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Abstract
Artificial intelligence (AI) and machine learning (ML) are becoming increasingly significant areas of research for scholars 
in science and technology studies (STS) and media studies. In March 2020, Waymo, Google/Alphabet’s autonomous vehicle 
project, introduced the ‘Open Dataset Virtual Challenge’, an annual competition leveraging their Waymo Open Dataset. This 
freely accessible dataset comprises annotated autonomous vehicle data from their own Waymo vehicles. Yearly, Waymo has 
continued to host iterations of this challenge, inviting teams of computer scientists to tackle evolving machine learning and 
vision problems using Google's data and tools. This article analyses these challenges, situating them within the context of 
the ‘Grand Challenges’ of artificial intelligence (AI), which aimed to foster accountable and commercially viable advance-
ments in the late 1980s. Through two exploratory workshops, we adopted a ‘technographic’ approach to examine the pivotal 
role of challenges in the development and political economy of AI. Serving as an organising principle for the AI innovation 
ecosystem, the challenge connects companies and external collaborators, driving advancements in specific machine vision 
domains. By exploring six key themes—interface methods, incrementalism, metrics, AI vernacular, applied domains, and 
competitive advantages—the article illustrates the role of these challenges in shaping AI research and development. By 
unpacking the dynamic interaction between data, computation, and labour, these challenges serve as catalysts propelling 
advancements towards self-driving technologies. The study reveals how challenges have historically and presently shaped 
the evolving landscape of self-driving and AI technologies.
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1 Introduction

Artificial intelligence (AI) and machine learning (ML) are 
becoming increasingly significant areas of research for 
scholars in science and technology studies (STS) and media 
studies. Scholars are exploring various aspects, including 
labour considerations (Tubaro et al. 2020) and the politics 
of algorithmic decision-making (Sánchez-Monedero and 

Dencik 2022) to the materiality of computation (Rella 2023), 
the role of training datasets (Thylstrup 2022), and the eco-
nomic underpinnings of AI ethics (Steinhoff 2023). In this 
article, we contribute to this growing literature by studying 
the organisation of ML, machine vision ‘challenges’ used to 
foster technological innovation. This is particularly the case 
for emerging ML-dependent AI systems, such as autono-
mous vehicles.

Our objective is to examine how challenges shape 
applied AI research and development (R&D), using the 
case of Waymo, Google/Alphabet’s autonomous vehicle 
project.1 Waymo’s recurring annual Open Dataset Chal-
lenges (2020–23) represent one example of open competi-
tions organised for the global ML and data science com-
munity.2 Our investigation into these challenges adopts a 
material approach bridging digital STS (Vertesi and Ribes 
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2019), platform studies (Helmond et al. 2019), and work 
on the political economy of AI (Luitse and Denkena 2021; 
Srnicek 2022; Van der Vlist et al. 2024), furthering insight 
into the phenomenon of ‘platform automobility’ (Hind et al. 
2022; cf. Forelle 2022; Hind and Gekker 2022; Steinberg 
2022) and autonomous driving (Hind 2019; Iapaolo 2023; 
Marres 2020; Sprenger 2022; Stilgoe 2017; Tennant and 
Stilgoe 2021).

Building upon a workshop conducted by the authors 
at the University of Siegen (Siegen, Germany), focussed 
on the Waymo Open Dataset, we adopt a ‘technographic’ 
approach (Bucher 2018; Van der Vlist et al. 2024) to explore 
how challenges play a crucial role in the development and 
political economy of AI and autonomous vehicles. Through 
a ‘scavenging-style’ ethnography (Seaver 2017), we exam-
ine their significance in ‘convening’ third-party developers 
(Egliston and Carter 2022 p. 10), considering how plat-
form features, technical documentation, and other materials 
figure in the incremental advancement of AI systems and 
technologies.

Waymo has been a leader in the autonomous vehicle 
industry ever since it started as the Google Self-Driving Car 
project in 2009 (Markoff 2010). It continues to compete with 
car manufacturers like Tesla (through its mis-sold ‘Autopi-
lot’ feature), Ford (former backer of Argo AI), and China’s 
Baidu; other Big Tech-funded projects like Zoox (a subsidi-
ary of Amazon), dedicated autonomous vehicle passenger 
service (AVPS) operators like Cruise, and chip manufac-
turers like NVIDIA and Mobileye. Together, they shape an 
industry that has entered a new, mature phase, as key players 
have variously consolidated their self-driving vehicle opera-
tions (Mobileye), written-off related assets (Ford), or pivoted 
to other autonomous vehicle domains (Aurora, self-driving 
trucks). Cruise’s travails in San Francisco have only reiter-
ated the difficult crossroads the industry has now reached 
(Biddle 2023; Hawkins 2023).

ML and data science challenges and competition-host-
ing platforms are numerous. Google subsidiary Kaggle, 
described by CEO D. Sculley as the ‘rainforest of machine 
learning’ (Pan and Fields 2022), provides a platform for 
users to discover and publish datasets, explore and construct 
models, and participate in various data science challenges 
to enhance their skills, earn ranking points, and win prizes.3 
The Grand Challenge platform serves as another instance of 
an open web-based environment for challenges, focussing 
specifically on the end-to-end development of ML solutions 
in biomedical imaging.4 Such competitions can encompass 

diverse topics or algorithmic techniques since the respective 
datasets and evaluation criteria are typically provided by the 
competition hosts. Waymo also are not the only technology 
company to conduct competitions centred around their own 
datasets and rules: Netflix previously ran the ‘Netflix Prize’ 
inviting ways to improve its algorithmic film recommenda-
tion system, Cinematch (Bennett and Lanning 2007). The 
competition was exclusively open to external contestants, 
excluding individuals affiliated with Netflix, highlighting the 
‘boundary work’ that digital platforms undertake, as they 
establish and manage the parameters of such competitions 
(Van der Vlist 2022, p. 102; cf. Helmond et al. 2019).

This article argues that challenges serve as touchpoints or 
interfaces between companies like Waymo, deeply involved 
in the application domain of self-driving technology, and the 
applied AI/ML community, including academia and machine 
vision subfields. This interface is a novel development in 
the automotive industry, encompassing open datasets, lead-
erboards, arXiv and GitHub pages, Computer Vision and 
Pattern Recognition (CVPR) workshops, metrics, and ML 
methods. Ultimately, challenges and the ML techniques 
developed in them are intended to facilitate the ‘interopera-
tion’ of AI, computer vision, and related technologies in the 
field (Hind 2023).

In elucidating the role of specific machine vision chal-
lenges,5 several themes can be considered provisionally 
important for the critical examination of AI. First is the role 
of challenges as a primary ‘organizing principle’ (Ribes 
et al. 2019, p. 281) within the AI development and produc-
tion pipeline. This encompasses aspects such as the provi-
sion of (training and test) datasets typically associated with 
ML challenges, the concentration of computing power, the 
implications for the externalisation of human labour in AI, 
and the dynamics between AI platform companies and exter-
nal complementors (cf. Srnicek 2022). Second, despite the 
grandeur often associated with challenges and the hype sur-
rounding AI, it is essential to acknowledge the incremen-
talism in AI progress. This includes the ability to measure 
advancements through evaluative metrics like ‘Average 
Precision’ (AP). Thirdly, challenges play a crucial role, par-
ticularly through competitions, prizes, and leaderboards, in 
convening third-party developers and businesses to build, 
capture, and ultimately ‘sell’ self-driving technology (cf. 
Egliston and Carter 2022, p. 13–14). Overall, machine vision 
challenges emerge as pivotal components that bridge the 
realms of AI/ML R&D and the practical application of AI 

3 ‘Competitions’, Kaggle, https:// www. kaggle. com/ compe titio ns; 
‘Kaggle Progression System’, Kaggle, https:// www. kaggle. com/ progr 
ession.
4 Grand Challenge, https:// grand- chall enge. org/.

5 Waymo’s perception and prediction challenges predominantly per-
tain to machine or computer vision capabilities—an integral facet of 
ML that centres on automating information extraction from visual 
sensory inputs or images. This encompasses a diverse range of tech-
nologies, software, hardware products, integrated systems, method-
ologies, actions, and expertise.
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in the realm of automobility. They operate at the intersection 
of science and business, playing a significant role in con-
solidating the dominant positions of leading companies in 
the field—arguably a ‘domain-independent’ (Ribes 2019, p. 
525) blueprint for the commercialisation of AI more broadly.

