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Abstract
The Bubonic Plague outbreak that wormed its way through San Francisco’s Chinatown in 1900 tells a story of prejudice 
guiding health policy, resulting in enormous suffering for much of its Chinese population. This article seeks to discuss the 
potential for hidden “prejudice” should Artificial Intelligence (AI) gain a dominant foothold in healthcare systems. Using a 
toy model, this piece explores potential future outcomes, should AI continue to develop without bound. Where potential dan-
gers may lurk will be discussed, so that the full benefits AI has to offer can be reaped whilst avoiding the pitfalls. The model 
is produced using the computer programming language MATLAB and offers visual representations of potential outcomes. 
Interwoven with these potential outcomes are numerous historical models for problems caused by prejudice and recent issues 
in AI systems, from police prediction and facial recognition software to recruitment tools. Therefore, this research’s novel 
angle, of using historical precedents to model and discuss potential futures, offers a unique contribution.
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1  Introduction

Wong Chut King, a Chinese labourer, was found dead in 
the basement of a hotel in San Francisco’s Chinatown in 
March 1900 (Risse 2012). After an ‘egg-shaped blackish 
lump’ was discovered in his groin, King would prove to be 
the first confirmed victim of San Francisco’s Bubonic Plague 
outbreak at the turn of the twentieth century (Risse 2012: 

76). Unbeknownst to most at the time, King’s death would 
instigate a public health and political crisis, with infighting 
tearing the city apart and an intensification of Sinophobia 
(Skubik 2002).

At the end of the nineteenth century, San Francisco was 
home to California’s largest Chinese population and tradi-
tional Gold Rush arguments remained: Chinatown was filthy, 
and its bad smells bred disease (Risse 2012). Germ theory 
was in its infancy and the plague was considered an “Orien-
tal disease” (Morton Todd 1909). This scapegoating was not 
new; Malaria, Smallpox and Leprosy were all placed at their 
door (Trauner 1978). Racial prejudices justified such claims; 
the phrase ‘yellow peril’, coined at the time, demonstrated 
the supposed threat that Asian immigrants represented for 
European-American civilisation (Risse 2012). In the 1870s, 
these racist arguments broadened as Chinatown grew. It 
was argued that their cheap labour undermined wage rates, 
their poor sanitation endangered the nation and they were 
‘inferior in organic structure, in vital force, and in the con-
stitutional conditions of full development’ (Trauner 1978: 
70–72). The result was the Chinese Exclusion Act of 1882, 
which dictated policy for the next sixty years. Popular rac-
ism enabled the maltreatment of the Chinese and explains 
how politicians could disregard the plague in Chinatown.

Multiple quarantines were enacted over the period, along 
with a proposed vaccination programme (Skubik 2002). 
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The vaccine used dead bacteria but rumours that it was poi-
sonous left Chinatown on the verge of riot (Skubik 2002). 
Meanwhile, California’s Governor, along with San Fran-
cisco’s business community, chose to deny the existence 
of the plague and suppress facts to protect their interests 
(Skubik 2002). Many anti-Chinese groups considered using 
the plague as an excuse to destroy Chinatown (Risse 2012). 
As one scurrilous commentator put it: “The only way to get 
rid of that menace [plague] is to eradicate Chinatown from 
the city… clear the foul spot from San Francisco and give 
the debris to the flames” (The San Francisco Call 1900). 
This was arguably only ruled out due to fears over disrupting 
trading links with China (Risse 2012).

In 1900, the disease was mainly spreading among the 
rodent population (Skubik 2002). Real action was only taken 
in 1903, once the disease had become highly contagious 
and fatal and with a new Governor in office (Skubik 2002). 
The epidemic was declared over in summer 1904 after 122 
deaths, most, but not all, of whom were Chinese (Skubik 
2002). The lack of genuine medical help offered, compared 
to the speed with which Chinatown was blamed, is symbolic 
of the period’s prejudices. Those dealing with the epidemic 
were driven by their own interests; only when the impact was 
felt outside Chinatown, was action taken.

So, how is this tale from history relevant to the rapid 
growth of Artificial Intelligence (AI) today? The connection 
is bias. In San Francisco in 1900, prejudice was present in 
multiple forms, demonstrated by numerous characters and 
its impact had life and death consequences for those on the 
receiving end. Also, this case study offers the first example, 
of many for this piece, of how such prejudice can trigger a 
negative feedback loop. That is, as the plague worsened, 
Sinophobia intensified, further limiting the response and 
allowing the loop to repeat. Unfortunately, over 100 years 
on, similar biases and feedback loops are emerging, only 
this time our technological creations have the potential to 
be biased. On various scales and in areas from recruitment 
to policing, bias could emerge and if unchecked could guide 
decisions worldwide.

This argument for the existence of potential ‘bias’ in AI 
systems is not without foundation. Humanity’s capacity 
for prejudice in society, our thinking or actions is evident 
throughout history, whether that bias be unconscious or 
deliberate. O’Neil (2016: 203–204) takes this further, sug-
gesting that ‘injustice, whether based in greed or prejudice 
[or both], has been with us forever’. O’Neil acknowledges 
that human decision making can often be flawed but can 
also evolve, unlike automated systems which ‘stay stuck 
in time until engineers dive in to change them’ (O’Neil 
2016: 203–204). This inference that humanity’s biases can 
sometimes be replicated in our technological creations also 
appears in Whitaker, Colombo and Rand’s (2018: 10) find-
ings: ‘the distributed collective intelligence of machines is 

also a social endeavour, and it is potentially susceptible to 
prejudicial phenomena as seen in the human population’. 
Sismondo (2010: 9) agrees regarding this social side of tech-
nology, arguing that ‘people act in the context of available 
technology’.

So, given this idea that technology influences social 
conduct, which in turn determines the technology human-
ity uses; it seems unlikely that even the most sophisticated 
AI-based technologies will be able to avoid the ‘forever’ 
phenomenon that is bias. Yet, as Plant (1997: 46) states, 
resources that ‘were once restricted to those with the right 
face, accent, race, sex’ are now available to all. With that 
in mind, this paper works to draw attention to various case 
studies where the potential for bias has become a reality and 
has served to subvert AI’s beneficial potential.

