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Abstract
Citizen science (CS) projects have started to utilize Machine Learning (ML) to sort through large datasets generated in fields 
like astronomy, ecology and biodiversity, biology, and neuroimaging. Human–machine systems have been created to take 
advantage of the complementary strengths of humans and machines and have been optimized for efficiency and speed. We 
conducted qualitative content analysis on meta-summaries of documents reporting the results of 12 citizen science projects 
that used machine learning to optimize classification tasks. We examined the distribution of tasks between citizen scien-
tists, experts, and algorithms, and how epistemic agency was enacted in terms of whose knowledge shapes the distribution 
of tasks, who decides what knowledge is relevant to the classification, and who validates it. In our descriptive results, we 
found that experts, who include professional scientists and algorithm developers, are involved in every aspect of a project, 
from annotating or labelling data to giving data to algorithms to train them to make decisions from predictions. Experts also 
test and validate models to improve their accuracy by scoring their outputs when algorithms fail to make correct decisions. 
Experts are mostly the humans involved in a loop, but when algorithms encounter problems, citizens are also involved at 
several stages. In this paper, we present three main examples of citizens-in-the-loop: (a) when algorithms provide incorrect 
suggestions; (b) when algorithms fail to know how to perform classification; and (c) when algorithms pose queries. We 
consider the implications of the emphasis on optimization on the ideal of science and the role of citizen scientists from a 
perspective informed by Science and Technology Studies (STS) and Information Systems (IS). Based on our findings, we 
conclude that ML in CS classification projects, far from being deterministic in its nature and effects, may be open to question. 
There is no guarantee that these technologies can replace citizen scientists, nor any guarantee that they can provide citizens 
with opportunities for more interesting tasks.
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1 � Introduction and background

Over the last few years, we have witnessed a large growth 
in the capabilities and applications of Artificial Intelligence 
(AI) in citizen science (CS). In 1995, Irwin used the concept 

to describe initiatives in science policy to be more respon-
sive to people’s “understanding” and “concerns”, making 
science policy more “democratic”. Almost simultaneously, 
Bonney (1996) used the notion of CS to describe scientific 
projects in which “amateurs” provide observational data 
(such as bird spotting) and acquire new scientific skills in 
return. Over the years, both of these streams have been syn-
thesized into contrasting ideal-type views of CS: a “produc-
tivity view” focusing on scientific output, and a “democrati-
zation view” considering scientific as well as non-scientific 
goals (Sauermann et al. 2020). Some projects focus on social 
change, inclusion, or advocacy rather than generating sci-
entific knowledge in the traditional sense (Ottinger 2010). 
However, most citizen science projects consider the goal of 
knowledge production as essential (e.g., Bonney et al. 2009).
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Members of the public—which we call here “citizen sci-
entists,” or simply “citizens” to be taken to mean citizens of 
nation states but “members of a broadly construed commu-
nity” (Eitzel et al. 2017, p. 6)—can participate in different 
types of citizen science and associated initiatives in several 
research fields. Citizen science projects are set up in astron-
omy and astrophysics, ecology and biodiversity, archaeol-
ogy, biology, and neuroimaging, among other fields. For 
example, in ecology, citizens use sensors to contribute data 
to data collection programs and monitor air or water qual-
ity, while in astronomy they classify galaxies. Citizen sci-
ence projects often create large-scale observational datasets 
including citizen-generated images crowdsourced through 
smartphone apps, or galactic data collected by astronomers 
with telescopes. These data can benefit both science and 
society. For example, large-scale data can be used to comple-
ment official data sources to improve reporting on the Sus-
tainable Development Goals (Fritz et al. 2019). CS is now 
an expanding field and a promising arena for the creation 
of human–machine systems with increasing computational 
abilities, since many CS projects generate large datasets that 
can be used as training materials for AI subsets, such as 
machine learning (herein ML) (Lotfian et al. 2021; Wright 
et al. 2019). ML is achieved through adaptive algorithms 
that use large quantities of labelled data to autonomously 
detect patterns, make predictions, and recognize technical 
rules (Popenici and Kerr 2017, p. 2). In the literature, ML 
types are discussed in great detail, and readers are directed 
to relevant sources (e.g., Takano 2021; Lotfian et al. 2021).

1.1 � The impact of ML on tasks in CS

Humans and ML have the potential to work together in 
new ways in CS, and make data collection, processing, and 
validation more efficient (Lotfian et al. 2021; Franzen et al. 
2021; Ceccaroni et al. 2019). However, the use of ML raises 
the question of which tasks will be most affected and which 
will be relatively unaffected (Brynjolfsson et al. 2018). The 
distribution and content of tasks according to comparative 
advantage (who does what best at a given time), to maximize 
the effectiveness of specialization and increase the efficiency 
of the system (Kelling et al. 2013), can raise concerns. For 
example, by making citizen scientists’ contributions either 
too simple or too complex, or by reducing the range of what 
they can contribute, there is a risk of disengaging them 
(Leach et al. 2020). The question of a hypothetical ML 
takeover of citizen science was also raised by the partici-
pants at the 3rd European Citizen Science 2020 Conference 
(https://​www.​ecsa-​confe​rence.​eu/) during a panel discussion 
intended to initiate a dialogue on how citizen scientists inter-
act and collaborate with algorithms. As mentioned during 
the conference event, the current rapid progress in ML for 
image recognition and labelling, in particular the use of deep 

learning through convolutional neural networks and genera-
tive adversarial networks, presents a threat to human engage-
ment in citizen science; if machines can confidently carry 
out the work required, then there can be no space for authen-
tic engagement in the scientific process (Ponti et al. 2021). 
Therefore, as ML and other forms of AI become increasingly 
used in CS, even more fundamental questions arise as to 
whether we will continue to need citizen scientists and, if so, 
how their contributions will change because of automation.