In the next section, we offer a contextual understanding of 
challenges in technology innovation and engineering. First, 
we situate Waymo's challenges within the historical context 
of the ‘Grand Challenges’ era of AI in the late 1980s. We 
then delve into the transition towards an ‘incremental’ AI 
approach, driven by the pragmatic necessities of commercial 
AI development. In this context, we contend that challenges 
act as a pivotal organising principle, and catalyst, for AI, 
amalgamating vital components like training data, compu-
tational power, and expert labour, fostering collaboration 
and propelling AI advancement. Subsequently, we intro-
duce our ‘scavenging-style’ methodology for scrutinising 
AI and machine vision challenges. We outline our explora-
tory workshops, which entailed a thorough examination of 
the foundational platforms and tools underpinning Waymo’s 
Open Dataset Challenges. Moving forward, we unveil six 
important themes that surfaced from the workshops and 
our ensuing investigations. These encompass challenges as 
interfaces, the importance of incrementalism, the role of 
evaluative metrics and benchmarks, the vernaculars of AI, 
the allure of applied domains, and the pursuit of competi-
tive advantages. Concluding, we emphasise the exigency for 
further research into ML challenges, and the wider political 
economy of AI/ML.

2  The history of grand challenges and AI 
innovation

2.1  From strategic computing to autonomous 
robots: AI research and DARPA’s grand 
challenge era (1983–2007)

Challenges, competitions, and prizes have long played a 
role in driving technological innovation. In the late 1980s, 
the concept of Grand Challenges emerged as a frame-
work for realising research in science and technology. Raj 
Reddy’s 1988 Presidential Address to the Association for 
the Advancement of Artificial Intelligence (AAAI) aimed 
to propel AI research towards tangible outcomes. Despite 
‘twenty-five years of sustained support’ (Reddy 1988 p. 9) 
from organisations such as the Defense Advanced Research 
Projects Agency (DARPA), National Science Foundation 
(NSF), and NASA, Reddy contended that AI now needed to 
enter into ‘an era of accountability’ (p. 9).

To thrive in this new era, Reddy argued that AI should 
‘create a vision for the future’ both ‘exciting and challeng-
ing’ (1988, p. 17). This vision, he believed, should extend 

beyond the mere ‘demonstration of intelligent systems’ and 
instead involve ‘bold national initiatives’ capable of ‘[cap-
turing] the imagination of the public’. Reddy identified 
these initiatives as the Grand Challenges of AI, proposing 
six examples, including a ‘World Champion Chess Machine’ 
and an ‘Accident Avoiding Car’ (p. 18).

In Reddy’s mention of an ‘accident avoiding’ car, he 
asserted that ‘a new generation automobile equipped with 
an intelligent cruise control using sonar, laser, and vision 
sensors could eliminate 80–90% of … fatal accidents and 
cost less than 10% of the total cost of the automobile’ (p. 
18). Whilst still a considerable distance from such a goal, 
Waymo today state that accident prevention, and safety more 
broadly, is ‘at the heart of everything we do’ (Waymo 2023) 
with numerous safety-related reports and technical papers 
released each year by the company (e.g. Favarò et al. 2023).

However, what made Reddy’s address even more 
intriguing was the looming prospect of a new ‘winter’ for 
AI research, as substantial funding cuts were being imple-
mented by the US government. The Strategic Computing 
Initiative (SCI), operating from 1983 to 1993, failed to 
deliver anticipated advancements in ‘machine intelligence’ 
despite an additional $1 billion in initial DARPA funding 
(Roland and Shiman 2002). As Roland and Shiman consid-
ered, the concept of ‘“Grand Challenges” simply replaced 
the former goal, machine intelligence’ whilst ‘the strategy 
and even the tactics remained the same’ (2002, p. 3).

Reddy, interestingly, does not use the term ‘machine 
intelligence’ nor mentions DARPA’s SCI. Nevertheless, he 
clearly states the need for AI to become self-sufficient—a 
task it struggled to accomplish. The onset of the AI winter 
in the late 1980s can be seen as a direct consequence of 
DARPA’s recalibration of AI research funding, as well as 
an attempt to guide computer scientists and AI researchers 
towards commercially viable applications of AI.

One project funded by the SCI helps to connect these 
narratives: the Autonomous Land Vehicle (ALV) program, 
which sought to operationalise prior DARPA research on 
machine vision. As Roland and Shiman explain, the cru-
cial question was ‘whether [the ALV] could take the next 
step to high-level, real-time, three-dimensional IU [image 
understanding]’ (2002, p. 220). The ALV was intended as 
a ‘test bed’ for the SCI, inviting university and commercial 
partners to bid for development contracts in order to provide 
‘tangible evidence that the money spent on the AI program 
was paying off’ (p. 224).

In May 1984, after Carnegie Mellon University (CMU), 
General Electric, Honeywell, and Columbia University had 
all secured contracts on the project, the ALV was publicly 
demonstrated for the first time, successfully navigating a 
1,016-m course in 1,060 s, allegedly 100 times faster than 
any previous autonomous vehicle (Roland and Shiman 
2002, p. 228). However, as the pressure to host more public 
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demonstrations took precedence over developmental inter-
ests, such as designing an integrated vision and planning 
system for navigation, the ALV project encountered insur-
mountable challenges. Competing interests, lack of techno-
logical standardisation, and interoperability issues across 
different systems led to the project’s downfall in 1986, with 
CMU initiating the development of their own ‘Navlab’ vehi-
cle. DARPA officially terminated the ALV project in April 
1988, due to claims of a ‘demo-driven’ culture that had over-
taken the program, and DARPA’s reassessment of the SCI 
budget (Roland and Shiman 2002, p. 246).

Fifteen years later, in 2004, DARPA hosted the first ‘great 
robot race’ (Buehler et al. 2007), the ‘DARPA Grand Chal-
lenge’, in the Mojave Desert, California. From an original 
106 applicants, 15 teams competed to drive a 150 mile off-
road course, with the hope of winning a $1 million cash 
prize. Completing just 5% of the route, CMU’s Red Team 
vehicle ‘Sandstorm’ travelled the furthest, still failing to win 
the prize money, with the competition subsequently referred 
to as the ‘debacle in the desert’ (Hooper 2004). ‘It was clear 
then’, as Buehler et al.’s (2007: IX) review of the inaugu-
ral competition concluded, ‘that the challenge was indeed 
“grand”’. Quickly followed by a similar all-terrain challenge 
in 2005, won by the Stanford University team and their vehi-
cle ‘Stanley’ (Thrun et al. 2007), a 2007 ‘Urban Challenge’ 
pushed competitors to design an autonomous vehicle to trav-
erse a more realistic urban terrain, comprising of traffic and 
intersections (DARPA 2007). A team from CMU was once 
again victorious, with Tartan Racing’s ‘Boss’ vehicle com-
pleting the course in just over four hours. Arguably ‘ground-
breaking’, it was the ‘first time autonomous vehicles [had] 
interacted with both manned and unmanned vehicle traffic 
in an urban environment’ (DARPA 2007). This marked 
the delayed initiation of the Grand Challenge era of AI by 
DARPA, as they began to identify commercially viable mod-
els of AI in autonomous driving and similar applications.

2.2  From vision to organising principle: challenges 
in commercial AI technology development 
(since 2009)

In recent years, there has been a shift in the landscape of AI 
challenges, moving away from DARPA-funded Grand Chal-
lenges (Roland and Shiman 2002) towards more incremental 
versions hosted by start-ups, research centres, and platform 
firms (Hind et al. 2022). This transition reflects Raj Reddy’s 
goal of the Grand Challenge era: to drive commercial applica-
tions of AI and reduce reliance on state funding. The launch 
of Google’s Self-Driving Car project in 2009, led by 2005 
DARPA Grand Challenge winner, Sebastian Thrun (Markoff 
2010), was the obvious transition point between these two eras.

Our contention here is that these incremental challenges 
serve as a primary ‘organizing principle … for technology 

development’ (Ribes et al. 2019, p. 281) within domains 
that desire to use AI. Following Woolgar (1985), we view 
these challenges as occasions to study the day-to-day activi-
ties of AI researchers, and the material traces they leave 
behind. Today, ML has become the dominant strand of AI, 
relying on training data, computing power, and (expert) 
labour. We contend here that challenges are the mecha-
nism through which these components are most effectively 
brought together, shaping the processes and trajectory of AI 
technology from development to its eventual deployment. 
We will briefly discuss these elements of training data, com-
puting power, and (expert) labour next.

