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Abstract We study the Generalized Kurepa hypothesis introduced by Chang. We
show that relative to the existence of an inaccessible cardinal the Gap-n-Kurepa
hypothesis does not follow from the Gap-m-Kurepa hypothesis for m different from
n. The use of an inaccessible is necessary for this result.

1 Introduction

In this paper we study the Generalized Kurepa hypothesis introduced by Chang (see
Chapter VII of [1]). We show that relative to the existence of an inaccessible cardinal
the Gap-n-Kurepa hypothesis does not follow from the Gap-m-Kurepa hypothesis for
m different from n. The use of an inaccessible is necessary for this result.

Definition 1.1 (a) For infinite cardinals λ < κ , a KH(κ, λ)− family is a family F of
subsets of κ such that:

(i) Card(F) ≥ κ+,
(ii) for all x ∈ [κ]λ, Card(F � x) ≤ λ, where F � x = {t ∩ x : t ∈ F}.

We say KH(κ, λ) holds if such a family exists.
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622 S.-D. Friedman, M. Golshani

(b) For infinite cardinals λ ≤ κ , a KH(κ,< λ)−family is a family F of subsets of κ

such that:
(i) Card(F) ≥ κ+,

(ii) for all x ∈ [κ]<λ, Card(F � x) ≤ Card(x) + ℵ0.
We say KH(κ,< λ) holds if such a family exists.

(c) Let n ≥ 1, n finite. By the Gap-n-Kurepa hypothesis we mean the following
statement: for all infinite cardinals λ, KH(λ+n, λ) holds.

The following is well-known (see [1], Chapter VII, Theorems 3.2 and 3.3).

Theorem 1.2 (Jensen). If V = L, then KH(κ,< λ+) (and hence KH(κ, λ)) holds for
all infinite cardinals λ < κ, κ regular.

In this paper we prove the following theorem.

Theorem 1.3 Let n ≥ 1. The following are equiconsistent:

(a) There exists an inaccessible cardinal,
(b) GCH + the Gap-m-Kurepa hypothesis holds for all m �= n, but the Gap-n-Kurepa

hypothesis fails.

Remark 1.4 Our proof shows that if λ < κ are infinite cardinals, κ regular and
KH(κ, λ) fails, then κ+ is inaccessible in L (see Lemma 3.1).

Remark 1.5 (b) of the above Theorem can be strengthened to the Gap-m-Kurepa
hypothesis holds for all m �= n, but KH(ℵn,ℵ0) fails (see Lemma 2.7).

2 Proof of Con(a) implies Con(b)

In this section we show that if there exists an inaccessible cardinal, then in a forcing
extension of L , the Gap-m-Kurepa hypothesis holds for all m �= n, but the Gap-n-
Kurepa hypothesis fails, where n ≥ 1 is a fixed natural number.

From now on assume that V = L , and let κ be an inaccessible cardinal. We consider
two cases.

Case 1. n = 1.

Let P = Col(ω1,< κ) be the Levy collapse with countable conditions which
converts κ into ω2, and let G be P-generic over L .

Lemma 2.1 The following hold in L[G] :
(a) KH(ℵ1,ℵ0) fails,
(b) The Gap-m-Kurepa hypothesis holds for all m ≥ 2.

Proof (a) is a well known result of Silver (see [7], or [2] Lemma 20.4).
(b) Let m ≥ 2, and let λ be an infinite cardinal in L[G]. Let μ = (λ+m)L[G]. By

Theorem 1.2, there is a KH(μ, λ) family F in L . We show that it remains a
KH(μ, λ) family in L[G]. Clearly Card(F) = μ+L = (λ+m+1)L[G]. Suppose
x ∈ ([μ]λ)L[G].
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Independence of higher Kurepa hypotheses 623

Note that P is κ −c.c. and ω1− closed, and in L[G], κ becomes ω2. Thus it is easily
seen that infinite sets in L[G] are covered by sets of the same cardinality which belong
to the ground model L , in particular there is a set y ⊆ µ in L such that x ⊆ y and x and
y have the same cardinality in L[G]. If λ �= ℵ1, then y has L− cardinality λ, hence
in L , Card(F � y) ≤ λ. It follows that in L[G], Card(F � x) ≤ Card(F � y) ≤ λ. If
λ = ℵ1, then y has L−cardinality less than κ, hence in L , Card(F � y) < κ. It follows
that in L[G], Card(F � y) ≤ ℵ1, and hence in L[G], Card(F � x) ≤ Card(F � y) ≤
ℵ1 = λ. 	

