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Abstract This paper develops the philosophy and technology needed for adding a
supremum operator to the interpretability logic ILM of Peano Arithmetic (PA). It is
well-known that any theories extending PA have a supremum in the interpretability
ordering. While provable in PA, this fact is not reflected in the theorems of the modal
system ILM, due to limited expressive power. Our goal is to enrich the language of
ILM by adding to it a new modality for the interpretability supremum. We explore
different options for specifying the exact meaning of the new modality. Our final
proposal involves a unary operator, the dual of which can be seen as a (nonstandard)
provability predicate satisfying the axioms of the provability logic GL.
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1 Introduction

The aim of this paper is to bring closer together the two main approaches to the study
of interpretability. As we will explain below, one of them currently lacks expressive
power for properly talking about the other.

Given first-order theories T and S, possibly in different languages, we say that T
interprets S, and write T �S, if there is some structure-preserving translation from the
language of S to the language of T , such that the translations of all theorems of S are
provable in T .

Interpretability can be seen as generalized provability: T is required to prove every-
thing that S proves modulo some well-behaved translation. As such, it allows us to
compare theories talking about different objects, such as Peano Arithmetic (PA) and
Zermelo-Fraenkel set theory (ZF). In fact, the notion of interpretability is a natu-
ral candidate for giving a precise meaning to the intuitive idea of one theory being
stronger than another one. Seen from a semantic perspective, an interpretation of S in
T gives rise to a uniform way of constructing a model of S inside a given model of T .
Interpretations therefore give rise to relative consistency proofs.

The study of interpretability may roughly be divided into two traditions, briefly
outlined below. For a more comprehensive overview, the reader is referred to [32].

The lattice of degrees Seeing interpretability as ameasuring stick for theories naturally
leads one to study the space of all theories ordered by this relation. A degree is a
collection of all theories that are equally strong as a given theory, i.e. that all mutually
interpret each other. We write [S] for the degree of S.

Among the first results concerning interpretability degrees is a strengthening of
Gödel’s Second Incompleteness Theorem by Feferman. Denote by ConPA the usual
consistency statement of PA. In [4, Theorem 6.5], it is shown that not only is ConPA
unprovable, it is also “uninterpretable”: [PA] �� [PA + ConPA]. Jeroslow [12, Theo-
rem 3.1, 3.2] showed that the degrees intermediate between [PA] and [PA + ConPA]
form a dense partial order. It follows from his work that the interpretability ordering is
dense (see [28, p.798]). Montague [20, Theorem 1] proved the existstence of an infinte
set of finitely axiomatized subtheories of PA, all of which are mutually incomparable
with respect to the interpretability ordering.

A systematic study of interpretability degrees was undertaken independently by
Švejdar and Lindström [7, p.402]. Švejdar studied the structure (V ,�) of the degrees
of finite extensions of PA. He proved, among other things, that this structure is a
distributive lattice [28, Theorems 4.4, 4.7]. Lindströmwas concernedwith the structure
of the degrees of all r.e. extensions of PA [15,16]. However he also showed that this
structure is in fact isomorphic to (V ,�) [16, p.348, Theorem 3].

Our interest in provability logic makes it natural to focus on (V ,�). Note first that
[PA+�] is the minimum and [PA+⊥] the maximum element of this structure.1 It is
easy to see that the infimum of [PA + A] and [PA + B] in (V ,�) is [PA + (A ∨ B)].
However the supremum of [PA + A] and [PA + B] is in general not [PA + (A ∧ B)].

1 Someone used to Boolean algebras has to think of the lattice (V ,�) as being upside down: the weakest
theory � is the bottom element, and the strongest theory ⊥ is the top element of (V , �).
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Interpretability suprema in Peano Arithmetic 557

Švejdar shows that the supremum of [PA+ A] and [PA+ B]may taken to be [PA+ϑ],
where ϑ is obtained by the Diagonal Lemma as a sentence such that:2

PA � ϑ ↔ ∀x (Conx(ϑ) → Conx(A) ∧ Conx(B)). (1)

Interpretability logic Interpretability, like provability, is a syntactical notion, and can
therefore be formalized in the language of arithmetic. We can thus ask: which state-
ments concerning provability and interpretability (between its finite extensions) are
provable in PA?

It turns out that using modal logic allows one to answer this question in a neat
way. The system GL of propositional provability logic contains a unary modality �,
interpreted as formalized provability in PA. It follows from the work of Hilbert and
Bernays [11], Löb [18], and Solovay [27], that the theorems of GL are exactly the
propositional schemata involving formalized provability that are provable in PA.

The system ILM of interpretability logic is obtained by adding toGL a binarymodal-
ity� for interpretability. It was proven independently byBerarducci [1] and Shavrukov
[24] that the theorems of ILM are exactly the propositional schemata involving for-
malized provability and interpretability that are provable in PA.

Plan of this paper Given the two traditions in the study of interpretability, it is natural
to ask how they relate to each other. The starting point for this paper is the following
question: does the modal logic ILM “know” that (V ,�) is a lattice?

The fact that the infimum in (V ,�) is given by disjunction is indeed reflected in the
axioms of ILM. On the other hand, Švejdar’s construction of a supremum employs a
languagemuchmore complex than that available in propositional modal logic. Indeed,
the supremum turns out not to be definable in ILM.

We want to boost the expressive power of ILM by adding to it a new modality
whose intended interpretation is a supremum operator in (V ,�). As we will see,
Švejdar’s construction is only one out of many ways of obtaining the supremum of
given elements in this structure. Since each of these can, in principle, be used to specify
the meaning of the new modality, we are faced with a design choice.

Section 3 discusses various considerations to be taken into account in the midst
of this embarrassment of riches. Švejdar’s construction, along with its dual discov-
ered by Visser, are studied in Sect. 4. Section 5 introduces our favourite way of
interpreting the new modality: a combination of conjunction with a certain unary
operator that we call a supremum adapter. The idea and first examples of supremum
adapters are due to Shavrukov. Supremum adapters may be seen as certain nonstan-
dard provability predicates. This perspective is explored in Sect. 6, where we study
the bimodal logic of such a nonstandard notion of provability, together with ordinary
provability.

2 Conx(C) denotes the consistency statement for IΣx + C , where IΣx is as usual PA with induction
restricted to Σx–formulas. In Švejdar’s original construction, the sentence Conx(C) is taken to be the
consistency statement for C together with the first x axioms of PA. For our purposes, it is more convenient
to use the stratification sequence based on IΣx instead.
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2 Preliminaries

This section introduces the basic notions used in the paper. The reader is advised to
go through it lightly in order to return when some fact or definition is used.

2.1 Arithmetical theories

We consider first-order theories in the language L of arithmetic containing 0, S
(successor), +, ×, and ≤. As usual, a formula is said to be Δ0 (equivalently: Σ0 or
Π0) if all its quantifiers are bounded. A formula is Σn+1 (Πn+1) if it is of the form
∃x0 . . . xn A, with A aΠn (Σn)-formula. For each natural number n, we define a term n
ofL by letting 0 = 0, and n + 1 = Sn. Given that, we will often write n instead of n.

The basic facts concerning 0, S, +, ×, and ≤ are given by the axioms of the theory
Q of RobinsonArithmetic [7, Definition I.1.1]. The theoryQ isΣ1-complete, meaning
that it proves every trueΣ1-sentence. The theory PA of Peano Arithmetic results from
adding to Q the induction schema for allL -formulas.

As usual, IΣn is the fragment of PA obtained by restricting the induction schema
to Σn-formulas. Note that IΣn ⊆ IΣn+1 for all n. We recall that for n > 0, IΣn is
finitely axiomatizable [7, Theorem I.2.52]. The theory IΔ0+exp results from adding
to IΔ0 an axiom stating the totality of exponentiation.We note that IΔ0+exp is finitely
axiomatizable [7, Theorem V.5.6 ] and contained in IΣ1 [7, Theorem I.1.50].

Metamathematics It is well-known that arithmetization of syntax can be carried out
in IΔ0+exp. We assume as given some standard gödelnumbering of L -formulas,
and write �A� for the gödelnumber of A. We shall often identify a formula with its
gödelnumber, writing for example B(A) instead of B(�A�).

Let S be a recursively enumerable (r.e.) extension of IΔ0+exp. Since any r.e.
relation can be represented in a natural way in IΔ0+exp by a Σ1-formula [3], there
is a Σ1-formula σ representing the axioms of S in IΔ0+exp, i.e. we have

A is an axiom of S iff IΔ0+exp � σ(A).

Using σ , one can define in a natural way (see [4, Definition 4.1]) a Σ1-formula Prσ
representing (inside IΔ0+exp) provability in S. In this paper, wewill write PrS instead
of Prσ , having in mind some standard Σ1-representation σ of the axioms of S in
IΔ0+exp. To further simplify notation, we shall write �S for the formula PrS . � and
�0 will be used as shorthand for �PA and �IΔ0+exp respectively. By �x we denote
the formula containing x as a free variable, and such that for n > 0, �n (the result of
substituting n for x in �x ) is �IΣn . The symbol ♦S is used for the dual of �S , i.e. as an
abbreviation for ¬�S¬A.

