . Thus we see that f fails to satisfy the theorem in
every case. ��

The set A in the proof above is actually computable, and hence δ is p.c. This does
not contradict the fact that Theorem 4.2 is uniform in a code of δ. Namely, A = Wa

may be computable, but not via the code a that is provided.

Acknowledgements We would like to thank an anonymous referee for several corrections and improve-
ments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arslanov, M.M.: On some generalizations of the fixed point theorem. Sov. Math. (Izv. VUZ. Mat.)
25(5), 1–10 (1981)

2. Barendregt, H.: Representing undefined in lambda calculus. J. Funct. Program. 2(3), 367–374 (1992)
3. Bernardi, C., Sorbi, A.: Classifying positive equivalence relations. J. Symb. Log. 48(3), 529–538 (1983)
4. Crossley, J.N.: Reminiscences of logicians. In: Crossley, J.N. (ed.) Algebra and Logic, pp. 1–62.

Springer, Berlin (1975)
5. Jockusch Jr., C.G., Lerman, M., Soare, R.I., Solovay, R.M.: Recursively enumerable sets modulo

iterated jumps and extensions of Arslanov’s completeness criterion. J. Symb. Log. 54(4), 1288–1323
(1989)

6. Jockusch Jr., C.G., Soare, R.I.: Π0
1 classes and degrees of theories. Trans. Am. Math. Soc. 173, 33–56

(1972)
7. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recursion theorem. Trans.

Am. Math. Soc. 363, 5465–5480 (2011)
8. Kleene, S.C.: On notation for ordinal numbers. J. Symb. Log. 3, 150–155 (1938)
9. Kučera, A.: An Alternative, Priority-Free Solution to Post’s Problem. Lecture Notes in Computer

Science, vol. 233, pp. 493–500. Springer, Berlin (1986)
10. Moschovakis, Y.N.: Kleene’s amazing second recursion theorem. Bull. Symb. Log. 16(2), 189–239

(2010)
11. Odifreddi, P.: Classical Recursion Theory, vol. 1. Studies in Logic and the Foundations ofMathematics,

vol. 125. North-Holland, Amsterdam (1989)
12. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)
13. Terwijn, S.A.: Generalizations of the recursion theorem. J. Symb. Log. 83(4), 1683–1690 (2018)

123

http://creativecommons.org/licenses/by/4.0/

The noneffectivity of Arslanov’s completeness criterion 713

14. Visser, A.: Numerations, λ-calculus, and arithmetic. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 259–284. Academic
Press, London (1980)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	The noneffectivity of Arslanov's completeness criterion and related theorems
	Abstract
	1 Introduction
	2 Arslanov's completeness criterion
	3 The failure of Arslanov's completeness criterion with parameters
	4 The ADN theorem
	5 The ADN theorem with parameters
	6 The nonuniformity of the joint generalization
	Acknowledgements
	References

