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Abstract The main result of this paper is the following theorem: Let M be a
premouse with a top extender, F . Suppose that (a) M is linearly coarsely iterable
via hitting F and its images, and (b) if M∗ is a linear iterate of M as in (a), then M∗
is coarsely iterable with respect to iteration trees which do not use the top extender of
M∗ and its images. Then M is coarsely iterable.
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448 G. Fuchs et al.

1 Introduction

In this article, we are going to prove a result concerning the iterability of premice.
We assume the reader to be familiar with the theory developed in [2] or [1]. A good
introduction to the area is the monograph [7]. Let’s begin by fixing some terminology.

We shall deal with coarse normal iterations of premice. The term “premouse” here
can be understood in the sense of [2] (or [4]), or in the sense of [1]. Both approaches
use different kinds of indexing, but this difference shall not matter here.

Let T be a normal iteration tree in the sense of [1], or a normal k-maximal iteration
tree in the sense of [2]. Such a tree comes with the sequences 〈κT

i | i + 1 < lh(T )〉,
〈λT

i | i + 1 < lh(T )〉 and 〈νT
i | i + 1 < lh(T )〉 of the critical points of the extenders

applied, their lengths, and their indices, respectively.
We write T (i + 1) for the immediate T -predecessor of i + 1 in the tree-order <T ,

which is denoted by T -pred(i +1) in [2], if i +1 < lh(T ). Also, in case the i th model

of the iteration tree is active, we shall write κ̂T
i for the critical point of E

MT
i

top , that is,

of the top extender of that model, and λ̂T
i for its “length”, according to the particular

indexing scheme used. So λ̂T
i is the image of the critical point of the extender under

the associated embedding, if Jensen indexing is used, and it is the strict supremum of
the generators of the extender and the ordinals less than the successor of its critical
point, as computed in the premouse, if Mitchell-Steel indexing is used. ν̂T

i stands for
the index of the top extender, that is, for the height of MT

i .
Finally, we let ̂T (i + 1) be the minimal ξ s.t. ξ = i , or else ξ < i and κ̂i < λT

ξ

(for i < lh(T )). So it is the index to which the top extender of the i th model in the
iteration would have to be applied, according to the rules for normal iterations. Hence
for every normal T , ̂T (i + 1) = T (i + 1) for every i < lh(T ).

Frequently, when it is clear which iteration tree we are referring to, the superscript
T will be omitted.

A coarse ultrapower (often called�0 ultrapower) is an ultrapower which is formed
by using only functions which are elements of the structure one wants to take the
ultrapower of, whereas a fine ultrapower is an ultrapower which is formed by using
functions in the appropriate definability level over that structure. By a coarse nor-
mal iteration, we mean an iteration in which we use coarse ultrapowers for forming
MT

i+1 = ult(M∗
i , ET

i ) (where M∗
i is the model to which ET

i has to be applied
according to the rules for forming normal iterations) if there are no drops in [0, i)T
(no matter if ET

i is the top extender of MT
i or not). Otherwise, the ultrapowers are

formed as fine as possible, depending on where the critical point of ET
i lies in the

sequence of the projecta of M∗
i .

Let us now state more precisely what we are going to prove.

Definition 1.1 Let M be an active premouse. We let Mpassive be the premouse obtained
from M by omitting the top extender.

The coarse top iteration of M of length θ is the linear normal coarse iteration of
M of length θ , in which always the top extender is applied (if it exists, that is, if the
models in the iteration all are well founded). So it is the 0-maximal iteration tree T
on M of length θ such that νT

i = ν̂T
i , for all i with i + 1 < θ .
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A criterion for coarse iterability 449

We say that M is coarsely α-iterable by its top extender iff the coarse top iteration
of M of length α exists. M is coarsely α-iterable iff there is an iteration strategy �
for M with respect to trees on M which are coarse and normal and have length less
than α.

M is coarsely iterable by its top extender iff it is coarsely α-iterable by its top
extender, for every α. M is coarsely normally iterable iff there is an iteration strategy
� for M with respect to trees on M which are coarse and normal and of arbitrary (set
sized) length.

N is a coarse top iterate of M if there is a coarse top iteration of M with last model
N . N has stage α if this top iteration has length α + 1.

Finally, we say that M is separately α-iterable if M is coarsely α-iterable by its
top extender, and if for every coarse top iterate N of M with stage < α, N passive is
coarsely normally α-iterable.

Our main result, Theorem 4.1, is:

Main Theorem Let M be an active premouse. If M is separately α+1-iterable, then
M is coarsely normally α + 1-iterable.

The following is Corollary 4.2. The hypothesis on the definability of 〈�α | α < ∞〉
is somewhat awkward, but it is necessary to allow piecing together the individual strat-
egies to one strategy which works for all set sized (coarse and normal) trees.

Corollary If M is separately α-iterable, for every α, and if the sequence of the corre-
sponding iteration strategies 〈�α | α < ∞〉 is definable, where�α is anα+1-iteration
strategy of the coarse top iterate of stage α of M, then M is coarsely normally iterable.

The authors would like to express their gratitude to the referee, whose very helpful
comments improved the paper considerably.

2 An application

To give an example application of these results, let’s assume that x� exists, and that
there is no inner model with a Woodin cardinal. This application might play a role in
a future analysis of the strength of “u2 = ℵ2.”

The assumption that x� exists gives us “enough of a measurable cardinal” in L[x]
to carry out the construction of K there - we apply the theory developed in [3]; there,
one working assumption is that there is no inner model with a Woodin cardinal, and
that 	 is measurable. Then K c and K are built, giving universal “weasels” of height
	. But in order for the construction to work, it is not necessary to have the nor-
mal ultrafilter on 	 be a set, instead, it suffices to have a “V-ultrafilter”. So using
the normal ultrafilters on the x-indiscernibles, we can build K in L[x] up to any of
those indiscernibles, and those mice stack up to what we refer to as K = K L[x]. See
[3, p. 58] for a detailed discussion of this.

Let x� = 〈Jν[x], F〉. We would like to “add F as a top extender to K ||ν”, but
in order for this to work, we have to be a little more careful, because we want the
structure to be a premouse. For notational convenience, we shall here use λ-indexing,
as in [1], as well as the functional representation of extenders. So F is a function from
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450 G. Fuchs et al.

P(κ) ∩ Jν[x] to P(λ), where κ is the critical point of F , i.e., the least x-indiscern-
ible, and λ = F(κ). Let τ = (κ+)K (actually, it follows from [3, Thm. 1.4.] that
τ = (κ+)L[x]).

For κ < α ≤ λ, let F |α : dom(F) −→ P(α) be the extender defined by stipu-
lating that (F |α)(x) = F(x) ∩ α. Further, let K̃α = ult(K ||τ, F |α), and let πα be
the ultrapower embedding. Set K ′α = 〈K̃α, πα�(P(κ) ∩ K̃α)〉. Then K ′α is almost
a premouse; only the initial segment condition might fail. But there is a maximal
α0 ∈ (κ, λ] such that K ′α0 does satisfy the initial segment condition. Let K ′ = K ′α0 .
We show:

Lemma 2.1 K ′ is a coarsely normally iterable premouse.

Proof By our main theorem, showing that every top iterate of K ′ is coarsely normally
iterable with respect to iterations not using the top extender, and that the sequence of
those coarse normal iteration strategies is definable, is more than enough for this.

