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Abstract A pool resolution proof is a dag-like resolution proof which admits a
depth-first traversal tree in which no variable is used as a resolution variable twice on
any branch. The problem of determining whether a given dag-like resolution proof is
a valid pool resolution proof is shown to be NP-complete.
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Propositional resolution has been the foundational method for reasoning in proposi-
tional logic, especially for forming refutations of satisfiability of set of clauses. In
recent years, the most successful satisfiability testers have used the DPLL (Davis-
Putnam-Logeman-Loveland) algorithm combined with clause learning, backtracking,
restarts, and other techniques. (See Beame et al. [4] for an overview of clause learning.)
Pool resolution was introduced by Van Gelder [11] as an resolution-based refutation
system that provides a good theoretical model for the proofs produced by real-world
satisfiability testing algorithms that incorporate clause learning and backtracking.
Van Gelder proved that pool resolution is exponentially stronger than regular reso-
lution. Bacchus et al. [3], building on techniques from [4], proved that pool resolution
can “effectively p-simulate” full resolution; and Buss et al. [6, Thoerem 19] gave an
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effective p-simulation for a system similar to pool resolution. However, it is open
whether pool resolution can directly p-simulate full resolution.

Van Gelder defined pool resolution algorithmically; however, we shall use his char-
acterization that a pool resolution proof is a dag-like resolution proof that admits a
regular, depth-first traversal. A depth-first traversal defines a tree on the clauses in the
proof, which is a subgraph of the dag. The tree is called “regular”, provided that no
branch in the tree that contains two clauses that are derived by resolution on the same
variable.

Actually, Van Gelder defined pool resolution using an extended form of the resolu-
tion that allows any two clauses to be resolved with any resolution variable—regardless
of whether the variable occurs appropriately in the clauses. This extended resolution
rule was called the degenerate resolution rule by [3].

A depth first traversal τ of a refutation R and the associated traversal tree Tτ are
formally defined as follows. If C is a non-initial clause in R and D is one of the hypoth-
eses of the inference used to derive C , then we call D a child of C . We assume w.l.o.g.
that R is rooted, that is, that every clause in R is a descendent of the empty clause. A
depth first traversal τ of R is a sequence E0, E1, . . . , E p containing the clauses of R,
each clause exactly once, starting with the empty clause. For 1 ≤ i ≤ m, Ei must be
a child of an earlier E j , where j must be the maximum value < i such that not all of
E j ’s children occur among E0, . . . , Ei−1. In this case, Ei is also a child of E j in the
tree Tτ induced by the traversal τ , and all edges in Tτ are obtained in this way.

The traversal τ is called regular provided Tτ has no branch that contains two clauses
derived by resolution on the same variable. R is a pool resolution refutation if and
only if it admits a regular depth first traversal.

The Pool Resolution problem is the decision problem of deciding whether a
given dag-like resolution proof R is also a pool resolution refutation. Note that this
problem is clearly in NP, since the algorithm can just non-deterministically guess a
regular, depth-first traversal.

Theorem 1 The Pool Resolution problem is NP-complete.

To fully specify the Pool Resolution problem, we need to say how the dag-
like proof R is presented. Our proof of Theorem 1 will make the strongest possible
assumptions: First, we will work only with proofs R that are refutations in which all
resolution inferences are standard. (A “refutation” is a proof that ends with the con-
tradictory clause ∅.) Furthermore, the refutation R will be specified as a sequence of
clauses, and each non-initial clause can be derived in exactly one way from the earlier
clauses. Thus, R will admit a unique dag structure.

There have been a number of results, including [1,2,8–10], about the hardness of
finding resolution proofs, or of determining whether resolution proofs exist. Theo-
rem 1, however, is more in the spirit of hardness results by Buss and Hoffmann [5]
and Hoffmann [7]: these show that, given a particular resolution refutation, it is hard
to determine if it satisfies extra conditions.

The rest of the paper gives the proof of the theorem. The main construction for
the proof will be a reduction from the NP-complete satisfiability problem Sat to
Pool Resolution. An instance � of Sat consists of a set of m clauses C1, . . . , Cm

involving k variables x1, . . . , xk .
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Fig. 1 Shows the root portion
of the dag refuation R. The end
clause is ∅. The only initial
clause, shown in boldface, is
yv1v2 · · · vk . The other leaves,

decorated with
. . .

.

.

. . .
.
’s are

derived from the proof fragments
shown in Figs. 2, 3, and 4. The
variables in the right column
indicate the resolution variable
for the corresponding inferences

Given �, we will construct another set � of clauses and a dag-like resolution refu-
tation R of �. The propositional variables in � will be ui and vi for 1 ≤ i ≤ k, c j for
1 ≤ j ≤ m, and one further variable y. We will prove that R is a valid pool resolution
refutation iff � is satisfiable.

