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Abstract I define a homogeneous ℵ2–c.c. proper product forcing for adding many
clubs of ω1 with finite conditions. I use this forcing to build models of b(ω1) = ℵ2,
together with d(ω1) and 2ℵ0 large and with very strong failures of club guessing at ω1.
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1 Introduction

Cohen’s forcing 2<ω for adding a real, usually called Cohen forcing, is perhaps the
simplest non-trivial forcing notion one can think of (and it was also the first to be
discovered). There is a very simple and nicely behaved forcing for adding an arbitrary
number θ of Cohen reals. This forcing is of course Add(ω, θ), where Add(ω, X),
for a set of ordinals X , is the partial order of finite functions p ⊆ X × ω × 2,
ordered by reverse inclusion. For every Add(ω, X)-generic G and every α ∈ X ,
r G
α := ⋃

p∈G{(n, ε) | (α, n, ε) ∈ p} is a Cohen real over V and r G
α �= r G

α′ for α �= α′
in X . Also, Add(ω, X) is nicely behaved: It has the countable chain condition (c.c.c.),
it is homogeneous—in the sense that given any p, p′ ∈ Add(ω, X) there are q ≤ p
and q ′ ≤ p′ such that Add(ω, X) � q ∼= Add(ω, X) � q ′ –, and it can be naturally
represented as the product of Add(ω, X0) and Add(ω, X1) for any partition (X0, X1)

of X . In particular, for every G as above and all α �= α′ in X , r G
α′ is Cohen generic
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798 D. Asperó

over V[r G
α ]. Cohen forcing and Add(ω, θ) have of course been extensively studied

for more than 50 years now. For example, Add(ω, θ) is the forcing that Cohen used
to prove the consistency of ¬CH (by forcing over L).

There is a particularly simple forcing notion for adding a club subset of ω1. This
forcing was first defined and studied by Baumgartner [4] and will be denoted in this
note byB.B is the set, ordered by reverse inclusion, of all finite functions f ⊆ ω1×ω1
that can be extended to a strictly increasing and continuous function F : ω1 −→ ω1.
B has size ℵ1, and the union of any generic filter for B is the enumerating function of
a new club of ω1, which I will call a Baumgartner club (over V). B is often described
as the forcing for adding a club of ω1 with finite conditions. It can be presented in
other appealing ways too (see for example [1] or [16]). B is proper and so, since it
has size ℵ1, preserves all cardinals; in fact, given any countable N � H(ω2) and any
p ∈ B ∩ N , p∗ := p ∪ {〈δN , δN 〉} is an (N , B)-generic condition extending p (see
[4]) where, here and throughout the note, δX denotes X ∩ ω1 whenever X is a set and
X ∩ ω1 is an ordinal. The proof of properness for B coming from this choice of p∗
can in fact be seen as perhaps the simplest possible proof of properness of a partial
order using submodels as side conditions: N is ‘added’ to p by declaring δN to be a
fixed point of p∗.

There are certainly some similarities between Cohen forcing, in the context of
adding a real, and B, in the context of adding a club of ω1 not including any club from
the ground model. To point out some obvious examples, both forcing notions add the
relevant new object by finite approximations, both are homogeneous (in the above
sense) and of the least possible size, both have a simple definition,1 and in fact both
are absolute in a strong sense (in the sense that any two transitive models of ZF have
the same Cohen forcing, and have the same B in case they agree on ω1). It is therefore
natural to ask if there is version of Add(ω, X) for B. The main purpose of this note is
to present such a forcing. More precisely, I will show that, given a set X of ordinals,
there is a forcing, which I will denote by AddB(X), which is quite simple to define
and which has the following properties.

(1) For every AddB(X)-generic G and every α ∈ X one can naturally extract a
Baumgartner club CG

α from G. Furthermore, CG
α �= CG

α′ for all distinct α, α′ in
X .

(2) AddB(X) is proper and has the ℵ2–c.c.
(3) AddB(X) is homogeneous.
(4) For every partition (X0, X1) of X , AddB(X) can be naturally represented as the

product AddB(X0) ×AddB(X1). In particular, if G is as in (1) and α �= α′ are in
X , then CG

α′ is B-generic over V[CG
α ].

In the next section I will discuss the forcing axiom for B for collections of λ-
many dense sets (for arbitrary λ), its consistency and, in Sect. 2.1, its consequences
at the level of club guessing at ω1. Subsection 2.2 relates this forcing axiom to the
covering number of the meagre ideal MCω1

for the set of all clubs on ω1 endowed
with a natural topology. Section 3 introduces the forcing AddB(X) and presents its

1 For a way to make this precise see for example Zapletal’s result on forcings of size ω1 in L[x], x a real,
cited right after Definition 2.1.
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Adding many Baumgartner clubs 799

basic theory. Finally, Sect. 3.1 presents the main new consistency result in the note,
which is the joint consistency of b(ω1) = non(MCω1

) = ℵ2 with d(ω1) large and
with very strong failures of club guessing at ω1; these conclusions hold after forcing
with AddB(θ) for large θ .

2 FA(B)λ, for arbitrary λ, and strong failures of club guessing

Given a partial order P and a cardinal λ, the forcing axiom for P and for λ-many
dense sets, denoted by FA(P)λ, is the statement that for every {Di | i < λ}, if each
Di is a dense subset of P , then there is a filter G ⊆ P such that G ∩ Di �= ∅ for all
i . Also, given a class � of partial orders, FA(�)λ means FA(P)λ for all P ∈ �. Since
Cohen forcing is c.c.c., the forcing axiom for it and for λ-many dense sets follows
from the (consistent) axiom MAλ, and the same is of course true for Add(ω, X). For
the same reason, the forcing axiom PFA, i.e., FA({P | P proper})ℵ1—and in fact
FA({P | P a proper poset of size ℵ1})ℵ1 , which, unlike PFA, can be forced over any
ZFC model –, implies FA(B)ℵ1 .