Case 2. n ≥ 2.

For each i, 0 < i < n, fix an injection Ji : [ωn]≤ωi −→ ωn . Let R = P ×∏
0<i<n

Qi , where the forcing notions P and Qi , 0 < i < n, are defined as follows.
P = Col(ωn,< κ) is the Levy collapse with conditions of size < ωn which converts

κ into ωn+1.
Qi , 0 < i < n, is the set of triples p = (X p,Fp, gp) such that:
(i − 1) X p is a subset of ωn of size ≤ ωi ,
(i − 2)Fp is a subset of X p 2 of size ≤ ωi ,
(i − 3) gp is a 1 − 1 function from a subset of κ into Fp,
(i −4)Fp is ωi−closed in the following sense: If t ∈ X p 2 and 〈Xξ : ξ < ωi−1〉 is a

sequence of subsets of X p such that for all ξ < ωi−1, Ji (Xξ ) ∈ X p and t � Xξ ∈ Fp �
Xξ , then there is s ∈ Fp such that s � X = t � X and s � (X p \ X) = 0 � (X p \ X)

(=the zero function on X p \ X ), where X =
⋃

ξ<ωi−1
Xξ .

For p, q ∈ Qi , let p ≤ q (p is an extension of q) iff:
(i − 5) X p ⊇ Xq ,
(i − 6)Fq = Fp � Xq ,
(i − 7) dom(gp) ⊇ dom(gq),
(i − 8) for all α ∈ dom(gq), gq(α) = gp(α) � Xq .
We show that in the generic extension by R, the Gap-m-Kurepa hypothesis holds

for all m �= n, but the Gap-n-Kurepa hypothesis fails.

Lemma 2.2 (a) P is ωn-closed,
(b) P satisfies the κ-c.c.,
(c) Let 0 < i < n. Then Qi is ωi+1−closed modulo Ji in the following sense: If

〈pξ : ξ < λ〉, λ ≤ ωi , is a descending sequence of conditions in Qi such that
for all ξ < λ, Ji (X pξ ) ∈ X pξ+1 , then there is a condition p ∈ Qi which extends
all of the pξ ’s, ξ < λ. Furthermore if λ < ωi , then p can be chosen to be the
greatest lower bound of the pξ ’s, ξ < λ.

(d) Let 0 < i < n. Then Qi has the ωi+2−c.c.

Proof (a) and (b) are well known results of Levy (see [2], Lemma 20.4). We prove
(c) and (d).

(c) Fix 0 < i < n, and let 〈pξ : ξ < λ〉 be as above. To simplify the notation let
pξ = (Xξ ,Fξ , gξ ), ξ < λ. We consider two cases.

Case 1. λ < ωi .

Let p = (X,F , g), where:
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• X =
⋃

ξ<λ
Xξ ,

• F is the least subset of X 2 such that if t ∈X 2 and for all ξ < λ, t � Xξ ∈ Fξ then
t ∈ F , and F is ωi−closed in the sense of (i − 4),

• dom(g) =
⋃

ξ<λ
dom(gξ ),

• for all α ∈ dom(g), g(α) = ⋃{gξ (α) : ξ < λ, α ∈ dom(gξ )}.
It is easy to show that p ∈ Qi and that p is the greatest lower bound for the sequence

〈pξ : ξ < λ〉.
Case 2. λ = ωi .

Let p = (X,F , g), where:

• X =
⋃

ξ<λ
Xξ ,

• dom(g) =
⋃

ξ<λ
dom(gξ ),

• for all α ∈ dom(g), g(α) = ⋃{gξ (α) : ξ < λ, α ∈ dom(gξ )},
• F is the least subset of X 2 such that ran(g)∪{t � Xξ ∪0 � (X \ Xξ ) : t ∈ Xξ } ⊆ F

and F is ωi−closed in the sense of (i − 4).

Then it is easy to show that p ∈ Qi and that p is a lower bound for the sequence
〈pξ : ξ < λ〉.

