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Abstract
Current developments in fields such as quantum physics, fine arts, robotics, cognitive sciences or defense and security indi-
cate the emergence of creative systems capable of producing new and innovative solutions through combinations of machine 
learning algorithms. These systems, called machine invention systems, challenge the established invention paradigm in 
promising the automation of – at least parts of – the innovation process. This paper’s main contribution is twofold. Based on 
the identified state-of-the-art examples in the above mentioned fields, key components for machine invention systems and 
their relations are identified, creating a conceptual model as well as proposing a working definition for machine invention 
systems. The differences and delimitations to other concepts in the field of machine learning and artificial intelligence, such 
as machine discovery systems are discussed as well. Furthermore, the paper briefly addresses the social and societal impli-
cations and limitations that come with the adoption of the technology. Because of their revolutionizing potential, there are 
widespread implications to consider from ethical and moral implications to policymaking and societal changes, like changes 
in the job structure. The discussion part approaches some of these implications, as well as solutions to some of the proposed 
challenges. The paper concludes by discussing some of the systemic benefits that can be accessed through machine invention.
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1  Introduction

Artificial intelligence and machine learning are evolving 
technologies with the potential of significant influence on 
economy and society. Owing to technology cycles significant 
shortening (Weaver et al. 2017) and faster adoption rates, 
the society needs to pay increased attention to the impact 
of these technologies, as well as their implications (Lin-
stone 2011). Computerization and digital transformation 
are expected to replace manual and unpleasant dull, dirty 
and dangerous (Lin et al. 2012) work – as robotics did in the 
past in the industrial production – but also to assume more 
complex mental activities. For example jobs in service and 
administrative areas—the type of work that has the poten-
tial of intrinsic motivation and self-actualization (Frey and 
Osborne 2017).

The recent developments in gaming, such as OpenAI’s 
Dota 2 (OpenAI 2017), DeepMind’s AlphaGo (Silver et al. 

2017) or AlphaGo Zero (Silver et al. 2017) suggest that one 
activity that could be automated in the future is the crea-
tion of new information, models and camera-ready content 
– i.e., invention. In the current understanding, humanity’s 
inventions and innovations stem from human reasoning and 
logic (Galanakis 2006). Therefore, we are our own judges of 
what is good or bad in the first instance. With the advent of 
machine invention systems, we are on the brink of changing 
this fundamental paradigm. This technology opens, besides 
its challenges—one of which is the loss of more creative 
jobs – a plethora of opportunities and new research ave-
nues, expansion of current research fields and improving 
and thereby advancing our knowledge. As machine invention 
systems take advantage of all their gained knowledge and 
capitalize on their ability to handle large amounts of com-
plex data, they can provide a unique out-of-the-box perspec-
tive to all fields of study. The technology promises to provide 
a second point of view – for the first time in history – on all 
human-related activities.

This paper raises awareness on the emergence of machine 
invention systems, that have the potential to revolutionize the 
way inventions are generated. Emerging fields that have wide 
ranging implications to society, like this one, require careful 

 *	 Dragos‑Cristian Vasilescu 
	 dragos.vasilescu@tuwien.ac.at

1	 Institute of Management Science, Vienna University 
of Technology, Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-020-01080-1&domain=pdf


830	 AI & SOCIETY (2021) 36:829–837

1 3

thought and analysis. It is hoped and desired that articles 
such as this one will help developers create more robust, 
ethical and sustainable systems, that not only perform their 
function, but also protect or at least do not infringe on the 
well-being of our society. To achieve this goal and influence 
the development of this field, this paper conceptualizes and 
identifies the components and operations of such systems, 
their limitations from a societal perspective, and provides a 
basic understanding of their potential.

For this purpose, a model of  the components of machine 
invention systems and their relations is derived from state-
of-the-art application cases in different domains. Based on 
this model, the impacts and implications of this novel tech-
nology for the work environment are discussed, as well as 
challenges with respect to issues as ethics or intellectual 
property rights for society in general.

The remainder of this paper is structured as follows: in 
the subsequent section we apply the case study method to 
describe current examples of developments of machine 
invention systems in various areas and for various purposes. 
Building on this data we derive a concept of machine inven-
tion systems in the correspondent section, generalizing the 
features of the examples discussed previously. Thereafter we 
analyze the opportunities, as well as the challenges machine 
invention systems will pose in different areas such as inte-
gration in, and coordination with, human work processes, as 
well as property rights and ethical issues. The final section 
gives an outlook on necessary future research on machine 
invention systems.