Typically, allocating tasks between humans and machines 
is related to an increased effort to automate parts of human 
contributions based on what machines and humans are 
recognized to be better at (e.g., Fitts 1951) to maximize 
efficiency and speed to achieve a given goal (Tausch and 
Kluge, 2020). In CS, the use of ML presents opportunities to 
improve speed, accuracy, and efficiency in analysing massive 
datasets, monitoring the results, and identifying knowledge 
gaps (Ceccaroni et al. 2019). We may conjecture that if pro-
ject organizers have primarily productivity goals, they may 
replace citizens as much as possible and only make tasks 
for them as meaningful as needed to keep them engaged. 
In contrast, if project organizers also have “democratiza-
tion” goals, they are going to use machines more for the 
benefit of human engagement and may even involve citizens 
even where machines could do a more efficient job. The 
distinction may not matter much now, because AI is still not 
capable of replacing people completely. Nonetheless, this 
distinction can become critical once AI becomes more pow-
erful—then project organizers will have to decide whether 
they want to maximize efficiency by replacing citizens, or 
maximize engagement by keeping them in the loop while 
using machines to make things more interesting for citizens. 
The distribution of epistemic agency would then be taken 
into account.

1.2 � Distributing tasks and epistemic agency

In performing tasks, humans and machines do things, and as 
a result we can call them actors (those who act). More spe-
cifically, they are epistemic actors, because they do things 
to pursue specific epistemic goals (Ahlstrom-Vij 2013). In 
this paper, both attaining knowledge and providing solu-
tions to specific problems qualify as epistemic goals. Con-
sidering that processes of knowing or problem-solving take 
place in increasingly entangled systems consisting of human 
and non-human actors, systems in which data from multi-
ple sources gets processed, accepted, rejected, and modi-
fied in various ways by these different actors, the notion of 
epistemic agency needs to be examined to account for such 
socio-technical processes. Humans and algorithms are not 
seen here as self-contained epistemic actors in their own 
right, and a key empirical question is how agency dynamics 

https://www.ecsa-conference.eu/
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play out in hybrid settings combining humans and machines. 
In this paper, we seek to answer the following questions:

RQ1	� What is the distribution of tasks between humans and 
ML in CS classification projects?

RQ2	� Based on this distribution, how is epistemic agency 
acted out in terms of whose knowledge shapes the 
distribution of tasks, who decides what knowledge 
is relevant to the classification, and who validates it?

Through the analysis of the narratives reported by organ-
izers (e.g., project leaders, researchers) in the documenta-
tion of a sample of projects, we sought to gain descriptive 
insights into how citizens, experts, and ML participate in 
specific classification tasks and how task distribution affects 
their epistemic agency. Narratives are cultural artefacts that 
tell stories, which offer particular points of view or sets of 
values (Bal 2009). We consider academic papers and other 
non-fictional material used in this study as forms of “nar-
ratives” offering written accounts of the combination of CS 
and ML in classification projects.

We will now clarify the terms used in these questions, 
except for epistemic agency, which will be treated separately 
in the next section. For a proper understanding of the term 
task, we refer to Hackman’s (1969, p. 113) definition of the 
term as a job assigned to a person (or group) by an external 
agent or that can be self-generated. A task includes a set of 
instructions that specify which operations need to be per-
formed by a person concerning an input, and/or what goal 
is to be achieved. We used Hackman’s (1969) conceptualiza-
tion of tasks as a behaviour description, that is, a description 
of what an agent does to achieve a goal. Thus, the emphasis 
is placed on the reported behaviour of the task performer. 
This conceptualization applies to both humans and machines 
performing tasks. We chose to use the notion of task for 
two reasons. First, prior work on CS has also focused on it 
(e.g., Crowston et al. 2019; Franzoni and Sauermann 2014). 
Second, as Brynjolfsson et al. (2018) pointed out, the impact 
of ML on different jobs is likely to depend on the suitabil-
ity of ML for specific tasks within jobs. Therefore, human 
participants in CS will be affected differently based on how 
suitable their tasks are for automation. In this paper, we 
focus on data-related tasks, such as data collection, process-
ing, and analysis. Therefore, we excluded from our analysis 
other tasks that experts commonly do in CS projects such 
as, for example, securing funding, developing materials and 
methods, and writing papers. Regarding the term “expert”, 
we use it to include only professional scientists and profes-
sionals responsible for developing algorithms, setting up 
and running the projects. For the sake of our analysis, we 
do not use the term to refer to “expert citizens”, although 
we recognize that citizens can develop expertise in CS pro-
jects (e.g., Epstein 1995; Collins and Evans 2007). Citizens 

have been shown to develop expertise and perform tasks 
that extend beyond the ones they were mobilized with by 
scientists (Kasperowski and Hillman 2018).

The paper is structured as follows. We begin using a 
perspective in Science and Technology studies to define 
“epistemic agency” as a construct that allows exploration 
of what it means for actors to participate in socio-technical 
endeavours as CS classification projects. Second, we present 
the methodology used to collect and analyse our sample, 
followed by the results and discussion. The final section 
presents conclusions from this study and suggests future 
research directions.

The contribution of this paper is threefold: (1) to give 
scholars studying CS and human–machine integration a 
synthesis of results providing descriptive insights into the 
distribution of tasks and epistemic agency in CS classifi-
cation projects; (2) to draw potential broader implications 
for the role of citizen scientists that are associated with the 
division of labour between the three actors; and (3) to point 
to relevant questions for future research.