Let K ′
α be the coarse top iterate of K ′ of stage α, with embeddings π̄i, j , and

let 〈Nγ | γ < ∞〉 be the top iteration of x�, with embeddings πi, j . Now we have
an elementary embedding σ0 : K ′passive −→ K ||ν, defined as follows: Letting π̄ :
K ||τ −→F |α0 K ′passive and π : Jτ [x] −→F Jν[x], we can set σ0(π̄( f )( �γ )) =
π( f )( �γ ) (where f : κ −→ K ||τ, f ∈ K ||τ and �γ < α0). This works because
K ||τ is definable in Jτ [x], by the local definability of K . But then we have σ0 :
〈|K ′|, E K ′

top〉 −→0 〈Jν[x], F〉 meaning that σ0 : 〈|K ′|,∈〉 −→�0 〈|Jν[x]|,∈〉, and

that for x ∈ P(κ) and γ < α0, γ ∈ E K ′
top(x) iff σ0(γ ) ∈ F(σ0(x)). Actually, since

σ0�α0 = id, the latter is equivalent to γ ∈ F(x), but this simple reduction won’t work
in later iterates anymore.

So, an obvious copying construction inductively gives us embeddings σi : K ′
i
passive

−→ K Ni = K |ht(Ni ), so that σi : 〈|K ′
i |, E K ′

top〉 −→0 〈|Ni |, E Ni
top〉, and so that

the embeddings commute: σ j π̄i, j = πi, jσi . The definition in the successor case is
σi+1(π̄i,i+1( f )( �γ )) = πi,i+1(σi ( f ))(σi ( �γ )), and the definition in the limit case is
just as obvious (and works because the embeddings commute). We will have that for

i ≤ j, σi�lh(E
K ′

i
top) = σ j�lh(E

K ′
i

top).
The last point is that since we assumed that there is no inner model with a Woodin

cardinal, it follows that K is (ω,∞)-iterable, not only in L[x], where it was built, but
also in V. To this end, it suffices to show that arbitrarily long proper initial segments
of K are iterable.

So fix such a segment of K , say K ||β. We may pick β so that β is a K -cardinal; in
particular, K ||β sees no Woodin cardinal. Moreover, K ||β is 1-small. The argument
to follows is part of the folklore and in fact shows that in the absence of an inner model
with a Woodin cardinal the iterability of premice with no (definable) Woodin cardinal
is absolute between transitive models which contain ωV

1 .
We claim that K ||β is normally iterable by the following potential strategy, call it

�. If T is a normal tree on K ||β of limit length λ, then we let �(T ) be the (unique)
cofinal branch b through T , if it exists, such that there is some γ ≥ δ(T ), γ less
than or equal to the ordinal height of MT

b , such that MT
b ||γ is a Q-structure for the
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A criterion for coarse iterability 451

common part model M(T ) of T .1 (If this Q-structure exists, then it is in fact of the
form Jγ [M(T )].) If there is no such branch b, then �(T ) is undefined.

Let U ∈ L[x] be a tree of height ω of attempts to find

(a) a countable transitive model K̄ together with an elementary embedding π : K̄ →
K ||β and

(b) a transitive model H of ZFC− (where we may witness the transitivity by embed-
ding the ordinals of H into ωV

1 ) such that
(c) H |
 “there is no inner model with a Woodin cardinal, and there is a countable

putative normal iteration tree T on K̄ which either has a last ill-founded model or
else there is no maximal branch b through T such that if λ = sup(b) ≤ lh(T ) and
γ ≥ δ(T � λ) is least such that δ(T � λ) is not definably Woodin over Jγ [M(T �
λ)], then Jγ [M(T � λ)] is (isomorphic to) and initial segement of MT

b .”

Let’s assume, towards a contradiction, that K ||β is not iterable by �. By forcing
over the transitive collapse of an appropriate Skolem hull of a rank initial segment of V,
we may then argue that U is ill-founded in V. This implies that U is also ill-founded
in L[x], so that K ||β would not be iterable by � in L[x]. But this is a contradiction!

This argument uses that the statament in (c) above about the nonexistence of b
can be written in a �1

1-fashion in the appropriate parameters and is hence absolute
between V, L[x], and the countable transitive model H .

So we get an iteration strategy for K ′
γ

passive, which is the “pullback” of the strat-
egy for K , and which consequently only depends on the canonical embedding from
K ′
γ

passive into the corresponding segment of K . Since the sequence of embeddings is
clearly definable from x�, so is the sequence of iteration strategies.

Now Corollary 4.2 to our Main Theorem tells us that K ′ is coarsely normally
iterable, as wished. ��

Another application was pointed out to us by the referee. Letλbe an infinite cardinal,
and let M be an active premouse of size bigger than λ. Suppose that the top extender
of M is λ-complete (cf. [6, Definition 8.11]). Suppose also that if π : N → Mpassive is
elementary, where N is transitive and of sizeλ, then N is coarsely normallyλ++1-iter-
able. Then every transitive N ′ of size λ such that there is an elementary π : N ′ → M
is coarsely normally λ+ +1-iterable. This is shown by observing that if N ′ is transitive
and of size λ such that there is some elementary π : N ′ → M , then N ′ is coarsely
λ+ + 1-iterable by its top extender provided that this top extender is λ-complete.

3 Some machinery

We collect in this section some key observations which are needed in order to carry
out some kind of a copying construction in the proof of the main result.

Let T be a normal iteration tree.

Lemma 3.1 Let i < lh(T ) be such that there is no truncation in [0, i]T , and let
ξ = ̂T (i + 1). Then:

1 As a reference for both terminology and results about unique cofinal branches and Q-structures, we refer
the reader to [4, 6.9–6.14].

123



452 G. Fuchs et al.

(a) ξ ≤T i and κ̂ξ = κ̂i .
(b) There is no h + 1 ∈ (ξ, i]T such that νh = ν̂h.

Proof of (a) If ξ = i , then we are done. So let ξ < i , and assume, towards a contra-
diction, that ξ �<T i . Let h < i be minimal s.t. h̄ := T (h + 1) < ξ < h + 1 ≤T i .
So

(1) κh < λh̄ ≤ κ̂i .
(2) κ̂h̄ < κh .

��
Proof Otherwise, κ̂h+1 = iT

h̄,h+1
(κ̂h̄) ≥ λh , so, since h + 1 ≤T i, κ̂i ≥ λh . But

̂T (i + 1) = ξ ≤ h, so κ̂i < λh , a contradiction. ��(2)
So since κ̂h+1 = iT

h̄,h+1
(κ̂h̄), it follows that

(3) κ̂h+1 = κ̂h̄ .

But crit(iTh+1,i ) ≥ λh , and λh > κ̂h+1, since λh > κh > κ̂h̄ = κ̂h+1. So

(4) κ̂h+1 = κ̂i .

This leads to the contradiction

κh > κ̂h̄ = κ̂i ≥ λh̄ > κh .

Now that we know that ξ <T i , the second part of the claim follows quite easily:
We know that κ̂i = iTξ,i (κ̂ξ ). So we have to show that κ̂ξ < crit(iTξ,i ). But otherwise,

κ̂i ≥ λT
i , which contradicts the fact that ξ = ̂T (i + 1), so that, in particular, κ̂i < λT

ξ .

Proof of (b) This is vacuously true if ξ = i . So let ξ < i . Assume the claim to be
false. Let h + 1 be a counterexample, and let ζ = T (h + 1). Then

ξ ≤T ζ <T h + 1 ≤T i, ζ = T̂ (h + 1).