We use the dot notation as usual, thus �S A(ẋ) means that the numeral for the
value of x has been substituted for the free variable of the formula A inside �S . If the
intended meaning is clear from the context, we will often simply write �S A(x) instead
of �S A(ẋ). We recall that any theory S extending IΔ0+exp is provably Σ1-complete,
meaning that for any Σ1-formula A,
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IΔ0+exp � A(x) → �S A(ẋ).

It is well-known that if S is as above, then the Hilbert-Bernays-Löb derivability con-
ditions hold for �S verifiably in IΔ0+exp:

1. if S � A, then IΔ0+exp � �S A
2. IΔ0+exp � �S(A → B) → (�S A → �S B)

3. IΔ0+exp � �S A → �S�S A

In fact, 2 and 3 also hold with internal variables ranging over the sentences A and B.
The following theorem is known as the Diagonal Lemma, or Gödel-Carnap Fixed

Point Lemma.

Theorem 1 Let A be a Σn (Πn)-formula whose free variables are exactly x0, . . . , xn.
There is a Σn (Πn)-formula β with exactly the same free variables, and such that

IΔ0+exp � β(x1, . . . , xn) ↔ A(�β(v1, . . . , vn)�, x1, . . . , xn).

We say that β(x1, . . . , xn) is a fixed point of A(x0 . . . , xn).

Theorem 1, together with the Hilbert-Bernays-Löb derivability conditions for �S ,
implies that Löb’s principle for �S is verifiable in IΔ0+exp [2, Theorem 3.2]:

IΔ0+exp � �S(�S A → A) → �S A.

Principles valid in the Gödel-Löb provability logicGL (see Sect. 2.3) can thus be used
when reasoning about S in IΔ0+exp.

Consider the sequence of theories {Tn}n∈ω, where T0 = IΔ0+exp, and for n > 0,
Tn = IΣn . The basic facts concerning {Tn}n∈ω are verifiable in IΔ0+exp:

IΔ0+exp � �A ↔ ∃x �x A (2)

IΔ0+exp � ∀x, y (�x A ∧ x < y → �y A) (3)

Furthermore, IΔ0+exp verifies that each Tn+1 proves uniform Πn+2–reflection for
Tn :

IΔ0+exp � ∀x (�x+1(∀A ∈ Πx+2 → ∀y (�x A(ẏ) → A(y)))) . (4)

That (4) holds was first stated in [21]; an inspection of the proof shows that it can be
verified in IΔ0+exp. Throughout this paper, we shall refer to properties (3) and (4)
as monotonicity and reflection respectively.

Oracles We recall that for n > 1, there is a partial truth definition trΠn for Πn-
sentences in IΔ0+exp [7, SectionV.5(b)]. The formula trΠn isΠn and satisfies Tarski’s
conditions [7, Definition I.1.74].

LetS be an r.e. extensionof IΔ0+exp.Using trΠn , one candefine in a naturalway the
provability predicate �Πn

S of S together with aΠn-oracle. Thus �Π1
x is an intensionally
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correct provability predicate for IΣx together with a Π1-oracle. Note that �Π1
x is a

Σ2-formula. It follows from (4) that IΔ0+exp � ∀x �x+1¬�x⊥. Inspection of the
proof shows that it goes through when we add Π1-sentences that are known to be true
to formal proofs, thus we have: IΔ0+exp � ∀x �x+1¬�Π1

x ⊥. Also this property will
be referred to as reflection.

2.2 Interpretability

The notion of interpretability that we are interested in is that of relative interpretability,
first introduced and carefully studied by Tarski, Mostowski and Robinson [29]. Since
all theories considered here have pairing, it is safe to focus our attention on one-
dimensional interpretations.

Definition 1 Let S and T be first-order theories whose languages are LS and LT .
An interpretation j of S in T is a tuple 〈δ, τ 〉, where δ is an LT -formula with one free
variable, and τ a mapping from relation symbols3 R of LS to formulas Rτ of LT ,
where the number of free variables of Rτ is equal to the arity of R. We extend τ to a
translation from all formulas of LS to formulas of LT by requiring:

i. (R(x1, . . . xn))τ = Rτ (x1, . . . xn)

ii. (A → B)τ = Aτ → Bτ

iii. ⊥τ = ⊥
iv. (∀x A)τ = ∀x (δ(x) → Aτ )

Finally, we require that T � ∃x δ(x), and T � Aτ for all axioms A of S.

Wewrite j : T �S if j is an interpretation of S in T , and T �S if j : T �S for some j .
We say that T and S are mutually interpretable, and write T ≡ S, if T � S and S � T .
In this paper we are concerned with interpretability between finite extensions of PA,
i.e. theories of the form PA + A, where A is an L -sentence. We write A � B as an
abbreviation for PA + A � PA + B.

Interpretability, like provability, is a syntactical notion, and can therefore be for-
malized in PA. We write A � B for the arithmetical sentence expressing that PA + A
interprets PA + B.

The following theorem concerning interpretability over PA is referred to as the
Orey-Hájek Characterization.

Theorem 2 (IΔ0+exp) The following are equivalent:

i. A � B
ii. For all n, PA � A → ♦n B
iii. For any C ∈ Π1, PA � B → C implies PA � A → C

Theorem 2 is implicit in [22], and was first explicitly stated in [6] and in [8]. Item iii
was added in [5]. Inspection of the proof shows that it can be verified in IΔ0+exp.

3 We assume here that S is formulated in a purely relational way. This restriction is not essential – function
symbols can be replaced by relation symbols by a well-known algorithm (for details, see [31, Section 7.3]).
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2.3 Modal logic

Wedenote byL� the language of propositional modal logic containing a unarymodal-
ity �, and by L�� the language L� together with a binary modality �.

Provability logic The axiom schemata of the Gödel-Löb provability logicGL include
all propositional tautologies in the language L�, and furthermore:

(K) �(A → B) → (�A → �B)

(L) �(�A → A) → �A

The inference rules of GL are modus ponens and necessitation:

if GL � A, then GL � �A.

We note that GL � �A → ��A (see e.g. [2, p.11]).
The axiom schemata of the interpretability logic ILM include all propositional

tautologies in the language L��, the axiom schemata of GL, and:

(J1) �(A → B) → A � B
(J2) (A � B) ∧ (B � C) → (A � C)

(J3) (A � C) ∧ (B � C) → (A ∨ B) � C
(J4) A � B → (♦A → ♦B)

(J5) ♦A � A
(M) A � B → (A ∧ �C) � (B ∧ �C)

The rules of ILM are modus ponens, and necessitation for �.

Definition 2 Let ϕ be an L -formula with one free variable. A ϕ-realization is a
function ∗ from the propositional letters of L� to L -sentences. The domain of ∗ is
extended to all L�-formulas by requiring that it commutes with the propositional
connectives, and furthermore

(�A)∗ := ϕ(�A∗�).

Given anL -formulas ϕ andψ with one and two free variables respectively, the notion
of a ϕ-ψ-realization (a function from L��-formulas to L -sentences) is defined in a
similar way.

Theorem 3 Let T be a r.e. and Σ1-sound extension of IΔ0+exp, and let PrT be
an intensionally correct provability predicate of T. Write R for the set of all PrT -
realizations. Then for all A ∈ L�,

GL � A if and only if for all ∗ ∈ R, IΔ0+exp � A∗.

The direction from left to right follows by the fact that the Hilbert-Bernays-Löb deriv-
ability conditions for PrT are verifiable in IΔ0+exp [11,18]. The proof of the other

123



562 P. Henk, A. Visser

direction with T = PA is due to Solovay [27]. De Jongh et al. [13] extended the result
to Σ1-sound theories containing IΔ0 + exp.

We recall that a theory is said to be essentially reflexive if it proves the consistency
of each of its finite subtheories, and the same holds for every consistent extension in the
same language. It is well-known that PA is essentially reflexive [7, Theorem III.2.35].

Theorem 4 Let T be r.e., essentially reflexive, and Σ1–sound. Let PrT be an intension-
ally correct provability predicate of T, and Int an L -formula (with two free variables)
representing interpretability in T. Write R for the set of all PrT –Int–realizations. For
all A ∈ L��,

ILM � A if and only if for all ∗ ∈ R, T � A∗.

Theorem 4 was proven independently by Shavrukov [24] and Berarducci [1].

3 Methodological considerations

Write (V ,�) for the degrees of finite extensions of PA, ordered by the relation of
interpretability. As mentioned in Sect. 1, it was proven by Švejdar that the structure
(V ,�) is a lattice. Our question is whether this fact is seen from the perspective of
the interpretability logic ILM.