(d) Fix 0 < i < n. Suppose that Qi does not satisfy the ωi+2−c.c. Let A be a
maximal antichain in Qi of size ≥ ωi+2. By a �-system argument we can assume that

• The sequence 〈X p : p ∈ A〉 forms a �-system with root X .
• The sequence 〈dom(gp) : p ∈ A〉 forms a �−system with root D.
• For all p �= q in A, gp � D = gq � D and Fp � X = Fq � X.

Let θ be large regular, and let M be an elementary submodel of H(θ) of size ωi+1
which is closed under ωi− sequences and such that Qi , X, D, A ∈ M . Pick q ∈ A\ M
and let q � M = (Xq � M,Fq � M, gq � M), where:

• Xq � M = Xq ∩ M ,
• Fq � M = {t � (Xq ∩ M) : t ∈ Fq},
• dom(gq � M) = dom(gq) ∩ M ,
• for all α ∈ dom(gq � M), (gq � M)(α) = gq(α) � (Xq ∩ M).

Then q � M ∈ Qi ∩ M . Extend this condition to a condition p ∈ Qi ∩ M which
extends an element r ∈ A. We show that p and q and hence r and q are compatible,
which is impossible since r, q ∈ A.

Fix s0 ∈ Fp, t0 ∈ Fq . Define X,F and g as follows:

• X = X p ∪ Xq ,

• F is the least subset of X 2 such that {s � X p ∪ t � (Xq\M) : s ∈ Fp, t ∈ Fq} ⊆ F ,

and F is ωi− closed in the sense of (i − 4),
• dom(g) = dom(gp) ∪ dom(gq),

• g(α) =
⎧
⎨

⎩

gp(α) � X P ∪ gq(α) � (Xq \ M) if α ∈ domgq ∩ M,

gp(α) � X P ∪ t0 � (Xq \ M) if α ∈ domgp \ domgq ,

gq � Xq ∪ s0 � (X p \ Xq) if α ∈ domgq \ M.
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Independence of higher Kurepa hypotheses 625

Then (X,F , g) ∈ Qi and it extends both of p and q. 	

Let K = G ×

∏
0<i<n

Hi be R = P×
∏

0<i<n
Qi generic over L . It follows from

the above lemma that

• ω
L[K ]
i = ωL

i for all i ≤ n.

• ω
L[K ]
n+1 = κL .

Lemma 2.3 In L[K ], the Gap-m-Kurepa hypothesis holds for all m �= n.

Proof First show that KH(ℵn,ℵi ) holds in L[K ], for all 0 < i < n.

Claim 2.4 Let 0 < i < n. Forcing with Qi adds a family F ⊆ ωn 2 such that

(a) Card(F) = κ,

(b) for all X ∈ ([ωn]ωi )L , Card(F � X) ≤ ℵi .

Proof By Lemma 2.2, Qi is a cardinal preserving forcing notion. It is easy to prove
the following (where Hi is assumed to be a Qi -generic filter over L):

• ⋃{X p : p ∈ Hi } = ωn ,
• ⋃{dom(gp) : p ∈ Hi } = κ ,
• for all X ∈ ([ωn]ωi )L , there is some p ∈ Hi with Xq ⊇ X ,
• if α < κ , then g(α) : ωn −→ 2, where

g(α) =
⋃

{gp(α) : p ∈ Hi , α ∈ dom(gp)}

• if α < β < κ , then g(α) �= g(β).

Then F = {g(α) : α < κ} is as required. 	

Claim 2.5 Infinite sets in L[K ] are covered by sets of the same cardinality which
belong to the ground model L .

Proof It is easily seen that any infinite set of ordinals from L[K ] is covered by a set
of ordinals of L[G] of the same cardinality and that L[K ] and L[G] have the same
cardinals. On the other hand since P is κ−c.c. and ωn−closed and in L[G], κ becomes
ωn+1, any infinite set of ordinals from L[G] is covered by a set of ordinals of L of the
same L[G]−cardinality. The result follows immediately. 	


Now using the above Claim and the fact that ω
L[K ]
i = ωL

i , we can show that F is
in fact a KH(ℵn,ℵi )− family in L[K ].

Next let λ be an infinite cardinal, m �= n, and suppose μ = (λ+m)L[K ], μ �= ℵn .