2 � State‑of‑the‑art applications

Comparative case study analysis (Yin 1981, 2013; Eisen-
hardt 1989) is applied to generate insights on machine 
invention systems from current observable application 
cases. This exploratory qualitative method enables the 
identification of commonalities and patterns of a phenom-
enon by comparing several cases. The case study method 
enables theory building – which is especially important 
at this early stage in the field of machine invention sys-
tems. The novelty of the field also precludes representative 
large-sample quantitative studies and analyses (Eisenhardt 
1989). The research process follows predefined steps: (1) 
case search in literature and practice, (2) selection of 
relevant and interesting cases, (3) instrument determina-
tion for data collection, (4) data collection from multiple 
sources, (5) case analysis, (6) cross-case comparison to 
validate insights from individual cases, (7) model and 
theory building based on the insights by cross-case com-
parison, and finally (8) incorporation of the results into 
literature and the state-of-the-art.

Given the novelty of the field and lack of a standard-
ized terminology – which is established in the subsequent 
section – the search for cases is challenging. Applications 
are not systematically presented in scientific publications. 
Therefore, the search for cases was conducted using multiple 
sources, such as newspaper articles, webpages, interviews 
with experts and scientific publications, where available. 
Once a specific case was identified, additional materials 
were searched to insure a complete and accurate description 
for each individual case as a basis for the analysis.

The case study analysis is then applied to filter results and 
determine selection criteria for the inclusion of identified 
systems in the study. Owing to the extensive nature of the 
research and the limited space available, the cases reported 
here are presented in a simplified manner, only addressing 
the necessary aspects that are relevant towards obtaining 
a working definition. Other aspects, such as the interface 
between academia and industry, institutional arrangements, 
openness of the teams or the history of the emergence of the 
projects, among others, were filtered out from this paper.

The selection criteria for the analysis are system out-
put, system input, the type of the system and the distinc-
tion between optimization or innovation as system purpose. 
Concerning the system output, we evaluate if it is a model 
or content not requiring further processing or interpreta-
tion, a pattern-free solution, a novel data recombination or 
another result not directly attributable to the input data set 
– under these conditions the case was classified as a potential 
machine invention system. In addition, system inputs were 
analyzed and all systems that feature discrete search spaces 
were eliminated, as this indicates an optimizing approach 
rather than an invention process. Cases as Deep Blue (Camp-
bell et al. 2002) or novel wire-antenna designs (Altshuler 
and Linden 1997) were excluded due to their limited sys-
tem inputs. Based on the system type, all systems that only 
provide support information for human users to review and 
decide–e.g., decision support systems or expert systems 
– were eliminated from the analysis. Some of the cases 
removed by this criteria were intelligent clinical training 
systems (Haddawy and Suebnukarn 2010), intelligent sup-
port for conflict resolution (Sycara 1993) and the Integrated 
Communications Officer (INCO) expert system project (Ras-
mussen et al. 1990). Finally, the selection separates cases 
into optimization and innovation. Optimization is based on 
the changes in the parametric design until no further per-
formance improvements are possible, whereas innovation 
requires a novel approach carried out through qualitative 
changes and not just the variation of parametric values (Leon 
et al. 2007). Based on the premise of searching for invention 
systems, cases of pure optimization were removed from the 
analyses. The remaining examples are categorized based on 
their field of application.
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We then excluded from the study all cases that did not 
match our selection criteria. The final case selection, i.e., the 
applications presented in this section (see Table 1 for a sum-
mary of cases grouped by similarities), are a non-exhaustive 
list of examples that, at least partly, include machine inven-
tion systems.

The number of cases of machine invention systems, 
starting with two examples found at the beginning of this 
research in 2014, is rapidly growing in the recent years. 
Although both physical and virtual applications can be found 
in these examples, the latter is much better represented. 
Cyber–physical systems, cyber security, creativity applica-
tions, cryptography and knowledge generation systems seem 
to be the main fields of application in the current state of 
development of machine invention systems.

