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Abstract
This article conducts a literature review of current and future challenges in the use of artificial intelligence (AI) in cyber 
physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI 
through automation supporting both, a technical and human level. The methodology applied resembled a literature review 
and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an 
increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. 
These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial 
Internet of Things, Cyber Physical Systems, Industry 4.0 etc.). We review academic and industry papers published between 
2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of 
AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the 
increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodol-
ogy is adapted and applied for transparency and justifications of concepts selection decisions through building summary 
maps that are applied for designing the hierarchical cascading conceptual framework.

Keywords Artificial cognition · Industrial internet of things · Cyber physical systems · Industry 4.0 · Artificial intelligence · 
Anomaly detection

1 Introduction

Artificial intelligence (AI) is already changing our econ-
omy and society, and the increased AI decision making has 
triggered debated on the potential harms and the need to 
make AI decision making more transparent (de Fine Licht 
et al. 2020, forthcoming). Even with our current techno-
logical progress, self-building technologies are possible 
(Kammerer 2020, forthcoming). Cognitive architectures 
representing truly intelligent human-like performance, that 
includes ‘motivation, emotion, personality, and other rel-
evant aspects,’ are also possible (Sun 2020). Such findings 
trigger concerns on the creation of collective ‘Borg–eye and 
the We–I’ subjects, by merging the desires of many subjects, 
e.g. though wearable connected devices, into a collective 
(Liberati 2020).

This articulates research questions on how the increased 
AI decision making is changing our economy and soci-
ety, and how we can make AI decision making more 
transparent. These questions contribute to furthering the 
discussion of this paper, especially in view of intrusive 
self-building technologies that represent truly intelligent 
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human-like performance, triggering the creation of collec-
tive from desires of many subjects.

One such intrusive technology is the Industrial Inter-
net of Things (IIoT). Internet of Things (IoT) technology 
has become of considerable academic, government, and 
industry interest in recent years. The IIoT can be explained 
as the use of internet of things technologies to improve 
manufacturing and industrial processes. The IIoT term 
is closely related to the term Industry 4.0 (I4.0), which 
represents at the same time: a paradigm shift in indus-
trial production, a generic designation for sets of strategic 
initiatives to boost national industries, a technical term 
to relate to new emerging business assets, processes and 
services, and a brand to mark a very particular historical 
and social period.

Through reviewing a considerable academic, government 
and industry literature, specific research questions emerge 
from the research gaps that the review has identified. There 
is a significant gap in current research on how the integration 
of complex and interconnected internet of things (IoT), cou-
pled in cyber physical systems (CPS), triggers inevitable and 
autonomous evolution of artificial cognition. The literature 
review and taxonomic analysis consider the significance of 
these research gaps in the discussion on how technological 
advancement results with the inevitable and autonomous 
evolution of artificial cognition in complex, coupled and 
interconnected socio-technical systems.

One example for Artificial Intelligence (AI) working 
in combination with internet of things (IoT) devices is the 
Tesla car. The car uses Artificial Intelligence (AI) to deter-
mine road conditions, optimal speed, weather, and to predict 
pedestrians’ and cars’ movement. Another example, in the 
context of Covid-19, is the use of smart buildings. While the 
internet of things (IoT) can be used as sensors for switching 
on lights and opening doors, in combination with Artificial 
Intelligence (AI), it could also be used for predicting opti-
mal time for heating or cooling the building. In the future, 
Artificial Intelligence (AI) in cyber physical systems (CPS) 
would include health and biomedical monitoring, robotics 
systems, intelligent edge devices, among many other func-
tions, and be used to correct natural disasters, human errors, 
or malicious actions, etc.

Hence, this is exercise is important, because with the 
increased number of internet of things (IoT) connected 
devices, the role of cyber physical systems (CPS) has 
changed and evolved. With the added element of Industrial 
Internet of Things (IIoT) increasing productivity, efficiency 
and economic benefits, and the changing role of Artificial 
Intelligence (AI) used for the creation of this new economic 
benefits, the current five levels of cyber physical system 
architecture seems obsolete. With considerations of these 
new technologies, we focus on determining a new CPS 
architecture.

In this article, we refer to Artificial Intelligence (AI) 
not only as a technology for reasoning, planning, learning, 
and processing, but we also refer to the ability to move and 
manipulate objects. This relates or research on Artificial 
Intelligence (AI) with Cyber Physical Systems (CPS). By 
Cyber Physical Systems (CPS), we refer to computer–human 
networks, controlling physical processes, where physical 
processes affect computations and vice versa. One modern 
version of Cyber Physical Systems is the Internet of Things 
(IoT). The Internet of Things (IoT) is one step forward in the 
advancement of AI in machines and represents a system of 
interrelated computing devices, capable of operating with-
out human-to-human or human-to-computer interaction. The 
Industrial Internet of Things (IIoT) in this study refers to 
sensors and other devices networked with industrial appli-
cations, enabling data collection, exchange, and analysis, 
with the objective for increase in productivity, efficiency 
and economic benefits.