A natural question arises at this point: FA({P | P proper})ℵ2 is false. But is
FA(B)ℵ2 consistent?Note thatwe cannot use countable-support proper iterated forcing
to answer this question as every such forcing will produce a model of 2ℵ0 ≤ ℵ2 and
FA(B)ℵ2 clearly implies 2ℵ0 ≥ ℵ3.

The method of finite-support iterated forcing with symmetric systems of structures
as side conditions (see [2] and [3]) can be used to answer this question. This method
enables one to force without collapsing cardinals in such a way that the resulting
model satisfies FA(P)λ, for an arbitrarily fixed λ, for various well-behaved proper
partial orders P with the ℵ2–c.c. Background information on this method can be
found in [2] and [3], so I will not say anything about it here. It turns out that B is such
a well-behaved forcing. More specifically, there is a class of proper posets, which in
[3] we refer to as the posets having the ℵ1.5–c.c., to which B belongs, and such that
the forcing axiom MA({P | P has the ℵ1.5–c.c.})λ—which in [3] we call MA1.5

λ —
is consistent for arbitrarily chosen λ (cf. Theorem 3.11). The main reason for this
terminology is that every c.c.c. poset is in our class and every poset in our class is
ℵ2–c.c. It follows that, for any λ, MA1.5

λ implies bothMAλ and FA(B)λ. The definition
of the ℵ1.5–c.c. is the following.

Definition 2.1 ([3]) A posetP has theℵ1.5–c.c. if and only if for every regular cardinal
θ such that P ∈ H(θ) there is a club D ⊆ [H(θ)]ℵ0 such that for every finiteN ⊆ D
and every p ∈ P , if p ∈ N for some N ∈ N such that δN = min{δM | M ∈ N },
then there is some condition extending p and (N , P)-generic for all N ∈ N .

Even if FA(B)λ is consistent, for arbitrary λ, it is not known whether FA({P |
P a proper poset of size ℵ1})ℵ2 is consistent.

B is a very prominent poset with the ℵ1.5–c.c., at least in the sense that it is
the simplest such poset which does not have the c.c.c. One way to make math-
ematical sense of this assertion is to quote the following fact due to Zapletal: If
x ∈ R, x	 exists, and P ∈ L[x] is a non-atomic partial order on ωV

1 , then P
is forcing-equivalent to the disjoint sum of some number of copies of forcings in
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{2<ω,Add(ω, ω1), B,Coll(ω, ω1)}, where Coll(ω, ω1) is the collapse of ω1 to ω

with finite conditions ([17]). It is also worth pointing out that, on the other hand, B is
nowhere c.c.c. (i.e., it is not c.c.c. below any condition) and, as Zapletal proved in [18],
under PFA it is a minimal nowhere c.c.c. poset, in the sense that every nowhere c.c.c.
poset adds a generic for B. Also, if P = {pα | α < ω1} is a proper nowhere c.c.c.
forcing notion adding a club C ⊆ ω1 such that for all α ∈ C , Ġ ∩ {pβ | β < α} is
generic for {pβ | β < α} (where Ġ denotes the generic filter), then RO(P) = RO(B)

([16]).

2.1 Some weakenings of club guessing at ω1

Club-guessing principles are well studied weakenings of Jensen’s diamond principle
♦κ , for a cardinal κ , in which the guessing device is a club-sequence (Cδ | δ ∈ S) for
some S ⊆ κ ∩ Lim (i.e., every Cδ is a club of δ) and in which the relevant guessing
applies to clubs of κ rather than arbitrary subsets of κ . Unlike ♦κ , they are consistent
with 2μ large for any given μ < κ , simply because they are preserved by κ–c.c.
forcing (since every club of κ in any extension by a κ–c.c. forcing includes a club
from the ground model). This is of course the reason why MAλ, for any cardinal λ, is
consistent with such guessing principles. Also, whereas club-guessing principles for
ω2 or higher regular cardinals are often outright true in ZFC (cf. [14], III, §2), the truth
value of their versions at ω1 can be easily changed by forcing (see e.g. [7,8,15]). Let
us see a couple of examples:

AC-sequence—also known as a ladder system—is a sequence (Cδ | δ ∈ Lim(ω1))

such that Cδ is a cofinal subset of δ of order type ω for every δ. Club Guessing at ω1
(CG) says that there is a C-sequence (Cδ | δ ∈ Lim(ω1)) which guesses clubs in
the sense that for every club D ⊆ ω1 there is some δ ∈ Lim(ω1) with Cδ\D finite.
Kunen’s Axiom (KA), also known as Interval Hitting Principle (see e.g. [7]; see also
[11]), is the following statement, first considered by Kunen: There is a C-sequence
(Cδ | δ ∈ Lim(ω1)) with the property that for every club D ⊆ ω1 there is some δ

such that [Cδ(n), Cδ(n + 1)) ∩ D �= ∅ for a tail of n < ω (where X (ξ) denotes the
ξ -th member of X if X is a set of ordinals). CG clearly implies KA, follows from ♦,
and is preserved by c.c.c. forcing. On the other hand, it is easy to see and a well-known
fact that FA({P | P a proper poset of size ℵ1})ℵ1 implies ¬KA.

Consider the followingweak versions of CG andKA, respectively: Given a cardinal
λ, let CGλ be the assertion that there is a set C of subsets of ω1 of order type ω such
that |C| ≤ λ and such that for every club D ⊆ ω1 there is some X ∈ C such that
X\D is finite. Let also KAλ be the assertion that there is a set C of subsets of ω1 of
order type ω such that |C| ≤ λ and such that for every club D ⊆ ω1 there is some
X ∈ C such that [X (n), X (n + 1)) ∩ D �= ∅ for a tail of n < ω. By a straightforward
density argument, if C is B-generic and X ∈ V is a subset of ω1 of order type ω, then
[X (n), X (n+1))∩C is empty for infinitelymany n < ω (see [4]), which immediately
implies the following proposition.