Srnicek (2022) argues that these three components 
are crucial for AI production, particularly in terms of the 
monopoly power of Big Tech companies like Google/Alpha-
bet in shaping AI platforms and services, or what he refers 
to as ‘AI centralization’ (Srnicek 2022). He suggests that the 
collection of ML training data no longer offers a competi-
tive advantage due to the prevalence of the platform busi-
ness model and the ‘explosive growth of open datasets’ (p. 
258). Waymo's Open Dataset, with its ‘nearly 17 h of video, 
with labelling for 22 million 2D objects and 25 million 
3D objects’, is highlighted as an example (p. 258). Conse-
quently, the challenge of starting without data has become 
less of a concern for actors in various domains.

Yet the presence of the challenge format suggests that 
doing something with the data remains significant. As we 
contend here, well-annotated and voluminous training data 
are not always readily available, with only a few initiatives 
within each AI domain maintaining useful and usable data-
sets. Building and maintaining such (open) datasets has been 
critical to Waymo's autonomous driving vision. These data-
sets play a vital role in attracting participants to the chal-
lenge format and aligning them with internal development 
timelines.

Furthermore, Srnicek contends that cloud computing 
power is ‘increasingly where AI monopolies and moats are 
being built’ (Srnicek 2022, p. 249). He argues that this is 
because of the ‘concentrated ownership of immense com-
puting resources (compute) and the systems and lures built 
for attracting the small supply of high-skill workers’ (p. 
249–250, emphasis added). Only the largest and most well-
capitalised firms can afford to develop cloud computing sys-
tems capable of training models on data-rich scenarios. As 
Luitse and Denkena (2021, p. 3) ask, ‘who can further scale 
up their compute capacity’? The ability to run numerous 
experiments quickly and efficiently is crucial in the empiri-
cal nature of AI research, involving tasks such as ‘tuning 
hyperparameters, testing on data from outside the training 
dataset, debugging any problems, and so on’ (Srnicek 2022, 
p. 251).

It is through the optimisation of hardware such as Graph-
ics Processing Units (GPUs) and Google’s own Tensor 
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Processing Units (TPUs) that advances in AI are being 
carved out (Rella 2023). Waymo and other challenge organ-
isers believe that external competition is the most effective 
means of conducting large chunks of this optimisation work. 
By providing computational capacity, more iterations can be 
performed by a larger number of teams, thereby accelerating 
progress.

In addition, neither data nor compute holds much value 
without skilled labour to leverage them. Hugely sought-after 
by Big Tech and AI firms, computer scientists and related 
graduates command substantial salaries. Open-source ini-
tiatives serve as mechanisms for channelling graduate tal-
ent into the right areas, with frameworks offering ‘premade 
tools, libraries, and interfaces…often based on the same 
ones used internally by companies’ (Srnicek 2022, p. 252). 
Challenges, therefore, serve as a primary avenue for fun-
nelling ‘new AI talent’ (Luchs et al. 2023, p. 9), equipping 
graduates with the necessary skills to work with these pre-
existing tools and interfaces and engaging them in pre-
defined problems chosen by the toolmakers (Steinhoff 2022; 
Luchs et al. 2023). If these frameworks ‘become feeder net-
works for the emerging generations of talent’ (Srnicek 2022, 
p. 253), challenges can be seen as talent contests, pitting 
the best new talent against their peers. Piecemeal ‘micro-
work’, routinely used to prepare training data for ML work 
(Tubaro et al. 2020), assumes an even more distant role, 
hidden behind the ‘expert input’ (Rieder and Skop 2021, p. 
5) of challenge participants.

In sum, we argue that challenges are one of the most sig-
nificant ‘systems and lures’ for effectively bringing together 
key AI assets. They serve as platforms where machine vision 
training datasets are employed for object detection, image 
segmentation, and motion prediction tasks, vital for autono-
mous vehicle development. By distributing and externalising 
specific AI tasks, challenges reduce the associated labour 
costs to nominal levels. Participating researchers are pro-
vided with the opportunity to tackle cutting-edge problems, 
gaining access to costly AI hardware otherwise out of reach 
(Luitse and Denkena 2021).

3  Taking up the challenge: a technographic 
approach

To investigate the role of the challenge as a structuring 
device in AI R&D, we adopt a material, ‘technographic’ 
approach (Bucher 2018; Van der Vlist et al. 2024). This 
aligns with the practices of digital STS (Vertesi and Ribes 
2019) and involves gathering, analysing, and interpreting 
available information and materials from diverse sources to 
understand how applied R&D are organised and structured 
around Waymo.

Reflecting on ethnographic tactics for studying algorith-
mic systems, Seaver (2017, p. 6–7) emphasises the impor-
tance of ‘glean[ing] information from diverse sources, even 
when … objects of study appear publicly accessible’. Eth-
nographers, like ‘scavengers’, piece together heterogeneous 
clues to gain partial insights into the complexities of the 
world. Adrian Mackenzie’s (2017) ethnography of machine 
learners involved piecing together different aspects of the 
field of ML, from textbooks to statistical software packages 
such as R.

Steve Woolgar (1985), writing during the rise of ‘expert 
systems’, viewed AI work as an ongoing collaboration 
between human and machine actors, recognising the impor-
tance of studying ‘the relationship between the pronounce-
ments of spokesmen on behalf of AI and the practical 
day-to-day activities of AI researchers’ (Woolgar 1985, 
p. 567, emphasis added). Overall, this perspective offers a 
fruitful avenue for investigating the role of challenges in 
the development of AI technologies: the ‘many moments 
where explicit and implicit forms of human judgement come 
together with technical methods and artifacts’ (Rieder and 
Skop 2021, p. 10).

Within the research literature on digital platforms, the 
diverse materials and documentation generated during such 
AI work are often referred to as ‘boundary resources’, serv-
ing the crucial function of facilitating and regulating the 
material aspects of participation for external third parties, 
extending beyond the platform itself (Van der Vlist 2022, 
p. 33). Critical scholars in media studies have explored 
how certain technical and informational resources, such as 
application programming interfaces (APIs) and reference 
documentation, shape power dynamics in various sectors of 
society, including digital marketing and advertising, mobile 
app development, and cultural production (Egliston and 
Carter 2022; Helmond et al. 2019; Helmond and Van der 
Vlist 2019; Ritala 2023). Drawing from these studies, our 
approach focuses on Waymo's pivotal role as a core platform 
company that provisionally brings together an autonomous 
vehicle technology ecosystem.

Waymo’s Open Dataset Challenges are part of a larger 
collection of boundary resources that serve to ‘convene’ 
third-party developers and businesses, cultivating this 
ecosystem around Waymo. This ‘convening’ process, as 
described by Egliston and Carter, involves ‘“calling out 
to others, attracting their attention”, requiring an “active 
response”’ in the form of usage or participation (Egliston 
and Carter 2022, p. 10). In studying these various interac-
tions and resources, we gain insights into the dynamics of 
collaboration and knowledge exchange that underpin Way-
mo’s work.

This convening process undertaken by Waymo directly 
ties into the central argument of the challenge as an organis-
ing principle for AI. The challenge format serves as a crucial 
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mechanism through which Waymo brings together diverse 
stakeholders, including researchers, to collectively tackle 
cutting-edge autonomous vehicle problems. By convening 
participants through challenges, Waymo creates a platform 
for collaboration, competition, and knowledge sharing. The 
challenge format acts as an organising principle that shapes 
and directs the collective efforts of participants towards spe-
cific AI tasks and objectives. It serves as a focal point for 
mobilising expert labour, leveraging well-annotated training 
data, and harnessing the computational power necessary for 
advancing AI models and techniques. In this way, the chal-
lenge format not only facilitates the exploration of innova-
tive solutions but also fosters the development of a vibrant 
ecosystem around Waymo’s autonomous driving vision.

4  The setting: Waymo’s Open Dataset 
and Challenges, 2019–2022

We embarked on our own ‘scavenging-style’ ethnography 
during a 3-day workshop held at the University of Siegen 
in late 2021. The primary objective of this workshop was 
to examine the Waymo Open Dataset, which served as our 
entry point into the study. Throughout the workshop, we 
immersed ourselves in the dataset by accessing the huge 
open datasets provided by Waymo. These files, each totalling 
25 GB, encompassed various data types, structures, visual 
imagery, 3D models, and accompanying data attributes and 
image labels. In the process, we discovered a range of asso-
ciated materials, documentation, and infrastructure depend-
encies linked to the Open Dataset, including the existence 
of annual Challenges.