This paper chooses to delve deeper into this wider sugges-
tion of AI’s ability to embody various biases. To do this, it 
will focus on an area of the most pressing importance should 
such biases emerge: healthcare. Specifically, a toy model 
imagining an AI in control of a vaccination programme in 
the event of an epidemic will form the basis of this arti-
cle. From this basis, the paper has an overarching narrative 
which is split into three sections (called stories) for struc-
tural reasons. While the scenarios discussed are strongly 
intertwined, they are tackled separately here to demonstrate 
the multiplicity of the dangers. The first proposes that this 
fear of the algorithm is an overreaction. It will proffer that 
the outcomes can be the same, no matter if the algorithm 
is altered, hence, there is nothing to worry about? In con-
trast, the second story observes how seemingly insignifi-
cant changes to the code and alterations to the datasets used 
can hugely alter the outcomes for individuals. Finally, the 
third story alters the dataset again to demonstrate the con-
sequences when supposedly ‘clear’ instructions are written 
into AI systems and yet when the programme is allowed to 
run freely, deviation from these instructions can occur. Then, 
a discussion will draw together all these ideas from the toy 
model and reference real-life situations, including referring 
back to the example of San Francisco’s Chinatown, to fur-
ther enhance this paper’s arguments.

The toy stochastic network modelling approach used 
here is sufficient to highlight the issues raised within the 
scope of the paper, where the focus is on the interactions 
and feedbacks between data, different actions and potential 
outcomes. The target of this paper is not to offer novel AI 
tools for the healthcare, but rather to draw attention to and 
stir a debate regarding the potential outcomes, should the 
feedbacks discussed here become a reality in AI systems. 
It is appreciated that in the ‘AI in Healthcare’ context in 
reality, there are many more complex models already in the 
field. A deeper and more comprehensive investigation into 
the intricate and sensitive topic of AI in healthcare scenarios 
in the ‘real-world’ would draw on a wide range of models. 
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For example, Brailsford et al. (2009) analysed frequency of 
use, domains of application and the level of implementation 
of a wide range of research modelling approaches in the 
healthcare remit. In fact, they note that ‘simulation methods 
are prominent in planning and system/resource utilisation’ 
which enhances the legitimacy of this paper’s choice of 
modelling technique to effectively meet its target (Brails-
ford et al. 2009: 139). Brailsford et al. (2009) demonstrate 
the sheer range of potential methods to be used but regarding 
the earlier suggestion of more complex alternative models, 
Weng et al. (2017) offer an excellent overview of some of 
the machine-learning models being used to help improve 
cardiovascular risk prediction. They looked at four differ-
ent machine learning algorithms compared to an established 
algorithm that predicts future risk based on well-established 
factors such as cholesterol or smoking (Weng et al. 2017). 
On the other hand, the machine learning approaches can 
exploit ‘big data’ and the neural network model performed 
the best in their study (Weng et al. 2017). Therefore, the 
two mentioned studies demonstrate the wider ranging and 
more complex nature of models currently at work in the ‘AI 
in healthcare’ field. However, they also evidence that for the 
scope of this paper, the simple stochastic network models 
used are ideal as suggestions of what could happen, and 
the use of features—even on this paper’s smaller scale—is 
clearly a well-founded technique in this field.

2 � Methodology

Skubik’s work on the bubonic plague in San Francisco’s Chi-
natown, in particular, highlights that it was assumed at the 
time that only Chinese people required vaccination for this 
‘oriental disease’ (Skubik 2002). Hence, it can be assumed 
that assigning an experimental, and potentially dangerous, 
medicine was based on prejudice. This work will take this 
suggestion of bias guiding healthcare decisions further, by 
imagining that issuing vaccinations fell to an AI system. 
This paper will examine how that might be decided and look 
into some of the implications of that automation.

Age is often used to determine who receives a vaccine. 
For example, over sixty-fives are one of the groups specified 
for the free flu vaccine in the UK (NHS UK 2019).1 Simi-
larly, Gupta et al. (2014) state that ‘top-ranked influential 

spreaders need to be identified for targeted immunization’ 
and that traditionally ‘nodes with high centrality are con-
sidered to be the influential nodes’. Although they admit 
that many measures can be used for this ‘centrality’ param-
eter, they note that ‘degree centrality’, where each node is 
given an ‘importance score based simply on the number of 
links held by each node’ (Disney 2020), is a popular choice 
(Gupta et al. 2014). More generally, in any network or pop-
ulation of people, every individual has a vast number of 
different attributes, including age and weight but also race 
and religion, or any number of medical conditions. These 
attributes could be linked to susceptibility and, like age for 
the flu vaccine, be used to classify or, in AI parlance, cluster 
individuals for the purposes of determining a vaccination 
policy Fig. 1. Although, populations are not an unstructured, 
homogeneous wholes in which disease spreads out. They 
are heterogenous, structured by social connections, be they 
physical or virtual via social media. For this toy model, two 
types of parameter will be used as metaphors for all the vari-
ous attributes of individuals in a population. The first will 
be referred to as health parameters, which for this toy model 
will be summarised by age and weight. The second are net-
work parameters, which will be simplified to the edge degree 
of each node in the population (number of connections an 
individual has to others in the population).

In large, high-dimensional networks of populations with 
multiple and varying datapoints describing individual fea-
tures, determining clusters is beyond human action but well 
within the scope of powerful AI systems. Such AI-based 
decision systems are already in development in the health-
care context, particularly in the context of Acute Kidney 
Injury (Argyropoulos et al. 2019). Google DeepMind’s ini-
tially developed a machine capable of playing the ancient 
Chinese game of Go (DeepMind 2019). Now, by use of a 
neural network, they are connecting around 9000 data-points 
and historic incidents of kidney injury for a dataset of Amer-
ican veterans in an attempt to predict acute kidney injury 
before it happens (Powles 2019). Admittedly, at present, the 
accuracy is only around fifty-five percent, but the example 
proves the extent to which social connections and features 
are constantly being captured, processed and used to make 
decisions (Powles 2019). If you doubt this statement, no one 
knew when their data had been sold to Cambridge Analytica 
and even now the scandal has been unearthed, it is unlikely 
that you know whether you were a victim (Amer and Nou-
jaim 2019). So, how might this clustering and AI-based vac-
cination lead to biases in future healthcare?