2 � What is epistemic agency?

A standard notion of agency used in the social sciences 
refers in a very broad sense to the capacity of an agent—
usually a human—to act intentionally to influence or control 
social relationships or structures (Davidson 1980). In this 
study, we needed a more encompassing concept that goes 
beyond human intentions to include the agency of technolo-
gies and focuses on how different actors interact to influence 
the course of events. The notion of agency we use follows 
the influential conceptualizations used in Actor-Network 
Theory (ANT) as developed by Latour (2005) and Callon 
(1986). Our study is influenced by two aspects of these.

The notion of agency we use follows the influential con-
ceptualizations used in Actor-Network Theory (ANT) as 
developed by Latour (2005) and Callon (1986). Our study 
is influenced by two aspects of these conceptualizations. 
First, material objects exercise agency much like humans 
although unlike humans they do not have intentions, only 
effects. Second, humans and non-humans do not possess/
have agency, but exercise it by interacting with each other. 
According to Latour (2005), an actor can be anything—such 
as artifacts, tools, animals, and ideas—that modifies other 
actors through a series of actions. An actor makes others 
act. A network of actors makes room for epistemic agency, 
since the activity of knowing does not emerge only from the 
effort of one individual actor but from the efforts of several 
actors woven together in a “program of action” (Latour 1992, 
p. 226), bringing together both the intentions of humans and 
the functions of artefacts. In such a program, humans and 
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machines form an assemblage and work together to pursue 
their epistemic goals.

This approach to agency reframes the role of ML and the 
way it relates to humans as presented in several accounts. 
For example, it helps us to go beyond the conception that, 
once ML is successfully implemented and trained to perform 
tasks, it can become autonomous, self-standing, and black-
boxed in terms of epistemic agency (cf. Glaser et al. 2021, 
p. 3). The same view of ML as a discrete tool can be seen as 
enabling citizen science projects to require fewer volunteers 
thanks to the efficiency and speed afforded by computational 
technologies once a training dataset has been successfully 
developed (McClure et al. 2020). Arguably, these accounts 
of AI rely on a concept of agency located in discrete com-
putational tools, which prevents us from considering both 
humans and non-humans as interwoven participants.

Consonant with the definition of agency used here, we 
conceptualize epistemic agency as the capacity of different 
actors to intervene, facilitate, or control the ways scientific 
knowledge is produced. Using a relational perspective, the 
distributed epistemic agency of algorithms comes to the fore: 
algorithms are no longer islands of automation but “assem-
blages” of hands tweaking and turning, swapping parts, and 
experimenting with new arrangements (Glaser et al. 2021, 
p. 5; Seaver 2019, p. 419; Pollock and Williams 2009). 
Algorithms are created in relational networks that exceed 
merely technical domains. Thus, investigating the epistemic 
agency in CS classification projects means disentangling 
these relational networks to examine how algorithms play 
a role that extends beyond the conditions under which they 
are developed and implemented (Glaser et al. 2021, p. 5). 
Human and non-human actors thus take turns performing 
the epistemic work required for achieving epistemic goals. 
The use of ANT to examine epistemic agency in projects that 
employ ML to sort through large datasets provides an ana-
lytic sensitivity that can reveal both the continuity and the 
simultaneous singularity and multiplicity of this phenom-
enon. Epistemic agency takes multiple forms, depending on 
the material–semiotic network in which it is entangled.

Considering the distributed nature of agency, we need 
to examine how it functions in hybrid settings. These set-
tings are being developed in CS to perform certain research 
tasks using ML. It remains to be seen how the distribution 
of work between experts, citizens, and machines will affect 
their epistemic agency, and, ultimately, scientific knowl-
edge production. As a result, science addresses the issue of 
managing large datasets by spreading the research process 
among various disciplines, machines, and actors outside of 
academic science, while also distributing control and com-
mand over the research process. Concern is raised over how 
epistemic agency is distributed over time, and how effective 
relationships between humans and technology are shaped 
(Knorr-Cetina 1999, 2007; Reyes-Galindo 2014).

3 � Methodology

This study consisted of three main steps. In Step 1, we 
searched for documents about CS classification projects 
using ML. At the time we started this study, to the best of our 
knowledge, there was no repository of CS classification pro-
jects using ML. Our two main options were Internet searches 
and snowballing. We selected documents using three main 
criteria: (a) there must have been an implementation—or a 
proof-of-concept—of the ML application; (b) the texts must 
have been produced by personnel directly involved in the 
design and development of classification projects; and (c) 
the texts were deemed suitable to address our questions. In 
total, this study includes 38 published sources (27 journal 
articles, and 11 from a variety of articles including reports 
and blogs), retrieved between January and July 2020. All the 
documents are in the public domain and are obtainable with-
out the authors’ permission. The used sources are referenced 
in Online Appendix 2.

We selected a purposive sample of 12 classification pro-
jects: Galaxy Zoo AI, Virus Spot, Multiple Sclerosis, Human 
Atlas, Plantsnap, MAIA (ML Assisted Image Annotation), 
iNaturalist, Milky Way, Twittersuicide, Mindcontrol, Obser-
vation.org, and Snapshot Serengeti. Our sample was drawn 
from Ceccaroni et al. (2019) and Citizen Science Salon in 
Discovermagazine.com (Ischell 2019). We chose to select a 
homogenous sample in order to identify important common 
patterns that cut across variations, and simplify our analysis. 
A homogenous sample usually requires a smaller number of 
cases (Patton 2002).