Proposition 2.2 For every cardinal λ ≥ ω1, FA(B)λ implies ¬KAλ.

It is worth pointing out that the stronger forcing axiomMA1.5
λ implies even stronger

failures of club guessing ([3]).
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Adding many Baumgartner clubs 801

2.2 FA(B)λ and the covering number of the meagre ideal of Cω1

Recall that for an ideal I on a set of X , the covering number of I, denoted by cov(I),
is the minimal size of a collection of members of I whose union is X . Given a
topological space X and a cardinal κ , letMκ

X denote the (possibly improper) ideal on
X κ-generated by the nowhere dense sets, i.e., the collection of all unions of less than
κ-many nowhere dense sets. Let us refer to the members ofMκ

X as κ–meagre subsets
of X . This way, the classical meagre ideal on X isMω1

X . I will also denote it byMX .
The following is a straightforward but useful observation in this general context.

Fact 2.3 Mκ
X ⊆ Mκ ′

X and therefore cov(Mκ ′
X ) ≤ cov(Mκ

X ) whenever κ ≤ κ ′, and
cov(Mω

X ) = cov(Mκ
X ) for every κ < cov(Mω

X ).

In the following definition and throughout the note, if C is a club of ω1, C̃ will
denote its enumerating function.

Definition 2.4 Consider the topology τB on the set of all clubs of ω1 whose basis
is given by the conditions in B; in other words, a basis for this topology is given by
{Bp | p ∈ B}, where Bp is the set of all clubs C ⊆ ω1 such that p ⊆ C̃ . Then Cω1

denotes the set of all clubs of ω1 endowed with the topology τB.

One first observation is that the usual Baire category theorem holds for Cω1 :

Lemma 2.5 cov(MCω1
) ≥ ℵ1.

Proof Let (Dn)n<ω be a sequence of dense subsets of B. It suffices to show that there
is a club C ⊆ ω1 such that for all n, p ⊆ C̃ for some p ∈ Dn .

Let (Cδ : δ ∈ Lim(ω1)) be a C-sequence. For each n, let D∗
n denote the set of

B-conditions p extending some condition in Dn and such that for every limit ordinal
δ ∈ dom(p) there is some δ′ ∈ dom(p) ∩ δ such that p(δ′) > C p(δ)(n), where
(C p(δ)(i))i<ω is the increasing enumeration of C p(δ). Each D∗

n is clearly dense in B.
Let N be a countable elementary substructure of H(ω2) containing each D∗

n and let
(δn)n<ω be an enumeration of δN . Now we build a decreasing sequence (pn)n<ω of
B-conditions such that for each n, pn ∈ N ∩ D∗

n and δn ∈ dom(pn). This is possible
since each D∗

n is dense. In the end, p∗ = ⋃
n pn : δN −→ δN is a strictly increasing

and continuous function by the choice of (D∗
n)n<ω and of course range(p∗) is cofinal

in δN . Hence range(p∗) ∪ (ω1\δN ) is a club as desired. ��
Given a partial orderP , letm(P) be the minimal size of a familyD of dense subsets

of P such that there is no filter G ⊆ P intersecting all members of D (i.e., m(P) is
the least cardinal λ such that FA(P)λ fails). If P is infinite, m(P) is of course at least
ℵ1.

Proposition 2.6 cov(MCω1
) = m(B)

Proof The proof is a standard translation exercise between topological notions and
order-theoretical notions, and is essentially identical to the proof that m(Cohen) is
the covering number of the meagre ideal for the Baire space (see for example [10],
Theorem 16.1). It is easy to see that cov(MCω1

) ≤ m(B). In fact, if D is a collection
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802 D. Asperó

of dense subsets of B and there is no filter of B intersecting all members of D, then
{X D | D ∈ D} is a collection of nowhere dense sets covering Cω1 , where X D is, for
every D ∈ D, the collection of C ∈ Cω1 such that p � C̃ for any p ∈ D. Hence, in
order to prove the equality we may assume, by the previous lemma, that m(B) > ℵ1.
Now, given λ < m(B) and a collection {Xi | i < λ} of closed nowhere dense subsets
of Cω1 , Di = {p ∈ B | Bp ∩ Xi = ∅} is a dense open subset of B for all i . Let
{Eν | ν < ω1} be a set of dense subsets of B such that

⋃
range(G) is a club of ω1

for every filter G ⊆ B meeting all Eν . Since m(B) > ℵ1, we can find a filter G ⊆ B

meeting all Eν and all Di . It follows then that C = ⋃
range(G) is a club of ω1 such

that C /∈ Xi of all i . ��
Of course there is nothing special about Cohen forcing or B in any of these trans-

lations; in fact, a similar characterisation can be always obtained for m(P) for any
poset P . What is nice about Cohen forcing and B is the appealing appearance of the
topological side of the translation.

3 Adding many Baumgartner clubs

The following proposition shows that some nontrivial move is necessary in order to
add many Baumgartner clubs by a product forcing not collapsing ω1.

Proposition 3.1 Both the finite support product of ℵ0 copies of B and the countable
support product of ℵ0 copies of B collapse ω1.

Proof Let P0 be the finite support product of copies of B indexed by ω and let P1 be
the countable support product of copies of B indexed by ω. The first part is trivial:
Given any f ∈ P0 and any α < ω1 we can find an extension f ′ of f and some
n ∈ dom( f ′) such that f ′(n)(0) > α. This gives a cofinal function ḟ : ω −→ ωV

1 in
the extension by P0.