Although we adapted Python scripts provided on Google 
Colaboratory (Colab) to facilitate the rendering of lidar 
images,6 as we delved deeper into the dataset, we realised 
that we lacked the necessary ML skills to effectively work 
with it as intended. Consequently, we shifted from under-
taking an exploratory (empirical) data project to an STS-
oriented approach. At this stage, our engagement with the 
materials differed from that of a regular user or an empiri-
cal analyst. Instead, we assumed the role of ‘scavengers’, 
extracting insights from diverse sources and piecing together 
the available information to gain an understanding of the 
subject matter.

In the summer of 2022, we conducted a second workshop, 
entitled ‘Taking up the Challenge’. During this workshop, 
our hands-on examination focussed on Waymo’s Challenges 
and their connection to the broader ‘research community’ 
as defined by Waymo. Like the first, we collected and inter-
acted with diverse materials and documentation available 
online, which provided valuable insights into these chal-
lenges. These materials included participant instructions, 
competition requirements, evaluative metrics, technical 
reports of ML models and methods, model output scores, 
challenge leaderboards, participant names, affiliated organi-
sations, as well as research on previous challenge winners.

4.1  Workshop I: open dataset

In August 2019, Waymo introduced their Open Dataset initi-
ative, announcing that they were ‘sharing [their] self-driving 
data for research’, and ‘inviting the research community to 
join [them] with the release of the Waymo Open Dataset, 
a high-quality multimodal sensor dataset for autonomous 
driving’ (Waymo 2019). It was described at the time as ‘one 
of the largest, richest, and most diverse self-driving datasets 
ever released for research’ (Waymo 2019).

The initial release of the Waymo Open Dataset consisted 
of data from 1000 ‘segments’, with each segment capturing 
20 s of continuous driving by Waymo autonomous vehicles. 
The primary focus was to provide ‘researchers the opportu-
nity to develop models to track and predict the behaviour of 
other road users’ (Waymo 2019). The dataset encompassed 
data collected from various locations, including Phoenix 
(AZ), Kirkland (WA), Mountain View (CA), and San Fran-
cisco (CA) in the United States, capturing diverse environ-
mental conditions such as ‘day and night, dawn and dusk, 
sun and rain’ (Waymo 2019). Each 20-s segment contained 
sensor data derived from five on-board lidar devices and 
five front-and-side-facing cameras. Notably, the dataset was 
extensively annotated, featuring 12 million 3D labels and 
1.2 million 2D labels, playing a crucial role in training ML 
models for tracking and predicting the movement of vehicles 
in a driving environment.

In addition, the Open Dataset was available via Know 
Your Data (KYD),7 a data exploration platform developed 
by Google, that ‘helps researchers, engineers, product teams, 
and decision makers understand datasets with the goal of 
improving data quality, and helping mitigate fairness and 
bias issues’ (Know Your Data 2023). By utilising KYD, 
users were able to navigate the contents of the dataset (of 
nearly a million items) and explore the relationships between 
various items. Furthermore, the images in the dataset were 

6 Colaboratory, or ‘Colab’, is a product developed by Google 
Research. It offers the capability for individuals to write and execute 
arbitrary Python code directly through a web browser. It is particu-
larly tailored for tasks involving ML, data analysis, and educational 
purposes. In technical terms, Colab serves as a hosted Jupyter note-
book service that boasts seamless usability without any initial setup 
requirements. In addition, it grants users free access to computational 
resources, including GPUs.

7 ‘waymo_open_dataset’, Know Your Data, https:// knowy ourda ta- 
tfds. withg oogle. com/# datas et= waymo_ open_ datas et.

https://knowyourdata-tfds.withgoogle.com/#dataset=waymo_open_dataset
https://knowyourdata-tfds.withgoogle.com/#dataset=waymo_open_dataset
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labelled with Google Cloud Vision tags, providing addi-
tional information about road users (‘TYPE_CYCLIST’, 
‘TYPE_VEHICLE’, ‘TYPE_PEDESTRIAN’, as well as 
‘has_faces’, ‘num_faces’, etc.), various roadside objects 
(‘Tree’, ‘Traffic light’, ‘Building’, etc.), and other labels that 
could be utilised.

Waymo’s open datasets, however, were not the first such 
datasets within the autonomous driving community. Waymo 
acknowledges the existence of the KITTI Vision Benchmark 
Suite, which was publicly released in March 2012, 7 years 
prior to Waymo’s Open Datasets. The KITTI dataset is 
widely regarded as the benchmark for vision datasets in the 
field of autonomous driving and machine vision research.8 
Over the past decade, it has received updates, introduced 
novel benchmarks, and added newly annotated data. Given 
the popularity of existing benchmarks such as KITTI within 
the autonomous driving and machine vision communities, 
Waymo’s decision to launch its open dataset naturally piqued 
our interest: what might they stand to gain from its release?

4.2  Workshop II: open dataset challenges

In March 2020, just as the COVID-19 pandemic was starting 
to impact Europe and the US, Waymo introduced their first 
Open Dataset Virtual Challenge. Waymo’s principal scientist 
Drago Anguelov wrote that the newly-launched competition 
constituted ‘the next phase of our program’, with Waymo 
‘committed to fostering an environment of innovation and 
learning’ (Anguelov 2020). The challenge comprised five 
specific machine vision challenges: 2D detection, 2D track-
ing, 3D detection, 3D tracking, and domain adaptation. Each 
challenge specified a task that participants were expected to 
perform with elements of the dataset, for example: ‘given 
a set of camera images, produce a set of 2D boxes for the 
objects in the scene’ or ‘given a temporal sequence of lidar 
and camera data, produce a set of 3D upright boxes and the 
correspondences between boxes across frames’ (Anguelov 
2020).

Winners of each challenge were eligible for cash prizes, 
with $15,000 awarded to the first-place winners, $5000 
for second place, and $2000 for third place. The competi-
tion opened on the same day as the announcement and ran 
until May 31, 2020. The leaderboard would be public and 
‘remain open for future submissions’ (Anguelov 2020). Win-
ners were also invited to present their winning methods at 
a workshop during the CVPR conference in Seattle, USA 
(Anguelov 2020). Subsequent editions of the Open Dataset 

Challenge were announced in 2021 (Anguelov 2021) and 
2022 (Waymo 2022a).9

For the 2021 edition, Waymo released a motion dataset 
for the first time, considered to be ‘the largest interactive 
dataset yet released for research into behaviour prediction 
and motion forecasting for autonomous driving’ (Angue-
lov 2021). The release included a comprehensive descrip-
tion of the datasets, a technical paper explaining the data 
annotation techniques used for the perception datasets (Qi 
et al. 2021), a Colab tutorial (Waymo 2021a), and a GitHub 
repository (Waymo 2022b). Four new challenges were intro-
duced: motion prediction, interaction prediction, real-time 
3D detection, and real-time 2D detection. The prize money 
remained the same, and participants were given a similar 
timeframe to submit their methods. Winners would once 
again be invited to present at the CVPR workshop, ‘[hop-
ing] this expansion into motion data spurs on a new wave of 
research’ (Anguelov 2021).

The 2022 edition followed a similar pattern, with the 
announcement in March, a submission deadline in May, 
and eligible winners presenting at the CVPR workshop in 
June. Waymo augmented the Open Dataset by adding addi-
tional labels to expand the range of tasks researchers could 
explore. These labels included ‘key point labels’ (captur-
ing ‘important small nuances’), ‘3D segmentation labels’ 
(used to detect image pixels), and ‘2D-to-3D bounding box 
correspondence labels’ (‘to further enable research on sen-
sor fusion of object detection and understanding’) (Waymo 
2022a). The challenges for 2022 included: motion predic-
tion, occupancy and flow prediction, 3D semantic segmenta-
tion, and 3D camera-only detection.

During this second workshop, we decided to focus pri-
marily on the detection challenges, offering a comparison 
of tasks, metrics, and methods across all three iterations 
(2020, 2021, 2022). The 2020 2D and 3D detection chal-
lenges evolved into real-time 2D/3D detection challenges in 
2021 and further transformed into a 3D camera-only detec-
tion challenge in 2022. Participants had the opportunity to 
submit methods to previous challenges, enabling a temporal 
analysis of the original challenges (2D/3D detection) that 
laid the groundwork for these variations. To summarise, the 
2021 edition introduced motion planning data for the first 
time, and in 2022, Waymo added additional labels to assist 
researchers in utilising the Open Dataset.