Table 1 shows that robotics is one of the major appli-
cation domains of machine invention system. Through 
machine invention systems virtual or physical robots learn to 
move. In terms of physical robots, one representative exam-
ple is Darwin, a robot developed by Pieter Abbeel at UC 
Berkeley (Knight 2015). Using several simulated neuronal 
networks, also called deep-learning networks, Darwin tries 
to “imagine” how actions are supposed to be performed to 
accomplish a given task – like standing up or keeping its 
balance. This analysis provides a baseline for the robots’ 
actions and coordinates a second neuronal network that is 
in charge of moving the robots’ joints under the influence of 
sensor responses and range of possible motions.

The DeepMind project, on the other hand, developed a 
simulation software on robot locomotion learning (Heess 
et al. 2017). Given a series of constraints and a constantly 
changing environment, the virtual robot distributed proximal 
policy optimization algorithm creates, simulates, optimizes 
and adapts the movements of the robot with no given rules 
on how to perform such tasks. In the simulation, the virtual 
robots develop non-trivial locomotion skills difficult to pro-
gram, such as jumping, crouching or turning in an unpredict-
able non-controlled environment.

In the domain of defense and security, a genetics-based 
machine learning system discovers complex new combat 
maneuvers for combat fighters (Smith et al. 2004). The 

system uses learning classifier systems to identify high 
expected payoff rules and based on reinforcement learning 
creates new and high-performance maneuvers that have 
not been considered or used before.

In the field of cyber-security, unsupervised learning 
algorithms can check continuous streams of data by self-
adjusting loops and adapt the search patterns based on a 
continuous learning process (Das Gupta 2017). The learn-
ing classifier systems are used in this case to identify the 
nature of the threat and search for models relevant to those 
threats. Besides reducing the time needed to identify an 
attack, the learning algorithm can improve the models 
based on the identified threats and thereby continuously 
improves the capabilities of the system.

In a number of applications machine systems artistically 
create unique forms of art. In this category, Kulitta (Quick 
2014, 2015) is developing new music scores based on a 
structural abstract generation, musical interpretation and 
learning algorithms. In visual arts, convolutional neural 
networks can process images by the same principles of 
abstraction and object recognition. Using content repre-
sentation, these neural networks create a new image with 
the same recognized objects, combined with a variety of 
styles learned by abstracting different picture techniques 
(Gatys et al. 2015).

Also, cognitive sciences can take advantage of machine 
invention systems. Especially in the field of quantum phys-
ics, where at first glance phenomena often seem coun-
terintuitive for researchers, a computer algorithm called 
Melvin (Krenn et al. 2016) finds arrangements of quantum 
building blocks that produce viable solutions. The algo-
rithm is learning by identifying useful groups of elements 
that ultimately lead to suggested new experiments to help 
researchers understand and expand their knowledge of 
quantum effects in fringe areas like quantum cryptography 
or quantum entanglement.

Based on these identified cases, we can derive the char-
acteristics of machine invention systems and develop a 
definition of these systems. Because not all the output of 
the current examples is in a ready-to-be-used format by an 
end customer, but by scientists or experts – the common 
denominator between all of the above examples lies in the 
invention aspect of the output, rather than coining all out-
put as innovations. Therefore, the term machine invention 
system describes more accurately the purpose and use of 
these systems than the term machine innovation would.

3 � Machine invention systems

In the applications described above, a commonality is the 
learning process that enables the system to create new 
inventions. Therefore, a clear delimitation of where the 

Table 1   Overview of considered application cases

Domain Field Application

Robotics Physical Locomotion Darwin
Virtual Locomotion DeepMind Locomotion

Defense and security Aircraft maneuvers LCS fighter
Cybersecurity LCS cybersecurity

Fine arts Musical composition Kulitta
Image creation CNN imaging

Cognitive science Quantum physics Melvin
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learning process stops and the invention process starts is 
essential for the development of a definition for machine 
invention systems. The three main categories of machine 
learning are supervised learning, unsupervised learning 
and reinforcement learning (Jordan and Mitchell 2015), 
together with other categories like semi-supervised learn-
ing, transduction and learning to learn (Ayodele 2010), 
among others. The learning algorithm most frequently 
found in the above examples is the unsupervised learning 
process (among others Darwin, DeepMind Locomotion, 
CNN Imaging and Melvin). Unsupervised learning ana-
lyzes unlabeled data to find patterns (Jordan and Mitch-
ell 2015) or high-level linkages (Le 2013) by using tech-
niques like clustering or dimension reduction (Hofmann 
2001). In recent years, an increasing trend of combining 
unsupervised learning with deep learning can be observed 
(Le 2013; Stollenga et al. 2014; LeCun et al. 2015). Deep 
learning is attempting to extract the deeper meaning of 
identified patterns, for example, the identification of com-
plex contours in face-recognition instead of just simple 
shapes (LeCun et al. 2015; Gatys et al. 2015). Even though 
the algorithms used by the various applications presented 
above are different in nature, they do not require assisted 
learning, and are able to infer linkages from unstructured 
data.