Indeed, the fact that (V ,�) is a lower semilattice is reflected in the axioms of ILM.
Principles J1 and J2 imply that the ordering given by � is reflexive and transitive,
and furthermore that A � A ∨ B and B � A ∨ B, i.e. that [A ∨ B] is a lower bound of
[A] and [B] in (V ,�). Principle J3 states that it is in fact the greatest lower bound,
i.e. the infimum of [A] and [B].

To see that, in general, the supremum of [A] and [B] is not [A ∧ B], it suffices to
consider the so-called Orey sentences discovered by Orey in [22, Theorem 2.4]. An
Orey sentence is any sentence O with � � O and � � ¬O . An Orey sentence and
its negation are thus both in [�], and hence also their supremum is an element of [�],
which is clearly not the case for the sentence O ∧ ¬O .

Recall the structure (D,�) of the interpretability degrees of all r.e. extensions of
PA. It follows from Theorem 2 that the supremum of [PA+ A] and [PA+ B] in (D,�)

is [S], where S is the following infinite theory:

S := PA + {♦n A ∧ ♦n B | n ∈ ω}.

Švejdar’s construction of suprema in (V ,�) (see (1), or Theorem 5 in Sect. 4) can
be seen as a way of compressing the information in S into a single sentence. This
construction employs a language much more complicated than that available in the
propositional system ILM. Indeed, as shown in Appendix A.1, the existence of inter-
pretability suprema lies beyond the expressive power of ILM.

We want to enrich the language of ILM by adding to it a new binary modality �,
together with the following axiom S, stating that � is an interpretability supremum:

(S) (C � A) ∧ (C � B) ↔ (C � A � B).
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Wewant to interpret� as an arithmetical formula.The following definition states what
we are looking for.

Definition 3 An L -formula σ with two free variables is a supremum implementation
if for allL -sentences A, B, C, we have thatPA � (C � A)∧(C �B) ↔ C �σ(A, B).

Given a supremum implementation σ , we can extend the notion of an arithmetical
realization to include formulas of the extended modal language:

(A � B)∗ := σ(�A∗�, �B∗�). (5)

Let R be the set of all realizations where the ILM part is as in Theorem 4, and � is
interpreted as in (5). Denote by ILMS the system ILM together with axiom S. Then it
is clear that for all modal formulas A,

If ILMS � A, then for all ∗ ∈ R, PA � A∗.

In other words ILMS is arithmetically sound. For arithmetical completeness, we need
to make sure that all propositional schemata involving σ that are theorems of PA are
also provable in ILMS. However, it turns out that what exactly is provable in PA about
a supremum implementation is far from determined by the fact that the latter satisfies
Definition 3. For example, while for any such σ it is clear that σ(A, B) and σ(B, A)

are, verifiably in PA, mutually interpretable, there is no a priori reason why

σ(A, B) ↔ σ(B, A) (6)

should be provable in PA, or even true (see Appendix A.2). On the other hand, the
supremum implementations we encounter in the following sections all satisfy (6).

Given the above, should we add A � B ↔ B � A to the axioms of ILMS? The
answer depends on which supremum implementation(s) we have in mind. In contrast
to formalized provability and interpretability, there is no strong intuition as to what
constitutes a natural supremum implementation. Thus our choice will depend on
practical and esthetical criteria. For example, we prefer implementations that allow
for a nice Kripke semantics. The following definition states some nice features that a
supremum implementation could have.

Definition 4 Let A, A′, B, B ′ range over allL -sentences, and let σ be anL -formula
with two free variables. We say that σ is extensional if

PA � A ↔ A′ and PA � B ↔ B ′ ⇒ PA � σ(A, B) ↔ σ(A′, B ′),

and σ is provably extensional if the above is verifiable in PA, i.e.

PA � �(A ↔ A′) ∧ �(B ↔ B ′) → �(σ (A, B) ↔ σ(A′, B ′)).

We say that σ is monotone if

PA � A → A′ and PA � B → B ′ ⇒ PA � σ(A, B) → σ(A′, B ′),
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564 P. Henk, A. Visser

and provably monotone if the above is verifiable in PA, i.e.

PA � �(A → A′) ∧ �(B → B ′) → �(σ (A, B) → σ(A′, B ′)).

We note that the above properties are ordered by strength, with extensionality being
the weakest.

We conclude this section by considering a supremum implementation property that
is so nice that we did not even think of it before Shavrukov gave us an example.

Definition 5 A supremum implementation σ is adapted if there is an L -formula τ

containing one free variable, and such that for all L -sentences A and B,

σ(A, B) = τ(A) ∧ τ(B).

We call a formula τ as in Definition 5 a supremum adapter. A supremum adapter
is thus a unary operator that, in combination with conjunction, provides us with a
supremum implementation.4

4 Varieties of supremum implementations

This section studies the supremum implementation based on Švejdar’s argument show-
ing that (V ,�) is a lattice, as well as a dual construction discovered by Visser. These
implementations are given as fixed points of certain arithmetical formulas. We prove
the existence of unique explicit fixed points for these formulas. The purpose of this
section is mainly methodological; it can be safely skipped without affecting insight
into the rest of the article.

4.1 Definition and verification of the target property

As mentioned above, it follows from Theorem 2 that the infinite theory

PA + {♦n A ∧ ♦n B | n ∈ ω} (7)

is an interpretability supremum of PA + A and PA + B. The idea of Švejdar’s con-
struction is to compress the information contained in (7) into a single sentence.

Theorem 5 ([28, Theorem 4.4]) By Theorem 1, let ϑ be such that

PA � ϑ ↔ ∀x (♦xϑ → ♦x A ∧ ♦x B).

Then ϑ is (verifiably in IΔ0+exp) a supremum of A and B in (V ,�).

We note that the complexity of ϑ isΠ2. A dual construction, yielding aΣ2-supremum,
was discovered by Visser.

4 We think of τ as adapting A and B, so that their conjunction can be used to get the supremum.
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Interpretability suprema in Peano Arithmetic 565

Theorem 6 By Theorem 1, let ϑ be such that

PA � ϑ ↔ ∃x (�x¬ϑ ∧ (♦x A ∧ ♦x B)).

Then ϑ is (verifiably in IΔ0+exp) a supremum of A and B in (V ,�).

Proof Argue in IΔ0+exp. We show that

i. ϑ � A and ϑ � B
ii. Whenever C � A and C � B, also C � ϑ

We first show i. By Theorem 2, it suffices to show that ϑ implies♦n A and♦n B for any
standard n. Assume ϑ . Thus there is some a with �a¬ϑ , ♦a A, and ♦a B. By essential
reflexivity, a must be greater than any standard n. By monotonicity, we thus have ♦n A
and ♦n B for any such n.

For ii, let C be such that C � A and C � B. We claim that C ∧ ¬ϑ � ϑ . Note that
¬ϑ is the sentence ∀x ((♦x A ∧ ♦x B) → ♦xϑ). Since C � A and C � B, by Theorem
2 we have that C implies ♦n A and ♦n B for any standard n. But then C ∧ ¬ϑ implies
♦nϑ for any such n, whenceC ∧¬ϑ �ϑ again by Theorem 2. Finally, note that clearly
C ∧ ϑ � ϑ . By axiom J3 of ILM, we therefore have (C ∧ ϑ) ∨ (C ∧ ¬ϑ) � ϑ , i.e.
C � ϑ . ��
Strictly speaking, theorems 5 and 6 do not yet provide us with supremum implemen-
tations in the sense of Definition 3. Corresponding to Theorem 5, we would want a
formula σ with two free variables, such that for any sentences A and B,

PA � σ(A, B) ↔ ∀x (♦xσ(A, B) → ♦x A ∧ ♦x B). (8)

Such a formula can be found by using Theorem 1 (see Appendix B.1). Having this in
mind, we shall from now on say Švejdar’s supremum (implementation) to refer to a
formula σ as in (8); similarly for Visser’s supremum.

4.2 Existence of unique explicit fixed points

The suprema introduced above are given as fixed points of certain formulas. Before
proving the existence of unique and explicit fixedpoints for these formulas,we examine
a surprising feature of Švejdar’s construction. Švejdar’s supremum of A and B is
obtained as a fixed point of the following formula:5

∀x (♦x Y → (♦x A ∧ ♦x B)).

In particular the supremum of ⊥ and ⊥ is given as a fixed point of

∀x (♦x Y → ♦x⊥). (9)

5 The capital variable Y indicates that we are interested in fixed points with respect to this variable.
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Example 1 Write Ψ⊥(Y ) for the formula in (9). We have the following:

i. If PA � ϑ ↔ Ψ⊥(ϑ), then PA � ϑ ↔ ⊥
ii. PA � ⊥ ↔ Ψ⊥(⊥)

In other words every fixed point of Ψ⊥(Y ) is equivalent to ⊥, however ⊥ itself is not
a fixed point of Ψ⊥(Y ). To see that i holds, suppose that PA � ϑ ↔ Ψ⊥(ϑ), i.e.

PA � ϑ ↔ ∀x (�x� → �x¬ϑ).