The review of such systems in this paper includes the 
advancements in Cyber Physical Systems (CPS), the Inter-
net of Things (IoT) in relation to Artificial Intelligence (AI) 
autonomous evolution in Industry 4.0 (I4.0). In this context, 
we propose the term CPS-IoT to refer to the integration of 
cyber physical attributes into Industrial Internet of Things 
(IIoT) systems. This integration includes advances in real-
time processing, sensing, and actuation between IIoT sys-
tems and physical domains and provides capabilities for sys-
tem analysis of the cyber and physical structures involved. 
We, therefore, focus here on artificial cognition, defined as 
the artificial intelligence in networked connection of people, 
processes, data, and things. Therefore, artificial intelligence 
in this article represents a more inclusive and encompass-
ing concept that consolidates the cyber physical attributes 
of IIoT with the social aspects of the environment in which 
this technology is deployed and reflects the future cognitive 
makeup of IIoT/I4.0. The term artificial cognition in the con-
text of this article is used to discuss effect from the evolving 
IoT services and social networks of I4.0.

This article is structured as follows: Our methodology 
is described in Sect. 2. In Sect. 3, we discuss the findings 
drawn from the literature review including contributions 
and gaps that form artificial cognition in CPS. Section 4 
produces a taxonomy for management techniques and their 
significance to the discussion on artificial cognition in I4.0. 
A Discussion section and a Conclusion section synthesise 
our findings and ends the article.

2  Methods

The methods applied in this study consist of systematic 
literature review, taxonomies derived and follows existing 
research studies on this topic that apply literature review 
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with taxonomy (Milano et al. 2020), in pursuit of narratives 
(O’Hara 2020). Academic literature and practical studies 
are consulted intensively to discuss the IoT technologies and 
their relation to the I4.0. While the mainstream academic 
literature offers limited insights regarding existing and 
emerging cognitive developments, we use summary maps 
to showcase recent developments in this field.

Our rationale is that—as the landscape of artificial cog-
nition develops and changes very quickly—merely relying 
on journal publications provides too narrow a view of the 
present situation. We used the analytical target cascading, 
combined with the grounded theory approach (Glaser and 
Strauss 1967), to construct a conceptual cascading model for 
the future integration of cognition in the I4.0. These models 
then inform a qualitative empirical study for the new cog-
nitive feedback mechanism approach. The chosen method 
for conducting systematic literature review represented 
the following: (1) searching established journal databases 
and updating the findings with cross checking with google 
scholar search engine; (2) creating a table of search terms 
and article inclusion criteria such as relevance, peer review, 
data of publication (less than 10 years), and design of stud-
ies. (3) we also considered ethical issues in relations to how 
data was obtained, reported, and protected. For example, 
we did not include any non-peer-reviewed studies that were 
critical of different nations or organisations. We also did not 
include any literature where data sources were not included. 
For example, studies that claim individual company and/or 
nation CPS or IoT performance was better (e.g. Huawei vs 
Ericson vs Nokia) were not included if the data were not 
included in the study, or if we were unable to verify the 
results.

3  Literature review on cyber risk analytics 
and artificial intelligence

The literature review is focused on identifying the most 
prominent concepts present in current models, infrastruc-
tures and frameworks, from over 90 academic, government 
and industry papers, reports, and technical notes, published 
predominately between 2010 and 2020. In our search for 
data records, we used predominately Google Scholar and the 
Web of Science Core Collection. For selecting the academic 
literature, we found Google Scholar more flexible when add-
ing more search terms. For example, when adding multi-
ple terms in the Web of Science Core Collection, with the 
Boolean: AND, the search results are limited. We searched 
for TOPIC: (artificial intelligence) AND TOPIC: (industrial 
internet of things) AND TOPIC: (internet of things) AND 
TOPIC: (cyber physical systems) AND TOPIC: (industry 
4.0). This search on the Web of Science Core Collection 
produced only 25 data records. If only one of the Booleans: 

AND is changed to OR, then the data records change to hun-
dreds of thousands, but its relevance to the correlated topics 
diminishes, and focus is placed on the one topic searched 
with the Boolean: OR. We repeated the same search with 
Google Scholar, with all topics TOPIC: (artificial intelli-
gence) AND TOPIC: (industrial internet of things) AND 
TOPIC: (internet of things) AND TOPIC: (cyber physical 
systems) AND TOPIC: (industry 4.0). The same search on 
Google Scholar produced 20,700 data records. Hence, to 
ensure the relevance to all of the topics we investigated, of 
our selected data records, we used both the Web of Science 
Core Collection and Google Scholar, but since the number of 
articles was much greater on Google Scholar, we used pre-
dominately the Google Scholar search engine for analysing 
the greater volume of data records. Since both databases 
contain articles from the same journals, and Google Scholar 
search engine is more effective in search queries on many 
topics, using Booleans, we considered this as valid argument 
for selecting the most relevant data records.