By (a), κ̂h = κ̂ζ , and κ̂i = κ̂ξ .
Now, κ̂i = κ̂ξ ≤ κ̂ζ = κ̂h (since ξ ≤T ζ ). On the other hand, κ̂i ≥ κ̂ζ = κ̂h (since

ζ ≤T i). So κ̂ξ = κ̂ζ = κ̂h = κ̂i . But this leads to the contradiction

κ̂i ≥ κ̂h+1 = iTζ,h+1(κ̂ζ ) = iTζ,h+1( κ̂h
︸︷︷︸

=κT
h

) > κ̂h = κ̂i .

��
The construction in the proof of the main lemma also relies on two commutativity

properties of coarse ultrapowers. We state them as separate lemmas. The first one is an
extension of [5, Lemma 2.7], albeit for a coarse structural setting. The corresponding
fine structural versions of our lemmas don’t hold true, and this is why our main result
talks about coarse (normal) iterability.
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Lemma 3.2 Let M,M ′ be premice. Let σ̄ : M −→F M ′, where F = E M
top. Let H be

a (possibly long) extender on M and M ′ s.t., letting π : M −→H N , π ′ : M ′ −→H

N ′, π ⊆ π ′. Let G = E N
top and λ̃ = lh(H) ≤ κ = crit(G). Let σ : N −→G Ñ . Then

Ñ = N ′ and π ′σ̄ = σπ .

Proof Let κ̄ = crit(F). Let us first argue that G ◦ π and π ◦ F agree on P(κ̄) ∩ M .
Let X ∈ P(κ̄) ∩ M . Then

F(X) = Y ⇐⇒ G(π(X)) = π(Y )

by the elementarity of π . In other words, G ◦ π(X) = π ◦ G(X).
We now define a �0-preserving map τ : Ñ −→ N ′ and show that it is surjective.

We deduce how it must be defined. To this end, let a ∈ Ñ be given. It is of the form
a = σ( f )(�α), where f ∈ κm

N ∩ N and �α < ν(G) (�α are generators of G). And f is
of the form f = π(g)( �γ ), where g ∈ κ̃n

M ∩ M, �γ < λ̃ (dom(H) ⊆ P(κ̃)). Let ψ be
a �0 formula. We get:

Ñ |
 ψ[σ( f )(�α)]
⇐⇒ ≺�α� ∈ G({≺ �β� < κ | N |
 ψ[ f ( �β)]})
⇐⇒ ≺�α� ∈ G({≺ �β� < κ | N |
 ψ[π(g)( �γ )( �β)]})
⇐⇒
�γ<λ̃≤κ

≺�α, �γ� ∈ G({≺ �β, �δ� < κ | N |
 ψ[π(g)(�δ)( �β)]})

⇐⇒ ≺�α, �γ� ∈ G(π({≺ �β, �δ� < κ̄ | M |
 ψ[g(�δ)( �β)]}))
⇐⇒

G◦π�P(κ̄)∩M=π◦F�P(κ̄)∩M
≺�α, �γ� ∈ π(F({≺ �β, �δ� < κ̄ | M |
 ψ[g(�δ)( �β)]}))

⇐⇒ ≺�α, �γ� ∈ π ′(σ̄ ({≺ �β, �δ� < κ̄ | M |
 ψ[g(�δ)( �β)]}))
⇐⇒ N ′ |
 ψ[π ′(σ̄ (g))(γ )(�α)

︸ ︷︷ ︸

:=τ(σ ( f )(�α))
]

Remember that �α < lh(G) and �γ < λ̃. To see that τ is onto, let an arbitrary element
b of N ′ be given. It is of the form b = π ′( f )( �γ ), where f ∈ κ̃m

M ′ ∩ M ′ and �γ < λ̃.
And f is of the form f = σ̄ (g)(�α), where g ∈ κ̄n

M ∩ M, �α < λ(F). So

b = π ′(σ̄ (g))(π ′(�α))( �γ )
= π ′(σ̄ (g))( π(�α)

︸︷︷︸

<lh(G)

)( �γ
︸︷︷︸

<λ̃

).
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This is clearly in the range of τ ; cf. its definition. So τ = id�Ñ , hence Ñ = N ′, and
also:

σ(π(g)( �γ ))(�α) = π ′(σ̄ (g))( �γ )(�α),

which readily implies that σπ = π ′σ̄ . ��
Lemma 3.3 Let M,M ′ be premice. Let σ̄ : M −→F M ′, where F = E M

top and

κ̄ = crit(F). Let H be a long extender of length λ̃ on M,M ′ s.t., letting π : M −→H

N , π ′ : M ′ −→H N ′, π ⊆ π ′. Let G = E N
top and suppose that κ̄ < crit(π) (=

crit(π ′)) and λ̃ ≤ lh(G) (so κ := crit(G) = κ̄).
Let σ : M −→G Ñ . Then Ñ = N ′ and π ′σ̄ = σ .

Proof We proceed as in the previous lemma. We again have that G ◦ π and π ◦ F
agree on P(κ̄) ∩ M . So we define τ : Ñ −→�0 N ′ and show that τ is surjective.

So let a ∈ Ñ be given. It’s of the form a = σ( f )(�α), where f ∈ κm
M ∩ M and

�α < λ(G). Let ψ be a �0 formula. We get:

Ñ |
 ψ[σ( f )(�α)]
⇐⇒ ≺�α� ∈ G({≺ �β� < κ | M |
 ψ[ f ( �β)]}

︸ ︷︷ ︸

:=x⊆κ<crit(π)

)

⇐⇒ ≺�α� ∈ G(π(x))

⇐⇒
G◦π�P(κ̄)∩M=π◦F�P(κ̄)∩M

≺�α� ∈ π(F(x))
⇐⇒ ≺�α� ∈ π ′(σ̄ (x))
⇐⇒ N ′ |
 ψ[π ′σ̄ ( f )(�α)

︸ ︷︷ ︸

:=τ(σ ( f )(�α))
].

Note that �α < λ(G). τ is designed to be �0 preserving. To see that it is onto, let b be
an arbitrary element of N ′. It has the form b = π ′( f )(�α), for some f ∈ κ̃M ′ ∩ M ′
and �α < λ̃ ≤ lh(G). And f can be rendered as f = σ̄ (g)( �γ ), where g ∈ κ̄m

M ∩ M
and �γ < λ(F). So

b = π ′(σ̄ (g))(π ′( �γ ))(�α)
= π ′(σ̄ (g))(π( �γ )

︸ ︷︷ ︸

<λ(G)

)( �α
︸︷︷︸

<λ̃

),
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A criterion for coarse iterability 455

which is in the range of τ . So τ = id�Ñ , Ñ = N ′ and

π ′σ̄ ( f )(�α) = σ( f )(�α),

which obviously implies that π ′σ̄ = σ. ��

4 The copying construction

We are now ready to prove the main result of this article.
The iterability notions used in the statement of the following theorem are defined

in the Introduction.

Main Theorem 4.1 Let M be an active premouse. If M is separately α + 1-iterable,
then M is coarsely normally α + 1-iterable.

Proof Fix a normal iteration strategy� for the αth top iterate of M . We shall describe
an iteration strategy �′ for coarse normal iterations of M .

The idea is that the iteration strategy for M will be as follows: If an iteration tree on
M of limit length is according to the strategy we are about to describe, then construct a
“copy” of the iteration tree onto the αth iterate of M , apply� to that iteration, and pull
back the branch it gives. The iteration tree on the αth top iterate of M is not allowed to
use the top extender, since M is only separately iterable. The idea is that we shift all
the applications of the top extender in the original tree to the beginning of the copied
tree. It is here that the two commutativity Lemmas of the previous section come in.

