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Abstract A family F ⊆ [ω]ω is called Rosenthal if for every Boolean algebra A,
bounded sequence

〈
μk : k ∈ ω

〉
of measures on A, antichain

〈
an : n ∈ ω

〉
in A, and

ε > 0, there exists A ∈ F such that
∑

n∈A,n �=k μk(an) < ε for every k ∈ A. Well-
known and important Rosenthal’s lemma states that [ω]ω is a Rosenthal family. In this
paper we provide a necessary condition in terms of antichains in ℘(ω) for a family to
be Rosenthal which leads us to a conclusion that no Rosenthal family has cardinality
strictly less than cov(M), the covering of category. We also study ultrafilters on ω

which are Rosenthal families—we show that the class of Rosenthal ultrafilters con-
tains all selective ultrafilters (and consistently selective ultrafilters comprise a proper
subclass).

Keywords Rosenthal’s lemma · Ultrafilters · Selective ultrafilters · P-points ·
Q-points

Mathematics Subject Classification Primary 28A33 · 28A60 · 03E17; Secondary
03E35 · 03E75 · 05C55

1 Introduction

Rosenthal’s lemma is one of the most fundamental results in vector measure theory
with numerous applications to the theory of operators on Banach spaces and the study
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54 D. Sobota

of weak topologies, cf. e.g. Diestel [10, Chapter VII], Diestel and Uhl [11, Section
I.4], Haydon [14, Propositions 1B and 1C], Koszmider and Shelah [19, Lemma 2.2].
The lemma in its particular form reads as follows.
Rosenthal’s lemma Given an antichain

〈
an : n ∈ ω

〉
in a Boolean algebra A, a

sequence of non-negative finitely additive measures
〈
μk : k ∈ ω

〉
on A satisfying for

every k ∈ ω the inequality
∑

n∈ω μk
(
an

) ≤ 1, and ε > 0, there exists an infinite set
A ∈ [ω]ω such that for every k ∈ A the following holds:

∑

n∈A
n �=k

μk
(
an

)
< ε.

In this paper we are interested in addressing the following question concerning
possible choices of the set A.

Question 1.1 Can the set A in the conclusion of Rosenthal’s lemma be chosen from
a previously fixed family F ⊆ [ω]ω?

An easy analysis of common proofs of the lemma, e.g. of simple Kupka’s argument
([21, Lemma 1]), shows that they only appeal to the numbers μk

(
an

)
’s, not to the

measures μk’s or elements of the Boolean algebra A as such, hence to prove the
lemma it is sufficent to consider only the infinite real-entried matrix

〈
mk

n : n, k ∈ ω
〉
,

wheremk
n = μk

(
an

)
for each n, k ∈ ω. The following definition of a Rosenthal family

is thus equivalent to the one provided in the abstract.

Definition 1.2 An infinite matrix
〈
mk

n : n, k ∈ ω
〉
is called Rosenthal if mk

n ≥ 0 for
every n, k ∈ ω and

∑
n∈ω mk

n ≤ 1 for every k ∈ ω.

Definition 1.3 A non-empty familyF ⊆ [ω]ω is called Rosenthal if for every Rosen-
thal matrix

〈
mk

n : n, k ∈ ω
〉
, and ε > 0, there exists A ∈ F such that for every k ∈ A

the following inequality holds:
∑

n∈A
n �=k

mk
n < ε.

Thus, Question 1.1 asks whether a given family F ⊆ [ω]ω is Rosenthal (and
Rosenthal’s lemma asserts that [ω]ω is).

In Sect. 2 we provide a necessary condition for a family to be Rosenthal in terms of
antichains in ℘(ω). We then use it to prove that no Rosenthal family can be simpler
than every family of meager subsets covering the real line R, i.e. we prove that no
family of cardinality strictly less than cov(M), the covering of category, is a Rosenthal
family (Corollary 2.6).

On the other hand, in Theorem 3.6 of Sect. 3 we will answer Question 1.1 affir-
matively for a family F being a base of a selective ultrafilter (assuming such an
ultrafilter exists). Selective ultrafilters, as well as their weaker variants like P-points
and Q-points, constitute an important tool of infinite Ramsey theory or transfinite
combinatorics in general; see e.g. Blass [5,6,8], Comfort and Negrepontis [9], Grig-
orieff [13], Laflamme [22] or Laflamme and Leary [23]. However, their existence is
independent of ZFC (cf. Sect. 3).
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Families of sets related to Rosenthal’s lemma 55

The converse to Theorem3.6 does not hold—inTheorem3.17 under the assumption
of Martin’s axiom for σ -centered partially ordered sets we construct an example of a
P-point ultrafilter which is a Rosenthal family but not a Q-point.

Recalling the result of Baumgartner and Laver [4] stating that in the model obtained
by iterating theSacks forcing there exists a selective ultrafilterwith a base of cardinality
ω1 while the continuum c is equal toω2,weget that consistently there exists aRosenthal
familyF of cardinality strictly less than c. Since underMartin’s axiom everyRosenthal
family is of cardinality c (Corollary 2.7), we obtain that the existence of Rosenthal
families of cardinality strictly less than c is undecidable in ZFC+¬CH (Corollary 3.8).