2.1 � The Model

In an attempt to explore this potential relationship, a ‘toy 
model’ was created that uses networks to model a hypo-
thetical disease. The health parameters—age and weight, 

1  In fact, age is one of the nine protected characteristics that it is 
against the law to discriminate against (Equality and Human Rights 
Commission 2020). That is not to say that determining distribution 
of flu vaccines by age is unlawful since ‘a service provider is [essen-
tially] making age-related concessions and benefits’ (Equality and 
Human Rights Commission 2020). On the other hand, weight is not 
one of the nine protected characteristics, but to use it to determine a 
vaccination programme would more than likely be deemed unethical.
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and network parameter—social connections, of twenty-five 
people, were recorded to give a picture of potential fea-
tures available to such systems. By social connection, this 
term was considered to imply a relationship through which 
a disease could be contracted and corresponds to the edge 
degree of each node. Of course, this is an idealised view of 
AI-based disease management. However, it does not detract 
from the essential point being made, that of the interactions 
and feedbacks between data, vaccination, and propagation 
of the disease. In fact, it is argued that such a ‘toy model’ 
better depicts these potential outcomes than if realism was 
considered a factor.

So, in this fictionalised model, what are the rules?

•	 The features (age, weight, and edge degree) of each per-
son are used pair-wise to cluster the population and the 
disease spreads through the population via the social con-
nections outlined.

•	 Individuals are assigned a susceptibility to the disease 
according to their features, a value that reduces should 
they be assigned the vaccine.

•	 Inherently, a person with more connections to those 
infected/vaccinated in the network will have a higher/
lower probability of retaining the infection/recovering.

•	 Once the vaccination is inputted into the simulation, the 
vaccine is applied at each timestep provided that the per-
son remains in the vaccinated group.

•	 Individuals can recover from the disease in this idealised 
model.

•	 Only nodes (individuals) that have not been ill for a 
lengthy period are used for clustering purposes. This 
is used to represent how app-based data collection will 
depend on the app being active.

At the outset of this model, the clustering process is 
the only element in action. Then, to replicate the situation 
detailed in Fig. 2, the exclusion element of the model com-
mences and is iterative and repeats after every timestep. The 
point being made here is that AI systems can continuously 
re-classify features. So that if, for some reason, data are 
omitted for a node, then this will impact or feedback, on 

clustering. Consequently, as the disease outbreak progresses 
so potential biases may emerge due to this feedback between 
the data, vaccination, and disease impact. For example, apps 
that collect exercise data would miss data for individuals 
who did not exercise because of illness. But that missing 
data would influence cluster membership, vaccination and, 
in turn, recovery from illness. Similarly, immigrants without 
papers or modern slaves would have no medical records or 
online presence. Therefore, they would not just be missing 
some data, they would have none and under this system of 
vaccination, they would always be excluded from vaccina-
tion. In the simulations, people who have been infected for 
a long time are excluded from clustering to illustrate the 
impact of this feedback on clustering. Whilst this model’s 
outcomes may be simpler than reality, there are numerous 
parameters in Table 1, some set and some chosen by the 
modeller, that can alter these outcomes.

This ‘toy model’ was produced in MATLAB (Appendix 2 
in Electronic Supplementary Material). The model is built 
around an adjacency matrix (Appendix 1 in ESM), which 
depicts the connections in the population through which a 
disease could be contracted and is read into the programme, 
from an Excel spreadsheet, at the outset. At the same stage, 
the population’s features are also read into the model, 
(Appendix 1 in ESM). In fact, all the parameters noted in 
Tab. 1 are created before the iterative process begins in the 
model. Whether an individual becomes infected is a random 
process driven by the susceptibility probabilities. Therefore, 
the 100-timestep simulation is repeated 1000 times and the 
plots created in this work and the results discussed depict 
the summary statistics of all of these runs.

Before the disease simulation is enacted, two correspond-
ing plots Figs. 3 and 4 are produced to show the popula-
tion originally (Appendix 3 in ESM). Note, the numbers on 
the plots correspond to the individuals in the population. 
The first, Fig. 3 is the network for the population, whereby 
the black edges correspond to the connections in the adja-
cency matrix, and the position of the nodes on the fixed 
axis is determined by the use of the fruc_rein function. This 

Cluster 

Vaccina�on 

determines 

Fig. 1   Diagram simplifying how recipients of the flu vaccine are 
determined, for example. The cluster that people are slotted into, 
according to age, determines whether they receive the vaccine

Cluster 

determines 

Vaccina�on 

feedback 

Fig. 2   Diagram simplifying how recipients of the vaccine in this 
work’s model are determined. As before, clustering determines vac-
cination receipt but this time, vaccination, i.e. whether the person is 
well enough to be considered, feedbacks on the clustering process, if 
they are not well enough, they will be excluded from the clustering 
process
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function uses the Fruchterman–Reingold Algorithm to find 
the optimal node placement for the network from the adja-
cency matrix, this is just one of many methods for node 

Table 1   Itemised list of all the parameters required for this model, including the inputted values and the variable used to represent each param-
eter in the code

Parameters chosen by the modeller

Number of cluster groups nocl 4
Susceptibility of vaccinated nodes susl 0.1
Susceptibility of unvaccinated medium to low susml 0.2
Susceptibility of unvaccinated medium to high susmh 0.6
Susceptibility of unvaccinated nodes sush 0.85
Length of time T, Q The model runs for 100 timesteps 1000 times
Proportion of time a node has to be infected for before being excluded from the 

clustering
tolill 5 times in the last 10 timesteps

Initial number of those infected y Nodes 15 to 20
Which cluster group(s) is/are vaccinated – the union of those over the threshold 

for the two features used in certain plot
age_tol, 

weight_tol, 
degree_tol

60 for age, 65 for weight and 5 for degree

When the exclusion process starts in the model T1 10
When the vaccination starts in the model T2 20
Set parameters
The adjacency matrix for the population A Appendix 1 in ESM
The features of the members of the population feats Appendix 1 in ESM

Set parameters

The adjacency matrix for the population A Appendix 1 in ESM
The features of the members of the population feats Appendix 1 in ESM

-3 -2.5 -2 -1.5 -1 -0.5 0
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1

2

3

4

5

67

8
9

10
11

1213

14
15

16 17

18

19

20

21

22

23

24

25

Fig. 3   Network depicting the social connections between members of 
the population (before the disease/vaccination)
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Fig. 4   Plot depicting the members of the population according to 
their features (before the disease/vaccination)
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layout. Figure 4, plots the nodes according to their ages 
and weights. They are then clustered into four groups using 
kmeans clustering at this stage purely to demonstrate where 
these clusters lie before the disease or vaccination elements 
of the model. The centres of these clusters are shown by the 
crosses in Fig. 4 and their size is identified by the dash-dot 
rings.