We show that KH(μ, λ) holds in L[K ].
Claim 2.6 KH(μ, λ) holds in L[G].
Proof If μ < ℵn, the claim follows from the facts that KH(μ, λ) holds in L , (μ+)L =
(μ+)L[G] and L and L[G] have the same μ−sequences. If μ > ℵn, the claim follows
exactly as in the proof of Lemma 2.1 (b). 	
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Using the facts that L[G] and L[K ] have the same cardinals and any infinite set
of ordinals from L[K ] is covered by a set of ordinals of L[G] of the same car-
dinality, we can immediately conclude that KH(μ, λ) holds in L[K ]. The Lemma
follows. 	

Lemma 2.7 KH(ℵn,ℵ0) fails in L[K ].

Before going into the details of the proof of Lemma 2.7, we introduce some notions.
Let λ be a regular cardinal, ℵn < λ < κ . Define the following forcing notions

Pλ = Col(ωn,< λ),

Qi,λ = the set of all p ∈ Qi such that dom(gp) ⊆ λ,

Rλ = Pλ ×
∏

0<i<n

Qi,λ

Also let Kλ = Gλ ×
∏

0<i<n
Hi,λ be Rλ-generic over L . Define πλ : R −→ Rλ by

πλ(〈p, 〈(Xi ,Fi , gi ) : 0 < i < n〉〉) = 〈p � λ, 〈(Xi ,Fi , gi � λ) : 0 < i < n〉〉

Claim 2.8 πλ is a projection, i.e.

(a) πλ(1R) = 1Rλ
,

(b) πλ is order preserving,
(c) if r0 ∈ Rλ, r1 ∈ R and r0 ≤ πλ(r1), then there is some r ≤ r1 in R such that

πλ(r) ≤ r0.

Proof (a) and (b) are trivial. We prove (c). Let r j = 〈p j , 〈(Xi, j ,Fi, j , gi, j ) : 0 <

i < n〉〉, for j = 0, 1. Then r = 〈p, 〈(Xi ,Fi , gi ) : 0 < i < n〉〉 is as required, where:

• p = p0 ∪ p1 � (κ \ λ),

• Xi = Xi,0,

• Fi is the least subset of Xi 2 such that Fi,o ∪ {t � Xi,1 ∪ 0 � (Xi,0 \ Xi,1)} ⊆ Fi ,

and Fi is ωi−closed in the sense of (i − 4),

• domgi = domgi,0 ∪ domgi,1,

• gi (α) =
{

gi,o(α) if α ∈ domgi,0,

gi,1(α) � Xi,1 ∪ 0 � (Xi,0 \ Xi,1) if α ∈ domgi,1 \ λ.
	


Let

(R : Rλ)={〈p, 〈(Xi , Fi , gi ) : 0< i <n〉〉∈R : πλ(〈p, 〈(Xi , Fi , gi ) : 0 < i < n〉〉)∈ Kλ}.

It follows from Lemma 2.2 (c) that

Claim 2.9 (R : Rλ) is countably closed modulo the Ji ’s, 0 < i < n, in the following
sense: if 〈〈pm, 〈(Xi,m,Fi,m, gi,m) : 0 < i < n〉〉 : m < ω〉 is a descending sequence
of conditions in (R : Rλ) such that for all 0 < i < n and m < ω, Ji (Xi,m) ∈ Xi,m+1,
then this sequence has a lower bound in (R : Rλ).
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Independence of higher Kurepa hypotheses 627

Proof For each i, 0 < i < n, the sequence 〈(Xi,m,Fi,m, gi,m) : m < ω〉 is a descend-
ing sequence in Qi modulo Ji , thus by Lemma 2.2 (c) it has a greatest lower bound

(Xi ,Fi , gi ). Let r =
〈⋃

m<ω
pm, 〈(Xi ,Fi , gi ) : 0 < i < n〉

〉
. Then r is the greatest

lower bound for the above sequence, and πλ(r) is a lower bound for the sequence
〈πλ(〈pm, 〈(Xi,m,Fi,m, gi,m) : 0 < i < n〉〉) : m < ω〉. Note that the projection πλ

just restricts the domain of functions involved in the condition to λ and thus we can
easily show that:

• πλ(r) is in fact the greatest lower bound of the above sequence.
• If r ′ is compatible with all of 〈pm, 〈(Xi,m,Fi,m, gi,m) : 0 < i < n〉〉, m < ω, then

r ′ is compatible with πλ(r).