The second part can be argued for by a variation of a standard argument for showing
the well-known fact that the full support product of countably many copies of Cohen
forcing collapses R

V to ω (see for example [6]): We start out by fixing a ladder system
(Cδ | δ ∈ Lim(ω1)). Given a P1-generic filter G and n < ω let Fn : ωV

1 −→ ωV
1

be the strictly increasing and continuous function added by G on the n-th coordinate
and let δn = Fn(ω) ∈ Lim(ω1). Now, given any k < ω, look at the biggest n0 < ω

such that the interval [F0(k + i), F0(k + i + 1)) contains exactly one element of Cδ0

for every i < n0, which exists by density. Now write a0 = 0 or a0 = 1 depending on
whether or not |[F1(n0), F1(n0 + 1)) ∩ Cδ1 | = 1. Let n1 < ω be biggest such that
|[F1(n0 + 1+ i), F1(n0 + 2 + i)) ∩ Cδ1 | = 1 for all i < n1, write a1 = 0 or a1 = 1
depending on whether or not |[F2(n1), F2(n1 +1))∩Cδ2 | = 1, and keep going. This
way we associate to k a unique (an)n<ω ∈ ω2, and it is easy to check that, by density,
every real in V is the image of some k < ω under this mapping. ��

The following notation will be used in the remainder of this section. Given two
functions F and G, I will denote by F ⊕ G the function H with domain dom(F) ∪
dom(G) such that
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• H(x) = F(x) for every x ∈ dom(F)\ dom(G),
• H(x) = G(x) for every x ∈ dom(G)\ dom(F), and
• H(x) = F(x) ∪ G(x) for every x ∈ dom(F) ∩ dom(G).

Note that (F ⊕G)⊕H = F ⊕ (G ⊕H) for all functions F , G andH. I will denote
(F ⊕ G) ⊕ H simply by F ⊕ G ⊕ H.

The following simple fact will be used repeatedly.

Fact 3.2 ot(A ∪ B) < δ whenever δ is an indecomposable ordinal and A, B are sets
of ordinals with ot(A), ot(B) < δ.

Proof Since ot(A ∪ B) ≤ ot(A) + ot(B). ��
I will now define AddB(X). AddB(X) can be seen as a forcing adding Baumgartner

clubs, indexed by ordinals in X , by using finite supports and with countable subsets
of X as side conditions. The definition of AddB(X) is a streamlined version of the
constructions from [2] or [3]. In fact, it is simple enough that it is an actual product
(Lemma 3.5), whereas the constructions in [2] and [3] certainly are not. The fact that
AddB(X) is a product is crucial for the proof (in Theorem 3.15) that there is a Luzin
set of clubs of size ℵ2 in the extension.

Definition 3.3 Let X be a set of ordinals. AddB(X) is the following forcing notion:
Conditions inAddB(X) are pairs of the form p = ( f,F)with the following properties.

(1) f is a finite function with dom( f ) ⊆ X and such that f (α) ∈ B for every
α ∈ dom( f ).

(2) F is a finite function with dom(F) ⊆ ω1 such that for every δ ∈ dom(F),
(a) δ is a countable indecomposable ordinal,
(b) F(δ) is a countable subset of X ,
(c) δ ∈ dom( f (α)) and f (α)(δ) = δ for all α ∈ dom( f ) ∩ F(δ), and
(d) ot(F(δ′)) < δ for every δ′ ∈ dom(F � δ).

Given AddB(X) conditions ( f0,F0), ( f1,F1), ( f1,F1) extends ( f0,F0) iff

• dom( f0) ⊆ dom( f1) and f0(α) ⊆ f1(α) for every α ∈ dom( f0), and
• dom(F0) ⊆ dom(F1) and F0(δ) ⊆ F1(δ) for every δ ∈ dom(F0).

Let us fix a set X of ordinals and let us prove the relevant facts about AddB(X).
Given α ∈ X and a generic filter G for AddB(X), let Fα

G = { f (α) | ( f,F) ∈
G for some F}. The following fact is clear.

Fact 3.4 Given α ∈ X and a generic filter G for AddB(X), Fα
G is a generic filter for

B.

Given a condition p = ( f,F) in AddB(X) and Y ⊆ X , let p � Y =
( f � Y, d, N ∩ Y 〉 | 〈δ, N 〉 ∈ F , δ ∈ dom(F)}).

Lemma 3.5 follows from Fact 3.2.

Lemma 3.5 Let X0, X1 be disjoint sets of ordinals. Then, the function sending a pair
(( f0,F0), ( f1,F1)) ∈ AddB(X0)×AddB(X1) to ( f0∪ f1,F0⊕F1) is an isomorphism
between the posets AddB(X0) × AddB(X1) and AddB(X0 ∪ X1). The inverse of this
function is the function sending p ∈ AddB(X) to (p � X0, p � X1).
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804 D. Asperó

Lemma 3.6 AddB(X) has the ℵ2–c.c.

Proof Given AddB(X) conditions ( fξ ,Fξ ) for ξ < ω2, we may assume that
{dom( fξ ) | ξ < ω2} forms a �-system with root R and that fξ (α) = fξ ′(α) for
all ξ , ξ ′ < ω2 and all α ∈ R. We may also assume that dom(Fξ ) = dom(Fξ ′) for all
ξ , ξ ′ < ω2. Since {dom( fξ ) | ξ < ω2} forms a �-system, there is a club D ⊆ ω2
such that for all ξ < ξ ′ in D,

⋃
range(Fξ ) ∩ dom( fξ ′) ⊆ R. In fact we may assume

that for all ξ < ξ ′ in D,
⋃

range(Fξ ) ∩ dom( fξ ′′) ⊆ R for every ξ ′′ < ω2 such that
ξ ′ ≤ ξ ′′: Let ξ̄ < ω2 and assume D ∩ ξ̄ has been defined. We may clearly assume
that D ∩ ξ̄ has a maximum, ξ0. There must then be a least ζ < ω2, ζ ≥ ξ̄ , such that⋃

range(Fξ0) ∩ dom( fζ ′) ⊆ R for all ζ ′ ≥ ζ . Otherwise there are ℵ2-many ζ < ω2
such that

⋃
range(Fξ0) ∩ dom( fζ ) � R. But then, since |⋃ range(Fξ0)| ≤ ℵ0, there

must be ζ �= ζ ′ and some α ∈ dom( fζ ) ∩ dom( fζ ′) such that α ∈ ⋃
range(Fξ0)\R.