As detailed in Tab. 1, there are three stages to each simu-
lation (Appendix 2 in ESM). The first lasts until timestep 
nine. Within this stage, the disease is permeating through 
the population and they are being constantly clustered into 
four groups based on their features (the pairs of either age 
and weight, age and degree, or weight and degree) by using 
kmeans clustering. The population’s susceptibilities to the 
disease depend on where the centre of their cluster falls 
in relation to the thresholds for each feature, detailed in 
Table 1. See Fig. 5 for these susceptibility quadrants during 
this first stages of the simulation.

During the second stage, the exclusion part of the model 
commences from timestep ten to timestep nineteen. As 
stated in Table 1, this means that individuals who have spent 
five or more of the last ten timesteps infected are no longer 
included in the clustering process. Note, if an individual 
has previously been excluded but they recover and spend 
time uninfected, they can be re-entered into the clustering 
process.

Finally, from timestep twenty and then for the remainder 
of the simulation, the vaccination process is included in the 
model. For those being vaccinated, their susceptibility to 
the disease is reduced to 0.1. Note, the exclusion process 
remains active. Hence, only a proportion, those being clus-
tered, of the population are considered for the vaccination 
at any one timestep. Only nodes whose cluster group centre 
is in the union of the two axis thresholds, and are being 
clustered at that timestep, are in receipt of the vaccination. 
See Fig. 6 for the susceptibility quadrants for this final stage 

of the simulation and Fig. 7 to identify how the reliance 
on the cluster centres to determine vaccines impacts the 
susceptibilities.

Each of the stories that follow include a different pairing 
of the health and network parameters discussed previously. 
For each of these pairings, two simulations are run. The 
difference between the two depends on a variable called 
the ‘seed’, specifically an initial guess at the cluster cen-
tres. Simply, this parameter determines how the clustering 
simulation commences on each run. The first plots for each 
pairing use a fixed seed, meaning that for each of the 1000 
runs of the model, the simulation will always start from 
the same clustering centres. On the other hand, the second 
plots use an updating seed which means that the model 
takes the previous run’s cluster centres as its new starting 
point or seed. This may only seem like an insignificant 
alteration but that is the reason for its inclusion; to dem-
onstrate how such a small change could potentially impact 
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susml 0.2 susml 0.2 
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Fig. 5   Susceptibility quadrants for the first and second stages of the 
simulation when only the clustering aspect is active, and the exclu-
sion element commences
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Fig. 6   Susceptibility quadrants for the third stage of the simulation 
once the vaccination has started, hence lowering the susceptibilities 
for the union of the thresholds
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Fig. 7   Example of how the usage of the cluster centres to determine 
vaccination can leave some individuals who are within the threshold 
without the vaccine
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the outcomes of the model hugely. Plainly, the outcome 
of the model could depend on the programmer on shift. 
To fix the seed when the rest of the model is constantly 
changing could be questioned. Equally, to keep changing 
elements of the model continuously, including even the 
starting point could be questioned. Both options can be 
justified and neither option is wrong or right. Hence, why 
this seed altering aspect of this paper is included, to dem-
onstrate the sheer unpredictability of such small changes.

Four different plots are used throughout the three sto-
ries. The first plots the nodes according to their health and 
network features in question (Appendix 4 in ESM). Also, 
included on these plots are the cluster ellipses and centres 
to demonstrate the average size of the groups and average 
placement of the centres, represented by the dash-dot rings 
and crosses, respectively. As these plots are an average of the 
1000 runs over the 100 timesteps, the plots include ‘shad-
ows’ for both the ellipses and crosses. These shadows are the 
average of the 1000 runs at each specific timestep so they 
show how the groups have moved over time with the shade 
darkening as the simulation nears the end. The threshold 
lines are marked on these plots. The cluster centres must be 
above these threshold lines for the nodes included in their 
group to be considered for the vaccine, assuming they are 
still being clustered at that point in time. Finally, the radius 
of the nodes themselves demonstrates the probability that 
they were vaccinated at a given time. A larger ring around a 
node means a higher probability of being vaccinated. Shad-
ing of the ring indicates progression of time—from light to 
dark as simulation time progresses. Note, two of these style 
plots will be included in each section, corresponding to the 
fixed or updated seed alteration described above.

The second plot used is only included in story one, pri-
marily to aid with the reading of the plots described above, 
particularly the node radius element. This plot includes 
twenty-five line plots, one for each individual in the popu-
lation, detailing the probability of being vaccinated over 
the course of the simulation (Appendix 5 in ESM). Also, 
included on each plot is one standard deviation either side 
of the mean line. Hence, this plot aids understanding of how 
the overall simulation is impacting on vaccination of each 
member of the population.

Story two includes the third plot for this paper. Again, this 
plot includes twenty-five line plots, one for each individual 
in the population. However, this time, these plots show the 
probability of being infected over the course of the simu-
lation (Appendix 6 in ESM). Again, one standard devia-
tion either side of the mean line is included. These plots are 
included as story two focuses primarily on the fate of the 
individual; hence, it is easy to see exactly how each indi-
vidual is affected and whether their probability of infection 
is increased by the seeding changes. Therefore, this plot is 
repeated for both types of seeding.

Finally, story three focuses on how the outcomes can 
completely change with a different pairing of features and 
the seeding element. Hence, the final plots used in this piece 
show the variance in both the centres and size of the cluster 
groups over the course of the simulation for both seeding 
options (Appendix 7 in ESM). These plots each include 
three line plots, one for the x-coordinate of the centres, one 
for the y-coordinate, and one for the radius of the clusters 
and there are lines for all of the cluster groups.