It then follows from the maximality of Kλ that πλ(r) ∈ Kλ, and hence r ∈ (R : Rλ).

Thus r is as required 	

We are now ready to prove Lemma 2.7. Assume on the contrary that KH(ℵn,ℵ0)

holds in L[K ]. Suppose for simplicity that 1R‖−�Ḟ is a KH(ℵn,ℵ0)-family �.
Let F = Ḟ[K ], and let A = 〈F � X : X ∈ [ωn]ω〉. Choose λ < κ regular such

that A ∈ L[Kλ]. Let b ∈ F be such that b �∈ L[Kλ].
From now on we work in L[Kλ] and force with (R : Rλ). Let ḃ be an (R : Rλ)-name

for b, and let r0 ∈ (R : Rλ), r0 = 〈p0, 〈(Xi,0, Fi,0, gi,0) : 0 < i < n〉〉, be such that

r0‖−�ḃ ∈ Ḟ and ḃ �∈ V �

It is easy to prove the following.

Claim 2.10 For each r ≤ r0, r = 〈p, 〈(Xi , Fi , gi ) : 0 < i < n〉〉, there are two
conditions r1 = 〈p1, 〈(Xi,1, Fi,1, gi,1) : 0 < i < n〉〉, r2 = 〈p2, 〈(Xi,2, Fi,2, gi,2) :
0 < i < n〉〉 and some ξ < ωn such that:

(a) r1, r2 ≤ r ,
(b) Ji (Xi ) ∈ Xi,m for all 0 < i < n and m = 1, 2,
(c) r1‖−�ξ̌ ∈ ḃ� iff r2‖−�ξ̌ �∈ ḃ�.

Using the above, we can construct a sequence 〈rs = 〈ps, 〈(Xi,s, Fi,s, gi,s) : 0 <

i <n〉〉 : s ∈<ω 2〉 of conditions in (R : Rλ) and a sequence 〈ξm : m <ω〉 of elements
of ωn such that the following hold:

• rs∗m ≤ rs , for each s ∈<ω 2 and m < 2,
• Ji (Xi,s) ∈ Xi,s∗m for each s ∈<ω 2, m < 2 and 0 < i < n,
• rs∗0‖−�ξ̌m ∈ ḃ� iff rs∗1‖−�ξ̌m �∈ ḃ�, where m is the length of s.

Let X = {ξm : m < ω}, and for each f ∈ ω2, using Claim 2.9, let r f ∈ (R : Rλ)

be an extension of all of the r f �m’s, m < ω. For each f as above, we can find some
q f ≤ r f and some b f ∈ L[Kλ] such that

q f ‖−�ḃ ∩ X̌ = b̌ f �

Note that F � X ⊇ {b f : f ∈ω 2} and for f �= g in ω2, we have b f �= bg , and
hence F � X must have size at least 2ℵ0 which is in contradiction with our assumption.

It follows that KH(ℵn,ℵ0) fails in L[K ]. This completes the proof of Lemma 2.7.
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3 Proof of Con(b) implies Con(a)

Now we show that if n ≥ 1, and the Gap-n-Kurepa hypothesis fails, then there exists
an inaccessible cardinal in L . In fact we will prove the following more general result.

Lemma 3.1 Suppose that λ < κ are infinite cardinals such that κ is regular, κλ = κ

and KH(κ, λ) fails. Then κ+ is an inaccessible cardinal in L.

The rest of this section is devoted to the prove of the above lemma. Assume on the
contrary that the lemma fails. Thus we can find X ⊆ κ such that:

• V and L[X ] have the same cardinals up to κ+,
• ([κ]λ)V = ([κ]λ)L[X ].
It follows that a KH(κ, λ)-family in L[X ] is a real KH(κ, λ)-family, and hence
KH(κ, λ) fails in L[X ]. The following lemma gives us the required contradiction.

Lemma 3.2 Suppose that V = L[X ], where X ⊆ κ . Then KH(κ, λ) holds.