This is of course impossible since dom( fζ ) ∩ dom( fζ ′) = R. Now we can of course
set such a ζ to be the least member of D above ξ0.

Let ξ∗ be the ω1-th member of D. Since
⋃

range(Fξ∗) is countable, again by
the fact that {dom( fξ ) | ξ < ω1} forms a �-system and therefore the sets
dom( fξ )\R (for ξ < ω1) are pairwise disjoint, there must be some ξ∗∗ < ξ∗ such
that dom( fξ∗∗) ∩ ⋃

range(Fξ∗) ⊆ R. Using Fact 3.2 it follows then immediately
that ( fξ∗∗ ∪ fξ∗ ,Fξ∗∗ ⊕ Fξ∗) is a condition in AddB(X) and that it extends both
( fξ∗∗ ,Fξ∗∗) and ( fξ∗ ,Fξ∗). ��

Note that Lemma 3.6 is true in ZFC. This is in contrast, for example, with corre-
sponding lemmas in [2] and [3], for which CH is needed.

Next comes the properness lemma. As we will see, the proof of the lemma proceeds
quite naturally by induction on the initial segments of X .Most features of the definition
of AddB(X) are there precisely to make the proof of Lemma 3.7 go through.

Lemma 3.7 AddB(X) is proper.

Proof Let M be a countable elementary substructure of any large enough H(λ) con-
taining X , let p = ( f,F) ∈ AddB(X) ∩ M , and let N = M ∩ X . Let f ∗ be the
function with the same domain as f such that f ∗(α) = f (α) ∪ {〈δM , δM 〉} for
every α ∈ dom( f ), and let p∗ = ( f ∗,F ∪ {〈δM , N 〉}). For every N ′ ∈ F , since
N ′ ∈ M and N ′ is countable in M , ot(N ′) < δM . It follows that p∗ is a condition in
AddB(X). Hence, it suffices to show by induction on the ordinals γ that if γ ∈ M ,
then p∗ � (X ∩ γ ) is (M,AddB(X ∩ γ ))-generic.

For this, we may clearly assume γ > 0. Let A be any maximal antichain of
AddB(X ∩γ ), A ∈ M , and let p′ = ( f ′,F ′) be any condition extending p∗ � (X ∩γ )

and extending some condition p̃ = ( f̃ , F̃) in A. It suffices to see that p̃ is compatible
with a condition in M ∩ A as then it will of course follow that p̃ ∈ M .

Suppose γ = γ0+1.Wemay assumewithout loss of generality that γ0 ∈ dom( f ′).
Let G be AddB(X ∩ γ0)-generic such that p′ � (X ∩ γ0) ∈ G. In M[G] there is a
condition q = (g,G) with the following properties.

(i) q extends a condition in A.
(ii) q � (X ∩ γ0) ∈ G.
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(iii) γ0 ∈ dom(g) and g(γ0) end-extends f ′(γ0) � δM (i.e., f ′(γ0) � δM ⊆ g(γ0)

and, for all ν ∈ dom( f ′(γ0) � δM ), g(γ0) � ν = f ′(γ0) � ν).
(iv) ot(G(δ′)) < δ for every δ ∈ dom(F ′ � δM ) and every δ′ ∈ dom(G � δ).
(v) ot(F ′(δ′)) < δ for every δ ∈ dom(G) and every δ′ ∈ dom(F ′ � δ).

The existence of such a q is witnessed by p′ and can be expressed by a sentence
with G, f ′(γ0) � δM and {〈δ, ot(F ′(δ))〉 | δ ∈ dom(F ′ � δM )} as parameters. Hence
there is such a q in M[G] as these parameters are in M[G] � H(λ)[G]. Note that
q ∈ M since M[G] ∩ V = M by the induction hypothesis. Since p′ � (X ∩ γ0) ∈ G,
it follows that p′ � (X ∩ γ0) and q � (X ∩ γ0) are compatible as AddB(X ∩ γ0)

conditions. Let r = (h,H) be a lower bound for them. Then

(
h ∪ {〈

γ0, f ′(γ0) ∪ g(γ0)
〉}

,H ⊕ F ′ ⊕ G)

is a common extension of p′ and q using Fact 3.2.
Next suppose γ is a nonzero limit ordinal with cf(γ ) �= ω1. By either the fact that

Z ⊆ M for some cofinal subset Z of γ—when cf(γ ) = ω—or the fact that there is
some σ0 ∈ M bounding dom(h � γ ) for every (h,H) ∈ A—when cf(γ ) ≥ ω2, as
|A| ≤ ℵ1 by Lemma 3.6, there is some σ ∈ M ∩ γ bounding dom( f̃ � γ ). Let G be
AddB(X ∩ σ)-generic such that p′ � (X ∩ σ) ∈ G. In M[G] we may then find some
q = (g,G) in A with the following properties.

(i) q � (X ∩ σ) ∈ G.
(ii) dom(g) ⊆ σ .
(iii) ot(G(δ′)) < δ for every δ ∈ dom(F ′ � δM ) and every δ′ ∈ dom(G � δ).
(iv) ot(F ′(δ′)) < δ for every δ ∈ dom(G) and every δ′ ∈ dom(F ′ � δ).