3 � Results

3.1 � Story one: Fear of the algorithm overreaction—
How it could all turn out fine

So far, this paper has somewhat implied that this toy model 
will create negative feedback loops and negative outcomes. 
However, what if that is not the case? What if the model 
does what it is meant to do, vaccinate those cluster groups 
above the threshold and overall help the population deal with 
this fictional disease? Equally, what if the model also does 
not change dramatically when the seeding changes, the out-
comes are essentially the same?

This first story shows just this scenario. The health 
parameter used is weight and the network parameter, edge 
degree.

In Fig. 8, almost everyone at some point in time is in 
receipt of the vaccination and a large number receive it 100 
percent of the time. All of the cluster groups collapse in size 
as the exclusion element is added into the model, but they 
are all able to recover steadily almost to their starting size as 
the vaccine is effectively distributed among the population, 
in turn reducing infection levels. Notably, the four nodes 
above both the threshold lines, therefore most in need of 
the vaccine, are unable to recover from the disease for long 
enough to be clustered, they are excluded throughout. This 
could be due to their location in the network and number 
of social connections meaning they are constantly being 
infected through contact with infected individuals.

Figure 9 is almost identical to Fig. 8, despite the change 
in the seeding technique. The same nodes are excluded and 
the cluster group size recovery over time is very similar. The 
most obvious difference is the slight shift in the right-most 
blue-solid cluster group to the left in Fig. 9 compared to 
Fig. 8, but this seems to have minimal overall effect on the 
population and individual-level outcomes.

Figure 10 helps with the reading of the other plots in this 
paper as it adds context to the rings around the individual 
nodes in the above and following plots. As discussed for 
Fig. 9 many of the nodes are in receipt of the vaccination, 
as seen by how many of the line graphs in Fig. 10 are at 
one on the y-axis. Hence, Fig. 10 makes it easy to see how 
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Fig. 8   Plot depicting the population according to their edge degrees 
and weights using the fixed seeding. The four cluster groups are 
marked by the red and blue ellipses: Blue-dotted = Cluster 1; Red-
dotted = Cluster 2; Blue-solid = Cluster 3; Red-solid = Cluster 4. The 
cluster groups at the start of the simulation are marked by the primary 
red and blue colouring, and the end point is marked by the black 
ellipses. The shades in between correspond to how these change over 

time. The same is true for the crosses which mark the centre of the 
clusters. The individual nodes are marked by the black dots. A black 
ring around these signifies that they are vaccinated all the time, the 
rings which go from white to black signify an increasing probability 
of vaccination and no circle at all means that they are never vacci-
nated. Finally, the blue lines at y = 5 and x = 65 mark the thresholds 
for vaccination

Fig. 9   Plot depicting the popu-
lation according to their edge 
degrees and weights using the 
updated seeding. For details on 
how to read the plot, see Fig. 8 
caption
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the vaccination programme is successful for the population 
as a whole. However, equally obvious are the four nodes 
that never receive the vaccine, are often infected and are 
excluded from the clustering at an early stage.

Overall, from the plots in this story, it would be easy to 
conclude that the clustering, exclusion process and alteration 
with the seed make very little difference to the outcomes of 
the model for the population as a whole and for individuals. 
Therefore, it would be easy to stop here and conclude that 
the algorithm has completed its task successfully and that 
this idea of negative feedback loops is disproven. However, 
one experiment does not reveal a pattern, it is important to 
follow the other stories and observe how the other feature 
pairings affect the simulation’s outcomes.

3.2 � Story two: Impact of a small change 
and dataset choice—How a seemingly 
insignificant alteration can change everything 
for the individual

Story one has shown just one of this toy model’s outcomes 
by using only one of the potential pairings of features. Now, 
story two uses a new pairing, the health parameter age with 
network edge degree. It is vital to appreciate the importance 
of such dataset choices and small changes, such as the seed-
ing alteration, and the affect these can have on individu-
als. As already discussed, populations can have countless 
features; hence, unconscious or conscious biases emerging 

in AI systems have the potential to impact a wide range of 
different people, since they can target any of these features. 
Rittmuller (2018) claims that ‘minorities have much to fear 
from an AI future’, which is difficult to argue against. How-
ever, there is another point that is important to comprehend; 
these groups that are excluded or highlighted by these sys-
tems are not homogeneous wholes. Within each group are 
individuals and the decisions made by these AI systems 
could have life-changing impacts on these people.

Compared to Figs. 8 and 9, the different outcomes caused 
by the change in dataset in Fig. 11 are clear. The left blue 
cluster and the two red clusters do collapse a little and 
recover. However, the blue-dotted cluster collapses com-
pletely and fails to recover which leaves the two nodes above 
both thresholds completely excluded and unvaccinated for 
the duration of the model. Below the degree threshold line, 
there is a whole group of nodes that suffer a similar fate, 
very different to the simulations in story one where almost 
all the nodes at some point received the vaccine.

From Fig. 12, the impact on each individual in the popu-
lation during the simulation in Fig. 11 is clear. The majority 
of the nodes seem to hover around the fifty percent chance 
of being infected mark, which demonstrates how by using 
this dataset, the population fairs much worse than the simu-
lations in story one, whereby almost all the nodes received 
the vaccine so would have had a much lower probability of 
being infected on average.