In Step 2, we used document analysis, a qualitative 
research approach used to analyse documents that have 
been produced prior to, and independently of, the research-
ers in the present study (Bowen 2009). For each project 
included in the sample, we produced meta-summaries 
(Online Appendix 1) of documents containing information 
relevant to address our research questions. A qualitative 
meta-summary is defined as a “form of systematic review 
or integration of qualitative findings in a target domain that 
are themselves topical or thematic summaries or surveys of 
data” (Sandelowski and Barroso, 2003, p. 227). Adapting the 
process for creating qualitative meta-summaries proposed 
by Sandelowski and Barroso (2003), we created a spread-
sheet to summarise information from each source about the 
following aspects: the “data” tasks performed by citizen 
scientists, experts, and algorithms, respectively; the types 
of algorithms used; the sequence of tasks between humans 
and machines, and the reasons why the project combined 
humans and machines [the meta-summaries are available in 
Online Appendix 1]. One author reviewed all the sources. 
However, to ensure the trustworthiness of the review and 
provide direct evidence from the sources, we created anchor 
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codes—e.g., [GZA-KA19-7]—in the meta-summaries to 
link the extracted information to the original statements in 
the sources (Online Appendix 3).

In Step 3, to analyse the meta-summaries, we used quali-
tative content analysis (QCA) (Hsieh and Shannon 2005, p. 
1278). Content analysis assumes that texts can provide valu-
able information about a particular phenomenon (Bengtsson 
2016). The unit of analysis was the individual classification 
project. NVivo 12 software (QSR International 2020) was 
set up for coding the collected secondary material. Through 
repeated examination and comparison, we identified themes 
in the data through inductive analysis. Two authors open-
coded the meta-summaries, describing the tasks performed 
by citizens, experts, and machines, and categorized the 
codes based on their conceptual similarity. We decided to 
conduct a manifest analysis, which means that we remained 
close to the text, describing the visible, such as the words in 
the text, without trying to infer latent meanings (Bengtsson 
2016). The coding structure is in ESM Appendix 5.

4 � Results

In this section, we report the results from the data analysis of 
the 12 classification projects. The following two subsections 
address our two research questions: distribution of tasks 
(RQ1), and enactment of epistemic agency (RQ2).

4.1 � Distribution of tasks between humans and ML

We begin by providing an overview of the main character-
istics of the sampled projects with examples of tasks per-
formed by citizens, experts, and machines, respectively 
(Table 1).

Table  2 presents a summary of the three tasks most 
frequently performed by each actor across the projects. A 
complete description of all the tasks is included in ESM 
Appendix 4, along with examples of data for each. The table 
highlights the role of experts in checking model predictions 
and validating the results to ensure accurate outputs by mod-
els; the role of citizens labelling data to develop a training 
dataset fed into machines to make correct predictions; and 
the role of machines inferring patterns from new data after 
training with a labelled dataset.

We now summarize the dataset according to the major 
categories and codes aggregated by the number of references 
(portions of coded text) across the 12 projects. In Figs. 1, 
2, and 3, we present the distribution of tasks performed by 
citizens, experts, and ML across the projects.

Finally, the multiple bar chart in Fig. 4 displays the tasks 
across the three actors to see the distinct roles of machines, 
citizens, and experts.

4.2 � Epistemic agency

The best example of epistemic agency in the data is provided 
by Human-in-the-Loop (HITL). Developing and improving 
ML models without human assistance is not possible yet, 
therefore, HITL (Shih 2018) is the prevailing approach, 
which requires human interaction when algorithms encoun-
ter problems. Typically, HITL is used to combine human 
and machine knowledge to create a continuous circle where 
ML algorithms are trained, tested, tuned, and validated. In 
this loop, with the help of humans, algorithms become better 
trained and make more accurate predictions. In other words, 
at their current stage, ML algorithms can learn and improve 
on their own through trial and error.

Our analysis indicates a type of interaction in which 
humans and algorithms are interdependent and take turns 
to solve a task together, while the feedback loop allows con-
tinuous improvement of the system. Experts are the humans 
mainly involved in the HITL described in the analysed nar-
ratives. They train models, test, and validate them to improve 
accuracy by scoring their outputs when algorithms are not 
able to make the right decisions. They create a continuous 
feedback loop, allowing the algorithm to give better results 
over time. However, citizens are also involved at various 
stages of the process. We present three main examples of 
what we call citizens-in-the-loop, showing how citizens 
assist algorithms when they encounter difficulties. These 
examples show a type of interaction in which citizens and 
algorithms are interdependent and take turns to solve a 
task together, while the feedback loop allows continuous 
improvement of the system.

When algorithms provide incorrect suggestions. In Obser-
vation.org, a free tool for field observers to record and share 
their plant and animal sightings, citizen scientists upload 
images of flora and fauna and if the recognition algorithm 
fails to provide correct identification of the species, then 
citizens can edit the wrong suggestion on the observation 
screen. Based on this, the system shows whether citizens 
have accepted or rejected observation data. Citizens contrib-
ute to creating a sort of gold standard database used to train 
the ML model (Fig. 5).

For example, in Snapshot Serengeti, machines may mis-
classify animals in the collected pictures. Citizen scientists 
are then tasked with identifying the animals and training 
the algorithms based on their observations. First, the algo-
rithm classifies the picture. If the animal is detected with a 
certain probability, citizens come onto the scene. AI offers 
a primary classification (animal recognition) to the spotter 
(the trapper who uploaded records can also pre-classify the 
image). A citizen scientist validates/invalidates the pre-clas-
sification and an image is not considered as validated until 
there is at least a 75% consensus (which can be adjusted in 
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the specific project) among all the citizens involved. This is 
the input for the algorithms.