As in the previous case, the existence of such a q is witnessed by p̃ and can be
expressed by a sentence with parameters in M[G]. Also as in the previous case, using
that M[G] ∩ V = M , which is true by the induction hypothesis, we may assume that
q is in fact in M . Again, we may find a common extension (h,H) of p̃ � (X ∩ σ)

of q � (X ∩ σ). But then, (h,H ⊕ G ⊕ F ′) is a common extension of p̃ and q. Note
that in the case cf(γ ) ≥ ω2 the proof does not produce a common extension of p′ and
of some condition in A ∩ M , but only of p̃ and some condition in A ∩ M . This is of
course enough for our purposes.

Finally suppose γ is a nonzero limit ordinal with cf(γ ) = ω1. Let σ ∈ γ ∩ M be
such that dom( f ′ � sup(M ∩ γ )) < σ and let (γν)ν<ω1 ∈ M be a strictly increasing
and continuous sequence of ordinals converging to γ . Let D be the set of all conditions
in AddB(X ∩ γ ) extending some condition in A. Let G be AddB(X ∩ σ)-generic with
p′ � (X ∩ σ) ∈ G, and let C ∈ M[G] be the club of ν ∈ ω1 = ω

V [G]
1 —where the

equality holds by the induction hypothesis—such that for every ν′ < ν there is some
q = (g,G) ∈ D such that

(i) q � (X ∩ σ) ∈ G,
(ii) dom(g)\σ ⊆ [γν′ , γν),
(iii) ot(G(δ′)) < δ for every δ ∈ dom(F ′ � δM ) and every δ′ ∈ dom(G � δ), and
(iv) ot(F ′(δ′)) < δ for every δ ∈ dom(G) and every δ′ ∈ dom(F ′ � δ).
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C , being defined with {〈δ, ot(F ′(δ))〉 | δ ∈ dom(F ′ � δM )}, G ∈ M[G] as
parameters, is in M[G], and it is clearly closed by definition.

To see that C is unbounded, note that for every ν < ω1 there is some q = (g,G) ∈
D such that dom(g)\σ ⊆ [γν, γ ), q � (X ∩ σ) ∈ G, ot(G(δ′)) < δ for every
δ ∈ dom(F ′ � δM ) and every δ′ ∈ dom(G � δ), and such that ot(F ′(δ′)) < δ for
every δ ∈ dom(G) and every δ′ ∈ dom(F ′ � δ), as this is witnessed by p′. Now, since
ot(C ∩δM ) = δM and ot(F ′(δ)) < δM for every δ ∈ dom(F ′ � δM ), using Fact 3.2 we
may find some ν ∈ C ∩ δM and some ν′ < ν such that [ν′, ν) has empty intersection
with

⋃{F ′(δ) | δ ∈ dom(F ′ � δM )}.
Let q = (g,G) ∈ D ∩ M[G] be such that (i)–(iv) above hold for q with this

particular choice of ν and ν′, and note that q ∈ M again since M[G] ∩ V = M by the
induction hypothesis.

Let (δi )i<n be an enumeration of dom(F ′)\δM and let g′ be the function with
domain dom(g)\σ such that g′(α) = g(α) ∪ {〈δi , δi 〉 | i < n} for all α ∈ dom(g′).
As in the previous two cases we may find a condition (h,H) extending p′ � (X ∩ σ)

and q � (X ∩ σ). Then (h ∪ g′,H⊕F ′ ⊕G) is a common extension of p′ and q. This
completes the proof of the Lemma. ��

It would be nice to have that AddB(X) has the ℵ1.5–c.c. (in the same way that
both Cohen forcing and Add(ω, X) have the c.c.c.). Unfortunately this does not seem
to be the case with the official definition of ℵ1.5–c.c. (Definition 2.1). Nevertheless,
AddB(X) belongs to a slightly bigger class � such that a model of the corresponding
forcing axiom FA(�)λ for every λ < 2ℵ0 (and 2ℵ0 arbitrarily large) can be built by
the same construction as in [3] (replacing of course everywhere in that construction
ℵ1.5–c.c. by the following slightly more general class). The definition of this relaxed
ℵ1.5–c.c. is obtained by restricting a bit the collections of finite familiesN ⊆ D under
consideration. The families wewill be considering are what I call here2 AddB-friendly.

Definition 3.8 A set N of countable sets such that δN exists for every N ∈ N is
AddB–friendly if and only if for all N , N ′ ∈ N , if δN ′ < δN , then ot(N ′ ∩Ord) < δN .

The relevant weakening of the ℵ1.5–c.c. is the following.

Definition 3.9 A partial order P has the AddB–ℵ1.5–c.c. if for every regular θ such
that P ∈ H(θ) there is a club D ⊆ [H(θ)]ℵ0 such that for every finite AddB-friendly
N ⊆ D and every p ∈ P , if p ∈ N for some N ∈ N such that δN = min{δM | M ∈
N }, then there is an extension of p which is (N ,P)-generic for every N ∈ N .

Every poset with the ℵ1.5–c.c. obviously has the AddB–ℵ1.5–c.c., and every poset
with the AddB–ℵ1.5–c.c. is proper and has the ℵ2–c.c.

It is easy to see that the proof of Lemma 3.7 can be adapted to show the following.

Proposition 3.10 For every set X of ordinals, AddB(X) has the AddB–ℵ1.5–c.c.

The proof of the following theorem is essentially contained in [3].

2 For the purpose of this note, only.

123



Adding many Baumgartner clubs 807

Theorem 3.11 (essentially [3]) (CH) Let κ ≥ ω2 be a regular cardinal such that
μℵ0 < κ for all μ < κ and ♦({α < κ | cf(α) ≥ ω1}) holds. Then there is a proper
forcing notion P of size κ with the ℵ2–c.c. such that the following statements hold in
the generic extension by P .