The set-theoretic terminology and notation used in the paper are standard. For
information on cardinal characteristics of the continuum, we refer the reader e.g. to
Blass [7] or van Douwen [26].

2 Rosenthal families and cov(M)

In this section we provide a simple necessary (but not sufficient) condition for a
subfamily of [ω]ω to be Rosenthal. We start with the following auxiliary definition.
Recall that a sequence

〈
an : n ∈ ω

〉
of subsets of ω is an antichain if an ∩ am = ∅ for

every distinct n,m ∈ ω.

Definition 2.1 A family F ⊆ [ω]ω has the antichain property if there exists an
antichain

〈
an ∈ ℘(ω) : n ∈ ω

〉
such that for every A ∈ F there exists n ∈ ω

such that |an| ≥ 2 and an ⊆ A.

Proposition 2.2 If a family F ⊆ [ω]ω has the antichain property, then it is not
Rosenthal.

Proof Assume F has the antichain property and let
〈
an : n ∈ ω

〉
be an antichain

witnessing it. We may assume that |an| = 2 for every n ∈ ω; denote an = {pn, rn}.
Define an infinite matrix

〈
mk

n : n, k ∈ ω
〉
as follows:

mk
n =

{
1 if {k, n} = {pl , rl} for some l ∈ ω,

0 otherwise.

Since
〈
an : n ∈ ω

〉
is an antichain,

〈
mk

n : n, k ∈ ω
〉
is a Rosenthal matrix.

Let A ∈ F and al = {pl , rl} ⊆ A for some l ∈ ω. We have:

∑

n∈A
n �=pl

m pl
n = mpl

rl = 1,

which proves that F cannot be Rosenthal. 	

Proposition 2.3 There exists a family F ⊆ [ω]ω which is not Rosenthal and does not
have the antichain property.
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56 D. Sobota

Proof Let
〈〈
aα
n : n ∈ ω

〉 : α < c
〉
be an enumeration of all antichains such that

∣∣aα
n

∣∣ ≥ 2
for some n ∈ ω. For every α < c let Aα ∈ [ω]ω be such that 0 ∈ Aα and

∣∣Aα ∩aα
n

∣∣ ≤ 1
for every n ∈ ω. Put F = {

Aα : α < c
}
.

It is immediate that F does not have the antichain property. Also, since 0 ∈ ⋂F ,
F is not Rosenthal—the matrix

〈
mk

n : n, k ∈ ω
〉
defined as follows witnesses this fact:

mk
n =

{
1 if n = 0,
0 otherwise.

	

Let us define the following cardinal characteristic of the continuum, which we have

not encountered so far in the literature.

Definition 2.4 The antichain number is defined as follows:

anti = min
{|F | : F ⊆ [ω]ω does not have the antichain property

}
.

By Proposition 2.3, anti ≤ c. The following proposition implies, in particular, that
if F ⊆ [ω]ω does not have the antichain property, then F is uncountable. Recall that
MAκ(countable) denotes Martin’s axiom for countable posets and not more than κ

many dense subsets of them.

Proposition 2.5 Let κ be a cardinal number. Assuming MAκ(countable), anti > κ .

Proof Define a poset P as follows:

P = {
(a1, . . . , an) : n ∈ ω, a1, . . . , an ∈ ℘(ω) mutually disjoint pairs

}
,

where
(
a1, . . . , an

) ≤ (
b1, . . . , bm

)
if n ≥ m and ai = bi for every i ≤ m. Then, P is

countable.
Let F ⊆ [ω]ω be an arbitrary family such that |F | ≤ κ . We shall show that F has

the antichain property. For every A ∈ F and every n ∈ ω put:

DA = {(
a1, . . . , am

) ∈ P : am ⊆ A
}
,

En = {(
a1, . . . , ak

) ∈ P : k ≥ n}.

DA’s and En’s are dense in P. ByMAκ(countable), there exists a P-generic ultrafilter
G intersecting every DA and every En . Put g = ⋃

G. By properties ofG, the sequence
g witnesses that F has the antichain property. 	


Keremedis [17, Theorem 1] (see also Bartoszyński and Judah [3, Theorem 2.4.5])
proved that given a cardinal number κ ,MAκ(countable) holds if and only if cov(M) >

κ , where cov(M) denotes the covering of category. Hence, we immediately get that
cov(M) ≤ anti as well as that no Rosenthal family is of cardinality strictly less than
cov(M).

Corollary 2.6 If F ⊆ [ω]ω is a Rosenthal family, then |F | ≥ cov(M).
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Families of sets related to Rosenthal’s lemma 57

Corollary 2.7 AssumingMAκ(countable), every Rosenthal family has cardinality c.

It is easy to see that no base of an ultrafilter may have the antichain property and
thus anti is bounded from above by the ultrafilter number u. The following proposition
provides a stronger upper bound for anti—the reaping number r.

Proposition 2.8 anti ≤ r.