When algorithms do not know yet how to perform clas-
sification. In Milky Way, a system leveraging citizen sci-
ence and ML to detect interstellar bubbles, citizens identify 
patterns that machines cannot identify in bubble detection 
and contribute to building a database. Researchers use the 
citizen identification output to train ML and build a model 
of an automatic classifier (Fig. 6).

When algorithms pose queries. In MAIA, an ML-assisted 
image annotation for the analysis of marine environmental 
images, an algorithm poses queries to citizens in the form 
of training data images. Citizens review these images and 
determine whether they contain objects of interest for clas-
sification or not. Then, they manually refine each image with 
a circle to mark the object of interest in the image, by modi-
fying the circle position or size, so it closely fits the position 
and size of the object (Fig. 7).

5 � Discussion

In this study, we examined twelve classification projects 
combining CS and M in several scientific fields. This com-
bination results in socio-technical epistemic systems consist-
ing of human and non-human actors, each equipped with 
different amounts of knowledge and power. Our analysis 
suggests no task performed by either citizens or experts can 
be handled fully by ML at present. The suitability of a task 
for ML depends on the task characteristics and the level 
of knowledge required to perform it. However, machine 
learning may yield an epistemically stratified organiza-
tion, as it requires more expert knowledge and skills, while 
still soliciting citizen scientists’ contributions. Due to the 
temporality of tasks in a CS project, the epistemic agency 
will be ascribed to different actors at different times. This 
means that, at different times, the epistemic agency of cer-
tain actors will come to the fore, while that of others will be 
obscured. Arguably, this means that narratives of ML, AI 
and CS (biography, success, optimization, ideal of science, 
etc.) must be understood in terms of how tasks are delegated 
and distributed among actors and their epistemic agency, as 
they change over time. Whether you ask the question “if”, 
or tell the story of “how” a project succeeds, when machines 
take over, etc., the answer will be different, and in fact it will 
differ based on when and where you examine the project.

Our descriptive results raise three main issues, which we 
will explore through the lens of perspectives informed by 
Science and Technology Studies (STS) and Information Sys-
tems. Specifically, we discuss the emphasis of optimization 
on the ideal of science, the problem of induction, and the 
role of citizen scientists.

Fig. 1   Citizen tasks, aggregated and sorted by number of references

Fig. 2   Machine tasks, aggregated and sorted by number of references

Fig. 3   Expert tasks, aggregated and sorted by number of references



533AI & SOCIETY (2024) 39:523–540	

1 3

5.1 � Emphasis on optimization to achieve greater 
scale, accuracy, and speed: which ideal 
of science?

We examined projects in various scientific fields that use CS 
in conjunction with ML, such as neuroscience, sociology, 

oceanography, environmental science, botany, life sciences, 
astronomy, microbiology, and medicine. Despite the vari-
ety of scientific fields, the narratives about these projects 
in terms of project goals, human–machine integration, use 
of ML, and distribution of tasks between citizens, experts, 
and machines, all reveal a story of optimization, scaling up, 

Fig. 4   Comparison of tasks across the three actors

Fig. 5   ML provides incorrect 
suggestions

Fig. 6   ML cannot identify 
outliers

Fig. 7   ML posing queries
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increasing accuracy, and speeding up. These stories under-
pin a model of data-driven science propelled by ML affor-
dances that make it easier to sift through massive datasets 
to infer patterns, while renewing inductive reasoning, and 
making research less hypothesis-driven (Mazzocchi 2015; 
Hochachka et al. 2012). At the same time, there is also a 
growing interest in using AI in research as a means of ena-
bling new methods, processes, management, and evaluations 
(Chubb et al. 2021).

The diverse projects included in this study bring together 
a stereotypical narrative of how ML enables epistemic 
agency. Why is this narrative repeated in various scientific 
fields? Data-driven science seems to unite projects rather 
than separate them when they are reported for stakeholder 
audiences, embedding programs of action (Latour 1992), 
and envisioning a desired imagined future state (Glaser 
et al. 2021, p. 13). In this way, a scientific future is enacted, 
namely, one in which high-powered computing capacities 
enable the utilization of largely inductive ML applications 
that require less theoretical pre-processing of data (Gla-
ser et al. 2021, p. 10). The shared narrative reflects a unity 
of science that extends beyond the epistemic agency that 
shapes these hybrid formats of science. As science opens up 
to outsiders to train the automated systems of high-capacity 
machines, outsiders are encouraged to participate as induc-
tive actors, taking part in a program and performing an ideal 
of science that accommodates them in the research process. 
This does not imply that the observations made, classified, 
and used to train machines are not used to test hypotheses. 
Citizens’ access points, however, enact a process of induc-
tion, which tends to unify the sciences more than separate 
them. When scientists open the way for volunteers to train 
machines to speed up scientific processes, this is in line with 
inductivism’s ideals (Kasperowski et al. 2019).

Science has been associated with at least two main epis-
temic uncertainties known as the problem(s) of induction. 
Popper (1934) suggests that although some “problems” 
cannot be solved, they can be more or less successfully 
managed. First, observations are uncertain and are usually 
addressed and managed by different technologies, standards, 
and protocols. Second, finite observations cannot yield uni-
versal conclusions. Observers cannot observe everything and 
protocols in themselves suffer from being based on finite 
observations. Inundated with data, they will not be able 
to cope. Nowadays, ML can learn to recognize patterns in 
classified data that were not integrated into their original 
design, since the hybrid use of CS and ML when coupled 
with an abundance of data makes it possible to manage epis-
temic uncertainty (Popenici and Kerr 2017). Protocols are 
guaranteed to evolve and maintain their functions as data 
sets become larger and the epistemic agency of machines 
increases. However, when outlining an algorithm’s biogra-
phy (Glaser et al. 2021), it is critical to include how much 

data an algorithm can handle without losing its explana-
tory power and its ability to make additional classifications 
beyond the original gold standard. Once this new data are 
gathered, it will be time to retrain the machine with the help 
of experts or citizens.