Since the existing CPS architecture that we reviewed and 
tried to update was published in 2015, we tried to include 
literature predominately from the time period between 2015 
and 2020. However, some of the most important literature 
from 2010 to 2020 is also included, and for inclusiveness, 
a very few articles from before 2010 are included in the 
review. Considering the purpose of this review was to update 
our understanding of CPS architecture, we did not conduct 
a historic analysis of all relevant literature. Instead, we 
considered that the CPS architecture from 2015 included 
knowledge from historic literature, and our aim was to 
update that knowledge with the most recent findings on CPS 
architecture.

Concepts that are recognised as most prominent are cat-
egorised following the grounded theory approach for catego-
rising emerging concepts (Glaser and Strauss 1967). This 
process is detailed in the ‘Methods’ chapter. As a result of 
following the (Glaser and Strauss 1967) research approach 
arguing that ‘all you see is data’, the categorising of most 
prominent concepts identified from over 90 different sources, 
the emerging categories of concepts are diverse in research 
nature. Throughout the paper, the reader meets terms related 
to: (1) economic potential; (2) cognitive design; (3) risk 
engineering; (4) correlation effect; (5) cognitive feedback; 
(6) ‘unrecognised and outdated data. These six terms are 
just examples of the plethora of different terms and concepts 
that emerge from our literature review on the topic of cyber 
physical system architecture. We categorised these terms 
and concepts, and redesigned the exiting five levels of cyber 
physical system architecture—or 5C (Fig. 1).

The grounded theory method is applied to categorise 
these diverse terms and concepts to the existing architec-
ture that comprises five levels of cyber physical systems 
or 5C (Fig. 1). The grounded theory approach is used to 
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categorise these new terms and concepts, emerging form 
the literature review, and organised into cascading hierar-
chies of actions (in Table 1), presented as summary maps. 
The importance of these diverse concepts and the rela-
tionship between seemingly unrelated concepts, is what 
coheres to the design of the proposed hierarchical cascad-
ing approach (in Fig. 2).

The complexity of the literature coherent design becomes 
more explicit with examples that are presented throughout 
the paper. The examples place the paper within the expe-
riential and cultural practice of engineering. Here we pre-
sent one explicit example of how the research questions that 
are drawn from the literature review are then included to 
drive new finding and contributions on the identified gaps 
in existing literature. The first example is used to drive con-
ceptual and theoretical underpinnings of the research gap. 
This example from literature derives findings that the exact 
economic impact of cognitive CPS infrastructure remains 
to be determined (Leitão et al. 2016) although cognitive 
CPS systems will represent a large percentage of future ICT 
application in industry (Marwedel and Engel 2016). This 
situation presented in this example requires a new approach 
for integrating the physical and cyber subsystems of cogni-
tive CPS. The new approach needs to provide an overall 
understanding of the design, development, and evolution of 
cognition in CPS, and needs to integrate theories of artificial 

intelligence, control of physical systems, as well as their 
interaction with humans.

Such approach is especially needed for not only develop-
ing nations that lack an I4.0 strategies, but also for more 
developed countries—such as the UK and USA. The UK has 
been ranked as the overall global cyber superpower followed 
by the US (Allen and Hamilton 2014). It is also reported that 
the UK and US are strongly protected to withstand digital 
infrastructure cyber-attacks, which is crucial in developing a 
resilient digital economy. However, in the index quantifying 
industrial applications in digital infrastructure key sectors, 
the UK drops down to the 5th place and the US to the 3rd 
place. This seems to be partly due to the UK and US lag-
ging behind other countries in terms of harnessing economic 
value from the I4.0 (Allen and Hamilton 2014). This could 
be caused by the lack of cognitive abilities in the Internet of 
Things (IoT) deployment (Radanliev et al. 2020a).

The literature review continues with identifying, catego-
rising and relating emerging concepts to the conceptual and 
theoretical underpinnings of the arguments that cohere to the 
conceptual framework design.

Fig. 1  The 5 levels cyber physical system architecture—commonly referred to as 5C architecture
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3.1  Values and risks from intrusive autonomous 
self‑building connected technologies (IoT, edge 
computing) in cyber physical systems

One of the main drives for artificial intelligence in cyber 
physical systems is value creation. Our society is driven by 
social-economic values. Organisational goals are always 
based on some form of values. For example, governmental 
and non-governmental sectors are driven by the development 
of societal values. Private organisations are often driven by 
economic values. One of the main drives for value creation 
is the emerging new data streams that enable understand-
ing of new events in real-time, and predicting future events. 
This new and emerging data come at volumes that only 
AI can process with low-latency. Since this value emerges 
from cyber physical systems, it becomes inevitable that 

autonomous AI will evolve in economic and societal deci-
sion making.