The materials and documentation encountered in relation 
to the Open Dataset Challenges originated from diverse sites 
and sources. These included the open dataset itself, the chal-
lenge guidelines, cloud computing tools and infrastructure, 

8 ‘The KITTI Vision Benchmark Suite’, KITTI, https:// www. cvlibs. 
net/ datas ets/ kitti/.
9 A 2023 edition of the Waymo Open Dataset Challenge has subse-
quently concluded, with the workshop on autonomous driving (WAD) 
at CVPR running in June 2023, and reference to three sets of chal-

lenges organised by Waymo, Argo, and BDD (Berkeley DeepDrive), 
https:// cvpr2 023. wad. vision/.

Footnote 9 (continued)

https://www.cvlibs.net/datasets/kitti/
https://www.cvlibs.net/datasets/kitti/
https://cvpr2023.wad.vision/
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and associated technical papers describing the submitted 
ML methods in greater detail. However, all resources were 
clearly related to the Open Dataset Challenges and served to 
convene the field of applied AI/ML research, engaging the 
research community in a manner that aligns with Waymo’s 
business goals and strategy. Throughout, Waymo’s parent 
company Google/Alphabet assumed a prominent role as the 
provider of cloud platform infrastructure (including comput-
ing resources and image labels from Google's Vision API), 
the host of the online code-sharing and notebook platform 
(Colab, linked to Google Drive), and the developer of the 
data exploration platform (KYD). Continuous discussions 
surrounding these materials and documentation took place 
during the workshops, forming the basis for further reflec-
tions in the article.

5  Shaping AI ecosystems 
through challenges: insights 
from Waymo’s incremental approach

In the following, we detail six specific themes drawn from 
our study of Waymo’s challenges: challenges as multifac-
eted interfaces, dynamics of incrementalism, the evolving 
significance of metrics and benchmarks, the vernacular of 
AI, the allure of applied domains, and the pursuit of com-
petitive advantages. Collectively, these thematic insights 
provide a deeper understanding of challenges as central 
structuring devices that drive the advancement of autono-
mous vehicles and the broader realm of AI/ML. Within this 
context, challenges not only break down the intricate task of 
automating driving into feasible interim objectives but also 
serve as a manifestation of AI’s operationalisation within 
specific domains or contexts. This operationalisation fuels 
inventive and exploratory endeavours evident in challenge 
submissions, where novel methods are trialled, traditional 
approaches serve as the foundation for innovation, and origi-
nal combinations of data, algorithms, models, and workflows 
are tested, offering diverse pathways towards realising chal-
lenge goals.

5.1  Theme I: challenges as multifaceted interfaces

To begin with, Waymo’s Open Dataset Challenges serve as 
conduits, or multifaceted interfaces, for a diverse array of 
components, including training datasets, annotations, lead-
erboards, arXiv and GitHub repositories, computer vision 
workshops (such as those hosted at CVPR), metrics, and 
methodologies. Collectively, these elements facilitate a 
dynamic interaction between autonomous vehicle companies 
and external stakeholders who harbour the potential to con-
tribute significantly to the advancement of machine vision 
capabilities tailored for autonomous driving endeavours.

Even more so, challenges, ordinarily run on and through 
digital, and cloud-based platforms like those provided by 
Google, can be viewed as specialised ‘interface methods’ 
(Marres and Gerlitz 2015) in their own right, represent-
ing a convergence of diverse methodological traditions. In 
the current realm of scientific inquiry, collaboration tran-
scends geographical boundaries, facilitated by an array of 
communication tools, diverse file formats, and an array of 
software analytical instruments, all seamlessly integrated 
through online platforms. Once-contained microchips have 
also broken free from the confines of laboratory equip-
ment, finding expansive computational power across vari-
ous cloud-based services, as elaborated here. As Vertesi 
and Ribes write, ‘the textures of scientific and daily life at 
the beginning of the twenty-first century are suffused with 
online platforms and heterogenous informational environ-
ments’ (Vertesi and Ribes 2019, p.1), of which the Waymo 
challenges are but one example.

However, the proliferation of computing possibilities, 
remote collaborators, disparate file formats, and analytical 
tools has augmented the need for robust organising princi-
ples, tangible mechanisms, and structural frameworks to 
ensure the seamless progression of AI technologies. This 
is precisely where the challenge format assumes its pivotal 
role, providing the very scaffolding required for challenge 
organisers to coalesce and harmonise disparate actors and 
endeavours. Paradoxically, in the challenges studied, it was 
the autonomous vehicle itself, as a comprehensive tangible 
entity, that receded from view, yielding to AI researchers' 
adherence to the ‘logic of domains’ (Ribes et al. 2019). 
Through this, the subject vehicle only necessarily returned 
in a spectral form, wholly ‘decentered’ (Law 2005, p. 32), 
as a mobile host for images captured by on-board sensing 
systems. Similarly, other vehicles materialised in spectral 
forms, reduced to clusters of dots and pixels that formed 
the bedrock for ML-oriented statistical inferences (Mac-
kenzie 2017).

Nevertheless, orchestrating these endeavours typically 
falls to the most influential actors in the field like Waymo, 
with entities equipped to sway and direct researchers, 
engineers, start-ups, and even entire R&D divisions of 
companies to participate on terms carefully set by them. 
Whilst collaborations between academia and industry are 
not novel, especially within the world of AI/ML (Roland 
and Shiman 2002), the power dynamics between these 
entities have significantly evolved, with industry play-
ers now exercising greater control. These challenges in 
themselves challenge the conventional concept of ‘com-
petitions within the liberal order’ (Stark 2020, p. 2) due to 
organisers’ authority in shaping and configuring the terms 
and conditions of these competitions on an annual basis, 
aligning them intricately with the internal developmental 
trajectories of AI firms.
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5.2  Theme II: dynamics of incrementalism

The Waymo challenges also exemplify a distinctive form of 
incrementalism, strategically designed to yield incremental 
improvements in object recognition and motion planning. 
A telling instance of this approach is found in the 2022 3D 
detection challenge, where a mere 0.018 difference sepa-
rated the top-ranked method (0.7914 AP) and second place 
(0.7896 AP).10 Over the course of the three years, the win-
ning method in the same category rose from 0.7711 AP in 
2020 to 0.7764 in 2021 to 0.7914 in 2022. Only in 2022 
did any method post an AP score of over 0.79.11 The sig-
nificance of these seemingly marginal percentage gains 
becomes pronounced in the context of autonomous driving, 
as Srnicek (2022) contends. Such minute increments could 
indeed signify the distinction between a pedestrian or cyclist 
being struck, grazed, or entirely evaded by a vehicle. This 
trend might even be perceived as an extreme form of incre-
mentalism, considering the quantitative subtlety (though 
qualitative importance) by which each successive winning 
method surpasses its predecessor. The specific definition of 
progress based on AP, encompassing all object categories, 
is of notable consequence, progressively elevating the per-
formance threshold from year to year, persisting beyond the 
official challenge period. As Everingham et al. (2015, p. 133) 
observed regarding a previous object recognition challenge 
spanning 2005–2012, participants’ optimal approach was to 
iteratively enhance the preceding year's winning method.

This ethos of incrementalism further manifested in the 
evolution of challenges, entailing refinements in task stipula-
tions and parameters. Commencing in 2020, the 3D detec-
tion challenge solicited participants to generate a set of 3D 
upright boxes for scene objects (Waymo 2020), excluding 
any temporal component. In the subsequent year, Waymo 
introduced the real-time 3D detection challenge, retaining 
the original task specifications whilst introducing a temporal 
constraint (Waymo 2021b). The year 2022 witnessed the 
launch of a camera-only iteration of the challenge, restricting 
participants from incorporating lidar data into their methods 
(Waymo 2022c). With each iteration, challenge participants 
benefited from overarching enhancements and expansions 
to the foundational training dataset, encompassing a greater 
number of segments and an extended breadth of annotations.