We shall now describe the copying process.
Let T be an iteration tree on M. Write Mi for MT

i .
Let N i

0 = 〈|N i
0|,∈, Fi

0〉 be the i th top iterate of M, κ i
0 = crit(Fi

0), λ
i
0 = λ(Fi

0), and

let σ 0
i, j : N i

0 −→ N j
0 be the iteration embedding (i ≤ j ≤ α). Let N0 = (Nα

0 )
passive.

We shall construct a kind of copy of T onto N0. The resulting iteration tree on N0
will be called U = c(T ). The models in that tree will be referred to as Ni = MU

i .
Along with U , we shall define a function ϕ : lh(T ) −→ lh(T ) and premice N γ

i , for
γ ≤ α and i + 1 < lh(U). The construction proceeds by induction.

At stage i we shall define νU
i , ϕ(i),MU

i ,U(i), and the premice N γ

i , for γ ≤ α.
Set:

1. Ni = MU
i .

2. N γ

i = iU0,i (N
γ
0 ).

More precisely, |N γ

i | = iU0,i (|N γ
0 |), and N γ

i = 〈|N γ

i |,∈, Fγi 〉, where Fγi =
⋃

x∈|Nγ
0 | iU0,i (F

γ
0 ∩ x).

3. κ
j

i = crit(F j
i ), λ

j
i = λ(F j

i ), ν
j
i = ν(F j

i ).

We prove inductively at every stage i :

(1) Mi = Nϕ(i)
i .

(2) If there are no truncations in [0, i]T , then, setting ξ = T̂ (i + 1), the following
hold true:
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(a) ϕ(i) = ϕ(ξ) and ξ ≤T i .
(b) Nϕ(ξ)+1

i = Ult(Nϕ(ξ)
ξ , Fϕ(i)i ). Furthermore, setting

π ′
ξ,i : Nϕ(ξ)

ξ −→
Fϕ(i)i

Nϕ(ξ)+1
i ,

and letting σ ξϕ(ξ),ϕ(ξ)+1 be the embedding from Nϕ(ξ)
ξ into its coarse ultra-

power by Fϕ(ξ)ξ , we have:

σ
ξ

ϕ(ξ),ϕ(ξ)+1 : Nϕ(ξ)
ξ −→

Fϕ(ξ)ξ

Nϕ(ξ)+1
ξ

and π ′
ξ,i = iUξ,iσ

ξ

ϕ(ξ),ϕ(ξ)+1.

(c) 〈N γ

i | γ ∈ [ϕ(i)+ 1, α]〉 are the models in the top iteration of Nϕ(i)+1
i .

Denoting the iteration embeddings by σ i
µ,ν : Nµ

i −→ N ν
i , we have:

σ i
µ,ν iUξ,i = iUξ,iσ

ξ
µ,ν .

The following diagram illustrates the situation:

(3) (a) Let j <T i . Then iTj,i = iUj,iσ
j
ϕ( j),ϕ(i).

(b) Let j <U i . Then iUj,iσ
j
γ,δ = σ i

γ,δi
U
j,i , for ϕ(i)+1 ≤ γ ≤ δ. If T̂ (i +1) = i ,

then this holds for ϕ(i) ≤ γ ≤ δ as well.

123



A criterion for coarse iterability 457

A remark on condition (3)(a) is in order here: If γ := ϕ( j) = ϕ(i), then we take
σ

j
γ,γ to be the identity. But if ϕ( j) < ϕ(i), then it is not at all clear that the embed-

ding σ j
ϕ( j),ϕ(i) is defined. But in this case, T̂ ( j + 1) = j , as we shall show pres-

ently: Let k′ be minimal s.t. j ≤T k′ ≤T i and ϕ(k′) > ϕ( j). Then k′ will be
of the form k + 1, νh = ν̂h and ϕ(k + 1) = ϕ(k) + 1 = ϕ( j) + 1 (and hence
T (k + 1) = T̂ (k + 1)), as will follow from our construction. So j <T k + 1 ≤T i .
We show that j = T̂ (k + 1). Otherwise, j <T ξ := T (k + 1) and κk = κ̂k ≥ λ j . We
know by Lemma 3.1 that κ̂k = κ̂ξ , and that ξ ≤T k. So we have: j <T ξ ≤T k. But
since T̂ ( j +1) < j, κ̂ j < supγ< j λγ ≤ crit(iTj,ξ ). But this means that κ̂ j = κ̂ξ < λ j , a

contradiction. So this shows that T̂ (k +1) = j . But this implies, again by Lemma 3.1,
that κ̂ j = κ̂k , and hence that T̂ ( j + 1) = T̂ (k + 1) = j , which is what we wanted to

show. So the existence of the embedding σ j
ϕ( j),ϕ(i) in (3)(a) is not problematic after

all, since it follows from the items (2)(b) and (2)(c) at stage j .
Turning to the construction, it is no surprise that we set ϕ(0) = 0. If νT

0 ∈ MT
0 ,

then νU
0 = νT

0 . Otherwise, νU
0 is undefined; U is a padded tree.

If the stages j < i have been constructed already, we shall describe how to define
the i th stage.

First, consider the case that i is a successor.

Then we let νU
i be undefined iff ET

i = E
MT

i
top and there were no truncations in

[0, i)T (so that ET
i is the “image of the top extender of MT

0 under the embedding
iT0,i )”. Otherwise, we let νU

i = νT
i .

In order to define U(i),MU
i and ϕ(i), we distinguish two cases:

If νU
i−1 is defined, then we set U(i) = T (i) (inductively, we will see that MU

U(i) =
MU

ξ where ξ is minimal s.t. either ξ = i − 1, or ξ < i − 1 and κU
i−1 < λU

ξ . In general,
it does not have to be the case that ξ = U(i), though. So U is not, verbatim, a padded
normal iteration tree. But it is not far from being such a tree; it is a liberally padded
normal iteration tree, as we shall call it).

This determines MU
i . In this case, we also set ϕ(i) = ϕ(T (i)).

If νU
i−1 is undefined, we set U(i) = i − 1, and let ϕ(i) = ϕ(T (i))+ 1.

In the case that i is a limit, we wish to apply� to the part of the tree U constructed
so far (note that the copying procedure depends on the iteration strategy � that we
fixed in advance).

This tree will always be a liberally padded normal iteration tree; see the next section,
where it is also shown that the iteration strategy for N0 works for such trees.

So if this tree is according to �, this iteration strategy can be applied, yielding a
cofinal well founded branch b through it.

Let L be the set of i such that νU
i is undefined. Let

E = { j ∈ L | ∀ξ < j∃ζ ∈ [ξ, j) ζ /∈ L},

and set E + 1 = {i + 1 | i ∈ E}. We shall define a putative branch b′ from b by cases:

(�) If E + 1 ∩ b is bounded, say by ξ , then we let b′ be the<T -closure of b \ (ξ + 1).
If not, we let b′ be the <T -closure of E + 1 ∩ b.
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If b′ is a cofinal wellfounded branch of the part of T constructed so far, then we
extend T by b′ and set ϕ(i) = sup j<T i ϕ( j). Otherwise the construction breaks down.

We shall show that this is a successful coarse normal iteration strategy. First, we
are going to verify our inductive hypotheses (1)–(3).

For i = 0, nothing has to be shown.
Now suppose (1)–(3) hold for every j < i . We show they hold for i as well.

Main Case 1: i is a successor ordinal.