Proof Let F ⊆ [ω]ω be unsplittable, i.e. for every B ∈ [ω]ω there exists A ∈ F such
that one of the sets A∩ B and A\B is finite. Without loss of generality we may assume
that if A ∈ F and n ∈ ω, then A\n ∈ F . Assume that F has the antichain property,
i.e. there exists an antichain

〈
an : n ∈ ω

〉
such that for every A ∈ F there exists n ∈ ω

for which an ⊆ A and |an| ≥ 2. It is immediate that for every A ∈ F there exists a
subantichain

〈
ank : k ∈ ω

〉
for which we have

⋃
k∈ω ank ⊆ A. For each n ∈ ω pick

kn ∈ an and put B = {
kn : n ∈ ω

}
. Then, for every A ∈ F both sets A ∩ B and A\B

are infinite—a contradiction. 	

It is also worth noting that using measure-theoretic methods it can be shown that

anti ≤ d, where d is the dominating number, however, the proof of this fact lies beyond
the scope of this paper (see Sobota [25, Propositions 6.5.14 and 6.5.15]). Note that
min(r, d) = min(u, d) due to Aubrey [2, Corollary 6.4].

3 Rosenthal families and ultrafilters

In the previous section we have found a necessary condition for a subfamily of [ω]ω

to be Rosenthal, namely, such a family cannot have the antichain property. This led us
to exclude from being Rosenthal those families which have too simple combinatorics,
i.e. those with the cardinality strictly less than cov(M). In this section we will look
for some Rosenthal families which are non-trivial, i.e. much different than [ω]ω.

Let
〈
mk

n : n, k ∈ ω
〉
be a Rosenthal matrix and fix ε > 0. Let F for a moment be

the family of all A ∈ [ω]ω such that:

∑

n∈A
n �=k

mk
n < ε

for every k ∈ A. Note that if A, B ∈ F , then [A]ω ⊆ F and [A ∩ B]ω ⊆ F (the
latter may be empty). Hence, it seems reasonable to look for a non-trivial Rosenthal
family among such substructures of [ω]ω like ultrafilters or ideals. Also, the apparent
similarity between Rosenthal’s lemma and the infinite Ramsey theorem suggests that
Ramsey (selective) ultrafilters may be good candidates and—as mentioned in the
introductory section—they in fact are.

3.1 Selective ultrafilters

Recall that an antichain P ⊆ ℘(ω) is a partition of ω if ω = ⋃P . By an ultrafilter
we always mean a non-principal ultrafilter on ω, since principal ultrafilters are never
Rosenthal families.
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58 D. Sobota

Definition 3.1 An ultrafilter F is selective (or Ramsey) if for every partition P ⊆
℘(ω)\F there is A ∈ F such that |A ∩ B| ≤ 1 for every B ∈ P .

Selective ultrafilters are easy to construct under the Continuum Hypothesis or Mar-
tin’s axiom, see e.g. Jech [15, Theorem 7.8] or Just and Weese [16, Section 19.3].
On the other hand, Kunen [20] proved that it is consistent that there are no selective
ultrafilers.

There are many characterizations of selective ultrafilters, see e.g. Comfort and
Negrepontis [9, Theorem 9.6], Argyros and Todorčević [1, Section B.I.1]. We will
especially use the following characterization in terms of trees due to Grigorieff [13,
Corollary 16].

Definition 3.2 Let F be an ultrafilter on ω. Let A ⊆ ω<ω be a tree. A is an F-tree if
for every s ∈ A its ramification ram(s) = {

n : s�n ∈ A
}
is in F . A branch H ∈ ωω

of A is an F-branch if ran H ∈ F .

Definition 3.3 An ultrafilter F is a T-ultrafilter if every F-tree A ⊆ ω<ω has an
F-branch.

Theorem 3.4 (Grigorieff [13, Corollary 1.15]) Let F be an ultrafilter on ω. Then, F
is selective if and only if F is a T-ultrafilter. 	


Beforewe go to the proof of themain theoremof this section,we prove the following
auxiliary lemma.

Lemma 3.5 Let
〈
mk

n : n, k ∈ ω
〉
be a Rosenthal matrix. LetF be an ultrafilter, Y ∈ F

and δ > 0. Then, there exists Z ∈ F , Z ⊆ Y , such that for every l ∈ Z there exists
Xl ∈ F , Xl ⊆ Z, satisfying the following two conditions:

• l < min
(
Xl

)
, and

• mk
l < δ for every k ∈ Xl .

Proof For every l ∈ Y put:

Al = {
k ∈ Y : k > l & mk

l ≥ δ
}

and

Bl = {
k ∈ Y : k > l & mk

l < δ
}
.

Since Y ∈ F , either Al ∈ F or Bl ∈ F (but not both!). Thus, define:

A = {
l ∈ Y : Al ∈ F}

and

B = {
l ∈ Y : Bl ∈ F}

.

Let K be the minimal natural number such that K δ > 1. Then, |A| < K . Indeed,
if there exist l1 < · · · < lK in A, then there exists k ∈ Al1 ∩ · · · ∩ AlK ∈ F and so
mk

l1
, . . . ,mk

lK
≥ δ, whence:

1 ≥
∑

l∈ω

mk
l ≥

K∑

i=1

mk
li ≥ K δ > 1,

a contradiction.
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Families of sets related to Rosenthal’s lemma 59

Let N = max(A) + 1. Then put Z = B\N = Y\N ∈ F and Xl = Z ∩ Bl ∈ F
for every l ∈ Z . 	