The root portion of the refutation R is shown in Fig. 1. The figure uses the following
conventions. (1) Each node in the dag is labeled with a clause. (2) Each non-initial
clause C has two children (immediate successors) D0 and D1, indicated by edges
drawn from C upward towards D0 and D1, such that C is inferred from the two
children clauses using resolution with respect to some resolution variable. (3) The
resolution variable is easily determined from D0 and D1, and is also indicated in the
column on the right side of the figure. (4) Initial clauses are written in boldface. (5)

Other leaves in the figure, decorated with
. . .

... . .
.
’s are not initial clauses; rather their

derivations are shown in other figures.
The remaining portions of R are shown in Figs. 2, 3, and 4. It should be noted that

no clause appears more than once in R. In particular, the clauses ci are used multiple
times in Figs. 2 and 3, but these represent multiple uses of the same clause, and each
ci is derived exactly once as shown in Fig. 4.

Examining the refutation R in Figs. 1, 2, 3, and 4 shows that the only way that a
traversal τ can fail to be regular is for the resolution variable y to be used twice along
some branch of Tτ . In fact, the variable y is the only variable that is used twice along
any directed path in R.

As shown in Fig. 4, the variable y is the resolution variable used to derive each
clause c j . It is also used as the resolution variable at the top of Fig. 1. In the traversal
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Fig. 2 The derivation of the
clause yvk

Fig. 3 Shows the derivation of
u∗

i vi , where u∗
i is either ui or

ui . Letting � be xi or xi ,
respectively, then
Ci1 , Ci2 , . . . , Ci p are the
clauses that contain �

Fig. 4 The derivation of ci

tree Tτ , the clause yvk will be the child of the clause v1v2 · · · vk which is derived using
y as the resolution variable. In addition, as shown in Fig. 2, c j is in the sub-derivation
of R rooted at yvk . Therefore, if there is any clause c j which is not visited before
yvk in the traversal, then there will be a branch in Tτ containing two uses of y as
a resolution variable. It follows that any regular traversal must visit every c j before
visiting yvk .

The only way to visit a clause c j before yvk is by visiting the clauses u∗
i vi that are

derived as shown in Fig. 3, where u∗ is either ui or ui . There are 2k such sub-deriva-
tions, two for each �-variable xi . Fixing the value of i , let the literal � be either xi or xi .
In the first case, the variable u∗

i is ui , and in the second case, u∗
i is ui . Let C(�) be the set
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of clauses in � which contain �, and enumerate this set as C(�) = {Ci1, . . . , Ci p }. Here
p = p(�) is the number of clauses that contain �. Then, the clause u∗

i vi is derived as
shown in Fig. 3. Note in particular, that the derivation of u∗

i vi includes the derivations
of the clauses ci1 , . . . , ci p .

Lemma 2 Let τ be a depth-first traversal of R and 1 ≤ i ≤ k. Then at most one of
the clauses uivi and ui vi can appear in τ before the clause yvk .

The proof of the lemma is almost obvious. Suppose uivi appears in the traversal
before ui vi . This means that uiv1 · · · vi−1 also appears in the traversal before ui vi .
Hence, since yvk is in the sub-derivation rooted at uiv1 · · · vi−1 and ui vi is not, it
follows that yvk precedes ui vi in the traversal. A similar argument applies if ui vi

precedes ui vi in the traversal. ��
We define a partial truth assignment ατ as follows.

ατ (xi ) =
⎧
⎨

⎩

T if uivi precedes yvk in τ

F if ui vi precedes yvk in τ

∗ otherwise

where T, F , and ∗ represent the values True, False, and “undefined”. The third situa-
tion arises when neither clause precedes yvk in τ . The partial assignment ατ induces
a (partial) truth assignment on literals in the obvious way, and ατ satisfies � provided
every Ci ∈ � contains at least one literal that is set to True by ατ .

Lemma 3 The traversal τ is regular if and only if ατ satisfies �.

To prove the lemma, first suppose ατ satisfies �. Then each clause C j in � contains
some literal � such that ατ (�) = T . Letting, u∗

i equal ui or ui , respectively, if � is xi

or xi , this means u∗
i vi is traversed in τ before yvk . Therefore, since C j is one of the

clauses containing �, the unit clause c j is also traversed before yvk .
It follows, that if ατ satisfies �, then every c j is traversed before yvk . This suffices

to make the traversal τ regular.
Now suppose ατ does not satisfy �. Let C j be a clause in � that is not made true

by ατ . By Lemma 2, this means that there is no u∗
i vi which is traversed before yvk

which has the unit clause c j in its sub-derivation. Therefore, c j is traversed after yvk .
This ensures that τ is not a regular traversal since y is used as a resolution variable
both to derive the clause v1v2 · · · vk from yvk , and to derive c j , and since c j is in the
sub-derivation rooted at yvk . ��

Lemma 3 shows that if R has a regular traversal, then � is satisfiable. On the other
hand, if α is a satisfying assignment for �, then it is straightforward to construct a
traversal τ such that ατ = α.

That completes the proof of the theorem.
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