Science that incorporates outsiders such as citizen scien-
tists in the research process is more likely to unify sciences 
than to divide them. Citizen science would then reflect a 
scientific ideal resembling some aspects of the discipline of 
observations through protocols, which is reminiscent of the 
logical empiricists’ argument for the purification of science 
(Kolakowski 1972). While the 1930s called for a purifica-
tion of science and research, 90 years later the key terms are 
computer science, artificial intelligence, machine learning, 
open science, inclusion, mediation, transparency, democ-
racy, and responsible research. In the 1930s, the epistemo-
logical concern was that science must close ranks to save 
itself; it now appears that science is encouraged to open 
ranks under a banner of openness and unified investigation.

5.2 � Implications of optimization for the role 
of citizen scientists

The problem of induction. The three examples of citizen-
in-the-loop in Sect. 4.2 suggest that ML is used as much as 
possible at a given point in time/stage of evolution of the 
project, and then humans step in to fill in the missing pieces. 
Depending on the current strength of ML, the temporal order 
in which machines and citizens take turns to work on tasks is 
different. If ML provides wrong outputs, then citizens help 
retrain the model, but if ML is somewhat better and makes 
suggestions, then citizens correct the model. If ML models 
work well, then humans take care of undetected exceptional 
cases. If ML is perceived as producing optimized outputs, 
citizens may be made redundant. This is a just conjecture for 
which there is no direct empirical evidence, but it is worth 
considering. If the outputs of ML are trusted and relied 
upon by experts, they may influence the socio-technical 
assemblage that generates the data on which the same ML 
is trained (Faraj et al. 2018; Pachidi et al. 2021; Lebowitz 
et al. 2021). It is unclear if humans will ever become redun-
dant when applying ML to the CS domain, and if they do, 
under what circumstances is ML considered optimal? In the 
present stage of development, the skills of ML make it a 
scalable complement to citizens and experts, for example by 
structuring large amounts of unfiltered data into information 
or estimating the probability of an occurrence of an event 
based on input data (Ponti and Seredko 2022).

However, rather than considering optimization from a 
technical perspective, we relate it to the way the “problem 
of induction” from observations is handled. A long-standing 
belief holds those inductive approaches—now emphasised 
by ML which infers general rules from observations—are 
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plagued by inescapable and insoluble problems (Popper 
1934). Humans and machines cannot solve these problems, 
nor can some sophisticated hybrid approach combine the 
two. There is an important reason for this: no protocol can 
handle a lot of data without encountering anomalies, and 
these must be controlled for. Therefore, human epistemic 
agency will be needed for never-observed phenomena, 
because protocols and gold standards have a limited epis-
temic reach in those cases.

In this study, we focused on technologies using ML clas-
sification methods that infer patterns from training datasets 
consisting of labelled input–output pairs and classify new 
inputs into predefined output classes. These ML methods 
are rule-based systems that allow ML to represent experts’ 
know-what knowledge (Lebovitz et al. 2021). This type of 
knowledge is captured, for example, in the gold-standard 
labels used to train and validate ML models. Experts are key 
in the data-intensive projects we examined. Consonant with 
the relational notion of agency adopted in this work, we use 
a relational notion of expertise. Rather than being something 
experts possess, we define expertise as the expert’s ability to 
mediate between the production of knowledge and its appli-
cation (Grundmann 2017). In this sense, in our sampled pro-
jects, experts define and interpret situations and set priorities 
for action. As mentioned in Sect. 4.2, experts are the humans 
mainly involved throughout the research process and in the 
loop, when models fail or are unreliable. It has been said that 
under conditions of epistemic uncertainty, official expertise 
and lay expertise should not be seen as antagonistic but as 
complementary (Funtowicz and Ravetz 1990). It is these 
different types of expertise, including that embedded in ML 
algorithms, which interact with each other to form an assem-
blage in a "program of action" (Latour 1992, p.152). There-
fore, we suggest viewing ML optimization as a constructed 
assemblage in which citizens, experts, and machines play 
different roles and exert epistemic agency at different points 
in time to pursue CS project epistemic goals.

Trust in ML outputs and redundancy of citizens. In this 
study, we focused on technologies using ML classification 
methods that infer patterns from training datasets consist-
ing of labelled input–output pairs and classify new inputs 
into predefined output classes. These ML methods are rule-
based systems that allow ML to represent expert know-what 
knowledge (Lebovitz et al. 2021). This type of knowledge 
is captured, for example, in the gold standard labels used to 
train and validate ML models. It is worth considering that 
if ML tools are trusted and taken-for-granted, and experts 
rely on seemingly accurate ML outputs over volunteers 
(including expert volunteers), these outputs may influence 
the socio-technical assemblage that generates the data on 
which the tools are trained (Faraj et al. 2018; Pachidi et al. 
2021, Lebowitz et al. 2021). Therefore, to consider machines 
as unproblematic and their output as immutable mobiles 

(Latour 1990) implies that citizen scientists will play only a 
minor role in the long run.