We now prove the main result of this section.

Theorem 3.6 Let F be a selective ultrafilter and U its base. Then, U is a Rosenthal
family.

Proof Let
〈
mk

n : n, k ∈ ω
〉
be a Rosenthal matrix and ε > 0.

We first construct an F-tree A ⊆ ω<ω such that if s ∈ A and s�k ∈ A for some
k ∈ ω, then the following conditions are satisfied:

(0) k > max(ran s),
(1)

∑

n<|s| m
k
s(n) < ε/2,

(2) if s�k � t ∈ A, then
∑

|s|<n<|t | m
k
t (n) < ε/2.

Note that if such a tree has been constructed, then every branch H ∈ ωω of it is
increasing (due to the condition (0)) and for every k ∈ ω we have:

∑

n∈ω
n �=k

mH(k)
H(n) =

∑

n<k

mH(k)
H(n) +

∑

n>k

mH(k)
H(n)

=
∑

n<k

mH(k)
H(n) + lim

N→∞
∑

k<n<N

mH(k)
H(n) < ε/2 + lim

N→∞ ε/2 = ε.

Let us now build the tree A. The construction will be conducted level by level.
Let the 0-th level consist of the empty sequence ∅. We need to define the ramification
ram(∅), i.e. the 1-st level. Let Y = ω. By Lemma 3.5, there exists a set Z ∈ F , Z ⊆ Y ,
such that for every l ∈ Z there is a set X(l) ∈ F , X(l) ⊆ Z , satisfying the following
two conditions:

• l < min
(
X(l)

)
, and

• mk
l < ε/22 for every k ∈ X(l).

Put ram(∅) = Z , i.e. for every l ∈ Z the 1-element sequence (l) belongs to A. Hence,
the 1-st level has been constructed. Note that ram(∅) ∈ F and X(l) ⊆ ram(∅) for every
l ∈ ram(∅). The next levels of A will be built in such a way that if l ∈ Z and s ∈ A
extends (l), i.e. s(0) = l, then s(1), . . . , s(|s| − 1) ∈ X(l), whence m

s(i)
l < ε/22 for

every 1 ≤ i ≤ |s| − 1.
Let j ≥ 1 and assume we have built the j-th level of A in such a way that for every

s ∈ ω j ∩ A there is a set Xs ∈ F , Xs ⊆ ram
(
s � j − 1

)
, such that the following two

conditions are satisfied:

• s( j − 1) < min
(
Xs

)
, and

• mk
s( j−1) < ε/2 j+1 for every k ∈ Xs ,

(i.e. Xs was obtained with the aid of Lemma 3.5). Let thus s ∈ ω j belong to the tree
we have built so far; we want to choose ram(s) ∈ F . There exists N ∈ ω such that
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60 D. Sobota

∑
n>N ms( j−1)

n < ε/2. Put Y = Xs\N ∈ F . By Lemma 3.5, there exists Z ∈ F ,
Z ⊆ Y , such that for every l ∈ Z there is a set Xs�l ∈ F , Xs�l ⊆ Z , satisfying the
following two conditions:

• l < min
(
Xs�l

)
, and

• mk
l < ε/2 j+2 for every k ∈ Xs�l .

Put ram(s) = Z , i.e. for every l ∈ Z the sequence s�l belongs to the being constructed
tree A. Hence, the level j + 1 has been constructed. Note that ram(s) ∈ F and
Xs�l ⊆ ram(s) ⊆ Xs for every l ∈ ram(s). Also note that s( j − 1) < min

(
Xs

) ≤
min

(
ram(s)

)
.

Assume we have built the tree A in the way described above. Since ram(s) ∈ F for
every s ∈ A, A is anF-tree. We need to check that the conditions (0)–(2) are satisfied.
Let s�k ∈ A.

• The condition (0) is satisfied due to the inequalities s(|s| − 1) < min
(
Xs

) ≤
min

(
ram(s)

)
.

• Since k ∈ Xs ⊆ X(s(0),...,s(|s|−2)) ⊆ · · · ⊆ X(s(0)), we have that mk
s(n) < ε/22+n

for every 0 ≤ n ≤ |s| − 1. Thus:

∑

n<|s|
mk

s(n) <
∑

n<|s|
ε/22+n < ε/2,

so the condition (1) is satisfied.
• If s�k � t ∈ A, then t (|s| + 1), . . . , t (|t | − 1) ∈ ram(s�k), so for N =
min

(
ram(s�k)

)
:

∑

|s|<n<|t |
mk

t (n) ≤
∑

n>N

mk
n < ε/2,

which shows that the condition (2) is satisfied.

Since A is an F-tree and F is a T-ultrafilter (by Theorem 3.4), there exists an
F-branch H ∈ ωω. For every k ∈ ω we have:

∑

n∈ω
n �=k

mH(k)
H(n) < ε.

Let U ∈ U be contained in ran H . Then, for every k ∈ U it obviously holds:

∑

n∈U
n �=k

mk
n < ε,

and the proof of the theorem is finished. 	