Proof of (1) Let ξ = T (i). If νU
i−1 is defined, then EU

i−1 = ET
i−1 and ξ = U(i). By

induction hypothesis, Mξ = Nϕ(ξ)
ξ . Now, νϕ(ξ)ξ is a regular cardinal in Nξ (since it is

the image of νϕ(ξ)0 under the elementary embedding iU0,ξ ). So iTξ,i = iUξ,i�Nϕ(ξ)
ξ , and

thus

Nϕ(ξ)
i = Ult

(

Nϕ(ξ)
ξ , ET

i−1

)

= Ult
(

Mξ , ET
i−1

)

= Mi .

But ϕ(ξ) = ϕ(i), so we are done.
Now suppose νU

i−1 is undefined. So the top extender was applied in T in the (i −1)st

step, ξ = T (i) = T̂ (i), ϕ(i) = ϕ(i −1)+1, and there was no truncation in [0, i −1]T .
But now, (2) holds at stage i − 1. By (a), we know that ϕ(ξ) = ϕ(i − 1), and by (b),
Nϕ(ξ)+1

i−1 = Ult(Nϕ(ξ)
ξ , Fϕ(i−1)

i−1 ). But by (1) at stage i − 1, we know that Mi−1 =
Nϕ(i−1)

i−1 , so in particular, ET
i−1 = Fϕ(i−1)

i−1 . Putting these together, we see:

Mi = Ult
(

Mξ , ET
i−1

)

= Ult
(

Nϕ(ξ)
ξ , Fϕ(i−1)

i−1

)

= Nϕ(ξ)+1
i−1 .

But Ni−1 = Ni and ϕ(i) = ϕ(i − 1) + 1 = ϕ(ξ) + 1, so Mi = Nϕ(i)
i , as was to be

shown. ��(1)
Now we turn to the verification of (2). In fact, the proof given works for limit i as

well.

Proof of (2) So let ξ = T̂ (i + 1). To verify (2)(a), note that ξ ≤T i by Lemma 3.1,
part (a). Part (b) of that lemma shows that ϕ(i) = ϕ(ξ), because the only stages at
which ϕ( j) < ϕ( j ′), where j = T ( j ′) are those with νT

j ′ = ν̂T
j ′ . Such stages don’t

exist in (ξ, i], so ϕ(ξ) ≥ ϕ(i). But it is easy to verify that ϕ is weakly monotonous
along branches. So ϕ(ξ) = ϕ(i).

It also follows that

ξ = T̂ (ξ + 1).

This is because we know from Lemma 3.1 that κ̂ξ = κ̂i . Hence, T̂ (ξ+1) = T̂ (i) = ξ .
Case 1: ξ < i

Then, because ξ = T (ξ + 1), we know that 〈N γ
ξ | γ ∈ [ϕ(ξ), α]〉 is the top iter-

ation of Nϕ(ξ)
ξ . This is what our inductive hypothesis (2) at stage ξ gives us. Set:
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λ̃ := sup{λ j | j + 1 ∈ (ξ, i]T } ≤ λ̂i , and κ̃ = min{δ | λ̃ ≤ iUξ,i (δ)} (λ̃ ≤ λ̂i because
the former is a limit cardinal in Mi and the latter is the largest cardinal in Mi . κ̃ exists
because iTξ,i is cofinal).

We have the following situation: σ ξϕ(i),ϕ(i)+1 : Nϕ(i)
ξ −→

Fϕ(i)ξ

Nϕ(i)+1
ξ , and Nϕ(i)

i is

the ultrapower of Nϕ(i)
ξ by the long extender iUξ,i�κ̃, κ̂

ϕ(i)
i = crit(Fϕ(i)i ) = κ̂i = κ̂ξ =

crit(Fϕ(ξ)ξ ) = κ̂
ϕ(ξ)
ξ < crit(iUξ,i ) and λ̃ ≤ λ̂i = lh(Fϕ(i)i ) = κ̂

ϕ(i)
i . So Lemma 3.3 can

be applied and gives (2)(b).
The corresponding argument, but applying Lemma 3.2, gives (2)(c). To see this,

argue by induction on γ ≥ ϕ(i) + 1. Assume that we inductively know that
〈N δ

i | δ ∈ [ϕ(i)+ 1, γ ]〉 are the models in an initial segment of the top iteration of

Nϕ(i)+1
i . Call the iteration embeddings σ i

µ,ν (ϕ(i) + 1 ≤ µ ≤ ν ≤ γ ). Then we

have the situation σ ξγ,γ+1 : N γ
ξ −→Fγξ

N γ+1
ξ , and N γ

i , N γ+1
i are the ultrapowers of

N γ
ξ , N γ+1

ξ , resp., by the long extender iUξ,i�P(κ̃). We have just seen in the previous

paragraph that λ̃ ≤ λ̂
ϕ(i)
i . But λ̂ϕ(i)i = κ̂

ϕ(i)+1
i ≤ σ i

ϕ(i)+1,γ (κ̂
ϕ(i)+1
i ) = κ̂

γ

i (note

that, inductively, the embedding σ i
ϕ(i)+1,γ exists). This is all that’s required in or-

der to be able to apply Lemma 3.2. It gives that N γ+1
i = Ult(N γ

i , Fγi ) and that,

denoting the ultrapower embedding by σ i
γ,γ+1, σ

i
γ,γ+1iUξ,i = iUξ,iσ

ξ
γ,γ+1. Defining

σ i
µ,γ+1 = σ i

γ,γ+1σ
i
µ,γ and σ i

γ+1,γ+1 = id, it’s obvious that these embeddings com-

mute nicely: σ i
µ,ν iUξ,i = iUξ,iσ

ξ
µ,ν , for ϕ(i)+ 1 ≤ µ ≤ ν ≤ γ + 1. We will make use of

this commutativity when dealing with the limit case.
So let γ be a limit ordinal. Let

〈Ñ , σ i
µ,λ〉 = dir lim(〈Nµ

i | ϕ(i)+ 1 ≤ µ < γ 〉, 〈σ i
µ,ν | ϕ(i)+ 1 ≤ µ ≤ ν < γ 〉).

We derive how to define an embedding τ : Ñ −→�0 N γ

i . Let ψ be a �0 formula
which holds in Ñ of a = σ i

µ,λ(ā). Letting ā = iUξ,i ( f )(�α), where f ∈ κ̃m
Nµ
ξ ∩ Nµ

ξ

and �α < λ̃, we get:

Ñ |
 ψ[a] ⇐⇒ Nµ
i |
 ψ[ā]

⇐⇒ ≺�α� ∈ iUξ,i ({≺ �β� < κ̃ | Nµ
ξ |
 ψ[ f ( �β)]})

⇐⇒ ≺�α� ∈ iUξ,i (σ
ξ
µ,λ({≺ �β� < κ̃ | Nµ

ξ |
 ψ[ f ( �β)]}) ∩ κ̃);

the last equivalence is because κ̃ ≤ λ̂ξ = κ̂
ϕ(i)+1
ξ ≤ κ̂

µ
ξ (we already know that

λ̃ ≤ λ̂
ϕ(i)
i . So iUξ,i (λ̂ξ ) = λ̂i ≥ λ̃. Now κ̃ = min{δ | λ̃ ≤ iTξ,i (δ)}, i.e., κ̃ ≤ λ̂ξ .). Hence,

we get:

Ñ |
 ψ[a] ⇐⇒ ≺�α� ∈ iUξ,i ({≺ �β� < κ̃ | Nλ
ξ |
 ψ[σ ξµ,λ( f )( �β)]})

⇐⇒ Nλ
i |
 ψ[iUξ,i (σ ξµ,λ( f )(�α)

︸ ︷︷ ︸

:=τ(a)

].
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That τ is well defined follows from the commutativity properties mentioned above. To
see that it is onto, note that every element b of Nλ

i is of the form iUξ,i ( f )(�α), for some

f ′ ∈ κ̃m
Nλ
ξ ∩Nλ

ξ and �α < λ̃. Now f ′ = σ
ξ
µ,λ( f ), for someµ ∈ [ϕ(i)+1, λ), f ∈ Nµ

ξ .