Since PA � ∀x �x�, it follows that PA � ϑ ↔ �0¬ϑ . Since PA � �0¬ϑ → ¬ϑ by
reflection, we thus have PA � ϑ ↔ ⊥. For ii note that Ψ⊥(⊥) is ∀x (♦x⊥ → ♦x⊥),
i.e. it is a tautology and thus clearly not provably equivalent to ⊥.

Example 1 demonstrates that the formula Ψ⊥(Y ) is not extensional, i.e. it is not the
case that for all sentences A and B,

PA � A ↔ B ⇒ PA � Ψ⊥(A) ↔ Ψ⊥(B). (10)

Indeed, if ϑ is a fixed point of Ψ⊥(Y ), then as shown above PA � ϑ ↔ ⊥. On the
other hand Ψ⊥(⊥) is a tautology and therefore not provably equivalent to Ψ⊥(ϑ) –
since the latter is equivalent to ϑ and hence to ⊥.

We thus cannot apply to ∀x (♦x Y → (♦x A ∧ ♦x B)) Smoryński’s method [26] for
establishing the uniqueness of fixed points of arithmetical formulas.6 The following
theorem, due to Shavrukov, shows that unique explicit fixed points nevertheless exist.

Theorem 7 Let ε(A, B) be the formula

(♦0� → ♦0A ∧ ♦0B) ∧ ∀x (♦x+1(♦x A ∧ ♦x B) → ♦x+1A ∧ ♦x+1B),

where A and B are regarded as internal variables ranging over L -sentences. Then

i. PA � ε(A, B) ↔ ∀x (♦x ε(A, B) → ♦x A ∧ ♦x B)

ii. For any ϑ , if PA � ϑ ↔ ∀x (♦xϑ → ♦x A ∧ ♦x B), then PA � ϑ ↔ ε(A, B)

Proof See Appendix B.2. ��
A similar result holds for Visser’s supremum implementation.

Theorem 8 Let ε(A, B) be the formula

∃x (�x (�x¬A ∨ �x¬B) ∧ (♦x A ∧ ♦x B))

where A and B are regarded as internal variables ranging over L -sentences. Then

i. PA � ε(A, B) ↔ ∃x (�x ¬ε(A, B) ∧ (♦x A ∧ ♦x B))

6 Smoryński’s method for showing the uniqueness of fixed points of an arithmetical formula Ψ (Y ) relies
on Ψ (Y ) being PA–substitutable, meaning that PA � �(A ↔ B) → (Ψ (A) ↔ Ψ (B)) for all A and B.
Note that if Ψ (Y ) is PA–substitutable, then it is also extensional in the sense of Definition 4.
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ii. For any ϑ , if PA � ϑ ↔ ∃x (�¬ϑ ∧ (♦x A ∧ ♦x B)), then PA � ϑ ↔ ε(A, B)

Proof See Appendix B.2. ��
It follows that any formula ε as in Theorem 7 or in Theorem 8 is a supremum

implementation (using items i. and the proofs of theorems 5 and 6). With the explicit
versions at hand, we can learn a bit more about Švejdar’s and Visser’s suprema.

Theorem 9 Švejdar’s and Visser’s supremum are both extensional.

Proof See Appendix B.3. ��
Theorem 10 Visser’s supremum is not monotone.

Proof See Appendix B.4. ��
Question 1 Is Švejdar’s supremum monotone?

5 Supremum adapters

The idea and the first examples of supremum adapters are due to Shavrukov. The
versions introduced here were obtained by analyzing and simplifying the latter. Define

σ(A) := ∀x (♦Π1
x � → ♦x+1A)

τ (A) := ∃x (�Π1
x ⊥ ∧ ♦x A)

where A is regarded as an internal variable ranging over sentences.Write�A for either
σ(A) or τ(A). In this section, we show that � is a supremum adapter, i.e. that for all
L -sentences A, B, and C , it is provable in PA that

(C � A) ∧ (C � B) ↔ C � (�A ∧ �B).

In fact, we show that the above is already verifiable in IΔ0+exp.

Lemma 1 (IΔ0+exp) For all n, PA � �A → ♦n A.

Proof Straightforward from the definition of σ , τ , and the fact that IΣn+1 � ♦Π1
n �

for all n by reflection. ��
Lemma 2 IΔ0+exp � ∀z (�z(¬�A ∨ ¬�B) → �z(�z¬A ∨ �z¬B)) .

Proof Argue IΔ0+exp, assuming

�z(¬�A ∨ ¬�B). (11)

We first show that (11) implies

�z(�Π1
z ⊥ → (�z¬A ∨ �z¬B)). (12)
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Suppose first that (11) is �z(¬σ(A) ∨ ¬σ(B)), i.e.

�z(∃x (♦Π1
x � ∧ �x+1¬A) ∨ ∃x (♦Π1

x � ∧ �x+1¬B)). (13)

It follows that

�z∃x (♦Π1
x−1� ∧ (�x¬A ∨ �x¬B)). (14)

We reason in�z . By (14), let y be such that¬�Π1
y ⊥∧(�y+1¬A∨�y+1¬B). Assuming

�Π1
z ⊥, we have y < z, whence by monotonicity �z¬A ∨�z¬B. We exit �z . Note that

we have shown (12). The other possibility is that (11) is �z(¬τ(A) ∨ ¬τ(B)), i.e.

�z(∀x (�Π1
x ⊥ → �x¬A) ∨ ∀x (�Π1

x ⊥ → �x¬B)). (15)

From this it follows that �z∀x (�Π1
x ⊥ → (�x¬A∨�x¬B)), whence clearly also (12).

Thus we have (12) whenever (11) holds. We now show that (12) implies

�z(�Π1
z (�z¬A ∨ �z¬B) → �z¬A ∨ �z¬B). (16)

To see that (16) holds, reason inside �z , assuming

�Π1
z (�z¬A ∨ �z¬B). (17)

If �z¬A ∨ �z¬B, we are done. So assume that not: �z¬A ∨ �z¬B, i.e.

♦z A ∧ ♦z B. (18)

Since (18) is aΠ1-sentence, we have �Π1
z (♦z A∧♦z B) and thus �Π1

z ⊥ in combination
with (17). The desired conclusion �z¬A ∨ �z¬B now follows by (12). Exiting the
world inside �z , we have established (16). From the latter it clearly follows that

�z(�z(�z¬A ∨ �z¬B) → �z¬A ∨ �z¬B), (19)

and thus �z(�z¬A ∨ �z¬B) by Löb’s principle for IΣz .

Lemma 3 (IΔ0+exp) For all n, PA � ♦n A ∧ ♦n B → ♦n(�A ∧ �B).

Proof Argue in IΔ0+exp. By contraposition, it suffices to show that for all n,

IΣn+1 � �n(¬�A ∨ ¬�B) → �n¬A ∨ �n¬B.

Fix an n. From Lemma 2 it follows that

IΣn+1 � �n(¬�A ∨ ¬�B) → �n(�n¬A ∨ �n¬B).

Since IΣn+1 � �n(�n¬A ∨ �n¬B) → (�n¬A ∨ �n¬B) by reflection, we are done.
��

123



Interpretability suprema in Peano Arithmetic 569

Theorem 11 (IΔ0+exp) For all L -sentences A, B, and C,

(C � A) ∧ (C � B) ↔ C � (�A ∧ �B).

Proof Straightforward consequence of lemmas 1, 3, and Theorem 2. ��

6 Nonstandard provability predicates

The supremum adapters introduced in the previous section can be seen as consistency
statements corresponding to certain (nonstandard) provability predicates. We shall
now investigate the consequences of this perspective, showing in particular that these
provability predicates satisfy the principles of the provability logic GL. In Sect. 6.3,
we establish some principles for the bimodal provability logic of such a nonstandard
notion of provability, together with ordinary provability.

We use modal notation, writing �A and �· A for the sentences σ(A) and τ(A) as
in the previous section. The provability predicates 	 and 
· are defined as their duals,
i.e. 	A := ¬�¬A and 
· A := ¬�· ¬A. Spelling this out:

	A = ∃x (�x+1A ∧ ♦Π1
x �)


· A = ∀x (�Π1
x ⊥ → �x A)

Thus an L -formula A is 	–provable just in case there is some n such that A is
provable (in the usual sense) in IΣn+1, and the theory IΣn together with a Π1-oracle
is consistent. Note that since for all n it is true (in the standardmodel) that IΣn together
with aΠ1-oracle is consistent, the extension of	 in the standard model coincides with
ordinary PA-provability defined by �. However this might not be the case in a model
where PA together with a Π1-oracle is inconsistent. This is why we say that 	 is a
nonstandard provability predicate for PA. Note also that 	 is a Σ3-formula.

As for the other triangle, we note that a formula A is 
· -provable if for all n, a proof
of inconsistency of IΣn together with a Π1-oracle implies the existence of a usual
IΣn-proof of A. We note that 
· is a Π2-formula.