Whilst all scientific and technical endeavours inher-
ently encompass incremental progress, the broader concern 
emerges over whether these (highly) incremental gains are 
deemed sufficient by Big Tech firms financing the research 
and hinging their future growth on AI breakthroughs, par-
ticularly in areas like autonomous driving. This pertains 
equally to the broader public, who, in line with Reddy’s 
proposition (1988), necessitate assurance that AI is deliver-
ing on its promises. Thinking critically, it is conceivable that 
these incremental advances might indeed reflect the sluggish, 
or potentially thwarted, efforts to realise automated driving 
witnessed in recent times (e.g. Korosec 2022). As argued by 
Everingham et al., the extreme incrementalism characteristic 
of such challenges poses the risk of ‘reduc[ing] the diversity 
of methods within the community’ as ‘new methods that 
have the potential to give substantial improvements may 
be discarded before they have a chance to mature, because 
they do not yet beat existing mature methods’ (Everingham 
et al. 2015, p. 133). In essence, the competitive structure 
fosters (extreme) incrementalism, as participants vie to 
surpass existing methods, thereby inhibiting the pursuit of 
what Everingham et al., (2015, p. 133) call methodological 
‘novelty’. Consequently, organised challenges crystallise a 
guiding ethos or value in the development of ML models, 
where prioritisation is accorded to ‘a specific, quantitative, 
improvement over past work, according to some metric on 
a new or established dataset’ (Birhane et al. 2022, p. 178).

5.3  Theme III: metrics and their evolving 
significance

Central to the orchestration of AI work within the Waymo 
challenges is the pivotal role of metrics and benchmarks, 
particularly Average Precision (AP), the preeminent stand-
ard for ML-based object recognition. The AP score plays 
an important role in these challenges, acting as the decisive 
arbiter for method validation. Any submission failing to 
attain a commendable AP score is categorically dismissed 
and invalidated. Consequently, the teams responsible for 
method design find themselves at a crossroads, necessi-
tating a return to the proverbial drawing board, either to 
substantially refine and adapt their existing approach or 
devise an entirely new stratagem. Crucially, any such itera-
tion must ultimately achieve a respectable AP score to merit 
consideration.

Nonetheless, the AP metric is neither arbitrary nor static; 
rather, it possesses a historical trajectory closely aligned 
with the timeline of the Waymo challenges themselves. 
The metrics employed by Waymo mirror the conventions 
established by the PASCAL Visual Object Classes (VOC) 
Challenge, conducted over 8 years (PASCAL VOC 2014; 
Everingham et al. 2015). In a pivotal decision, the organis-
ers replaced the 'area under curve' (AUC) metric with AP 

10 Average precision or ‘AP’ is a statistical metric based on an ‘inter-
section over union’ (IOU) calculation, in which a decimal figure is 
generated based on the overlap of two areas. For example, a score of 
1.00 AP would result from two areas overlapping entirely, and a score 
of 0.500 would result from two areas overlapping by exactly 50%.
11 By November 19, 2022, the current front-runner had achieved an 
impressive score of 0.8132, whilst the methods in second and third 
place had also secured scores of 0.8 or above.
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to enhance interpretability and other rationale (Everingham 
et al. 2010, p. 313). Notably, the introduction of the 3D cam-
era-only detection challenge in 2022 led Waymo to introduce 
a modified version of AP termed LET-3D-APL, designed to 
accommodate ‘depth estimation errors’ (Hung et al. 2022, p. 
1) common in monocular camera-based 3D object detection 
methods, inadequately addressed by the conventional AP 
metric. Metric transformations often stem from challenge 
organisers’ insights into the shortcomings or intricacies of 
earlier metrics or recorded scores. Particularly intriguing 
is that the shift in the gold-standard metric was motivated 
by the transition from lidar-based to camera-based object 
detection, wherein the latter frequently presents longitudinal 
errors. Consequently, the ‘LET’ component in Waymo’s new 
metric acronym, LET-3D-APL, stands for ‘longitudinal error 
tolerance’ (Hung et al. 2022), addressing a dimension that 
conventional AP failed to encompass but for which LET-3D-
APL was meticulously crafted.

Metrics matter as they embody a ‘golden rule’ (Hind 
and Seitz 2022, p. 11), guiding engineers, computer scien-
tists, and challenge participants alike: excellence is defined 
through superiority in the same problem domain relative to 
other methods (Birhane et al. 2022). However, challenge 
documentation and technical papers not only prescribe met-
rics but also underscore their social, contingent, and devel-
opmental nature. Just as methods are conceived, refined, 
modified, and adapted, metrics evolve in tandem. Echoing 
Everingham et al.’s perspective on the PASCAL VOC chal-
lenges, ‘the metrics used in each … have typically been 
changed or refined at least once during the lifetime of the 
competition’ (Everingham et al. 2015, p. 133). Tracing the 
evolutionary trajectory of metric establishment and imple-
mentation is paramount in comprehending the execution of 
machine vision tasks, fostering ‘objectively and empirically 
measured’ performance so ‘the community [can] know what 
really work[s]’ (Zissermann et al. 2012, p. 2082). This is of 
particular import since changes in key metrics might inad-
vertently present a parallel quandary to the broader chal-
lenge framework: 'methods may become overly tailored to 
the specific evaluation metrics chosen for each competition' 
(Everingham et al. 2015, p. 133). In essence, such challenges 
may inadvertently narrow the scope of competition (Stark 
2020), with metrics fundamentally instrumental in shaping 
this dynamic. What sets apart this ‘metric work’ from other 
instances of rule adjustments is its inherent recognition of 
partiality and flexibility, invariably rendering metrics ‘ade-
quate’ for the task at hand.

5.4  Theme IV: vernacular of AI work

Within the realm of the Waymo challenges lies a nuanced 
and intricate vernacular of AI work, characterised by 
two distinct dimensions. Firstly, a pronounced element of 

playfulness permeates the nomenclature, resonating with 
colloquial phrases that infuse the machine vision landscape. 
This tendency is evident in the technical papers and GitHub 
repositories, where terms like ‘bells and whistles’ are used 
to denote methods without additional embellishments or 
complex features (Bergman et al. 2019; Liu et al. 2022; Yin 
2021; Zhang et al. 2020). We also found references to other 
established, off-the-shelf ML models with memorable (and 
meme-able) names, like ‘YOLO’ (Redmon et al. 2016). 
Rather than ‘You Only Live Once’, it stands for ‘You Only 
Look Once’, referring to the total snapshot the model makes 
of test images, instead of multiple passes common to other 
models.12 This playful linguistic aspect can be seen as an 
extension of practices found within the ‘hacker class’ (Wark 
2004), drawing inspiration from social media and meme cul-
ture (Dal Dosso et al. 2021). As Gabriella Coleman notes, 
‘hackers … ha[ve] an exhaustive ability to “misuse” most 
anything and turn it into grist for the humor mill’ (Coleman 
2013, p. 7). Once one is able to ‘master the esoteric and 
technical language’ of the work being performed, ‘a rich 
terrain of jokes bec[o]me[s] sensible’ (Coleman 2013, p. 7), 
something eminently discernible in the Waymo challenges.

Second, this vernacular exhibits a more structured facet, 
often utilising physiological and neurological metaphors 
to elucidate the composition of methods themselves. The 
names, descriptions, and accompanying technical documents 
of these methods are replete with expressions and allusions 
to fundamental components and the lineage of prior work 
that underpins each submission. Method names, for instance, 
typically refer to core elements and supplementary features. 
PV-RCNN ++, a team in the 3D object-detection challenge 
(Shi 2022), signifies a ‘Point Voxel-RCNN’ architecture 
with additional appended features (‘++’). Similarly, ‘Cen-
terTrans_V3’, another submission, denotes the third iteration 
of a fusion between two methods, CenterPoint and Trans-
former (Zhang 2022). Whilst familiarity with fundamental 
components (such as RCNNs) eases the interpretation of 
these names, they generally adhere to a comprehensible 
structure.

Whilst ML itself is steeped in neurological meta-
phors, exemplified by the notion of ‘neural’ networks, 
teams routinely refer to ‘backbone’, ‘neck’, and ‘head’ 
segments of their models [Fig. 1]. For instance, the PV-
RCNN ++ method incorporates a ‘3D voxel CNN with 
sparse convolution [used] as the backbone’ (Shi et al. 2021, 
p. 3), whilst the ‘TS-LidarDet’ submission emphasises the 
role of ‘necks’ in providing ‘interfaces to build complemen-
tary feature extraction layers’ (Chen 2020). Another method, 
‘BEVFusion-TTA’ introduces the concept of ‘task-specific 
heads’ (Liu et al. 2022, p. 3) for distinct detection tasks.