Fig. 10   Twenty-five line plots 
showing each individual’s aver-
age probability of receiving the 
vaccine at each timestep during 
the weight vs edge degree 
updating seed simulation. The 
blue central line marks this 
mean result. The two red lines 
either side are one standard 
deviation from this mean to 
each respective side. As this 
plot regards probabilities, the 
y-axis has been capped at zero 
and one
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At a population-wide level, Fig. 13 seems very simi-
lar to Fig. 11. The collapsing and recovery process of the 
cluster groups is almost identical. Also, the nodes that are 
excluded from the clustering and unvaccinated throughout 
on first look seem to be the same. However, this is where 

Node 13 (Age = thirty, Edge degree = four, node that meets 
the solid red cluster group starting line, situated just below 
the degree threshold line) is very important. In Fig. 13, this 
node has a darkening black ring around it, which as previ-
ously described means that its chance of vaccine increases 

Fig. 11   Plot depicting the popu-
lation according to their edge 
degrees and ages using the fixed 
seeding. The blue lines at y = 5 
and x = 60 mark the thresholds 
for vaccination. For details on 
how to read the plot, see Fig. 8 
caption

Fig. 12   Twenty-five line plots 
showing each individual’s 
average probability of being 
infected with the disease at each 
timestep during the age vs edge 
degree fixed seed simulation. 
The blue central line marks 
this mean result, except for the 
plot for Node 13 which is red 
(the reason for this highlighting 
follows Figs. 13 and 14). The 
two black lines either side are 
one standard deviation from this 
mean to each respective side. As 
this plot regards probabilities, 
the y-axis has been capped at 
zero and one
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over the simulation. However, in Fig. 11, this very same 
node is excluded for the duration of the model and is never 
vaccinated.

Figure 14 further highlights the difference in fate for 
Node 13 when compared to Fig. 12; hence, this node’s 

red line compared with blue, in order to draw attention to 
the change. Compared to Fig. 12, all the other line plots in 
Fig. 14 seem almost identical, just as Fig. 11 and Fig. 13′s 
plots seemed almost identical. For Node 13 however, the 
change in approach to seeding has meant a change from a 

Fig. 13   Plot depicting the 
population according to their 
edge degrees and ages using the 
updated seeding. The blue lines 
at y = 5 and x = 60 mark the 
thresholds for vaccination. For 
details on how to read the plot, 
see Fig. 8 caption

Fig. 14   Twenty-five line plots 
showing each individual’s 
average probability of being 
infected with the disease at each 
timestep during the age vs edge 
degree updated seed simulation. 
For details on how to read the 
plot, see Fig. 12 caption 0 50 100
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probability of being infected of approximately 0.3 down to 
0.1, so a twenty percent difference, which in the context of 
contracting a disease is dramatic.

Just as in story one, the fate of the population overall 
seems very similar in these simulations of story two. How-
ever, the change in dataset this time has brought the impact 
of the seeding alteration and clustering process to the fore-
front at an individual level. Hence, these simulations high-
light how somewhat innocent changes (to the algorithm) can 
have huge consequences for individuals even if the popula-
tion as a whole seems to be unaffected.

This outcome connects back to the proposed vaccination 
programme in Chinatown, how would recipients have been 
decided? If the only criteria were being “Chinese”, how, for 
example, would a child with one Chinese parent and one 
white-American parent be viewed? While such parentage 
would have been condemned—probably by both races—
there were almost certainly cases, due to the popularity of 
Chinese brothels frequented by white men (Light 1974). 
Would such children have been given the vaccine? Depend-
ing on which group individual children were clustered into, 
their fates could have varied wildly.

3.3 � Story three: Deviation from instruction—How 
an AI system could go rogue

The two preceding stories, from a population level view-
point, are fairly similar and tame. On the contrary, story 
three’s simulations are far from tame, and the change of 
seed has equally as dramatic consequences as the change in 

dataset. Arguably, it is in this run of the toy model’s simu-
lations that the ‘fear of the algorithm’ idea, that is popular 
in Hollywood, starts to appear more like reality. Although, 
once again it is noted that this model is idealised, this model 
has random and stochastic elements as previously mentioned 
that have made its outcomes a relative surprise even to the 
authors of this paper. Hence, this story undoubtedly dem-
onstrates the reality of the negative outcomes that were sup-
posedly disproven in story one and that were hinted at when 
this paper began.

This story’s simulations use both of the health param-
eters, age and weight.

Evidently, Fig. 15 portrays very different results com-
pared to the previous simulations of its kind. The bottom left 
red cluster is excluded from the very beginning. This forces 
the algorithm to seek its fourth cluster elsewhere, hence the 
small solid red (becoming black) cluster in the middle of the 
red-dotted one. The two dotted clusters almost recover to 
their initial size but the blue solid one does not which leaves 
the top right node excluded and unvaccinated.

Figure 16 mainly confirms the dramatic change seen in 
the solid red cluster group’s position in Fig. 15 and the dra-
matic size change in the blue solid cluster group. Hence, it 
helps to prove the unpredictable nature of this simulation 
and how the algorithm has deviated away from its starting 
position.

There are similarities between Figs. 15 and 17, such as 
the immediate exclusion of the bottom left cluster group, the 
exclusion of the top right node and the almost recovery of 
both the dotted clusters. However, contrary to the previous 
two stories’ population-wide similarities, that is where the 

Fig. 15   Plot depicting the 
population according to their 
ages and weights using the fixed 
seeding. The blue lines at y = 65 
and x = 60 mark the thresholds 
for vaccination. For details on 
how to read the plot, see Fig. 8 
caption
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common ground between the two seeding approaches for 
this pair of features ends. The red solid cluster group is again 
small in Fig. 17, but this time it is in a completely new loca-
tion and moves much more. Similarly, the blue solid cluster 
this time both fails to recover to its previous size, and it has 
shifted over to the left significantly.

As with the relationship between Figs. 15 and 16, 18 
mainly confirms the dramatic movement and changes in 
size for the cluster groups in Fig. 17. The changes in the 

position of the red solid line are very drastic in the first 
two plots in Fig. 18. Yet, all the other cluster groups vary 
a lot too. The differences between Figs. 16 and 18 are 
undeniable and dramatic. Therefore, story three’s results 
have highlighted the impact of the change in datasets, with 
Figs. 15 and 17 looking completely different to their cor-
responding plots in the other two stories. However, the 
differences between Figs. 16 and 18 have also highlighted 

Fig. 16   The left picture shows 
the variance in the x-value of 
the cluster centres over time, the 
centre picture shows the y-value 
and the right plot shows the 
variance in the radius of each 
cluster group at each timestep. 
This plot corresponds to the 
fixed seeding age vs weight 
plot depicted in Fig. 15 and its 
colours and dotted/solid line 
variations correspond to the 
cluster groups in that plot

0 50 100
0

5

10

15

20

25

30

0 50 100
0

5

10

15

20

25

30

35

0 50 100
0

1

2

3

4

5

6

7

8

9

10

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Time

V
ar

ia
nc

e

The variances in the centres and radii of each cluster group at each timestep

Fig. 17   Plot depicting the 
population according to their 
ages and weights using the fixed 
seeding. The blue lines at y = 65 
and x = 60 mark the thresholds 
for vaccination. For details on 
how to read the plot, see Fig. 8 
caption
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the impact of the change in seeding on the outcomes for 
the population.