(1) 2ℵ0 = κ

(2) FA({P | P has the AddB–ℵ1.5–c.c.})λ for every λ < κ .

3.1 A model of b(ω1) = ℵ2, d(ω1) large, and ¬ KAλ for large λ

The classical cardinal invariants for the continuum can be naturally extended to P(κ)

or κκ , for higher κ . For example, given a regular cardinal κ one can define b(κ) as the
minimal size of a familyF of functions f : κ −→ κ such that no function g : κ −→ κ

dominates all f ∈ F modulo the ideal of bounded sets, which means that no g as
above is such that {ν < κ | g(ν) ≤ f (ν)} is bounded for all f ∈ F . With this
definition, b(ω) is just the familiar bounding number b on the Baire space. Similarly,
we can define d(κ) as the minimal size of a family F of functions f : κ −→ κ such
that for every g : κ −→ κ there is some f ∈ F such that {ν < κ | f (ν) ≤ g(ν)} is
bounded in κ . d is then d(ω). Obviously, b(κ) ≤ d(κ) holds always for every κ .

Recall that, given an ideal I on a set X , non(I) is the least size of a subset of X
not in I. An old observation of Rothberger ([12], see also [5], Theorem 2.8) is that
b = non(Kσ ) and d = cov(Kσ ), where Kσ denotes the ideal on the Baire space
σ -generated by the compact sets. Similar characterisations can be derived in general
for b(κ) and d(κ) by the same proof:

Proposition 3.12 Given an infinite cardinal κ , b = non(Kκ,κ+) and d(κ) =
cov(Kκ,κ+) where, for all cardinals κ , λ, Kκ,λ denotes the ideal on κκ λ-generated by
the sets of the form { f ∈ κκ | f ≤ g} (for g ∈ κκ).

Given f ∈ ω1ω1, let C f be the club of ω1 whose enumerating function C̃ f is such
that C̃ f (0) = f (0), C̃ f (n + 1) = C̃ f (n) + f (n + 1) for all n < ω, and such that
C̃ f (ν + 1) = C̃ f (ν) + f (ν) if ν ≥ ω. Clearly, the map � sending f to C f is a
bijection between ω1ω1 and Cω1 and {C f : f ≤ g} is nowhere dense in τB for all
g ∈ ω1ω1. In fact, for every p ∈ B let p′ ∈ B extend p and such that C̃g(ν) = p′(ν)

and C̃g(ν + 1) < p′(ν) for some ν. Then no club of ω1 whose enumerating function
extends p′ belongs to {C f : f ≤ g}. But then, for every κ , �−1(X) /∈ Kω1,κ if
X ⊆ Cω1 and X /∈ Mκ

Cω1
. From this we immediately obtain the following inequalities

(cf. for example [5], Proposition 5.5 for the corresponding b = non(Kσ ) ≤ non(M)

and cov(M) ≤ cov(Kσ ) = d).

Proposition 3.13 b(ω1) = non(Kω1,ω2) ≤ non(Mω2
Cω1

) and d = cov(Kω1,ω2) ≥
cov(Mω2

Cω1
).

Aset X of reals is called aLuzin set if it is uncountable andhas countable intersection
with all meagre sets of reals (see [9]). The same definition can be generalised to subsets
of Cω1 : Let us say that X ⊆ Cω1 is Luzin if and only if it has cardinality at least ℵ2 and
has intersection of cardinality at most ℵ1 with every ω2-meagre subset of Cω1 . It is a
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well-known fact that if G is Add(ω1)-generic, then {r G
α | α < ω1} is a Luzin set in the

extension (see for example [9]). This follows from the fact that Add(ω1) satisfies the
relevant forms of clauses (2) and (4) from the introduction. By essentially the same
argument we obtain the following.

Proposition 3.14 If G is an AddB(ω2)-generic, then {∪ range(FG
α ) : α < ω2} is a

Luzin set of clubs.

Proof Let {Dξ | ξ < ω1} be a collection of dense open subsets of Cω1 . For every ξ let

(pξ
i )i<ω1 be a sequence of conditions in B such that Dξ = ⋃

i<ω1
{C ∈ Cω1 | pξ

i ⊆
C̃}. It suffices to show that there is some β < ω2 with the property that for α > β and
all ξ , pξ

i ⊆ FG
α for some i . But this is true since, by the ℵ2–c.c. of AddB(ω2), we may

fix β < ω2 such that (pξ
i )ξ,i<ω1 ∈ V[G ∩ AddB(β)] and since each FG

α , for α > β,
is B-generic over V[G ∩ AddB(β)] by Lemma 3.5 and Fact 3.4. ��

The main new consistency result in this note is the joint consistency of clauses
(1)–(3) in the statement of Theorem 3.15.

Theorem 3.15 Let θ ≥ ω2 be a cardinal. Then the following statements hold after
forcing with AddB(θ).

(1) There is a Luzin subset of Cω1 of cardinality ℵ2.
(2) m(B) ≥ θ

(3) θ ≤ 2ℵ0 ≤ 2ℵ1 ≤ θℵ1

Proof (1) follows immediately from Proposition 3.14 together with Lemma 3.5. (2)
follows immediately from Lemma 3.6 together with Proposition 3.14, Lemma 3.5 and
Fact 3.4: Given an AddB(θ)-generic filter G, λ < θ , and a collection D = {Di | i <

λ} ∈ V[G] of dense subsets of B we may find X ⊆ θ , |X | = max{λ, ℵ1}, such that
D ∈ V[G ∩AddB(X)]. But then, if α ∈ θ\X , Fα

G extends a condition in Di for every
i .