6.1 Relating the two triangles

Arguing in PA, let μ + 1 be the smallest number such that IΣμ+1 together with a
Π1-oracle is inconsistent. It is easy to see that if μ + 1 exists, then

	A ↔ 
· A ↔ �μ+1A

If μ + 1 does not exist, i.e. if PA together with a Π1-oracle is consistent, then 	A is
equivalent to �A, while 
· A is equivalent to �. Both 	 and 
· are therefore equivalent
to �μ+1, the only difference being in how the latter is interpreted in case μ + 1 does
not exist. This leads to the following alternative definition of 	 and 
· :
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	A :=
{

�μ+1A if �Π1⊥
�A otherwise

(20)


· A :=
{

�μ+1A if �Π1⊥
� otherwise

(21)

Using the above observations, we see that the two triangles are closely related.

Lemma 4 i. PA � 	A ↔ (♦Π1� ∧ �A) ∨ (�Π1⊥ ∧ 
· A)

ii. PA � 
· A ↔ (	A ∨ ♦Π1�)

Proof For i, reason in PA. First suppose 	A. From the definition of 	, it follows that
also �A. If ♦Π1�, we are done. If �Π1⊥, then 	A and 
· A are equivalent, whence

· A. For the other direction, suppose that ♦Π1� and �A. Then 	A follows straight
from the definition. And if �Π⊥, then
· A if and only of	A. The proof of ii is similar.

��
Given existential sentences A = ∃x A′ and B = ∃y B ′, we write A ≤ B for the
sentence ∃x (A′ ∧ ∀y < x ¬B ′). Thus A ≤ B says that the formula A has a witness,
and this witness is smaller than or equal to the smallest witness of B. Similarly, we
write A < B for the sentence ∃x (A′ ∧ ∀y ≤ x ¬B ′). If C is of the form A ≤ B we
write C⊥ for B < A, and if C is of the form A < B, we write C⊥ for B ≤ A. Note
that C⊥ implies ¬C , but not the other way around. Thus C⊥ can be seen as a strong
negation of C . We write �∗ A for ∃x �x A, and similarly �Π1∗ A for ∃x �Π1

x A.
It is easy to see that

PA � 	A ↔ �∗ A ≤ �Π1∗ ⊥.

Now, 	⊥ A is the sentence �Π1∗ ⊥ < �∗ A. Rewriting the definition of 
· according to
the witness comparison notation, we see that
· is equivalent the negation of the latter:

PA � 
· A ↔ ¬(�Π1∗ ⊥ < �∗ A).

Thus PA � 
· A ↔ ¬	⊥ A, whence 
· is, in a sense, the double negation of 	.

6.2 Provability logic of 


We use the symbol 
 to refer to either 	 or 
· . We show that IΔ0+exp verifies the
principles of GL for 
.

Theorem 12 1. If PA � A, then PA � 
A
2. IΔ0+exp � 
(A → B) → (
A → 
B)

3. IΔ0+exp � 
A → 

A

Proof Item 1 follows by reflection, and item 2 by principle K for IΣx . For 3, we first
consider 	A. Ague in IΔ0+exp, assuming ∃x (�x+1A ∧ ¬�Π1

x ⊥). We want to show

∃x (�x+1∃y (�y+1A ∧ ¬�Π1
y ⊥) ∧ ¬�Π1

x ⊥). (22)
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Let x be such that �x+1A and ¬�Π1
x ⊥. We have �x+1�x+1A by GL for IΣx , and

�x+1¬�Π1
x ⊥ by reflection. Therefore �x+1(�x+1A ∧ ¬�Π1

x ⊥), and thus clearly also
(22). It remains to consider 
· A. Assuming ∀x (�Π1

x ⊥ → �x A), we want to show:

∀x (�Π1
x ⊥ → �x∀y (�Π1

y ⊥ → �y A)).

Suppose�Π1
x ⊥. We get�x A by assumption, and thus also�x �x A and�x∀y ≥ x �y A.

On the other hand, we have by reflection �x∀y < x ¬�Π1
y ⊥. Combining the above

yields �x∀y (�Π1
y ⊥ → �y A) as required. ��

Remark 1 By examining the proof, it is clear that Theorem 12 also holds with internal
quantifiers in items 2 and 3.

As explained in Sect. 2.1, it follows from Theorems 12 and 1 that

PA � 
(
A → A) → 
A,

and thus thatGL is arithmetically soundwith respect to
. We note that since
 is not a
Σ1-formula, arithmetical completeness does not follow by the usualmethod.However,
as has been shown by Shavrukov andHenk,GL is nevertheless arithmetically complete
with respect to 	 (see the forthcoming preprint [10]).

Question 2 Is GL arithmetically complete with respect to 
· ?

6.3 Joint provability logic of 
 and �

We establish some principles for the joint provability logic of a supremum adapter
provability, together with ordinary provability. As before, we use the symbol 
 to
refer to either 	 or 
· .
Lemma 5 IΔ0+exp � �A → 
�A.

Proof It is easy to see that S → 
S holds (verifiably in IΔ0+exp) for anyΣ1-formula
S. The desired result follows by noting that �A is a Σ1-formula. ��

Lemma 6 IΔ0+exp � �(�B → A) ↔ �(�B → 
A)

Proof Argue in IΔ0+exp. By Theorem 11, ¬A ≡ �¬A, whence by Theorem 2, ¬A
is (provably in PA) Π1-conservative over �¬A and vice versa. Since ♦B is Π1, this
means that �(¬A → ♦¬B) ↔ �(�¬A → ♦¬B). The desired result follows by
contraposition. ��

Taking � for B in Lemma 6, it follows that IΔ0+exp � �A ↔ �
A.
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Monotonicity Returning to the business of supremum implementations, we use the
above lemmas to show that supremum implementations based on our supremum
adapters are monotone.

Lemma 7 � �(A → B) → �(�A → �B).

Proof Argue in PA. If �(A → B), then �(¬B → ¬A), and thus �
(¬B → ¬A)

by the remark under Lemma 6. By the principles of GL for 
 and for �, this implies
�(
¬B → 
¬A), which in turn implies �(�A → �B). ��

6.4 Joint provability logic of 	 and �

We consider the joint provability logic of 	 and �. There are several reasons that
make 	 a preferred object of study compared to 
· . As explained above, in contrast
to 
· the formula 	 is an extensionally correct provability predicate for PA (albeit a
nonstandard one). Second, we know that GL is arithmetically complete with respect
to 	, while we do not yet know whether the same holds for 
· . Finally, as is easily
seen from the definition, we have that 	A → �A. On the other hand, there seems to
be no modal principle relating 
· and � in such a simple way.

Remark 2 We note the similarlity of 	 to the Feferman provability predicate:

�f A := ∃x (�x A ∧ ♦x�)

As shown in [4, Theorem 5.9], �f is an extensionally correct provability predicate for
PA, however at the same time PA � ♦f�. The existence of �f illustrates the need for
a more careful formulation of Gödel’s Second Incompleteness Theorem than what is
commonly stated. The Feferman provability predicate �f has been further studied in
[19,30], and [25].

Recall that 	A = ∃x (�x+1A ∧ ♦Π1
x �). Thus 	 differs from �f by a Π1-oracle,

and by a “+1’. Removing the Π1-oracle, we obtain the formula ∃x (�x+1A ∧ ♦x�)

that is easily seen to be equivalent to �A. Remove the “+1” we obtain:


f A := ∃x
(
�x A ∧ ♦Π1

x �)
. (23)

Inspecting the proof of Theorem 11, it is clear that everything works when taking the
dual �f of 
f for �. Thus �f is also a supremum adapter.

On the other hand, the modal principles valid for 
f are rather different from those
valid for 	. It is easy to see that PA � �f�, from which it follows that 
f cannot
satisfy the principles ofGL. Indeed, examining the proof of Theorem 12, the “+1” in
the definition of 	 seems to be essential for establishing transitivity (
A → 

A).

There is no a priori reason for preferring a supremum implementation based on 	
to one based on 
f. The advantage of the GL-satisfying version is that it satisfies a
very well studied modal logic. As we will now see, also the joint provability logic of
	 and � has a relative in the existing literature.

Denote byL�� the language of propositionalmodal logic containing twounarymodal-
ities � and 
.
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Definition 6 The axiom schemata of GLS include all propositional tautologies in the
language L��, the axiom schemata of GL for both � and 
, and furthermore

(T1) 
A → �A
(T2) �A → 
�A
(T3) �A → �
A
(T4) �(�B → 
A) → �(�B → A)

We note that (T3) and (T2) imply �(�B → A) → �(�B → 
A). In contrast, (T4)

does not follow from the weaker �
A → �A. We denote by GLT the system GLS,
with axiom (T4) replaced by �
A → �A.

Question 3 Is GLS arithmetically complete with respect to � and 	?