Story three’s simulations have shown that despite the 
initial model parameters being set, as shown in Table 1, 
and who was to be vaccinated being defined, the re-clus-
tering and exclusion processes have altered the shape of 
this population to the extent that the algorithm seems to be 
diverting from its original instructions. However, it is the 
initial instruction to have exactly four cluster groups that has 
caused the variance in all of the cluster groups, once the bot-
tom left group had been excluded, the algorithm must find 
its fourth group elsewhere. It could not have been foreseen 
that that entire cluster group would be constantly excluded, 
hence the outcomes of this simulation were equally impos-
sible to predict. Herein lies the danger when programming 
AI systems, the outcomes caused by the innocent change 
in dataset and experimentation with the seed have demon-
strated how certain programmers need to be in the results of 
their programmes before releasing them into the real world.2

4 � Discussion

The bias may have been written into all the simulations in 
this paper due to the fact that decisions over vaccinations 
are based on using weight as a feature in the dataset. The 
inputting of a biased dataset, rings comparable, if intrin-
sically different, alarm bells to those of San Francisco in 
1900. Those health officials may have used health records 
to identify who ‘needed’ the vaccine. The programmer of 
the toy model above holds a similar role and uses records of 
age, weight and edge degree to determine vaccine receipt. 
In both these cases, the prejudice is written in, be it via 
a prejudiced dataset or prejudiced thoughts inherent to the 
time period. However, where this toy model deviates from 
the San Francisco case study is where bias emerges separate 
to this inherent feature. The further biases that emerged in 
both story two, against the individual, and in story three, 
against particularly the youngest cluster, could not have been 
predicted. In the simulations in story three, bias emerged on 
top of what was dictated, simply by the algorithm’s require-
ment to follow the initial instructions to the end, despite it no 
longer being the best option for the population. The feedback 
loop that emerged between clustering, exclusion and vac-
cination proved impossible in story three for the algorithm 
to escape from. Importantly, even if the initial prejudice that 
was written in here was completely unintended, the emergent 
bias would remain an outcome from the AI system. The idea 
of intended or unintended (emergent) bias is not distinguish-
able to an AI.

As previously stated, it is unlikely that such a simplistic 
model would be utilised in the vaccination context. However, 

Fig. 18   This plot corresponds 
to the updated seeding age vs 
weight plot depicted in Fig. 17 
and its colours and dotted/solid 
line variations correspond to the 
cluster groups in that plot. For 
further detail on reading this 
plot, see the caption for Fig. 16
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2  One real-world example of this was the A-level results fiasco in 
Britain during the Summer of 2020. Due to the COVID-19 outbreak, 
A-level exams were cancelled. Instead student’s results were based on 
an algorithm that used each school’s past performance as a parameter 
(BBC News 2020). However, the reliance this algorithm had on this 
parameter meant that some high-achieving students at underperform-
ing schools had their results downgraded (BBC News 2020). On the 
opposite side, this meant that the results for private schools were ben-
efitted (BBC News 2020). This is just one example of the potential 
negative outcomes should the parameters inputted into algorithms be 
poorly considered and then not noticed until it is too late.
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similar such models are already in action; as an example, 
consider crime prediction software in America, specifically 
PredPol. This system looks at crime in one area and uses 
historical patterns to predict when and where it might occur 
next (O’Neill 2016). On the surface, this seems highly effec-
tive; the model is blind to race and ethnicity since it simply 
targets geography (O’Neill 2016). Unfortunately, this desire 
can be evaded, as Nixon’s notorious “dog-whistle” words in 
his Southern Strategy apparently showed (D’Souza 2018). 
As in this case, geography can be an accurate proxy for 
race because impoverished neighbourhoods are primarily 
occupied by ethnic minorities (O’Neill 2016). This becomes 
more critical when nuisance crimes are included in the 
model, which are prevalent in impoverished neighbourhoods 
(O’Neill 2016). As with the idealised vaccination model, 
a negative feedback loop might well be created: policing 
creates new data, justifying more policing (O’Neill 2016). 
Evidently, there is an important difference between the toy 
vaccination model and Predpol; the dataset Predpol utilised 
was not intentionally biased, but both examples prove that 
care needs to be taken when programming AI systems. If 
not, there is a real danger of unconscious biases being fed 
into them or emerging. Importantly, this is not a definite 
outcome; prejudice does not have to be inherent as in San 
Francisco’s Chinatown. As Leonhard (2016: 75) accurately 
states, the ‘technology is neither good nor bad; it simply is. 
We must—now and here—decide and agree which exact 
use is evil or not’.

Predpol is not the only example of unintentional biases 
guiding the decisions of AI systems. Examples of this phe-
nomenon are commonplace. Even the big technology giants 
are not immune. In 2018, it came to light that Amazon had 
to scrap its AI recruiting tool because it was biased against 
women (Dastin 2018). Their model was trained on applica-
tions submitted to the company over the past ten years, which 
reflected the male dominance of the industry (Dastin 2018). 
The AI system was trained on the data of the past resumés, 
whilst the new resumés became the so-called test data. It 
was from the training data that the AI picked up the bias 
against women, it then transferred this knowledge onto the 
test data. Therefore, the system learnt that male candidates 
were preferable and penalised the resumés that included 
words such as ‘women’s’ and downgraded graduates of two 
all-female colleges (Dastin 2018). This obviously had not 
been Amazon’s intention but their lack of consideration of 
the potential consequences from using the biased dataset, 
resulted in a biased recruitment tool. By simply changing 
the dataset used, the outcome could have been very different 
for the women who were rejected purely based on their gen-
der, since the system would not have learnt to exclude them. 
However, as the toy vaccination model proved, changing the 
dataset may well improve the outcomes for one individual 
or group but equally likely, it could cause other individuals 

or groups to be even worse off. If Amazon are having such 
difficulties, then it is unsurprising that others are too, with 
stories of ‘biased AI’ frequently in the news.