One can speculate that ML in CS will allow citizens to 
focus on higher-level tasks by automating boring tasks. 
However, as Franzoni et al. (2021) argued, “to the extent that 
such work is limited in volume or requires additional knowl-
edge and resources that pose barriers for crowd participants, 
there is a risk that CS becomes less inclusive by focusing 
primarily on expert volunteers” (p. 17). They acknowledge 
the risk that CS could become less inclusive if projects rely 
primarily on experts. While this may not be a concern from 
a ‘productivity’ perspective, it may limit CS’s potential to 
advance the non-scientific goals highlighted by the “democ-
ratization view” (Franzoni et al. 2021). Relying mainly on 
expert volunteers could reduce the diversity of current and 
future citizen scientists by diminishing their range of moti-
vations and disengaging those citizens who want to contrib-
ute to science in their spare time and have fun, help science, 
or spend time outdoors (Geoghegan et al. 2016). Deriving 
personal meaning and value from participating is important 
to citizen scientists, who typically volunteer time and effort 
driven by intrinsic or social motivations and not for financial 
compensation (Sauermann and Franzoni 2015). However, 
how CS projects have to be designed to actually cater to 
diverse needs and expectations seems to be very much in a 
conjectural stage (Kasperowski and Hagen 2022). Sugges-
tions to avoid disengagement and redundancy include allow-
ing participants to contribute their task of interest even if the 
task can be fully automated so that their contribution can 
help improve ML performance; or incorporating new forms 
of citizen contributions to fill the gaps created by automation 
(Lotfian et al. 2021).

While these suggestions can be regarded as motivational 
by some, they can be seen as “over-engaging”, bordering on 
the unethical. As part of the debate over the ethical prob-
lems evoked by citizen science, there is an issue of “over-
engagement”, which means being available for free work for 
science indefinitely (Kasperowski and Hagen 2022). There-
fore, we argue that the opposite of becoming redundant can 
actually happen with the growth of ML in CS. The problem 
of induction may repeatedly call upon humans, both experts 
and citizens, in the loop of the process. The fear of AI and 
ML creating “undemocratic”, hierarchical, or epistemically 
stratified projects, must of course be closely observed. How-
ever, from the perspective of epistemic agency, hierarchy 
or epistemic stratification could be said to occur constantly 
in projects on a microlevel, as different actors are endowed 
with more temporal epistemic power during the course of 
a project.
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5.3 � Participation of citizens—or the lack thereof—
and the use of ML

The AI industry is showing interest in developing solutions 
to global problems using AI in combination with citizen 
scientists. An example is a recent partnership between a 
team of IBM data scientists and the UN Environment Pro-
gramme (UNEP) to overcome the challenges associated with 
citizen data and create a unified, global baseline dataset for 
measuring plastic pollution in line with UNEP’s Sustain-
able Development Goal 14 (Clemente 2020). Sloane (2020) 
contends that ML extends the agenda of the tech industry, 
which is focused on scale and extraction. The use of ML may 
exacerbate an “extractive” approach to citizen participation 
(Sloane 2020), by which data collection and classification 
remains the primary way for volunteers to contribute to the 
scientific goals of CS projects. The increasing use of ML in 
CS classification projects must therefore be related to issues 
of power dynamics and inequalities in terms of engagement 
and retention of volunteer participants.

CS wishes to be inclusive in terms of age, gender, ethnic-
ity, geography and social class. However, CS participation is 
currently skewed demographically and geographically, with 
biases in age, gender, ethnicity, and socioeconomic status 
(Pateman et al. 2021). Participants in long-term projects, 
such as eBird at the Cornell Lab of Ornithology, have been 
shown to be predominantly highly educated, upper-middle 
class, middle-aged or older, and white (Purcell et al. 2012). 
The results concerning gender composition are mixed; 
however, some projects show a strong bias towards men 
(Hobbs and White 2012; Crall et al. 2012; Raddick et al. 
2009; Wright et al. 2015). Other studies indicate that some 
projects offer opportunities for disadvantaged groups not 
otherwise available (Khairunnisa et al. 2021). There is an 
ethical imperative to involve a diverse group of participants 
to inform CS projects and provide access to their benefits 
(Mor Barak 2020).

CS participation is skewed not only in terms of sociode-
mographics but also in terms of actual contributions. Most 
contributions are being made by a few (Seymour and Haklay 
2017). This lack of diversity in CS reflects different motiva-
tions and capacities and raises concerns about the repre-
sentativeness of data and whether individual, societal, and 
environmental benefits are evenly distributed (Pateman et al. 
2021). Deriving personal meaning and value from partici-
pating can be important to citizen scientists who typically 
volunteer time and effort driven by intrinsic or social moti-
vations and not for financial compensation (Sauermann and 
Franzoni 2015). Diversity in participation remains a chal-
lenge, which the use of ML may exacerbate. The involve-
ment of ML seems to be a case of what we call “designing 
for”, where citizens are not integrated into the design pro-
cess from the beginning, but relied on to make the model 

(ML design) successful ex-post. It has been suggested that 
the involvement of citizens through CS, particularly dur-
ing the research design phase, may help reduce bias in data 
and training annotations for AI, enable public shaping of 
AI, and foster a lifelong interest in science (Shanley et al. 
2021). The long-standing interest among STS scholars of 
whether new technologies solve problems or rather manage 
and move them about; displacing, and making problems and 
some actors and their agency invisible or redundant; seems 
to reappear as ML and AI are combined with CS (Glaser 
et al. 2021).