Although machine learning systems include similar 
learning processes, like unsupervised learning with deep 
learning, the main difference to mere machine learning lies 
in the output. Unsupervised learning yields patterns, clus-
ters, probabilities of events or linkages between different 
causes and their effects – machine invention systems go a 
step further, using the identified patterns and concepts  to 
develop new scenarios, theories or experiments.

Figure 1 shows the general structure, components and 
operations of machine invention systems. In the first part, 
the learning module learns and interprets the input data or, 
in some applications, generates new simulated data from 
which it can learn. In order to achieve this result – depend-
ing on the application – the system will use a series of 
machine learning algorithms simultaneously. Besides 
unsupervised and deep learning, we can find examples 
of reinforcement learning, transduction and learning to 
learn processes in the above applications as well. Finding 
patterns or hidden linkages within the data, as described 
earlier in this section, is the task of the various machine 

learning algorithms that are part of the first module. For 
example, Darwin simulates in its learning module how 
a certain movement could be made, based on the given 
mechanical limitations of the system, and uses the found 
solutions to train a high-level deep learning network on 
how to perform the task.

In the synthesis module, the emerging patterns are con-
ceptualized, sets of rules are derived, models are created 
and validated and the potential results are predicted. Using 
Darwin again to exemplify: in the synthesis module, the 
information acquired from the learning module is used and 
combined with sensory inputs giving information about 
the real-world environment to produce viable movement 
solutions. 

While all machine learning algorithms have feed forward 
capabilities, not all allow for feedback loops, like e.g. the 
convolutional neural networks used in creating new imagery 
(Gatys et al. 2015). There are, however, special cases of 
convolutional neural networks that allow for feedback loops 
(Stollenga et al. 2014). As a rule, the presence of feedback 
loops between the synthesis and the machine learning mod-
ule increases the quality and the refinement of the delivered 
output, like in the case of neural networks (Stollenga et al. 
2014). The delimitation between the two modules of the 
machine invention systems does not have to be apparent in 
practice, it is merely introduced for the purpose of better 
explaining the model.

Based on the above model and cases, we can define 
machine invention systems as follows: “machine invention 
systems are cyber-physical or virtual systems that can create 
new actionable models and innovative pattern-free solutions 
by processing and extracting higher-level concepts and mod-
els from unorganized information sources.”

This definition integrates a series of characteristics that 
machine invention systems must possess. Based on their 
type they are (1) cyber-physical or virtual systems, (2) that 
can extract information from the environment, search by 
themselves or generate their own data through simulations. 
Furthermore, they need (3) data processing abilities in the 
form of algorithms that can analyze the information, (4) with 
the ability of such systems to extrapolate the information 
into concepts, models or “expected-payoff” substructures. 
And finally, use the extrapolated information to (5) iden-
tify prescriptive models, discover novel data recombination 

Fig. 1   Main components of a 
machine invention system
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possibilities together with their expected results and generate 
pattern-free solutions.

It should be noted, that in our definition, we refer to 
cyber-physical systems just in the same way as (Lee 2008) 
defined them. The purpose here was to differentiate between 
the fully virtual algorithms, like Kulitta or DeepMind Loco-
motion, versus applications that use live sensorial inputs, 
like Darwin.

Although all different parts of the system can be attrib-
uted to different machine learning paradigms – such as 
clustering and dimension reduction (Hofmann 2001) for the 
learning module  and connectivism, analogy and discovery 
(Domingos 2015) for the synthesis module—the particu-
lar order and combination of these paradigms generates the 
specific type of output of machine invention systems. This 
particular design allows the target function, i.e. output to be 
viewed as an invention. The machine invention systems are 
a subdomain of machine learning, as all individual com-
ponents of these systems can be attributed to this larger 
category. Consequently, all machine invention systems are 
part of the domain of artificial intelligence (Michalski et al. 
1983).