Since there aremodels of ZFCwhere there exists a selective ultrafilter with a base of

cardinality ω1 and also the equality ω2 = c holds (e.g. the Sacks model), the existence
of “small” Rosenthal families is consistent.
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Families of sets related to Rosenthal’s lemma 61

Corollary 3.7 It is consistent that there exists a Rosenthal family of cardinality ω1
whereas c = ω2. 	


On the other hand, since under Martin’s axiom every Rosenthal family has cardi-
nality c, we have the following independence result.

Corollary 3.8 The existence of a Rosenthal family of cardinality strictly less than c
is undecidable in ZFC + ¬CH. 	


Let us remark that the results from the previous and current sections imply that the
minimal cardinality of a Rosenthal family is a cardinal invariant of the continuum. Let
us thus introduce the following number.

Definition 3.9 The Rosenthal number ros is defined as follows:

ros = min
{|F | : F ⊆ [ω]ω is a Rosenthal family

}
.

Let us denote the minimal size of a base of a selective ultrafilter (or c if no such
ultrafilter exists).

Corollary 3.10 (1) cov(M) ≤ ros ≤ us .
(2) Assuming Martin’s axiom, ros = c. 	


3.2 P-points and Q-points

In the previous section we have showed that every base of a selective ultrafilter is a
Rosenthal family. Of course, every selective ultrafilter must have this property as well.
Let us thus introduce the following class of ultrafilters.

Definition 3.11 An ultrafilter F is Rosenthal if it is a Rosenthal family.

In this section we will show that the class of Rosenthal ultrafilters is broader than
the class of selective ones. More precisely, we will show that consistently there are
Rosenthal P-points which are not selective. This shows that the converse to Theo-
rem 3.6 does not hold and thus the Rosenthal property does not characterize selective
ultrafilters.

Recall the following well-known classes of ultrafilters.

Definition 3.12 An ultrafilter F is:

• a P-point if for every partition P ⊆ ℘(ω)\F of ω there is A ∈ F such that A∩ B
is finite for every B ∈ P;

• aQ-point if for everypartitionP ⊆ [ω]<ω ofω there is A ∈ F such that |A∩B| ≤ 1
for every B ∈ P .

It is immediate that an ultrafilter is selective if and only if it is simultaneously a
P-point and a Q-point. Extensive studies of the classes of ultrafilters may be found
in e.g. Just and Weese [16, Section 19.3], Blass [5,8], Comfort and Negrepontis [9],
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62 D. Sobota

Laflamme [22] or Laflamme and Leary [23]. Note that the existence of P-points or
Q-points is independent of ZFC—all those ultrafilters exist under the assumption of
the Continuum Hypothesis or Martin’s axiom (see Just andWeese [16, Section 19.3]),
but Shelah [27] consistently showed that there are no P-points, and Miller [24]—no
Q-points.

We start with lemmas. Recall that given an integer number p > 0 the Ramsey
number R(p) is the minimal number n such that for every 2-colouring c : [n]2 → 2
there exists X ⊆ n such that |X | = p and c � [X ]2 is constant. The celebrated Ramsey
theorem states that R(p) exists for every p > 0—seeGraham, Rothschild and Spencer
[12]. Let us call a partition

〈
an : n ∈ ω

〉
of ω uniform if |an| = n for every n ∈ ω.

Lemma 3.13 Let
〈
mk

n : n, k ∈ ω
〉
be a Rosenthal matrix and

〈
an : n ∈ ω

〉
a uniform

partition of ω. Let δ, γ ∈ (0, 1). For every integer N > 1 there exists an integer
rN > N such that for every a ∈ [ω]rN and A ∈ [ω\a]ω such that

{|an ∩ A| : n ∈ ω
}

is infinite, there are b ∈ [a]N and B ∈ [A]ω satisfying the following conditions:

• ∑
n∈b mk

n < δ for every k ∈ B,
• ∑

n∈b
n �=k

mk
n < δ for every k ∈ b,

• ∑
n∈B mk

n < γ for every k ∈ b,
• {|an ∩ B| : n ∈ ω

}
is infinite.

Proof Let K ∈ ω be such a number that (K − 1) · δ/N > 1. Define the following
numbers:

pN = N · K ,

qN = R
(
pN

)
,

rN = R
(
qN

)
.

Clearly, rN > N . We will now show that such defined rN satisfies the thesis of the
lemma. Let thus a ∈ [ω]rN and A ∈ [ω\a]ω be such that

{|an ∩ A| : n ∈ ω
}
is infinite.

Define a colouring c : [a]2 → 2 in the following way:

c(i, j) =
{
1 if m j

i < δ/N ,

0 otherwise.

for every i < j ∈ a. By the Ramsey theorem there exists X ∈ [a]qN such that c � [X ]2
is constant. If c � [X ]2 ≡ 0, then for j = max(X) we have:

1 ≥
∑

i∈X
i �= j

m j
i ≥ (qN − 1) · δ/N ≥ (pN − 1) · δ/N > (K − 1) · δ/N > 1,

a contradiction. So c � [X ]2 ≡ 1.
Now, similarly as above define a colouring d : [X ]2 → 2 (note the swap of the

indices i and j with respect to the definition of c!):
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Families of sets related to Rosenthal’s lemma 63

d(i, j) =
{
1 if mi

j < δ/N ,

0 otherwise.

for every i < j ∈ X . Again, by the Ramsey theorem and the argument as previously,
there exists Y ∈ [X ]pN such that d � [Y ]2 is constantly equal to 1.