12 https:// pjred die. com/ darkn et/ yolo/.

https://pjreddie.com/darknet/yolo/


AI & SOCIETY 

This descriptive vernacular presents a revelation of con-
siderable logical and overarching significance: the neural 
terminology extends beyond cognitive metaphors to com-
prehensively encompass the human nervous system. As 
Mackenzie (2017, p. 182) suggests, the portrayal of neural 
networks occasionally shifts towards human subjects or, 
more specifically, human brains, whilst at other junctures, 

it assumes an informational essence. In this landscape, the 
brain-centred metaphors recede, replaced by an expressive 
neurological lexicon. This structural metaphor empowers 
the community with an accessible framework for compara-
tive comprehension. It signifies the ‘core’ elements of a 
model (the backbone) likely for off-the-shelf deployment, 
the linkages connecting them (the neck), and the specialised 

Fig. 1  Three ML model frameworks showcasing the concepts of ‘backbones’, ‘necks’, and ‘heads’. Sources: OpenPCDet (2020), Simpledet 
(2019), and Liu et al. (2022, p. 3)



 AI & SOCIETY

components tailored for distinct tasks and contexts (the 
head). In this descriptive juncture, the models vividly and 
conspicuously convey their modular form and functionality.

5.5  Theme V: allure of the applied domain

The allure of extensive, diverse, and meticulously annotated 
training data reverberated strongly amongst potential par-
ticipants. Waymo’s cognisance of this inherent appeal was 
underscored by their rationale for initiating the challenges 
(Anguelov 2020), with the intention of elevating the Waymo 
Open Dataset to a preeminent training data benchmark. This 
strategic move aimed to position the dataset in competition 
with, or even as a potential successor to, established datasets 
like KITTI (Geiger et al. 2012) or nuScenes (Caesar et al. 
2020), known for their significance in advancing machine 
vision research.

For participants, the allure was also related to the pros-
pect of applying their burgeoning machine vision skills, a 
significant number of whom were either computer science 
PhD students or recent graduates. The challenges provided 
a unique avenue to not only exercise their newly acquired 
general skills on well-defined (machine vision) problems 
within real-world contexts but also to engage with trendy 
or cutting-edge domains such as autonomous driving. By 
affording participants the opportunity to channel their exper-
tise in such a way, Waymo harnessed the synergy between 
emergent skills and pertinent application.

The Waymo challenges granted participants access to 
sensor data and computational resources that would oth-
erwise be unreachable or unfeasible, inaccessible to most 
researchers unless affiliated with esteemed institutions like 
CMU or Stanford. Whilst direct participant interviews were 
not conducted, the broad representation across diverse loca-
tions and institutions strongly implies the pronounced allure 
of these factors. This confirms Srnicek’s assertion that AI 
start-ups ‘remain dependent on AI providers’ for computa-
tional infrastructure (Srnicek 2022, p. 244). For Waymo, 
these challenges serve as a conduit to gather real-world data, 
establishing a foundation based on predetermined compu-
tational benchmarks. For instance, the 2021 2D Detection 
challenge demanded submission latency measurements on a 
specific cloud-based tensor core GPU, the Nvidia Tesla v100 
GPU, one of Google’s seven GPU platforms dedicated to 
cloud-based ML training (Google 2023a). Tying competition 
requirements to available computational resources naturally 
enables Waymo to scale their operations, ultimately a con-
siderable and ongoing concern (Sharp and Pan 2022).

Surprisingly, a notable proportion of participants were 
from Chinese universities, research labs, and AI start-
ups. This was an unexpected finding, despite—or per-
haps because of—China’s huge investment in AI (Lucas 
2017). This make-up diverged starkly from the participant 

composition of earlier events like the DARPA Grand Chal-
lenge, which primarily featured US-based teams from insti-
tutions like Stanford, CMU, and Virginia Tech. Podium 
teams in the 2022 3D camera-only detection challenges were 
affiliated to Chinese institutions, including the Shanghai AI 
Lab and the Chinese University of Hong Kong, with addi-
tional affiliations to the Mohamed bin Zayad University of 
Artificial Intelligence (UAE), and Pegasus Tech, a Silicon 
Valley-based venture capital firm.

Whilst participants from US institutions, including MIT, 
remained prominent, the collective participant landscape 
clearly indicated a multipolar evolution in AI R&D. This 
shift from a US-centric paradigm involves different kinds 
of commercial actors (DiDi Global, Horizon Robotics, etc.), 
whilst being significantly led by Chinese-affiliated institu-
tions and actors. This departure also marks a substantial 
deviation from past eras such as the 2000s DARPA Grand 
Challenge, and the 1980s–1990s machine intelligence 
period, both of which were US state-led initiatives, involving 
commercial partnerships with US firms. This transformative 
shift, as evident through the dynamics of the Waymo chal-
lenges, provides a snapshot of machine vision's trajectory 
within the intense capital influx into AI/ML technologies 
between 2020 and 2022.

However, this era of collaboration might potentially be 
nearing its peak, following export controls imposed by the 
US government targeting technology flow to China (Sevas-
topulo and Hille 2022). This policy, with a specific focus on 
the semiconductor and AI sectors, has introduced an aura of 
apprehension akin to historical instances like Japan’s Fifth 
Generation program in the late 1980s (Roland and Shiman 
2002, p. 2). In short, the current landscape of burgeoning 
competition and collaboration in AI, as convened by Way-
mo’s challenges, might represent a pivotal moment where 
US stakeholders mirror historical concerns about emerging 
technological rivals, or at the very least, it indicates the geo-
political and political–economic stakes involved in shaping 
AI development.

5.6  Theme VI: securing competitive advantage

The Waymo challenges serve as a strategic embodiment of a 
well-established Big Tech R&D playbook, aiming to shape 
and ‘lock-in’ (Urry 2004) a thriving developer community 
within their prescribed timelines, developmental trajecto-
ries, and technical frameworks. This concerted effort brings 
young researchers into Google’s orbit, offering tools and 
services like Google Colab and Tensorflow in exchange 
for labour, extending how Google uses its online Machine 
Learning Crash Course (MLCC) programme to hook users 
in the first place (Luchs et al. 2023). The challenge for-
mat itself stands as a relatively tried-and-tested format for 
achieving this goal, enabling both organisers and entrants ‘to 
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commit time and funds to the competition’ (Kreiner 2020, p. 
51) in an efficient, compact manner.

Cost-effectiveness underpins this strategic approach, as 
running a challenge for external participants, coupled with 
a modest cash prize fund ($15,000 for winners), proves eco-
nomically advantageous compared to hiring full-time engi-
neers at market rates.13 Whilst the expenses associated with 
constructing training datasets and scaling computational 
resources are substantial, they are spread across the broader 
operations of Google/Alphabet, as well as being specifically 
valuable to Waymo’s own internal initiatives. The competi-
tive spirit engendered by the challenges, coupled with the 
incentive of the prize fund, acts as a powerful catalyst pro-
pelling participants to invest substantial time and energy into 
the intricate tasks of method development, rigorous testing, 
meticulous verification, comprehensive documentation, and 
final submission. Vertesi et al. (2021) aptly term this phe-
nomenon the ‘pre-automation’ phase of AI, characterised by 
companies' rapid AI product scaling through the internalisa-
tion of highly skilled technical endeavours.

In contrast to the veiled realm of ‘temporary, vendor, and 
contractor’ (TVCs) workers, used by Big Tech firms to plug 
gaps in short- and mid-term product development (Brophy 
and Grayer 2021), the temporary labour demonstrated by 
challenge participants is openly documented and is even cel-
ebrated as a rite of passage. This holds especially true for 
numerous aspiring young computer scientists who eagerly 
embrace the opportunity to apply their newfound knowl-
edge to cutting-edge challenges. An indicator of this recog-
nition and pride can be found in the frequent referencing of 
podium achievements on the GitHub pages of participating 
teams, where these accolades are displayed as prestigious 
badges of honour (e.g. BEVFormer 2023). Here, if Google’s 
MLCC programme allows them to recruit ‘new AI talent’ 
(Luchs et al. 2023, p. 9) at one end of the AI talent ‘pipeline’, 
Waymo’s challenges offer the opportunity to channel and 
celebrate that talent at the other.