Machine invention systems are comparable with the 
much older and more established subdomain of artificial 
intelligence called machine discovery systems (Klosge and 
Zytkow 1994). Although historically the machine discovery 
systems started to emerge in the mid 1970′s and through 
1980′s, most were tasked with finding low-level linkages 
in databases, chemistry and physics (Żytkow 1993). A few 
examples of such systems are STAHL and DALTON (1987), 
REVOLVER (1989), GELL-MANN (1990) and MECHEM 
(1992) (Valdes-Perez et al. 1993). The machine discovery 
systems were mostly used to interpret scientific reasoning, 
rediscover known facts or formulate general concepts of 
scientific activities (Valdes-Perez et al. 1993). There are, 
however, significant differences between the two. Żytkow 
explains the difference between “discovery” and “invention” 
in a clear fashion. “Discovery” pertains to discovering exist-
ing natural laws and constants, “invention” means the crea-
tion of a complex model or system that does not exist in 
nature (Żytkow 1993). Given the classification of machine 
invention systems in this section, both systems belong to the 
same family of artificial intelligence systems, but feature sig-
nificant differences: they use fundamentally different types 
of data – labeled in case of machine discovery, unlabeled in 
case of machine invention. Furthermore, they apply distinct 
algorithms—although this difference could also be attributed 
to the significant advances in computational power.

From a machine learning perspective, none of the indi-
vidual components of the above model is new, however, the 
particular structure and design of machine invention systems 
generates significant opportunities and challenges for society 
as illustrated in the subsequent section.

4 � Opportunities and challenges

The development of machine invention systems could logi-
cally be seen as incremental in nature, considering its 
machine learning components already existed for some 
time. However, it challenges the fundamental way we view 
the invention process itself. Based on the work of Norman 
and Verganti (2014), this development represents a radical 
change for our society, as machine invention systems meet 
all the requirements for radical innovations (Dahlin and Beh-
rens 2005): They are (1) a novel and unique approach and (2) 
have a large impact on the development of future technology.

Not only future technology is affected by this develop-
ment, but the very core of what we consider human-centric 
activities. Innovation was a task always attributed to animals 
(Reader et al. 2016), but with the advent of machine inven-
tion systems, this basic paradigm is challenged. An intersec-
tion of machine systems in this sector was expected however, 
based on their extreme technological evolution in the past 
50 years (Barnet 2004).

The necessary interaction of humans and machine inven-
tion systems, will vary based on the cultural and historical 
differences between and within organizations. Concerning 
the implementation approach, both technology and human 
aspects  require careful consideration. An instrumental 
approach that considers technology to be exogenous, homog-
enous, stable and predictable in its effects on human work, 
seems inappropriate for integrating a machine invention sys-
tem in an organization’s idiosyncrasies and routines. Innova-
tion and product development might evolve to a sociomate-
rial practice in organizations, which needs to be addressed 
by appropriate studies in organization, science and technol-
ogy research (Orlikowski 2007). The human–machine inter-
action in this domain should use both human ingenuity and 
the computational capabilities of machine invention systems.

Another important aspect refers to the initial design and 
creation of such systems. When it comes to complex sys-
tems in novel fields, the limited perspective of the techni-
cian or developer is not enough to consider the large variety 
of usage situations – intended or not – and consequences 
of the system being created. In order to mitigate at least 
some of the potential issues that might arise later, and to 
consider as many requirements as possible, appropriate tech-
nological designs must depart from the classical unilateral 
design through developers. A solution here is the participa-
tory design (B.-N.Sanders 2002; Muller and Kuhn 1993) 
in which multiple stakeholders are engaged in the design 
process from the early stages on. Optimally, these stakehold-
ers will continue to play a role through all of the lifecycle 
phases of the system – from design, prototyping, revisions, 
usage and end-of-life. This design approach is crucial also 
due to the responsibility the developers carry in most cases 
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(Thekkilakattil and Dodig-Crnkovic 2015) – especially when 
the systems have failed or are malfunctioning.

As with many autonomous systems, the placement of the 
human–machine interface is of great importance when it 
comes to designing the system for the best balance between 
efficiency and control. Here, an interface at the beginning 
of the process and/or at the very end, serving as a human 
audit of the results, seems to achieve this type of balance 
(Vasilescu and Filzmoser 2020).