The systemGLTwas studied by Lindström [17] due to its relation to Parikh’s rule. The
latter allows us to infer A, given that we have established the provability of A. It is thus
a sort of reflection rule. Since Parikh’s rule is admissible in PA, adding it to PA does
not yield new theorems. As shown in [23], it does yield speed-up, meaning that some
theorems have much shorter proofs when Parikh’s rule is allowed. The equivalence of
Parikh provability and ordinary provability is however not verifiable in PA. Writing
�p for the formula representing Parikh provability, we have

PA � �pA ↔ ∃x �x A,

where �x denotes the x-times iterated version of �. Using the above, it is not difficult
to see that the principles of GLT are valid when interpreting the modal symbol 
 as
ordinary provability, and � as Parikh provability. Indeed, it was proven by Lindström
in [17] that GLT is arithmetically complete with respect to this interpretation. In [9],
it is shown thatGLT is also the arithmetically complete joint provability logic of slow
and ordinary provability.

We note that both of the above interpretations of GLT are with respect to a pair of
provability predicates where one is the ordinary provability predicate, and the other a
nonstandard Σ1 provability predicate for PA. Our conjecture for the system GLS on
the other hand involves the ordinary provability predicate, together with a nonstandard
Σ3-predicate. Dealing with the complexity of 	 while trying to answer Question 3
remains a challenge for future work.
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AMethodological considerations

A.1 Undefinability of suprema in ILM

We show here that the existence of suprema in (V ,�) is not expressible in the modal
system ILM.

Lemma 8 Let A be an L��-formula. Then there exists a formula Ap containing no
occurrences of � and �, and such that

ILM � �⊥ → (
A ↔ Ap)

Proof By induction on the complexity of A. The base case and the propositional cases
are trivial. If A = �B or A = B � C for some B, C , then we can take � for Ap (this
is easily seen by using soundness and completeness of ILM with respect to Veltman
frames, see [14]). ��
Theorem 13 There is no L��-formula S, such that for all L��-formulas A, B, and
C,

ILM � (C � A) ∧ (C � B) ↔ C � S(A, B).

Proof Suppose that such a formula S exists. Then in particular

ILM � (� � A) ∧ (� � B) ↔ � � S(A, B). (24)

Let S p be purely propositional as in Lemma 8.Using completeness of ILMwith respect
to Veltman frames, it is easy to see that

ILM � ��⊥ → (� � S(A, B) ↔ � � S p(A, B)
)
. (25)

By (25), and arithmetical soundness of ILM, we have

PA � ��⊥ → (� � S∗(A∗, B∗) ↔ � � (S p)∗(A∗, B∗)
)
,

where ∗ is any arithmetical realisation for ILM. Combining with (24), we get for any
arithmetical realization *,

PA � ��⊥ → (� � (S p)∗(A∗, B∗) ↔ (� � A∗) ∧ (� � B∗)
)
. (26)

Since S p is purely propositional, there are 16 possibilities. We will show that in each
case, there areL -formulas A and B such that

PA � (� � S p(A, B) ↔ (� � A) ∧ (� � B)
) → �⊥.

Combining the abovewith (26), we getPA � ��⊥ → �⊥ in all cases, a contradiction.
Argue in PA, assuming�� S p(A, B) ↔ (�� A)∧ (�� B). We use reasoning

warranted by ILM to show � � ⊥, which is equivalent to �⊥.
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1. S p(A, B) = �. We have ���, and therefore by assumption (→) ��⊥ (taking
⊥ for A).

2. S p(A, B) = ⊥. Take� for A and B. We have���, and therefore by assumption
(←) � � ⊥.

3. S p(A, B) = A. Take� for A and⊥ for B.We have�� A, and thus by assumption
� � B, i.e. � � ⊥.

4. S p(A, B) = B. Like the previous case, but take � for B and ⊥ for A.
5. S p(A, B) = ¬A. Take ⊥ for A. Then � � ¬A, whence by assumption � � A,

i.e. � � ⊥.
6. S p(A, B) = ¬B. Like the previous case, but take ⊥ for B.
7. S p(A, B) = A ∧ B. Take as A an Orey sentence O , and for B the sentence ¬O .

Then�� O and��¬O , by the fact that O is an Orey sentence, so by assumption
� � O ∧ ¬O , i.e. � � ⊥.

8. S p(A, B) = A∨ B. Take⊥ for A and� for B. Then�� A∨ B, so by assumption
� � A, i.e. � � ⊥.

9. S p(A, B) = ¬A ∧ ¬B. Take ⊥ for both A and B. Then � � ¬A ∧ ¬B, so by
assumption � � A, i.e. � � ⊥.

10. S p(A, B) = ¬A ∨ ¬B. Take ⊥ for A. Then � � ¬A ∨ ¬B, so by assumption
� � A, i.e. � � ⊥.

11. S p(A, B) = A ∧ ¬B. Take � for A, and ⊥ for B. Then � � A ∧ ¬B, so by
assumption � � B, i.e. � � ⊥.

12. S p(A, B) = ¬A ∧ B. Like the previous case, but take ⊥ for A and � for B.
13. S p(A, B) = A → B. Take � for B and ⊥ for A. Then � � A → B, so by

assumption � � A, i.e. � � ⊥.
14. S p(A, B) = B → A. Like the previous case, but take ⊥ for B and � for A.
15. S p(A, B) = A ↔ B. Take⊥ for both A and B. Then�� A ↔ B, so also�� A,

i.e. � � ⊥ by assumption.
16. S p(A, B) = ¬(A ↔ B). Take � for A and ⊥ for B. Then � � ¬(A ↔ B), so by

assumption also � � B, i.e. � � ⊥.

Remark 3 The above proof proceeds by showing that if suprema were definable in
ILM, then ��⊥ → �⊥ would be provable in PA. Note that since ��⊥ → �⊥ is true,
the same argument cannot be used to show that the existence of the supremum is not
expressible in ILMω, the modal logic of interpretability statements that are true (in the
standard model).

Question 4 Are interpretability suprema definable in ILMω?

A.2 A non-commutative supremum

We construct a supremum implementation τ , such that τ(A, B) ↔ τ(B, A) is not
always provable in PA. Let σ be any supremum implementation. Let τ(A, B) be the
formula

(A ≤ B → σ(A, B) ∧ �¬σ(A, B)) ∧ (B < A → σ(A, B) ∨ ♦σ(A, B)) ,
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where A and B are regarded as internal variables ranging over sentences. By A ≤ B
we mean that the gödelnumber of A is smaller than or equal to the gödelnumber of B.

We show first that τ is a supremum implementation. Argue in PA. We first show
τ(A, B) � A. In case A ≤ B, we have �(τ (A, B) → σ(A, B)), and thus also
τ(A, B) � σ(A, B). Since σ(A, B) � A, also τ(A, B) � A by transitivity of �.
In case B < A, we have �(τ (A, B) → σ(A, B)∨♦σ(A, B)), and so also τ(A, B)�
σ(A, B) ∨ ♦σ(A, B). Since by axiom J5 of ILM, ♦σ(A, B) � σ(A, B) we get

σ(A, B) ∨ ♦σ(A, B) � σ(A, B)

by axiom J3 of ILM, and so σ(A, B)∨♦σ(A, B)� A by the fact that σ(A, B)� A, and
transitivity of �. Thus τ(A, B) � A follows again by transitivity of �. The argument
for τ(A, B)� B is similar. It remains to show that if C is such that C � A and C � B,
then C � τ(A, B). We clearly have C � σ(A, B) for any such C . Consider first the
case that A ≤ B. Then

�(τ (A, B) ↔ σ(A, B) ∧ �¬σ(A, B)).

Since D � D ∧ �¬D is a theorem of ILM, we have that σ(A, B) � σ(A, B) ∧
�¬σ(A, B), and therefore also σ(A, B)�τ(A, B) by transitivity of�. In case B < A,
we have that �(τ (A, B) ↔ σ(A, B) ∨ ♦σ(A, B)), and so �(σ (A, B) → τ(A, B)),
whence again σ(A, B) � τ(A, B). Thus if C � σ(A, B), then also C � τ(A, B).

Finally, we show τ is not commutative with respect to provability. For that, let
A and B be distinct L -sentences (thus under a reasonable gödelnumbering, their
gödelnumbers are also different). We assume without loss of generality that A < B,
and suppose for a contradiction that PA � τ(A, B) ↔ τ(B, A). By definition of τ ,
this means that

PA � σ(A, B) ∧ �¬σ(A, B) ↔ σ(A, B) ∨ ♦σ(A, B). (27)

It follows from (27) by propositional reasoning that PA � �¬σ(A, B), and thus
PA � ¬σ(A, B). But this means that σ(A, B), i.e. the supremum of A and B, is in
the degree of [⊥], contradicting our assumption.