We will now find the pair (b, B)—the set b will be an element of [Y ]N . Note that
for every b ∈ [Y ]N and every k ∈ b we have:

∑

n∈b
n �=k

mk
n < δ.

Let b1, . . . , bN ∈ [Y ]K be pairwise disjoint; it follows that Y = ⋃N
i=1 bi .

Since |b1| = K < ∞, there are n1 ∈ b1 and B1 ∈ [A]ω such that:

• mk
n1 < δ/N for every k ∈ B1, and

• {|an ∩ B1| : n ∈ ω
}
is infinite.

Indeed, for every l ∈ b1 let Cl be the set of all k ∈ A such that mk
l < δ/N . Since

A = ⋃
l∈b1 Cl and b1 is finite, at least for one l ∈ b1 the set

{|an ∩ Cl | : n ∈ ω
}
is

infinite. Put n1 = l and B1 = Cl .
Similarly, we can find n2 ∈ b2, . . . , nN ∈ bN and B2 ∈ [B1]ω , . . . , BN ∈[

BN−1
]ω such that for every i = 2, . . . , N :

• mk
ni < δ/N for every k ∈ Bi , and

• {|an ∩ Bi | : n ∈ ω
}
is infinite.

Put b = {n1, . . . , nN }. Note that for every k ∈ BN we have:

∑

n∈b
mk

n < N · δ/N = δ.

Let M ∈ ω be such that for every i = 1, . . . , N we have:

∑

n∈BN \M
mni

n < γ.

Put B = BN\M . 	

The following proposition is a generalization of Rosenthal’s lemma.

Proposition 3.14 Let
〈
mk

n : n, k ∈ ω
〉
be a Rosenthal matrix and

〈
an : n ∈ ω

〉
a uni-

form partition of ω. Let ε > 0. For every A ∈ [ω]ω such that
{|an ∩ A| : n ∈ ω

}
is

infinite there is B ∈ [A]ω such that
{|an ∩ B| : n ∈ ω

}
is still infinite and for every

k ∈ B the following inequality holds:

∑

n∈B
n �=k

mk
n < ε.
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Proof To construct the set B we will inductively use Lemma 3.13. For N = 2,
δ = ε/2N andγ = ε/2, let rN be as inLemma3.13. Since

{|an∩A| : n ∈ ω
}
is infinite,

there is MN ∈ ω (MN ≥ rN ) such that
∣∣aMN ∩ A

∣∣ ≥ rN . Let KN = max
(
aMN

) + 1.

Due to the properties of rN , there exists bN ∈ [
aMN ∩ A

]N and BN ∈ [A\KN ]ω such
that the following hold:

• ∑
n∈bN mk

n < δ for every k ∈ BN ,
• ∑

n∈bN
n �=k

mk
n < δ for every k ∈ bN ,

• ∑
n∈BN

mk
n < γ for every k ∈ bN ,

• {|an ∩ BN | : n ∈ ω
}
is infinite.

Put B1 = A and for some N ≥ 3 assume that the objects rk , Mk , aMk , Kk ,

bk ∈ [
aMk ∩Bk−1

]k and Bk ∈ [
Bk−1\Kk

]ω have been obtained for every 2 ≤ k < N—
similarly as in the first step—with the aid of Lemma 3.13 (for δ = ε/2k and γ = ε/2).
Now, use Lemma 3.13 again for δ = ε/2N and γ = ε/2 to obtain rN , MN , aMN , KN ,

bN ∈ [
aMN ∩ BN−1

]N and BN ∈ [
BN−1\KN

]ω.
This way, we obtain an antichain

〈
bN : N ≥ 2

〉
in [A]<ω such that:

(1)
∣∣bN ∩ aMN

∣∣ = N for every N ≥ 2,
(2) for every N ≥ 2 and k ∈ bN we have:

∑

n∈bN
n �=k

mk
n < ε/2N and

∑

n∈ ⋃

M>N
bM

mk
n < ε/2,

(3) for every N > M ≥ 2 and k ∈ bN we have:

∑

n∈bM
mk

n < ε/2M .

Put: B = ⋃
N≥2 bN . By (1) the set

{|an ∩ B| : ∈ ω
}
is infinite. Let k ∈ B and let N

be such that k ∈ bN . We have:

∑

n∈B
n �=k

mk
n =

∑

n∈ ⋃

2≤M<N
bM

mk
n +

∑

n∈bN
n �=k

mk
n +

∑

n∈ ⋃

M>N
bM

mk
n

=
∑

2≤M<N

∑

n∈bM
mk

n +
∑

n∈bN
n �=k

mk
n +

∑

n∈ ⋃

M>N
bM

mk
n

<
∑

2≤M<N

ε/2M + ε/2N + ε/2 < ε.