One lurking issue here seems to be the loss of jobs to new 
automation methods that reduce the areas of human labor 
(Frey and Osborne 2017). Currently, the jobs being slowly 
replaced are typically repetitive, poorly cognitive and some-
times dangerous. Phasing out such jobs is not a negative 
development in general, although it is posing tremendous 
threats to those employees that currently occupy these posi-
tions. However, thinking ahead it means a shift toward a 
more skilled workforce in the future. There is also evidence 
suggesting that even though routine jobs are already declin-
ing, low-level service-oriented jobs are increasing (Cully 
1999). Reich (1992) predicts that both “symbolic-analysts” 
and service-oriented jobs will gain importance in the twenty-
first century workforce due to the inherent value placed on 
human interaction as opposed to technology-only interac-
tions (Ganguli and Roy 2011).

From a different perspective, the deskilling of the work-
force due to reduced interactions is another important issue 
(Cooley 1987). Although machine invention does increase 
efficiency and offers new avenues for development, the 
social isolation surrounding working with machines can lead 
not only to psychological effects (Vega and Brennan 2000), 
but to deskilling of the staff. One of the most basic forms of 
learning, “learning by doing”, (Arrow 1971) can no longer 
be used to learn the intricacies of a new skill when it comes 
to machine invention systems, as the people working with 
these systems become merely observers, maintainers and 
sometimes decision factors on the outputs.

As a society, it is also unclear what the acceptance rates 
and limitations of the machine-generated solutions will 
be. Just because a new technology appears, it does not 
mean it will be accepted and implemented. Acceptance is 
closely related to social interactions and other factors such 
as political and economic issues (Grunwald 2000). Proper 
planning and policymaking can steer the development of 
these systems and avoid the pitfalls (social, environmental, 
financial, among others) of letting the technology follow its 
own independent technological evolution based on the inter-
ests of a few. Even if machine invention systems can gen-
erate new content, models and applications, it is currently 
unclear to which extent the industries applying them or the 
policy makers will decide if the generated knowledge will 
be automatically implemented, or to which degree there will 
be a human decision-maker involved in the implementation 

process. Some limitations should help alleviate part of the 
concerns. Given the tremendous potential of such systems 
it is clear that capabilities alone do not necessarily mean 
they should be acted upon. Some guiding (ethical) principles 
should be embedded into such autonomous knowledge-gen-
erating systems. The question of acceptance can be viewed 
from a different perspective as well, as the technology itself 
changes how humans perceive reality (Ciborra 2006, 2007). 
This effect is enhanced by the humans’ acceptance of new 
technologies appearing over time, as they use and become 
more comfortable with them (Klamer and Allouch 2010; 
De Graaf and Allouch 2013). In the end, machine agency 
cannot be separated from human agency – they both have to 
be analyzed together.

A significant challenge faced by the machine invention 
systems is the fact that the expected output is – in the best 
case – a novel model, application or actionable experiment 
and therefore should be protected by patenting, copyright 
or other intellectual property rights. Yet, the current poli-
cymaking is still working on the premise of human-only 
inventions. Changes in global policymaking are needed, as 
autonomous technologies become more accepted by society. 
Such a difficulty has become apparent in the case of acci-
dents involving driverless cars (Ganesh 2017), where the 
accountability cannot be clearly assigned as in the traditional 
driver-based system.

Another, perhaps more important discussion regarding 
the generation of novel solutions to problems through such 
systems lies in the arising ethical issues. For example, a 
robot equipped with a machine invention system could gen-
erate solutions for the most efficient way of taking life in spe-
cific scenarios; these solutions could completely defy human 
logic and instincts, and therefore cannot be counteracted by 
humans. Such ethical concerns should be thoroughly dis-
cussed and systemically applied to all autonomous-prone 
technologies. There are already models to assess the ethical 
implications of emerging technologies, like the ethical tech-
nology assessment, the techno-ethical scenario or the Ethi-
cal Issues of Emerging ICT Applications (ETICA) approach 
(Busby et al. 2008; Brey 2012), but there is no globally-
accepted axiom or set of principles regarding the ethics of 
autonomous technologies yet. Recently, an increasing trend 
toward ethical considerations can be found in literature (Lin 
et al. 2012; Nørskov 2017; Lanfranchi 2017) and in practice 
(DeepMind 2018).