B Varieties of supremum implementations

B.1 Obtaining supremum implementations

We show how to turn Švejdar’s construction into a supremum implementation as
in Definition 3. The case of Visser’s construction is similar. Let Sub(x, y, z) be an
intensionally correct formula representing in IΔ0+exp substitution of numerals for
free variables in formulas. Thus for all m, n, and all L -formulas A,

IΔ0+exp � Sub(�A(u, v)�, m, n) = �A(m, n)�,
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By Theorem 1, there is a formula σ with two free variables, and such that

IΔ0+exp � σ(A, B) ↔ ∀x (♦x Sub(�σ(u, v)�, A, B) → ♦x A ∧ ♦x B),

where A and B are seen as internal variables ranging overL -sentences. By properties
of Sub,

IΔ0+exp � σ(A, B) ↔ ∀x (♦x σ(A, B) → ♦x A ∧ ♦x B).

Thus the formula σ is exactly what we were looking for.

B.2 Unique explicit fixed points

We prove Theorems 7 and 8, repeated here as Theorems 14 and 15. We start with the
following lemma.

Lemma 9 Let ε(A, B) be the formula

(�0¬A ∨ �0¬B → �0⊥) ∧ ∀x (�x+1¬A ∨ �x+1¬B → �x+1(�x¬A ∨ �x¬B)),

where A and B are regarded as internal variables ranging over L -sentences. Then

i. IΔ0+exp � �0¬ε(A, B) ↔ �0⊥
ii. IΔ0+exp � ∀x (�x+1¬ε(A, B) ↔ �x+1(�x¬A ∨ �x¬B))

Proof For the nontrivial direction of i, reason in IΔ0+exp, assuming �0¬ε(A, B),
i.e.

�0 (((�0¬A ∨ �0¬B) ∧ ♦0�) ∨ ∃x ((�x+1¬A ∨ �x+1¬B)

∧¬�x+1(�x¬A ∨ �x¬B))) . (28)

(28) implies �0(♦0�∨∃x ¬�x+1(�x¬A∨�x¬B). Since for any C ,¬�x+1C implies
¬�0⊥ by monotonicity, it follows from (28) that �0♦0�, and therefore �0⊥ by Löb’s
principle.

For ii, reason in IΔ0+exp, and let x be arbitrary. Assume first

�x+1(�x¬A ∨ �x¬B). (29)

To show that�x+1¬ε(A, B), reason in�x+1. Suppose for a contradiction that ε(A, B).
By (29), let μ ≤ x be the minimal number s.t. �μ¬A ∨ �μ¬B. If μ = 0, then �0⊥
follows by ε(A, B), which is a contradiction since we have ¬�0⊥ by reflection. Thus
μ = y + 1 for some y, whence ε(A, B) now gives us

�y+1(�y¬A ∨ �y¬B). (30)

Since y + 1 < x + 1, from (30) we get �y¬A ∨ �y¬B by reflection, contradicting
the minimality of y + 1. We conclude that ¬ε(A, B).
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For the other direction, assume�x+1¬ε(A, B). Reason in�x+1.Note that¬ε(A, B)

is the sentence

((�0¬A ∨ �0¬B) ∧ ♦0�) ∨ ∃y ((�y+1¬A ∨ �y+1¬B)

∧¬�y+1(�y¬A ∨ �y¬B)). (31)

If the first disjunct holds or some y < x witnesses the second disjunct, then by
monotonicity we have that �x¬A ∨ �x¬B. If the smallest witness of the second
disjunct is some y ≥ x , then (bymonotonicity)¬�x+1(�x¬A∨�x¬B). Thus (�x¬A∨
�x¬B) ∨ ¬�x+1(�x¬A ∨ �x¬B), or in other words

�x+1(�x¬A ∨ �x¬B) → �x¬A ∨ �x¬B.

Leaving the inner �x+1–world, we have shown: �x+1(�x+1(�x¬A ∨ �x¬B) →
�x¬A ∨ �x¬B). By Löb’s Theorem we can conclude �x+1(�x¬A ∨ �x¬B) as
required. ��
Theorem 14 Let ε(A, B) be the formula

(�0¬A ∨ �0¬B → �0⊥) ∧ ∀x (�x+1¬A ∨ �x+1¬B → �x+1(�x¬A ∨ �x¬B)),

where A and B are regarded as internal variables ranging over L -sentences. Then

i. IΔ0+exp � ε(A, B) ↔ ∀x (♦x ε(A, B) → ♦x A ∧ ♦x B)

ii. For any ϑ , if PA � ϑ ↔ ∀x (♦xϑ → ♦x A ∧ ♦x B), then PA � ϑ ↔ ε(A, B)

Proof For i, argue in IΔ0+exp, and assume ε(A, B). Using contraposition, it suffices
to show that for all x , �x¬A ∨ �x¬B implies �x¬ε(A, B). Suppose �x¬A ∨ �x¬B.
If x = 0, then ε(A, B) implies �0⊥, and hence trivially �0¬ε(A, B). If x = y +1 for
some y, then by ε(A, B), we have�y+1(�y¬A∨�y¬B) and hence�y+1¬ε(A, B), i.e.
�x¬ε(A, B) by Lemma 9. For the other direction assume ¬ε(A, B), i.e. the sentence
in (31). By Lemma 9 i, the first disjunct implies (�0¬A∧�0¬B)∧♦0ε(A, B), and by
Lemma 9 ii the second disjunct implies ∃x ((�x+1¬A ∨�x+1¬B)∧♦x+1ε(A, B)) In
either case ∃x (�x¬A ∨ �x¬B ∧ ♦xε(A, B)), i.e. ¬∀x (♦xε(A, B) → ♦x A ∧ ♦x B),
which is what we wanted to show.

For ii, it now suffices to show that any two fixed points of the formula ∀x (♦x Y →
(♦x A ∧ ♦x B)) are provably equivalent in PA. Let n be s.t.

IΣn � ϑ ↔ ∀x (�x¬A ∨ �x¬B → �x¬ϑ) and

IΣn � σ ↔ ∀x (�x¬A ∨ �x¬B → �x¬σ).

Weshow that IΣn � σ ↔ ϑ . UsingLöb’s Theorem, it suffices to show IΣn � �n(ϑ ↔
σ) → (σ ↔ ϑ). We argue in IΣn and assume �n(ϑ ↔ σ). By monotonicity and
validity of K for �n , we have for all x ≥ n:

�x¬ϑ ↔ �x¬σ. (32)
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Assume σ . In order to show ϑ , it suffices to show ∀x (�x¬A ∨ �x¬B → �x¬ϑ).
Assume �x¬A ∨ �x¬B. By σ , we get �x¬σ . By essential reflexivity, it must be that
x ≥ n, and thus �x¬ϑ follows by (32). ��
We now turn our attention to Visser’s supremum. We first prove a few lemmas.

Lemma 10 Suppose that IΣn � ϑ ↔ ∀x (�xϑ → �x¬A ∨ �x¬B). Then

IΣn � ∀x ≥ n �x (∀y < x (�yϑ → �y¬A ∨ �y¬B)).

Proof By necessitation,

IΣn � �n(ϑ ↔ ∀x (�xϑ → �x¬A ∨ �x¬B)),

whence we can use ϑ and ∀x (�xϑ → �x¬A ∨ �x¬B) interchangeably in �x if
x ≥ n.

IΣn � x ≥ n →�x∀y < x (�yϑ →ϑ) (reflection)
→�x∀y < x (�yϑ →∀z(�zϑ →�z¬A ∨ �z¬B)) (fixed point version of ϑ)
→�x∀y < x (�yϑ →�y¬A ∨ �y¬B)

��
Lemma 11 Suppose that IΣn � ϑ ↔ ∀x (�xϑ → �x¬A ∨ �x¬B). Then

IΣn � ∀x ≥ n (�xϑ ↔ �x (�x¬A ∨ �x¬B)).

Proof

IΣn � x ≥ n →(�xϑ →�x∀y (�yϑ →�y¬A ∨ �y¬B)) (fixed point version of ϑ)
→�x (�xϑ →�x¬A ∨ �x¬B) (instantiating ∀)

→(�x �xϑ →�x (�x¬A ∨ �x¬B)) (K-axiom)
→�x (�x¬A ∨ �x¬B) (since �xϑ →�x �xϑ)

→�x∀y ≥ x (�y¬A ∨ �y¬B) (monotonicity)
→�x∀y ≥ x (�yϑ →�y¬A ∨ �y¬B)

→�x∀y (�yϑ →�y¬A ∨ �y¬B) (Lemma 10)
→�xϑ (fixed point version of ϑ)

Lemma 12 Let ε(A, B) be the formula ∃x (�x (�x¬A∨�x¬B)∧♦x A∧♦x B), where
A and B are regarded as internal variables ranging over sentences. Then

IΔ0+exp � ∀x (�x¬ε(A, B) ↔ �x (�x¬A ∨ �x¬B)).