	

For a given partition P of ω, let us say that C ∈ [ω]ω is a selector of P if either

C ⊆ A for some A ∈ P or C ∩ A is finite for every A ∈ P .
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Lemma 3.15 Let
〈
an : n ∈ ω

〉
be a uniform partition of ω and P = 〈

Pk : k ∈ ω
〉
a

partition of ω. Assume that for a set B ∈ [ω]ω the set
{|an ∩ B| : n ∈ ω

}
is infinite.

Then, there exists a selector C ∈ [B]ω of P such that
{|an ∩ C | : n ∈ ω

}
is infinite.

Proof If Pk is finite for every k ∈ ω, then let C = B. Otherwise, there exists k ∈ ω

such that Pk is infinite. Let bn = an ∩ B. Without loss of generality we may assume
that the sequence

〈|bn| : n ∈ ω
〉
is strictly increasing and b0 �= ∅; it follows that

|bn| > n for every n ∈ ω.
If there exists a sequence

〈
nk : k ∈ ω

〉
such that for some l ∈ ω the set

{∣∣bnk ∩
Pl

∣∣ : k ∈ ω
}
is infinite, then put C = Pl ∩ B and we are done.

Otherwise, for every l ∈ ω the set
{|bn ∩ Pl | : n ∈ ω

}
is finite. We construct the

set C inductively. Let n0 = 0 and c0 = bn0 . Assume that for some l ∈ ω we have
constructed the sequences c0, . . . , cl of finite sets and n0, . . . , nl ∈ ω such that:

• ci ⊆ bni for every 0 ≤ i ≤ l,
• |ci | < |c j | and Ki ∩ K j = ∅ for every 0 ≤ i < j ≤ l, where Kr = {

k ∈ ω :
Pk ∩ cr �= ∅}

.

Let:

m = max
k∈ ⋃

0≤i≤l
Ki

(
max
n∈ω

∣∣bn ∩ Pk
∣∣
)

and let nl+1 ∈ ω be such that:

nl+1 > |cl | + m ·
∑

0≤i≤l

|Ki |.

Define cl+1 ⊆ bnl+1 as follows:

cl+1 = bnl+1\
⋃

0≤i≤l

⋃

k∈Ki

Pk .

Then,
∣∣cl+1

∣∣ > |cl | and Kl+1 ∩ ⋃
0≤i≤l Ki = ∅.

Put C = ⋃
n∈ω cn . Since for every k ∈ ω there is at most one n ∈ ω such that

Pk ∩ cn �= ∅, C is a selector of P . The sequence
〈|cl | : l ∈ ω

〉
is strictly increasing and

for every l ∈ ω we have cl ⊆ bnl ⊆ anl , hence the set
{|an ∩ C | : n ∈ ω

}
is infinite.

	

The proof of the following lemma can be found in Just and Weese [16, Lemma

19.32]. Recall that MA(σ -centered) denotes Martin’s axiom for σ -centered posets
and strictly less than c many dense subsets of them.

Lemma 3.16 AssumeMA(σ -centered). Let
〈
an : n ∈ ω

〉
be a uniform partition of ω.

LetB ⊆ [ω]ω be such that |B| < c and for every finite H ⊆ B the set
{| ⋂ H∩an| : n ∈

ω
}
is infinite. Then, there exists a pseudo-intersection P ∈ [ω]ω of B such that{|an ∩ P| : n ∈ ω

}
is infinite.

We are in the position to construct a non-selective Rosenthal ultrafilter.
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Theorem 3.17 Assume MA(σ -centered). Then, there exists a Rosenthal P-point
which is not a Q-point.

Proof Fix a uniform partition
〈
an : n ∈ ω

〉
ofω. Let us fix the following enumerations:

• 〈
Cα : α < c

〉
—an enumeration of all subsets of ω,

• 〈Pα : α < c
〉
—an enumeration of all infinite partitions of ω,

• 〈
Mα : α < c

〉
—an enumeration of all pairs

(〈
mk

n : n, k ∈ ω
〉
, ε

)
, where the first

coordinate is a Rosenthal matrix and the second one is a positive real number.

We will construct inductively a sequence
〈
Bα : α < c

〉
of infinite subsets of ω such

that for every α < β < c the following hold:

(1) Bβ\Bα is finite,
(2) either Bα ⊆ Cα or Bα ∩ Cα = ∅,
(3) the set

{|an ∩ Bα| : n ∈ ω
}
is infinite,

(4) Bα is a selector of Pα .
(5) if Mα = (〈

mk
n : n, k ∈ ω

〉
, ε

)
, then for every k ∈ Bα we have:

∑

n∈Bα
n �=k

mk
n < ε.

Having this done, we put:

F = {
A ∈ [ω]ω : Bα\A is finite for some α < c

}
.

F is an ultrafilter by (1) and (2), not a Q-point by (3), a P-point by (4), and a Rosenthal
family by (5).

We start as follows. There exists A ∈ {C0, ω\C0} such that
{|an ∩ A| : n ∈ ω

}

is infinite. By Proposition 3.14, for M0 = (〈
mk

n : n, k ∈ ω
〉
, ε

)
there exists B ∈ [A]ω

such that
{|an ∩ B| : n ∈ ω

}
is infinite and for every k ∈ B we have:

∑

n∈B
n �=k

mk
n < ε.