Proof Our proof is very similar to the proof of Theorem 2 in [3]. We give it for
completeness. For each x ∈ [κ]λ let

Mx = the smallest M ≺ Lκ [X ] such that x ∪ {x} ∪ (λ + 1) ⊆ M.

Let F = {t ⊆ κ : ∀x ∈ [κ]λ, t ∩ x ∈ Mx }. We show that F is a KH(κ, λ)−family.
It suffices to show that Card(F) ≥ κ+. Suppose not. Let C = 〈tν : ν < κ〉 be
an enumeration of F definable in Lκ+[X ]. By recursion on ν < κ , define a chain
〈Nν : ν < κ〉 of elementary submodels of Lκ+[X ] as follows:

N0 = the smallest N ≺ Lκ+[X ] such that λ ∈ N and N ∩ κ ∈ κ,

Nν+1 = the smallest N ≺ Lκ+[X ] such that N ∩ κ ∈ κ and Nν ∪ {Nν} ⊆ N ,

Nδ =
⋃

ν<δ

Nν, if δ is a limit ordinal.

For each ν < κ set αν = Nν ∩ κ . Using the condensation lemma for L[X ], we
obtain an ordinal βν and an isomorphism σν such that

σν : 〈Nν,∈, Nν ∩ X〉 � 〈Lβν [X ∩ αν],∈, X ∩ αν〉.

Then:

• αν < βν < αν+1,
• σν(κ) = αν ,
• σν(X) = X ∩ αν ,
• σν � αν = id � αν ,
• Lβν [X ∩ αν] |� �αν is a regular cardinal, and αν is the largest cardinal �.

Let t = {βν : βν �∈ tν}. Clearly t �= tν for all ν < κ , and hence t �∈ F . Let x ∈ [κ]λ
be such that:
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Independence of higher Kurepa hypotheses 629

• t ∩ x �∈ Mx ,
• α = sup(x) is minimal.

It follows that t ∩ x is cofinal in α, and hence α = αη for some η < κ . We have

t ∩ x = {βν ∈ x : βν < αη and βν �∈ tν ∩ αη}

and thus t ∩ x is definable from x, 〈βν : ν < η〉 and 〈tν ∩ αη : ν < η〉. It is clear that:

• x ∈ Mx ,
• 〈βν : ν < η〉 is definable in Lβη [X ∩ αη].
• ση(C) = 〈tν ∩ αη : ν < η〉, and hence 〈tν ∩ αη : ν < η〉 is definable in

Lβη [X ∩ αη].
Clearly X ∩ αη ∈ Mx . We show that βη ∈ Mx . It will follow that t ∩ x ∈ Mx which
is a contradiction. The proof is in a sequence of claims. Let M = Mx .

Claim 3.3 P(αη) ∩ M �⊆ Lβη [X ∩ αη].
Proof Suppose not. Since c f (αη) = c f (x) ≤ λ < αη, there is a ∈ M such that
a ⊆ αη is cofinal in αη and has order type less than αη. Then a ∈ Lβη [X ∩ αη], and
hence αη is not a regular cardinal in Lβη [X ∩ αη]. A contradiction. 	


For l < ν < κ set:

• α(ν) = 〈αι : ι ≤ ν〉,
• β(ν) = 〈βι : ι ≤ ν〉,
• σιν = σνσ

−1
ι : 〈Lβι [X ∩ αι],∈, X ∩ αι〉 −→ 〈Lβν [X ∩ αν],∈, X ∩ αν〉,

• σ (ν) = 〈σιν : ι < τ ≤ ν〉.
Claim 3.4 ν ∈ M ∩ η implies α(ν), β(ν), σ (ν) ∈ M.

Proof First note that αν ∈ M implies α(ν) ∈ M, since 〈αι : ι < ν〉 is definable from
Lβν [X ∩αν] the way 〈αι : ι < κ〉 was defined from Lκ+[X ]. It follows that ν ∈ M ∩η

implies α(ν) ∈ M , since there is τ, ν ≤ τ < η such that ατ ∈ M and αν = ατ (ν) ∈ M.

By similar arguments ν ∈ M ∩ η implies β(ν), σ (ν) ∈ M . 	