In the 2023 edition, only challenge winners receive a 
prize, capped at $10,000 in Google Cloud credits (Anguelov 
2023). Using their own Cloud Pricing Calculator (Google 
2023b), $10,000 would offer a team roughly 3 month’s 
access to Google’s second-generation (v2) Cloud TPU 

service, useful for training ML models remotely.1415 Stein-
hoff (2023), building on Rikap (2021), characterises this 
phenomenon as a ‘subordinated innovation network’, further 
devaluing the work of those competing in such ML chal-
lenges (Steinhoff 2022). The shift from hard cash to credits 
further entrenches this subordination, intensifying partici-
pant dependence, whilst hardening the resultant innovation 
network.

Learning lessons from the PASCAL VOC challenges, 
Everingham et al. (2015) suggested that the open format 
tended to reduce the diversity of methods within the wider 
research community. If participants wanted to win, they 
stood the best chance by making ‘an incremental improve-
ment on the previous year’s winning method’ (Everingham 
et al. 2015, p. 133), rather than develop new methods from 
scratch. In the context of the Waymo challenges, this pre-
dilection locks participants into Google products for model 
training, strengthening the gravitational pull towards the 
Google/Alphabet ecosystem. Everingham et al. (2015, p. 
132) also remarked that having software able to ‘run every-
thing “out of the box”’, from training to validation was cru-
cial. In this respect, Waymo goes a step further by being both 
software developer and challenge host organiser, a unique 
position that asserts their monopoly power. Paradoxically, 
such a situation could hamper broader progress, following 
Everingham et al. (2015), diverting attention away from 
maturing methods and fostering an environment of height-
ened incrementalism.

Waymo is not the only firm to run an AI challenge within 
the autonomous vehicle domain. However, the decision 
by Ford to shutter Argo AI (Korosec 2022) has arguably 
diluted the prominence and impact of their rival Argoverse 
initiative,16 now lacking the envisaged pipeline from chal-
lenge participation to commercial deployment. Essentially, 
Waymo has solidified a monopoly position within AI chal-
lenges, bolstering their competitive advantage by maintain-
ing their sustained presence.

6  Conclusion: conceptualising challenges 
as an organising principle in AI innovation

Throughout this article, we have explored the fundamental 
role of challenges in shaping AI development. By juxtapos-
ing the era of Grand Challenges with Waymo's strategy of 
incremental challenges within the realm of autonomous 

13 As of August 24, 2023, a Waymo software engineer can expect to 
receive a base pay of $135,679, https:// www. glass door. com/ Salary/ 
Waymo- Softw are- Engin eer- Salar ies- E1635 890_D_ KO6,23. htm.
14 Considering the utilisation of 4 TPU chips (8 nodes) on a single 
device, situated in Iowa (USA) and running non-stop for 24 h a day, 
the projected cost would amount to $3285 per month. This estimation 
is derived from calculations made on May 18, 2023, and reflects the 
cumulative expense over a three-month period, totalling $9855. See: 
‘Google Cloud Pricing Calculator’, https:// cloud. google. com/ produ 
cts/ calcu lator/# id= 1b103 7e8- 4c8f- 4c75- bfc2- a6e6d 7e5d9 d5.

15 Google’s TPU Research Cloud (TRC) program also offers 
researchers access to cloud-based TPUs at monetary cost, although 
participants must share any research resulting from TPU access pub-
licly, https:// sites. resea rch. google/ trc/ about/.
16 ‘Argoverse’, https:// www. argov erse. org/.

https://www.glassdoor.com/Salary/Waymo-Software-Engineer-Salaries-E1635890_D_KO6,23.htm
https://www.glassdoor.com/Salary/Waymo-Software-Engineer-Salaries-E1635890_D_KO6,23.htm
https://cloud.google.com/products/calculator/#id=1b1037e8-4c8f-4c75-bfc2-a6e6d7e5d9d5
https://cloud.google.com/products/calculator/#id=1b1037e8-4c8f-4c75-bfc2-a6e6d7e5d9d5
https://sites.research.google/trc/about/
https://www.argoverse.org/
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driving, we have unveiled a prevailing approach that charac-
terises both Waymo and the broader contemporary AI land-
scape. Our investigation of the specific objects and practices 
of researchers in this field contributes to the critical litera-
ture in STS and media studies, shedding light on the history 
of AI research in the self-driving industry and the history 
of challenges within this area. In addition, it highlights the 
ongoing significance of the infrastructures supporting this 
research, as open datasets and challenges emerge as cru-
cial instruments shaping research funding and the political 
economy of AI. Despite the existence of alternative paths 
and resistance to incrementalism, Waymo’s challenge ini-
tiative has effectively provided a platform for scaling R&D 
efforts whilst engaging external participants who share their 
interests. Through the provision of quality training data and 
computational resources, Waymo has cultivated a global 
research community united by common objectives, set by 
themselves.

Despite its scope, our exploration has merely grazed the 
surface of Waymo's multifaceted efforts in shaping the con-
tours of AI R&D, and there are several avenues that warrant 
further inquiry. These might be categorised according to the 
scale of investigation: challenges as practices, challenges as 
economic phenomenon and challenges as instances of the 
infrastructuralisation of AI/ML. In the first instance, exam-
ining the distribution of machine vision labour, including 
the division of tasks within challenge teams, could yield 
profound insights. Exploring team methodologies, organisa-
tional structures, workflow plans, and the strategic leverag-
ing of prior work are pivotal for understanding the nuanced 
costs and benefits encountered by potential challenge par-
ticipants. A more sustained focus on the role of ML and 
machine vision metrics—how they are devised, who designs 
them, and what they replace—might also shed some light 
on the contingencies and power dynamics of ML practices 
writ large.

Likewise, comparing different challenges, challenge for-
mats, and challenge platforms would offer an insight into 
cross-domain, cross-format, and cross-platform themes. 
Luchs et al.’s (2023) comparison between online ML courses 
run by Google and IBM, for example, suggests divergent 
approaches to offering practical ML experience to computer/
data scientists. Steinhoff (2022; 2023) and Rikap’s (2021) 
work also point towards the possibility of evaluating how 
ML and ‘data science work’ (Steinhoff 2022, p. 193) con-
ducted for such challenges is being shaped by automation, 
evidencing how AI/ML firms seek to reduce the huge finan-
cial costs for building ML models, products, and platforms. 
In other words, Waymo’s own challenges are not necessarily 
unique, but provide evidence of a certain challenge ‘play-
book’ to be found across different AI/ML domains.

As the focus shifts from autonomous driving to the hype 
around large-language models (LLMs), the importance 

of machine vision challenges, including those hosted by 
Waymo and its competitors, may undergo changes for 
aspiring computer scientists. It remains to be seen when 
Waymo might reassess its developmental roadmap and 
evaluate the sustainability and usefulness of organising 
external challenges. The transition from cash prizes to 
Google Cloud credits indicates a potential shift in pri-
orities, aiming to consolidate and optimise investments 
in autonomous driving. The recent suspension of ‘24/7’ 
Cruise passenger services in San Francisco suggest the 
autonomous vehicle battle has already entered another 
stage of development altogether (Hawkins 2023), despite 
Waymo expanding operations to Los Angeles (Davis 
2024).

Beyond the specific trajectory of Waymo and the autono-
mous driving applied domain, further research is necessary 
to explore the broader infrastructuralisation and industriali-
sation of AI (Van der Vlist et al. 2024). Central to this explo-
ration is understanding the commodification of LLMs and 
the widespread proliferation of third-party services that pivot 
on models like ChatGPT. Scrutinising intricate relationships, 
evolving licensing models, and the emergence of counter-
LLM platforms across diverse sectors, such as higher educa-
tion, to monitor LLM-generated content, presents compel-
ling questions that stretch far beyond this article's scope but 
necessitate concerted attention in forthcoming research.

In conclusion, this article underscores the broader his-
torical and critical importance of challenges as a pivotal 
organising principle shaping AI development, with Waymo's 
incremental approach serving as a prominent example in the 
field today. By investigating the dynamics and characteristics 
of these challenges, and their materiality and infrastructures, 
scholars can gain valuable insights into the trajectory of AI 
development and its driving forces in specific industry sec-
tors like self-driving technology. However, the analysis also 
extends beyond this to the wider AI/ML landscape, offering 
a nuanced understanding of how challenges shape the con-
tours of technological progress and influence broader socio-
economic trends. As such, scholars can leverage challenges 
as an entry point into AI research, using them as a lens to 
critically examine the interplay between technological inno-
vation, industry dynamics, and societal change.
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