We are left to wonder whether inequality in participation 
detracts from the promise to make science more democratic, 
both in terms of including more diverse people in doing sci-
ence and in making science better aligned with the public 
interest (Strasser and Hacklay 2018). However, it would be 
contrary to some current proponents of CS to claim there are 
“objective” public interests that science can tap into continu-
ously (c.f. Brown 2009). This standpoint seems too often 
inform voices from both policy and science, when expecta-
tions and social imagery of the availability and readiness of 
citizens to be mobilized into CS projects is produced. Our 
suggestion would be that the pursuit of such interests must 
be viewed as acts of performance, thus they are made and 
cannot be taken for granted.

The non-linearity of the HITL. In our ANT-inspired view, 
the constructed assemblage including citizens, experts, and 
ML is a complex effect resulting from mutual interaction and 
feedback loops, as exemplified in Figs. 5, 6, and 7. These 
assemblages can be seen as complex triangular systems of 
citizens-experts-technology in which relationships and loops 
need to be repeatedly “performed” by all the actors involved, 
or the assemblages dissolve. ANT is not the only framework 
that attends to these connections and interactions. Other the-
oretical endeavors, such as cybernetics (Wiener 1948), have 
explored complex feedback processes within networking and 
self-organization of systems. Both ANT and cybernetics 
aim to conceptualize complexity, they are both sensitive to 
the hybrid nature of phenomena, and they both emphasize 
system effects. However, as pointed out by Fenwick and 
Edwards (2010), a core difference between cybernetics and 
ANT is the latter’s orientation toward contingent practices 
and multiplicity. ANT provides a conceptual framework for 
analysing how the diverse entities of a classification pro-
ject—including technologies—take a role through specific 
situated material–semiotic redistributions of expertise and 
epistemic agency. Uncertainty characterizes contingent prac-
tices. Humans are unlikely to act as “controllers or proces-
sors” of classifications in a linear way in the loops, as they 
may not repeat or reproduce the same exact actions under 
the same input. Even such fixed things as standards and pro-
tocols can be uncertain in practice. The loops we exempli-
fied are not expected to be seamless, whereby ML fails to 



537AI & SOCIETY (2024) 39:523–540	

1 3

identify a pattern, citizens identify it, and experts feed the 
correct answer into the training data. These are expectations 
and possibilities that ML will perform its tasks, but there 
is no guarantee that citizens will unquestioningly take the 
assigned epistemic role and dutifully engage in checking 
errors, or filling gaps. Nor, for that matter, does it mean that 
ML itself will comply with experts’ wishes. Checking the 
correctness of classification can happen in multiple ways, 
depending on the material–semiotic network in which this 
task is entangled. Tracing the material–semiotic assemblage 
of checking data classification could reveal the continuity 
from one version to the other and thus the simultaneous sin-
gularity and multiplicity of the assemblage.

5.4 � Limitations

This study has two main limitations. First, we relied solely 
on secondary sources without incorporating other methods 
(e.g., interviews) that could help reduce bias and compensate 
for the dearth of documents and their incompleteness. Our 
study may be limited by the use of the narratives reported in 
the documents, which represent the authors’ perspectives. 
Since most research papers tend to report on successful 
rather than unsuccessful projects, we are likely to have been 
exposed to mostly successful divisions of labour instead of 
those that did not work. Being aware of this potential bias, 
we have been careful not to use documentary evidence as a 
stand-in for other kinds of evidence that we could not pro-
duce using this method.

Second, our study may be limited by the small number 
and type of projects examined. The sample we used is pur-
posive. Note that the selected projects reflect those that were 
documented at a particular moment in time, rather than 
being a truly representative sample of the population.

6 � Conclusion

AI tools have long been the subject of concerns such as the 
effects on human employment and the potential for dehu-
manizing (Boden 1987). As AI is used in CS increasingly, 
questions should be raised about its impact on citizen roles. 
ML in CS classification projects, far from being determin-
istic in its nature and effects, may be open to examination. 
There is no guarantee that these technologies will replace 
citizen scientists, nor any guarantee that these technologies 
will provide citizens with opportunities for more interesting 
tasks. However, to assume that ML and other AI computa-
tional technologies can replace humans entirely in CS over-
estimates their current limited autonomy and “smartness”, 
as they still require the human intervention of experts and 
engaged citizens (Authors 2022).

The use of ML raises the question of which tasks will 
be most affected, and which will be relatively unaffected. 
This paper offers a descriptive account of the distribution 
of tasks between humans and ML in CS classification pro-
jects. It also presents how epistemic agency is acted out in 
terms of whose knowledge shapes the distribution of tasks, 
who decides what knowledge is relevant to the classification, 
and who validates it. Citizens and experts in CS classifica-
tion projects are already affected differently by the use of 
ML, depending on the tasks they perform and the epistemic 
agency they exercise. However, currently no task can be 
fully handled by ML. Our analysis leads to the conclusion 
that the integration of ML into the socio-technical system 
of a classification project requires some form of relation-
ship with humans at one level or another. Regardless of the 
advancement of ML, humans are likely to have an active 
epistemic role to play in certain decision-making loops that 
will affect ML operations. However, it remains to be seen 
what the role of citizens will look like in the future, how 
they will be able to exert epistemic agency, and whether they 
will work on higher level tasks. For example, a future study 
could use ethnographic methods to examine in more depth 
whether AI and ML technologies empower experts and dis-
enfranchise citizens. Further studies could examine how citi-
zens, experts, and algorithms co-evolve in these projects, 
and whether the content of tasks assigned to actors early in 
the design of projects shifts over time. Another topic might 
be to examine whether human–machine integration leads to 
skill-biased technological changes, such as ML replacing 
low-skill tasks. As the boundaries and distinctions between 
humans and machines blur, we may face unexpected obsta-
cles, opportunities and questions worth exploring in future 
research.
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