Finally, use Lemma 3.15 with P = P0 to obtain a selector C ∈ [B]ω of P0 such that{|an ∩ C | : n ∈ ω
}
is infinite. Put: B0 = C .

Let 0 < β < c and assume we have constructed a family B = {
Bα : α < β

}
such

that for every finite H ⊆ B the set
{|an ∩ ⋂

H | : n ∈ ω
}
is infinite. By Lemma 3.16,

there exists a pseudo-intersection P of B such that
{|an ∩ P| : n ∈ ω

}
is infinite.

We now act similarly as in the 0-th step. There is A ∈ {P ∩ Cβ, P\Cβ} such that{|an ∩ A| : n ∈ ω
}
is infinite. By Proposition 3.14, for Mβ = (〈

mk
n : n, k ∈ ω

〉
, ε

)

there exists B ∈ [A]ω such that
{|an ∩ B| : n ∈ ω

}
is infinite and for every k ∈ B we

have:
∑

n∈B
n �=k

mk
n < ε.
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Finally, use Lemma 3.15 with P = Pβ to obtain a selector C ∈ [B]ω of Pβ such that{|an ∩ C | : n ∈ ω
}
is infinite. Put: Bβ = C . 	


Let us finish with the following important issue. We have just proved that the
class of selective ultrafilters is consistently a proper subclass of Rosenthal ultrafilters.
However, we have been so far unable to obtain an example of an ultrafilter which is
not Rosenthal. As this issue is fundamental for the theory of Rosenthal ultrafilters (and
Rosenthal families in general), we pose the following question.

Question 3.18 Is every ultrafilter Rosenthal?

We have several remarks concerning Question 3.18. Let M be a family of some
Rosenthal matrices. We say that an ultrafilter F is Rosenthal for M if for every〈
mk

n : n, k ∈ ω
〉 ∈ M and ε > 0 there is A ∈ F such that:

∑

n∈A
n �=k

mk
n < ε.

Remark 3.19 If F is an ultrafilter which is Rosenthal for the family of all finitely
supported Rosenthal matrices

〈
mk

n : n, k ∈ ω
〉
, i.e. such that the set

{
n : mk

n �= 0
}
is

finite for every k ∈ ω, then F is Rosenthal. Indeed, let
〈
mk

n : n, k ∈ ω
〉
be a Rosenthal

matrix and ε > 0. For every k ∈ ω there exists Nk > k such that
∑

n>Nk
mk

n < ε/2.
Define a new finitely supported Rosenthal matrix

〈
m̂k

n : n, k ∈ ω
〉
as follows:

m̂k
n =

{
mk

n if n ≤ Nk,

0 otherwise.

By the assumption, there is A ∈ F such that for every k ∈ A we have:

∑

n∈A
n �=k

m̂k
n < ε/2,

and hence:

∑

n∈A
n �=k

mk
n =

∑

n∈A
n �=k

m̂k
n +

∑

n∈A
n>Nk

mk
n < ε/2 + ε/2 = ε.

Remark 3.20 Every ultrafilter is Rosenthal for the class of all uniformly finitely sup-
ported Rosenthal matrices

〈
mk

n : n, k ∈ ω
〉
, i.e. such that there exists M ∈ ω for which∣∣{n : mk

n �= 0
}∣∣ < M for all k ∈ ω. Indeed, let F be an ultrafilter,

〈
mk

n : n, k ∈ ω
〉

uniformly finitely supported Rosenthal matrix with M ∈ ω witnessing that and ε > 0.
Define a function f : ω → [ω]M as follows:

f (k) = {
n ∈ ω : mk

n �= 0 and n �= k
}
.
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Then, by Hajnal’s Free Set Theorem (see e.g. Komjáth and Totik [18, Exercise 26.9])
there exist sets A1, . . . , AN ∈ ℘(ω) for some N ≤ 2M + 1 such that ω = ⋃N

i=1 Ai

and for every i ≤ N and k ∈ Ai we have f (k) ∩ Ai = ∅, and thus:

∑

n∈Ai
n �=k

mk
n = 0.

Since F is an ultrafilter, there is i ≤ N such that Ai ∈ F .

Remark 3.21 By the previous two remarks it follows that to answer Question 3.18 it
is sufficent to check whether every ultrafilter is Rosenthal for the family of all finitely
supported Rosenthal matrices

〈
mk

n : n, k ∈ ω
〉
such that:

sup
k∈ω

∣∣{n : mk
n �= 0

}∣∣ = ∞.

Remark 3.22 Note that there are ZFC examples of non-P-points and non-Q-points.
E.g. let H be a so-called Fubini product of two ultrafilters, i.e. given two ultrafilters
F and G on ω define H on ω × ω as follows:

H = {
X ∈ ℘(ω × ω) : {

n ∈ ω : {m ∈ ω : (n,m) ∈ X} ∈ G} ∈ F}
.

Fix a bijection ω × ω → ω and identify H with an ultrafilter on ω. It is a folklore
fact that H is neither a P-point nor a Q-point as well as that F and G are both below
H in the sense of Rudin–Keisler order (see Blass [5, page 146]). Is H a Rosenthal
ultrafilter?
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