Then, setting b′ = σ i
µ,λ(i

U
ξ,i ( f ′)(�α)), we have: b = τ(b′), and this shows that Nλ

i = Ñ .
Moreover, since τ is the identity, this means, for a as above:

a = σ i
µ,λ(i

U
ξ,i ( f )(�α))

= σ i
µ,λ(i

U
ξ,i ( f ))(�α)

= iUξ,i (σ
ξ
µ,λ( f )(�α),

which clearly implies that σ i
µ,λiUξ,i = iUξ,iσ

ξ
µ,λ, as wished.

Case 2: ξ = i .
Then κ̂i ≥ λ j , for all j < i . So letting λ̃ := sup{λ j | j + 1 ≤T i} ≤ λ̂i , and

κ̃ = min{δ | λ̃ ≤ iTξ,i (δ)} ≤ λ̂0 = κ̂1
0 . So we can apply Lemma 3.2 to the

long extender iU0,i�P(κ̃), whose generators are bounded by λ̃ ≤ κ̂
ϕ(i)
i . Of course,

〈N γ
0 | γ ∈ [ϕ(i), α]〉 are the models in the top iteration of Nϕ(i)

0 , by definition. The
argument is just like in case 1. We get that 〈N i

γ | γ ∈ [ϕ(i), α]〉 are the models in the

top iteration of N i
ϕ(i), which shows (2)(b) and (2)(c) at once. Note that (2)(a) is trivial

in this case. ��(2)
Proof of (3) We omit the proof of (3)(b) because as a matter of fact, it is implicit in
the proof of (2)(b) in case 1. Replace ξ there by an arbitrary j <U i . The proof goes
thru.

To prove (3)(a), we again distinguish two subcases. Let ξ = T (i).
Case 1: νU

i−1 is defined.

Then ξ = U(i), ϕ(ξ) = ϕ(i), σ ξϕ(ξ),ϕ(i) is the identity, and iTξ,i = iUξ,i�Nϕ(ξ)
ξ . So we

have trivially:

iTξ,i = iUξ,iσ
ξ

ϕ(ξ),ϕ(i).

This shows one instance of (3)(a). Now let j <T i . If j = ξ , we have just shown
what there is to show. Otherwise, j <T ξ <T i . We know that (3)(a) holds at stage
ξ , giving us:

iTj,ξ = iUj,ξ σ
j
ϕ( j),ϕ(ξ).

Hence,

iTj,i = iTξ,i i
T
j,ξ

= iUξ,i i
U
j,ξ σ

j
ϕ( j),ϕ(ξ)

= iUj,iσ
j
ϕ( j),ϕ(ξ),
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which is what is claimed in (3)(a).
Case 2: νU

i−1 is undefined.

So in this case, ϕ(i) = ϕ(i − 1)+ 1,U(i) = i − 1, νi = ν̂i and T̂ (i) = T (i) = ξ .
We first put (2)(a) and (b) at stage i − 1 to use. By (2)(a), ϕ(ξ) = ϕ(i − 1) and
ξ ≤T i − 1.

Noting that iTξ,i : Nϕ(ξ)
ξ −→

Fϕ(i−1)
i−1

Nϕ(i)
i = Nϕ(ξ)+1

i−1 , i.e., iTξ,i = π ′
ξ,i−1, (2)(b) says

that

iTξ,i = iUξ,i−1σ
ξ

ϕ(ξ),ϕ(ξ)+1.

But iUξ,i−1 = iUξ,i and ϕ(ξ)+ 1 = ϕ(i), so this says:

iTξ,i = iUξ,iσ
ξ

ϕ(ξ),ϕ(i),

which is one instance of (3)(a). To prove the full property (3)(a), let j <T i . If j = ξ ,
we’re done. So let j <T ξ . Applying (3)(a) at stage ξ gives:

iTj,ξ = iUj,ξ σ
j
ϕ( j),ϕ(ξ).

Finally, ξ = T̂ (ξ + 1) and hence κ̂ξ = κ̂
ϕ(ξ)
ξ ≥ λ̃ = supl<ξλl

. So Lemma 3.2 can be
applied to give

iUj,ξ σ
j
ϕ(ξ),ϕ(ξ)+1 = σ

ξ

ϕ(ξ),ϕ(ξ)+1iUj,ξ .

Putting the last three displayed equations together, we get:

iTj,i = iTξ,i i
T
j,ξ

= iUξ,iσ
ξ

ϕ(ξ),ϕ(i)i
U
j,ξ σ

j
ϕ( j),ϕ(ξ)

= iUξ,i i
U
j,ξ σ

j
ϕ(ξ),ϕ(ξ)+1σ

j
ϕ( j),ϕ(ξ)

= iUj,iσ
j
ϕ( j),ϕ(i),

as wished. We used that ϕ(i) = ϕ(ξ)+ 1 here. ��(3)
Main Case 2: i is a limit ordinal.

In this case, it suffices to prove (1) and (3), as the proof of (2) given in the successor
case works in the limit case just as well.

The proof of (1) is where property (3) will come in. We will define a�0 preserving
embedding τ : MT

b′ −→ Nϕ(i)
i . Remember that ϕ(i) = sup j∈b ϕ( j). So let a ∈ MT

b′ .
We will describe where a should be mapped. Being an element of the direct limit, a
has a preimage ā = (iTj,b′)−1(a) in some M j , where j ∈ b′. Set:

τ(a) = iUj,λσ
j
ϕ( j),ϕ(λ)(ā).
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Note that this makes sense since at least one of the following hold: a) ϕ( j) = ϕ(λ),
or b) j = T̂ ( j + 1). For if a) fails, then b) holds, because j has T -successor (cf. the
remark after the statement of property (3)(a)). In any case, σ j

ϕ( j),ϕ(λ) is defined, and
all of this is indeed a definition of a function since the embeddings involved commute
as described in (3)(b). A routine verification shows that τ is onto, and hence that (1) is
satisfied at stage i . That τ is surjective indeed means that τ is the identity, and hence,
it follows from the definition of τ that

iTj,λ(ā) = a = τ(a) = iUj,λσ
j
ϕ( j),ϕ(λ)(ā),

which is precisely what is demanded in (3)(a). (3)(b) is again implicit in the proof of
(2)(c) in the successor case.

This finishes the construction.
Let us look back and see what we have achieved so far: We fixed an iteration strat-

egy� for the passive version of the top iterate N of M of stage α. Then we described
a partial function c on coarse normal iteration trees on M . The α-iteration strategy
�′ for M , which is claimed to exist by the theorem, is described as follows: Given a
coarse normal iteration tree T of limit length on M , form the copy U = c(T ), which
is a padded tree on N . If this is defined, then it is a liberally padded normal coarse
iteration tree on N (this notion is defined in the next section). If U is according to �,
and is of limit length, then let b = �(U). Let b′ be defined from b as described in (�).
If this is a cofinal well founded branch of T , then set �′(T ) = b′. Otherwise, �′(T )
is undefined.