Proof

IΔ0+exp � �x¬ε(A, B) → �x∀y (�y(�y¬A ∨ �y¬B) → �y¬A ∨ �y¬B) (33)

→ �x (�x (�x¬A ∨ �x¬B) → �x¬A ∨ �x¬B) (34)

→ �x (�x¬A ∨ �x¬B) (35)
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→ �x∀y ≥ x (�y¬A ∨ �y¬B) (36)

→ �x∀y ≥ x (�y(�y¬A ∨ �y¬B)→�y¬A ∨ �y¬B) ∧
(37)

�x∀y < x (�y(�y¬A ∨ �y¬B)→�y¬A ∨ �y¬B)

(38)
→ �x∀y (�y(�y¬A ∨ �y¬B) → �y¬A ∨ �y¬B) (39)

→ �x¬ε(A, B) (40)

Step (35) is Löb’s Theorem, step (36)monotonicity, step (37) the previous step together
with propositional logic, and step (38) reflection. ��
Theorem 15 Let ε(A, B) be the formula

∃x (�x (�x¬A ∨ �x¬B) ∧ (♦x A ∧ ♦x B). (41)

where A and B are regarded as internal variables ranging over L -sentences. Then

i. PA � ε(A, B) ↔ ∃x (�x ¬ε(A, B) ∧ (♦x A ∧ ♦x B))

ii. For any ϑ , if PA � ϑ ↔ ∃x (�¬ϑ ∧ (♦x A ∧ ♦x B)), then PA � ϑ ↔ ε(A, B)

Proof Item i is an immediate consequence of Lemma 12, together with the definition
of ε(A, B). For ii, assume IΣn � ϑ ↔ ∃x (�x¬ϑ∧(♦x A∧♦x B)). By contraposition,

IΣn � ¬ϑ ↔ ∀x (�x¬ϑ → (�x¬A ∨ �x¬B)).

By Lemma 11 and reflection,

IΣn � ¬ϑ ↔ ∀x ≥ n (�x (�x¬A ∨ �x¬B) → �x¬A ∨ �x¬B). (42)

On the other hand, we have by reflection

IΣn � ∀x < n (�x (�x¬A ∨ �x¬B) → �x¬A ∨ �x¬B). (43)

Combining (42) and (43), we have IΣn � ¬ϑ ↔ ∀x (�x (�x¬A∨�x¬B) → �x¬A∨
�x¬B), whence by contraposition, IΣn � ϑ ↔ ∃x (�x (�x¬A ∨ �x¬B) ∧ (♦x A ∧
♦x B)), i.e. IΣn � ϑ ↔ ε(A, B) as required. ��

B.3 Extensionality

We prove Theorem 9 from Sect. 4. We start with a lemma.

Lemma 13 (IΔ0+exp) Let ε(A, B) be as in Theorem 14. Then

IΣn+1 �ε(A, B) ↔ (44)

(♦n A ∧ ♦n B) ∧ ∀x ≥ n(♦x+1(♦x A ∧ ♦x B) → ♦x+1A ∧ ♦x+1B) (45)
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Proof By propositional reasoning, we see that ε(A, B) is equivalent to

(♦0� → ♦0A ∧ ♦0B) ∧ ∀x (♦x+1(♦x A ∧ ♦x B) → ♦x+1A ∧ ♦x+1B). (46)

Argue in IΣn+1, assuming (46). By reflection, ♦0�, and therefore ♦0A ∧ ♦0B from
the first conjunct of (46). Now let x < n. By reflection for IΣx+1 (remember that we
are reasoning inside IΣn+1), we have that

�x+1(�x¬A ∨ �x¬B) → (�x¬A ∨ �x¬B),

i.e. by contraposition,

♦x A ∧ ♦x B → ♦x+1(♦x A ∧ ♦x B). (47)

Since we have ♦0A ∧ ♦0B, we can apply (47) and the second conjunct of (46) to get
♦x+1A∧♦x+1B for all x < n, and thus♦n A∧♦n B. The other conjunct of (45) clearly
follows from (46). This finishes the proof from (44) to (45). For the other direction,
we note that ♦n A ∧♦n B implies ♦0A ∧♦0B, taking care of the first conjunct of (46).
For the other conjunct, it suffices to show that for 1 ≤ x < n,

♦x+1(♦x A ∧ ♦x B) → ♦x+1A ∧ ♦x+1B. (48)

This follows because we have ♦x+1A ∧ ♦x+1B for all such x by assumption. ��
Theorem 16 Let ε(A, B) be as in Theorem 14. Then

IΔ0+exp � �(A ↔ A′) ∧ �(B ↔ B ′) → �(ε(A, B) ↔ ε(A′, B ′))

Proof Clearly it suffices to show that

IΔ0+exp � �x (A ↔ A′) ∧ �x (B ↔ B ′) → �x+1(ε(A, B) ↔ ε(A′, B ′)).

Argue in IΔ0+exp, assuming

�n(A ↔ A′) ∧ �n(B ↔ B ′). (49)

Now argue inside IΣn+1. Using Lemma 13 it suffices to show that

(♦n A ∧ ♦n B) ∧ ∀x ≥ n(♦x+1(♦x A ∧ ♦x B) → ♦x+1A ∧ ♦x+1B) (50)

if and only if

(♦n A′ ∧ ♦n B ′) ∧ ∀x ≥ n(♦x+1(♦x A′ ∧ ♦x B ′) → ♦x+1A′ ∧ ♦x+1B ′). (51)

Since (49) is a Σ1-sentence, its truth carries over to our current surroundings inside
IΣn+1. By monotonicity and modal reasoning, it follows that for all x ≥ n, �x A ↔
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�x A′ and ♦x A ↔ ♦x A′; similarly for B and B ′. Given that, the equivalence of (50)
and (51) is clear. ��
Theorem 17 Let ε(A, B) be as in Theorem 15. Then

IΔ0+exp � �(A ↔ A′) ∧ �(B ↔ B ′) → �(ε(A, B) ↔ ε(A′, B ′))

Proof We shall show that

IΔ0+exp � �x (A ↔ A′) ∧ �x (B ↔ B ′) → �x (ε(A, B) ↔ ε(A′, B ′)).

Argue in IΔ0+exp, assuming

�n(A ↔ A′) ∧ �n(B ↔ B ′) (52)

Argue in IΣn . We want to show that

∃x (�x (�x¬A ∨ �x¬B) ∧ (♦x A ∧ ♦x B). (53)

if and only if

∃x (�x (�x¬A′ ∨ �x¬B ′) ∧ (♦x A′ ∧ ♦x B ′). (54)

Since (52) is a Σ1-sentence, its truth carries over to the world inside IΣn . By mono-
tonicity and modal reasoning, it follows that for all x ≥ n, �x A ↔ �x A′ and
♦x A ↔ ♦x A′, and also �x (�x A ↔ �x A′) (again using that �x A ↔ �x A′ is Σ1).
Similarly for B and B ′. Given that, the equivalence of (53) and (54) is clear. ��

B.4 Failure of monotonicity for Visser’s supremum

We prove Theorem 10 from Sect. 4.

Theorem 18 Let ε(A, B) be ∃x (�x (�x¬A ∨ �x¬B) ∧ (♦x A ∧ ♦x B), where A and
B are seen as internal variables over L -sentences. The formula ε is not monotone.

Proof It suffices to show that there is a sentence A for which

PA � ε(A, A) → ε(�,�). (55)

In fact we can take for A the sentence ε(�,�). We note that:

ε(�,�) = ∃x (�x �x⊥ ∧ ♦x�) (56)

ε(ε(�,�), ε(�,�)) = ∃x (�x �x¬ε(�,�) ∧ ♦xε(�,�)) (57)

Recall that by Lemma 12,

IΔ0+exp � ∀x (�x¬ε(�,�) ↔ �x �x⊥) (58)
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Using (58), we see that, verifiably in IΔ0+exp, (57) is equivalent to

∃x (�x �x �x⊥ ∧ ♦x♦x�) (59)

Thus in order to show (55) it suffices to show

PA � ∃x (�x �x �x⊥ ∧ ♦x♦x�) → ∃x (�x �x⊥ ∧ ♦x�).

Suppose for a contradiction that ∃x (�x �x �x⊥ ∧ ♦x♦x�) → ∃x (�x �x⊥ ∧ ♦x�) is
provable in some IΣn . Argue in IΣn . From our assumption, it follows that in particular

(�n�n�n⊥ ∧ ♦n♦n�) → ∃x (�x �x⊥ ∧ ♦x�). (60)

Assume �n�n�n⊥ ∧ ♦n♦n�, and let x be such that �x �x⊥ ∧ ♦x�. Since we have
reflection for all m < n, it must be that x ≥ n. But if x > n, then �n�n�n⊥ implies
�x⊥ by monotonicity and reflection. Thus it must be that x = n. We now exit the
world inside IΣn . We have shown:

IΣn � (�n�n�n⊥ ∧ ♦n♦n�) → (�n�n⊥ ∧ ♦n�);

It follows by propositional logic that

IΣn � �n�n�n⊥ → �n�n⊥.

By Löb’s Theorem, we now have IΣn � �n�n⊥, a contradiction. ��
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