One upsetting example, that combines all the elements 
of this article; the prejudiced backdrop of decisions, the 
impact on individuals and the problems in clustering peo-
ple into defined groups, is apartheid in South Africa. In 
the 1950s, those in power ‘sought to divide the popula-
tion into four basic groups: Europeans, Asiatics, Persons 
of mixed race or [black people], and “natives” or “pure-
blooded individuals of the Bantu race”’ (Bowker and Star 
2000: 197). However, an entire population would never 
conform to such ‘simple’ groupings, making the process 
completely inconsistent (Bowker and Star 2000). Despite 
the problems, a person’s racial classification could be chal-
lenged at any time, even if you merely associated with 
someone of the ‘wrong group’ (Bowker and Star 2000). 
Also, these cluster groups were not just administrative, 
they determined where a person could live and work 
(Bowker and Star 2000). In effect this process ‘separated 
families, disrupted biographies, and damaged individu-
als beyond repair’ (Bowker and Star 2000: 218). While 
this may be an extreme example of the consequences of 
classification, it does demonstrate the dangers of trying 
to make individuals fit into groups. As Bowker and Star 
(2000: 224–225) state, ‘there can be tremendous torque 
of individual biographies’. The toy model in this paper 
demonstrates these damaging consequences for individuals 
from over-simplifying a population into a set number of 
groups. Particularly, its outcomes in stories two and three 
show how algorithms will not remove this potential for 
damaging ‘torques’ should care not be taken when deter-
mining datasets and making ‘innocent changes’.

Unfortunately, these problems with classifying indi-
viduals are already arising in the technological world and 
they are relatively unchecked. Bearing in mind these his-
toric problems with classification, it seems unlikely that 
the introduction of AI will immediately fix the problems. 
Once again, choices regarding datasets are wreaking havoc 
in multiple areas. For example, Buolamwini (2016) first 
encountered exclusion problems with generic facial rec-
ognition software with social robots. The robot could not 
classify her face as such unless she wore a white mask 
(Buolamwini 2016). Such facial recognition software are 
often trained on similar datasets, but if these are not suf-
ficiently diverse, then any face that deviates from what 
the AI has learnt to be a face will not be detected as such 
(Buolamwini 2016).

Not being classified at all by this kind of software is not 
the only problem. In 2015 Google’s Photos service labelled 
a black software developer and his friend as ‘gorillas’ and 
since then, their main solution has been deleting gorilla from 
the service’s options (Simonite 2018). These problems in 
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facial recognition are awful for the people affected and 
embarrassing for the companies involved. However, the 
consequences become scarier still when considering some 
of the uses for these technologies. For example, Google are 
branching out into autonomous vehicles, which use image 
recognition software to classify the world around them. The 
potential consequences of that hypothetical scenario are best 
left to your imagination.

5 � Conclusion

Despite this paper’s simulations being idealised, the way 
it maps onto real-life examples of negative feedback loops 
is important to change how we manage these technologies. 
The model’s consequences may be exaggerated but the 
consequences detailed in the case studies above were very 
real. As already stated, it is extremely unlikely that such 
a simplistic modelling technique would be used in reality 
in healthcare. However, it has been used here to highlight 
a feedback loop between datasets and outcomes which are 
not idealised. Such feedback loops do exist and are already 
having negative impacts on certain groups’ lives as seen 
in the examples offered. All of the points raised by the toy 
model; feedback loops, dataset choices and small changes 
in code are all tied together and impacting on each other 
to have sometimes disastrous consequences. Clearly, peo-
ple do not fit neatly into groups and this toy model has 
shown that by simply changing the dataset and seeding, 
the outcome for an individual can be completely different. 
The apparent human need to classify things, and in this 
case, people, is visible throughout our history (Bowker and 
Star 2000). Equally visible, however, are the problems that 
come with this desire to sort people and there will always 
be anomalies. If this is forgotten, then the true impact of 
oversimplifying these decisions over datasets and vari-
ables, such as the seed, cannot be truly appreciated and 
may not be prioritised. As AI branches out into more areas 
of life the focus needs to be on protecting those members 
of society who could potentially suffer at the hands of a 
poorly considered AI system. It is vital we take heed from 
the examples that have gone before and consider this ‘toy 
model’s’ worst case scenario outlook and work to avoid it.

There is a consensus that the original intentions of AI 
are generally benign, making the term “bias AI” a little 
misleading. No programme will ever start out biased, they 
are like children, they have to be taught and they learn 
what their parents or, in this case, programmers and data 
tell them. Buolamwini (2016) calls this the ‘Coded Gaze’, 
when the views that are embedded into systems are propa-
gated by those who have the power to code the systems. 
‘Whoever codes the system embeds her [their] views. Lim-
ited views create limited systems’ (Buolamwini 2016). As 

demonstrated in the many examples in this article, this 
embedding could be intentional or unconscious, but the 
consequences are the same. These consequences not only 
impact groups of our society as a whole but also can have 
nuanced impacts on individuals within the population.

There is much more scope for further work in this area 
that can build on the simple stochastic network models 
used in this paper. Alternative approaches/more com-
plex examples have been noted in the introduction. These 
could be used to develop the many ways in which this 
paper’s work, models and conclusions could be extended 
and taken more into ‘reality’. Models in this paper have 
focussed on the impact AI could have on healthcare today, 
one of the most current and certainly topical dilemmas 
in the field. A report from the NHS in the UK recognises 
the problems with data as discussed in this research but 
equally, they recognise the opportunity that AI presents 
for improvement and therefore to save lives (Harwich and 
Laycock 2018). But to blame AI and present it as ‘bad’ is 
to paint too simple a picture, the bias that is appearing in 
systems in all areas is often inherited from the data or even 
the programmer, whether it is deliberate or unconscious 
is another question. Equally, learning from the past will 
prevent making the same mistakes again. Unless care is 
taken, prejudices such as those that governed both San 
Francisco’s Chinatown in 1900 and South Africa under 
apartheid will continue to emerge, only now they will 
emerge through AI systems. Stopping and considering the 
datasets we are using, what the consequences of a seem-
ingly harmless decision could be, will enable us to get the 
best out of this bright, new technology.
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