We note that

〈〈Lβι [X ∩ αι],∈, X ∩ αι〉ι<η, 〈σιν〉ι<ν<η〉

is a directed system of elementary embeddings, and if

〈〈U, E, Y 〉, 〈gι〉ι<η〉

is its direct limit, then:

• 〈U, E, Y 〉 � 〈Lβη [X ∩ αη],∈, X ∩ αη〉,
• gι : 〈Lβι [X ∩ αι],∈, X ∩ αι〉 −→ 〈U, E, Y 〉,
• If f : 〈U, E, Y 〉 � 〈Lβη [X ∩ αη],∈, X ∩ αη〉, then σιη = f gι.
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Now let π : 〈M,∈, M ∩ X〉 � 〈Lδ[X̃ ],∈, X̃〉, where X̃ = π [M ∩ X ]. Let

• α̃(ν) = π(α(ν)),
• β̃(ν) = π(β(ν)),
• σ̃ (ν) = π(σ (ν)),
• α̃ =

⋃
ν∈M∩η

α̃(ν),

• β̃ =
⋃

ν∈M∩η
β̃(ν),

• σ̃ =
⋃

ν∈M∩η
σ̃ (ν),

and

• α̃ι = π
(
απ−1(ι)

)
,

• β̃ι = π
(
βπ−1(ι)

)
,

• σ̃ιν = π
(
σπ−1(ι),π−1(ν)

)
.

Now

〈〈L β̃ι
[X̃ ∩ α̃ι],∈, X̃ ∩ α̃ι〉ι<π(η), 〈σ̃ιν〉ι<ν<π(η)〉

is a directed system of elementary embeddings. Let

〈〈Ũ , Ẽ, Ỹ 〉, 〈g̃ι〉ι<π(η)〉

be its direct limit. Then

• g̃ι : 〈L β̃ι
[X̃ ∩ α̃ι],∈, X̃ ∩ α̃ι〉 −→ 〈Ũ , Ẽ, Ỹ 〉,

• There is an elementary embedding h such that the following diagram is commu-
tative

〈
Lβ

π−1(ι)
[X ∩ απ−1(ι)],∈, X ∩ απ−1(ι)

〉 g
π−1(ι)−→ 〈U, E, Y 〉

π−1 ↑ ↑ h
〈
L β̃ι

[X̃ ∩ α̃ι],∈, X̃ ∩ α̃ι

〉
g̃ι−→ 〈Ũ , Ẽ, Ỹ 〉

It follows that 〈Ũ , Ẽ〉 is well founded. Let

f̃ : 〈Ũ , Ẽ, Ỹ 〉 � 〈L β̄ [X̄ ],∈, X̄〉.

Also let

• σ̄ι = f̃ g̃ι : 〈L β̃ι
[X̃ ∩ α̃ι],∈, X̃ ∩ α̃ι〉 −→ 〈L β̄ [X̄ ],∈, X̄〉,

• π∗ = f h f̃ −1 : 〈L β̄ [X̄ ],∈, X̄〉 −→ 〈Lβη [X ∩ αη],∈, X ∩ αη〉.
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Then σ̃ιτ = σ̄−1
τ σ̄ι for ι < τ < π(η), and the following diagram is commutative

〈
Lβ

π−1(ι)
[X ∩ απ−1(ι)],∈, X ∩ απ−1(ι)

〉 σ
π−1(ι),η−→ 〈Lβη [X ∩ αη],∈, X ∩ αη〉

π−1 ↑ ↑ π∗

〈L β̃ι
[X̃ ∩ α̃ι],∈, X̃ ∩ α̃ι〉 σ̄ι−→ 〈L β̄ [X̄ ],∈, X̄〉

Let ᾱ be such that L β̄ [X̄ ] |� �ᾱ is the largest cardinal �.

Claim 3.5 (a) π(αη) = ᾱ,
(b) π∗(ᾱ) = αη,
(c) π∗ � ᾱ = id � ᾱ.

Proof (a) Follows easily from the facts that ᾱ = supι<ηα̃ι, αη = supι∈M∩ηαι and
π−1(α̃ι) = απ−1(ι). (b) Follows from the choice of ᾱ and the elementarily of π∗. (c)
Is trivial, as ᾱ ⊆ L β̄ [X̄ ]. 	


Next we have

Claim 3.6 If a ⊆ ᾱ and a ∈ L β̄ [X̄ ] ∩ Lδ[X̃ ], then π∗(a) = π−1(a).