The human invention process is chaotic and often fruit-
less. Nevertheless, the human invention process brought to 
life all the technological advancements of our society until 
recently. A machine attempting to innovate on the other hand 
has a more methodological approach, by virtue of its nature. 
In contrast, the machine invention process can generate large 
numbers of results, but due to the lack of basic understand-
ing and discernibility, these results need to be analyzed and 
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curated. This further analysis should be conducted in first 
instance by the systems themselves for quality purposes, and 
in a second instance by human decision makers, due to ethi-
cal considerations. Although this means that only a fraction 
of the computed solutions are useable, the large process-
ing capabilities of modern systems mitigate, in part, this 
shortcoming.

Based on these considerations, advancements in the direc-
tion of machine invention would have the potential to create 
significantly different inventions compared to human inven-
tions. With the advancement of machine learning and the 
innate capability of assessing and connecting large amounts 
of data, their potential to realize previously unrelated con-
nections is far beyond human capability. From creating 
new connections in data, there are only a few more steps to 
derive new inventions. The potential for different inventions, 
together with a larger number of inventions altogether, can 
be a tremendous asset for all fields, industries, economy and 
society in general.

5 � Conclusion and outlook

This study identifies cases of machine invention systems in 
use in different domains and based on a comparative case 
study analysis derives a model and definition of machine 
invention systems. Several findings can be derived from the 
analyses of the cases described in this paper. Based on the 
cases, we propose that cyber-physical or virtual systems 
can generate inventions. Such inventions can be different in 
nature, from prescriptive models to pattern-free solutions. 
Furthermore, machine invention systems use machine learn-
ing algorithms and known machine learning paradigms to 
generate their output. However, these findings also gener-
ate questions that need to be addressed in future research: 
do the applied techniques differ for various domains and 
applications, and why? Are machine invention systems really 
superior to human-only innovation processes, or is a combi-
nation preferable? If so, how should the optimal interaction 
between human and machine in innovation tasks look like? 
And how can we overcome the resistance towards accept-
ance of machine learning systems themselves as well as 
towards the results they produce?

Considering the early stage of the emerging machine 
invention systems, there is only a restricted set of cases 
this study can build upon and therefore a number of limita-
tions exist. Currently, the limitations of such systems are 
unclear, as are the fields, aside the mentioned ones, in which 
machine invention systems can be applied. Although the 
selected cases presented in this paper are very different from 
each other, the addition of new cases under the umbrella of 
machine invention systems can add relevant details or bring 

changes to the concept of machine invention as it is currently 
understood.

The challenges and opportunities presented in this paper 
show the importance of further developing the theoretical 
framework encompassing machine invention systems, in 
order to better understand the boundaries, capabilities and 
limitations of the current state-of-the-art. Future research 
in this field has to focus on an in-depth analysis of the algo-
rithms and principles that machine invention systems use. 
Based on these analyses, the range of possible inventions, 
use cases, and application fields can be derived, and addi-
tional application possibilities in previously unexplored 
areas uncovered.

Moreover, additional research is required concerning the 
optimal conditions about the acceptance of machine inven-
tion systems in today’s various work environments to com-
plement the existing systems. This raises important research 
questions: (i) To which extent can and should invention be 
automated and (ii) How can and should human employees 
and machine invention systems interact? The goal is to pro-
vide insights on reducing the deployment risks of this tech-
nology and allow for a smooth diffusion in the industrial 
applications. Such complementary innovation processes 
have to be developed to implement and support the collabo-
ration of two very different approaches to invention, human 
and machine alike.

It is important to mention that technology itself is not 
neutral (Balabanian 2006) and given the intrinsic connection 
between human and technology, all stakeholders should play 
their roles in the development and beneficial use of machine 
invention systems. Some nefarious uses are easier to pre-
vent than others – i.e. through policymaking – nevertheless, 
due to the potential capabilities of such technologies, wide-
ranging implications should be considered on a case-by-case 
basis. It is the hope of the authors that this paper represents 
an important step for further investigations and toward the 
ethical development of this field. This technology presents 
a significant addition and change to our current innovation 
processes, and through careful development and implemen-
tation such systems can have deep and positive consequences 
for our society.
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