In order to see that this is a successful coarse normal α-iteration strategy for M ,
the following has to be shown: If T is a coarse normal iteration tree on M which is
according to �′ and has length < α, then

1. If T has length θ + 1, ν indexes an extender in MT
θ with critical point κ , and

ν > νT
i , for any i < θ , then, letting ξ be least s.t. κ < λT

ξ and ζ be maximal s.t.

F = E
MT

θ
ν is total on M∗ = MT

ξ ||ζ , then Ult(M∗, F) is well-founded.
2. If T has limit length, then c(T ) exists and is according to �, in a sense which is

made precise in the next section.
3. Further, if b = �(c(T )), and b′ is defined from b as in (�), then b′ is a cofinal

well-founded branch of T .

We shall postpone these points to the end of the next section. Modulo these, the proof
of the Main Theorem is complete. ��
Corollary 4.2 If M is coarsely separately α-iterable, for every α, and if the sequence
of the corresponding iteration strategies 〈�α | α < ∞〉 is definable, where �α is an
α + 1-iteration strategy of the coarse top iterate of stage α of M, then M is coarsely
iterable.

Proof The proof of the Main Theorem shows how to convert the α+ 1-iteration strat-
egy �α of the αth top iterate of M into a coarse α-iteration strategy �′

α of M , in a
uniform way. So the sequence 〈�′

α | α < ∞〉 is definable. We can now define a coarse
normal ∞-iteration strategy� for M , as follows: Given a coarse normal iteration tree
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on M , we let α(T ) be the least ordinal α with the property that b = �′
α(T ) is defined

and for unboundedly many α′, �′
α′(T ) = b, if such an α exists. If α(T ) exists, we let

�(T ) = �′
α(T )(T ). It is straightforward to check that� is a successful coarse normal

iteration strategy. ��

5 The relationship between T and its “copy”

In the following, we will try to capture the kind of iteration tree that our “copy” c(T )
of T is.

Definition 5.1 A liberally padded strongly normal iteration tree T is a padded itera-
tion tree of some length θ with a set L of “lazy points” (this is just the set of i such
that νT

i is undefined), in which the indices of extenders applied are strictly increasing,
and the rules for choosing predecessors are as follows:

A If i is not lazy, then let ξ = min({i} ∪ { j < i | j /∈ L ∧ κT
i < λT

j }). We demand

that MT
T (i+1) = MT

ξ .
B If i is lazy, then T (i + 1) = i .

There is a subtle difference between this notion of a padded tree and that given in
[2]. There, if α ∈ L, then α <T β iff β = α + 1 or α + 1 <T β, whereas in the case
of liberal padding it is possible that the tree branches at α ∈ L.

This is only a mild difference, though, and it is quite easy to see that a normal
iteration strategy � for a premouse M can be extended to an iteration strategy which
works for liberally padded iteration trees on M. For given an iteration tree T on M
which is liberally padded, we can form a “condensed” version T ′ of T , which can be
viewed as indexed by equivalence classes of the equivalence relation on lh(T ) which
identifies ordinals indexing the same models. Enumerating those equivalence classes
in such a way that predecessors in the tree order come first, the resulting tree is a coarse
normal iteration tree. So � can be applied to that tree, giving a cofinal well-founded
branch b through T ′. The interesting case now is that T ′ has limit length. In that case,
one can convert b into a cofinal branch through the original tree T as follows: Let c be
the the set of T -predecessors of least members of equivalence classes of b, and then
let c′ be the branch generated by c. It is cofinal, and MT

c = MT ′
b .

This justifies the application of� to U in the proof of Theorem 4.1, since it is clear
that U is liberally padded. So at this point, the construction of c(T ) is really done.

We shall need some more observations in order to prove the remaining three points
mentioned at the end of the proof of Theorem 4.1.

For this section, fix a coarse normal tree T and U = c(T ). Set

L = {i < θ | νT
i = ν̂T

i and there are no drops in [0, i)T }.

This happens to be the set of lazy points of U . Let I be the set of maximal intervals
consisting of points i ∈ L. In order to gain a better understanding of U , let’s introduce

S = {θ ∩ (I ∪ {lub I }) | I ∈ I}.
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Here, we use lub A for the strict supremum of A, i.e., the least ordinal strictly greater
than all members of A, if A is nonempty, 0 otherwise. It follows that S is pairwise
disjoint. Hence we can define, for i < θ ,

Ii :=
{

I if I is the unique I ∈ S s.t. i ∈ I,
{i} if no such I exists.

Set i � j iff Ii = I j . Hence, MU
i = MU

j iff i � j , and Ii is the equivalence class of
i with respect to �.

This gives an alternative definition of the set E introduced in the course of the proof
of Theorem 4.1, to wit:

E = {min I | I ∈ S}.

So E consists of lazy points that begin a new interval of lazy points. We shall also set:

E + 1 = {i + 1 | i ∈ E}.

Suppose for the rest of this section that T is a coarse normal simple iteration tree
on M which is in accordance with the strategy �′ described in the previous section.
For the reader’s convenience we restate the choice of the branches on the T -side: If
i is a limit ordinal, then, letting b = [0, i)U = �(U�i), we have that [0, i)T = b′,
where b′ is defined as follows:

If E + 1 ∩ [0, i)U is bounded, say by ξ , then b′ is the closure of b \ (ξ + 1) under
<T .

Otherwise, b′ is the closure of E + 1 ∩ b under <T .

Lemma 5.2 Let i + 1 < θ = lh(U).
(a) If i /∈ L, then U(i + 1) = T (i + 1).
(b) If i ∈ L and i /∈ E , then T (i + 1) = i = U(i + 1).

So, if j < θ is a successor ordinal which is not a member of E + 1, then T ( j) =
U( j).

Proof Claim (a) is obvious.
For (b), assume the contrary. Let i be the minimal counterexample.
If i is a successor, we know that i − i ∈ L, so κ̂i−1 = κ̂T (i), by Lemma 3.1. Hence

κT
i = κ̂i = λ̂i−1 = λT

i−1. So T (i + 1) = i = U(i + 1).
Now let i be a limit. Since i ∈ L but i /∈ E, ξ := min Ii < i . Obviously then, every

α ∈ Ii ∩ i is a<U -predecessor of i . By the translation of branches from U to T , every
α ∈ Ii ∩ i which is greater than ξ , is also a T -predecessor of i .

Now we show that κi ≥ λα for every α ∈ (i ∩ Ii )\{ξ}. Let such an α be given. Then
α <T α+ 1 <T i , as we now know. So κ̂α+1 = iTα,α+1(κ̂α) = λ̂α , by Lemma 3.1. So

κ̂i ≥ iTα+1,i (κ̂α+1) ≥ λ̂α . But κT
i = κ̂i and λT

α = λ̂α , so we are done. ��
In the following, we shall adopt the common convention of writing [0, i)T for the

set of all j such that j <T i , and analogously for U .
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Lemma 5.3 <T ⊆<U .

Proof We show by induction on i < lh(T ) that [0, i)T ⊆ [0, i)U .
This is obvious for i = 0.
Suppose we have shown the claim for all j ≤ i . We prove it for i + 1. To do this,

we first check that T (i + 1) <U i + 1:

Case 1: i ∈ L.
Then T (i + 1) = ̂T (i + 1) ≤T i . By induction hypothesis, it follows that
T (i + 1) ≤U i . Since i ∈ L, i <U i + 1, so T (i + 1) <U i + 1, as claimed.