AddB(θ) adds at least θ -many Cohen reals. In fact, let (Cδ | δ ∈ Lim(ω1)) be a
ladder systemand, for givenAddB(θ)-generic filterG andα < θ , let f α

G : ω −→ {0, 1}
be such that f α

G (n) = 0 if and only if |[Fα
G(n), Fα

G(n + 1)) ∩ CFα
G (ω)| is even. Then, a

simple density argument shows that f α
G is a Cohen real over V [( f α′

G | α′ < θ, α′ �=
α)]. That 2ℵ1 ≤ θℵ1 holds in the extension with AddB(θ) follows easily from a simple
counting argument of nice names for subsets of ω1 together with |AddB(θ)| = θℵ0

and the ℵ2–c.c. of AddB(θ).

Corollary 3.16 follows immediately from Theorem 3.15 together with the second
part of Proposition 3.13 (for conclusion (1)), Proposition 2.6 and the first part of
Proposition 3.13 (for conclusion (2)), and Proposition 2.2 (for conclusion (3)).

Corollary 3.16 Let θ ≥ ω2 be a cardinal. Then the following holds after forcing with
AddB(θ).

(1) d(ω1) ≥ θ

(2) non(Mω2
Cω1

) = ℵ2. In particular, b(ω1) = ℵ2.
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(3) ¬KAλ for every λ < θ .

As we have seen in the above corollary, b(ω1) = ℵ2 holds after forcing with
AddB(X), for any set of ordinals X of order type at leastω2. The equalityd(ω1) = ℵ2—
and therefore also b(ω1) = ℵ2—follows of course from 2ℵ1 = ℵ2 and can be easily
forced in other ways too. For example it holds after forcing with any c.c.c. forcing
over any model of d(ω1) = ℵ2, simply because every function f : ω1 −→ ω1 in the
extension is dominated everywhere by a function g : ω1 −→ ω1 in the ground model.
Also, b(ω1) = ℵ2 holds always after forcing with Add(ω1, θ), for any θ ≥ ω2, where
Add(ω1, θ) is the forcing for adding θ -many Cohen subsets of ω1: We may assume
CH in V since Add(ω1, θ) ∼= Add(ω1, 1)×Add(ω1, θ) and since Add(ω1, 1) forces
CH and does not change Add(ω1, θ). But then Add(ω1, θ) has the ℵ2–c.c., i.e., the
relevant form of clause (2) from the introduction holds. This, together with the relevant
form of clause (4) for Add(ω1, θ), shows b(ω1) = ℵ2 in the extension. Of course, ♦
holds also in this extension. This, by Corollary 3.16, is in stark contrast to what holds
after forcing with AddB(θ) for θ ≥ ω2.

By essentially the same argument as in [13]—showing that ¬CG is preserved
after adding Cohen reals—one can prove that Add(ω, θ) preserves ¬CGλ. Also, by
refining the argument from [13], one can establish the following preservation result:

Lemma 3.17 For every cardinal θ , Add(ω, θ) preserves ¬KAλ.

Proof Let X be a set of ordinals and suppose that 〈 Ȧi | i < λ〉 is a sequence of
Add(ω, X)-names for subsets of ω1 of order type ω such that some p ∈ Add(ω, X)

forces that { Ȧi | i < λ} witnesses KAλ. By homogeneity we may assume p is the
empty condition. The first observation is that for every i there is a countable Yi ⊆ X
such that Ȧi is in fact an Add(ω, Yi )-name and such that for every α < ω1 there is
some p ∈ Add(ω, X) such that p �Add(ω, X) α̌ ∈ Ȧi if and only if there is some
p ∈ Add(ω, Yi ) such that p �Add(ω, Yi ) α̌ ∈ Ȧi .

For every i let (pi
n)n<ω be an enumeration of Add(ω, Yi ). Also, for every n < ω,

if there is some σ ∈ ω1 such that pi
n �Add(ω, Yi ) sup( Ȧi ) = σ , then let X i

n be a set
of pairwise compatible Add(ω, Yi )-conditions extending pi

n and such that {ξ < σ |
p �Add(ω, Yi ) ξ ∈ Ȧi for some p ∈ X i

n} is cofinal in σ . The introduction of the X i
n’s

is the new ingredient with respect to the proof in [13].
Given any club C ⊆ ω1 there are i < λ, σ < ω1, γ < σ and nC < ω such that

pi
nC forces in Add(ω, Yi ) that sup( Ȧi ) = σ and that [α, α′) ∩ C �= ∅ for every two

consecutive points α, α′ of Ȧi above γ . Let n∗ < ω be such that the set C of clubs C
such that nC = n∗ is ⊆-dense in the set of all clubs of ω1. For every i < λ, if there
is a σ such that pi

n∗ �Add(ω, Yi ) sup( Ȧi ) = σ , then let Bi = {ξ < σ | p �Add(ω, Yi )

ξ ∈ Ȧi for some p ∈ X i
n∗}.

By ⊆-density of C it suffices to show that if C ∈ C, then there is some i < λ such
that pi

n∗ � sup( Ȧi ) = σ for some σ , and such that [β, β ′) ∩ C �= ∅ for every two
consecutive points β < β ′ in Bi above some γ < σ . But this is true by the previous
paragraph and the definition of Bi since all conditions in X i

n∗ extend pi
n∗ and are

pairwise compatible. ��
It follows from the above lemma that if we start with a model of ¬KAℵ1 +2ℵ1 =

ℵ2—which can be easily obtained by a countable support iteration of proper forcing
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or by [3]—and add any amount of Cohen reals to it, we will preserve both¬KAℵ1 and
d(ω1) = ℵ2. In terms of obtaining b(ω1) small together with strong failures of club
guessing at ω1 (and together with 2ℵ1 large), this is the best I can do without resorting
to Theorem 3.15.

To finish this note, I will mention that I do not have at the moment any use for the
homogeneity of AddB(X).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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