Proof Since a ⊆ ᾱ, π∗(a), π−1(a) ⊆ αη, and hence π∗(a) =
⋃

ν∈M∩η
π∗(a)∩ ν =

⋃
ν<π(η)

π∗(a ∩ ν)
claim3.5=

⋃
ν<π(η)

π−1(a ∩ ν) = π−1(a). 	


Claim 3.7 δ > β̄.

Proof Suppose not. Then δ ≤ β̄ and π∗π maps M into Lβη [X ∩ αη], and by claim
3.6, π∗π(a) = a for a ⊆ αη, a ∈ M . It follows that P(αη) ∩ M ⊆ Lβη [X ∩ αη],
which is in contradiction with claim 3.3. 	


It follows that β̄ ∈ Lδ[X̃ ] and hence β̃ = 〈β̃ι : ι < π(η)〉 ∈ Lδ[X̃ ], since β̃ is
definable from L β̄ [X̄ ] as 〈β̃ι : ι < κ〉 was defined from Lκ+[X ]. Similarly σ̃ = 〈σ̃ι,ν :
ι < ν < π(η)〉 ∈ Lδ[X̃ ]. It is easily seen that

Claim 3.8 (a) π−1(α̃) = 〈αι : ι < η〉,
(b) π−1(β̃) = 〈βι : ι < η〉,
(c) π−1(σ̃ ) = 〈σιν : ι < ν < η〉.

	

Now note that:

• L β̄ [X̄ ] is the direct limit of L β̃ι
[X̃ ∩ α̃ι], σ̃ιν , ι < ν < π(η),

• π−1[X̄ ] = X ∩ αη,
• π−1[X̃ ∩ α̃ι] = X ∩ αι,

and hence by elementarily of π−1, Lπ−1(β̄)[X ∩ αη] is the direct limit of Lβι [X ∩ αι],
σιν, ι < ν < η.

It follows that π−1(β̄) = βη ∈ M . We are done. 	


123



632 S.-D. Friedman, M. Golshani

4 Open problems

We close the paper with some remarks and open problems.
By the results of Vaught, Chang, Jensen (see [1], Chapter VIII) and Silver (see

[7]), it is consistent, relative to the existence of an inaccessible cardinal, to have the
Gap-n-transfer principle with the failure of the gap−(n + 1)−transfer principle for
n = 1. The answer is unknown for n > 1.

Question 4.1 Let n > 1. Is it consistent to have the Gap-n-transfer principle with the
failure of the Gap−(n + 1)−transfer principle?

Another related question is

Question 4.2 Let n > 1. Is it consistent to have (κ, n)−morasses for each uncount-
able regular κ , but no (ω1, n + 1)−morasses?

Remark 4.3 Assuming the existence of large cardinals, it is possible to build a model
of set theory in which there exists a (κ, 1)−morass for each uncountable regular κ ,
but there are no (ω1, 2)−morasses.

In the literature the canonical counter-example to the Gap-1-transfer principle is the
non-existence of Special Aronszajn trees (see [5]). T. Raesch, in his dissertation (see
[6]), showed that this principle can fail in the presence of such trees. On the other hand
the canonical counter-example to the Gap-2-transfer principle is the non-existence of
Kurepa trees (see [7]). Inspired by the work of Raesch, Jensen produced, relative to
the existence of a Mahlo cardinal, a model in which the Gap-2-transfer principle fails,
while the Gap-1-Kurepa hypothesis holds (see [4]). However the following is open.

Question 4.4 Is it consistent relative to an inaccessible cardinal to have the Gap-
1-Kurepa Hypothesis but a failure of the Gap-2-transfer principle?

Remark 4.5 It is possible to show that the existence of an (ω2, 1)−morasses implies
KH(ℵ2,< ℵ2). Thus in our model, for n = 2, the Gap-1-Kurepa hypothesis holds,
while in it there are no (ω2, 1)−morasses.

Question 4.6 Let n > 1. Is it consistent with GC H to have KH(ℵn,ℵ0) but not
KH(ℵn,ℵ1)?

Question 4.7 Let n > 1. Is it consistent with GC H to have KH(ℵn,ℵi ) for all i < n,

but not KH(ℵn,< ℵn)?
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