Case 2: i /∈ L.
Then T (i + 1) = U(i + 1) <U i + 1.

Now [0, i +1)T = {T (i +1)}∪[0, T (i +1))T . By induction hypothesis, [0, T (i +
1))T ⊆ [0, T (i + 1))U . But since T (i + 1) <U i + 1, [0, T (i + 1))T ⊆ [0, i + 1)U ,
and, finally, {T (i + 1)} ∪ [0, T (i + 1))U ⊆ [0, i + 1)U .

Now let i be a limit ordinal. Let b = [0, i)U and b′ = [0, i)T . Since U = c(T ), we
know that b′ is the<T -closure of some subset of b. But then, the inductive hypothesis
yields that b′ ⊆ b, so we are done. ��

We now need some kind of a converse to the fact that<T ⊆<U . The following will
do:

Lemma 5.4 If i ≤U j and (E + 1) ∩ (i, j]U = ∅, then i ≤T j .

Proof This follows from Lemma 5.2, by induction on j . Or, put differently, deny, and
let j be the least counterexample. Then i <U j .

From the abovementioned Lemma it follows that j cannot be a successor ordinal.
For if it were, then by Lemma 5.2, T ( j) = U( j), and since (E + 1) ∩ (i,U( j)] = ∅,
it follows by minimality of j that i ≤T U( j). But U( j) = T ( j) <T j , so i <T j ,
contradicting our assumption of the contrary.

So j is a limit. Let b = [0, j)U . Since E + 1 ∩ b is bounded by i + 1 in j , it follows
that b′ = [0, j)T is the closure of b \ i + 1 under <T . So, in particular, i <T j after
all: Letting h be the immediate <U -successor of i in b, i is a successor not in E + 1,
so i = U(h) = T (h) ∈ b′. ��
Lemma 5.5 Let i0 ∈ E , and i0 + 1 ≤U i1 ∈ E . Further, assume that E + 1 ∩ (i0 +
1, i1] = ∅. Then T (i1 + 1) > i0.

Proof By Lemma 5.4, it follows that i0 + 1 ≤T i1. So

κ̂i0+1 ≤ κ̂i1 .

Since i0 ∈ E, λi0 = λ̂i0 = κ̂i0+1 (we used Lemma 3.1 here). And i1 ∈ E , so κi1 = κ̂i1 .
Hence, κi1 ≥ λi0 , or, in other words, T (i1 + 1) > i0. ��

Lemma 5.6 Let i0 + 1, i1 + 1 ∈ E + 1 and i0 + 1 ≤U i1 + 1. Then i0 + 1 ≤T i1 + 1.

123



466 G. Fuchs et al.

Proof Deny. Fix i0 and let i1 be the least counterexample.
Then (i0 + 1, i1 + 1]U ∩ E + 1 �= ∅. Because otherwise, by Lemma 5.5, it follows

that T (i1 + 1) ≥ i0 + 1. But by Lemma 5.3, T (i1 + 1) <U i1 + 1. So, both i0 + 1 and
T (i1 + 1) are <U -predecessors of i1 + 1, and i0 + 1 ≤ T (i1 + 1). This implies that

i0 + 1 ≤U T (i1 + 1).

But E + 1 ∩ (i0 + 1, T (i1 + 1)]U = ∅, so by Lemma 5.4, i0 + 1 ≤ T (i1 + 1). Of
course, T (i1 + 1) <T i1 + 1, so we get that i0 + 1 ≤T i1 + 1, after all.

Moreover, E + 1 ∩ (i0 + 1, i1]U has no maximal element. For suppose µ+ 1 were
maximal in that set. Note that since i1 ∈ E, i1 /∈ E + 1. So µ+ 1 < i1, and

E + 1 ∩ (µ+ 1, i1]U = ∅.

By the argument in the previous paragraph, replacing i0 with µ, it follows that

µ+ 1 <T i1 + 1.

And since i1 is the least counterexample for the claim of the lemma, we have that

i0 + 1 ≤T µ+ 1,

which shows that i0 + 1 <T i1 + 1 after all.
So let σ = sup(E + 1 ∩ (i0 + 1, i1]U ). Let c = [0, i1]U ∩ σ . Since σ is a limit

of c, σ <U i1, and hence, c = [0, σ )U . It follows that, letting c′ be the <T -hull of
c ∩ (E + 1), c′ = [0, σ )T . So,

i0 + 1 <T σ <U i1 + 1.

But since (σ, i1] ∩ E + 1 = ∅, we know by Lemma 5.4 that σ ≤T i1. So,

i0 + 1 <T i1.

Now, repeating the argument from Lemma 5.5, we show that

T (i1 + 1) ≥ σ.

For otherwise we could pick h + 1 ∈ E + 1 ∩ (i0 + 1, σ )U so that κi1 < λh . But
κi1 = κ̂i1 and, since h + 1 ∈ E + 1, λh = κ̂h+1, which, since h + 1 <T i1, is at most
κ̂i1 . So κi1 ≥ λh , a contradiction.

So, both σ and T (i1 +1) are<U -predecessors of i1 +1, and σ ≤ T (i1 +1), which
shows that σ ≤U T (i1 + 1). But (σ, T (i1 + 1)] ∩ E + 1 = ∅, so

i0 + 1 <T σ ≤T T (i1 + 1) <T i1 + 1,

which contains the claim to the failure of which i1 was chosen to be a witness. ��
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Now we are ready to verify that the strategy �′ described in the proof of the Main
Theorem is a successful coarse normal α-iteration strategy for M. So we have to
verify the points mentioned at the end of that proof; we reproduce them here, for the
reader’s convenience. If T is a coarse normal iteration tree on M which is according
to �′ and has length < α, then we have to show:

1. If T has length θ + 1, ν indexes an extender in MT
θ with critical point κ , and

ν > νT
i , for any i < θ , then, letting ξ be least s.t. κ < λT

ξ and ζ be maximal s.t.

F = E
MT

θ
ν is total on M∗ = MT

ξ ||ζ , then Ult(M∗, F) is well-founded.
2. If T has limit length, then c(T ) exists and is according to �.
3. Further, if b = �(c(T )), and b′ is defined from b as in (�), then b′ is a cofinal

well-founded branch of T . (The definition of b′ will be repeated in the proof
below.)

The first of these points is clear, since the construction of c(T ) shows that c(T ′)
exists, where T ′ is the one-point extension described in that point.

The second point is clear as well, since for every limit λ < lh(T ), the branch
[0, λ)T was picked by �′, which means that [0, λ)c(T �λ) was picked by �.

For the last point: We have to show that b′ is a cofinal well-founded branch of T ,
where b′ is defined by cases, as follows.

The first case is that [0, i)U ∩ (E + 1) is bounded in i . In that case, if ξ is such a
bound, then b′ is the closure of b \ (ξ + 1) under<T . For α, β ∈ b such that α <U β,
it follows from Lemma 5.4 that α <T β. So b′ is a cofinal branch of T .

In the second case, [0, i)U ∩ (E +1) is cofinal in i . In that case, b′ is the<T -closure
of b∩(E +1). By Lemma 5.6, if α < β both are elements of b∩(E +1), then α <T β.
So in that case too, b′ is a cofinal branch.

That b′ is well-founded follows from the construction of T and U : The universe of
the limit MT

b′ is the same as that of Nϕ(i)
i , in the terminology of the proof of the main

theorem.
This completes the proof of Theorem 4.1.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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