This process is already in motion, triggered by the enor-
mous economic potential for hyper-connected economy. 
Literature recognises that important future business oppor-
tunities lay in the networking potential of digital economy 
(Nicolescu et al. 2018). The infrastructure for smart man-
ufacturing technology could create large cost savings for 
manufacturers (Anderson 2016) and enable faster develop-
ment of economies of scale (Brettel et al. 2016). Industrial 
Internet, or ‘Industry 4.0,’ supports a finer granularity and 
control to meet individual customer requirements, creates 
value opportunities (Hermann et al. 2016; Shafiq et  al. 
2015; Stock and Seliger 2016; Wang et al. 2016), increases 
resource productivity, and provides flexibility in business 
processes (Hussain 2017). The integration of cognitive 
cyber-physical capabilities into IIoT arguably requires a 
new process for integrating physical and cyber subsystems—
including an overall understanding of the cognitive design, 
development, and evolution of CPS and IIoT. Gaining such 
understanding may require consolidation of IIoT theories 
for control of physical systems and the interaction between 
humans and CPS (Marwedel and Engel 2016; Roure et al. 
2019; Banks 2019).

On the other hand, the US National Institute of Stand-
ards and Technology (US NIST) deliberately stays away 
from formalising any process model in this space (Barrett 
et al. 2017; NIST 2018). Instead, their recent Framework 
for Cyber Physical Systems proposes sets of artefacts and 
activities that could be considered by organisations in the 
deployment of CPS. These proposals are the result of formal 
ontologies of digital artefacts and their interactions with the 
exterior world. The US NIST identifies three main views on 
CPS that encompass identified responsibilities in the sys-
tems engineering process: conceptualisation, realisation, and 
assurance. Each of these three views corresponds to funda-
mental processes in the life of cognitive CPS, respectively: 
(1) Models of CPS (design), (2) the CPS itself (implemen-
tation), and (3) CPS Assurance (validation). The trade-offs 
between different instantiations of these processes as well 
as between critical aspects such as Security, Safety, Busi-
ness, and Privacy need to be understood. In this context, 
Risk Engineering is proposed as an activity embedded in 
the design, development, and lifecycle of the future CPS 
and IoT systems (Radanliev et al. 2020b). This assumes that 
cyber risk is just one instantiation of risk for an organisation 
or product and, therefore, should be subject to the higher 
processes of compliance and regulation in each domain. 
Building on this understanding of risk, a cognitive feedback 
approach is needed for formalising compositional ways to 
reason about cyber risks in an I4.0 context. For example, 
what we could do to understand and measure the systemic 
IIoT risk is to create a requirement for automatic sharing of 

Table 1  Summary map—table of technologies that drive artificial 
cognition in CPS

Taxonomy of key elements that drive AI

CPS—cognitive communities
 Cyber physical systems CPS
 Internet of everything IoE
 5 level CPS architecture 5C
 Agent-oriented architecture AoA
 Object-oriented architecture OoA
 Cloud optimised virtual object architecture VOA
 Virtual engineering objects VEO
 Virtual engineering processes VEP
 Model-driven manufacturing systems MDMS
 Service oriented architecture SoA
 Dynamic intelligent swamps DIS

CPS—cognitive processes
 Connected devices and networks CDN
 Compiling for advanced analytics CfAA
 Business processes and services BPS
 Cloud distributed process planning DPP
 Physical and human networks PHN

CPS—cognitive societies
 Internet of things IoT
 Web of things WoT
 Social manufacturing SM
 Internet of people IoP
 Internet of services IoS
 Systems of systems SoS

CPS—cognitive platforms
 Internet protocol version 6 IPv6
 Internet-based system and service platforms ISP
 Model-based development platforms MBDP
 Knowledge development and applications KDoA

Real-time distribution RtD
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cyber-attacks data records between IIoT supply chains. If 
IoT connected devices are reporting the standalone risks of 
a sole company, this would enable supply chain participants 
to understand and differentiate between stand alone and sys-
temic cyber risk. However, when IoT connected devices start 
reporting on standalone risks of a sole company, this could 
create duplicate data records, collection of irrelevant data 
records, and many other complications. Hence, the cyber-
attack reporting needs to include an element of cognition, 
possibly in the fog computing layer, because it would be 
challenging to implement cognition in the edge computing 
systems.

3.2  Argument for cognitive analytics

The arguments for cognitive feedback approach emerge from 
the inherent risk in integrating the physical with the cyber 
world, where cyber risk environment is constantly changing 
(Radanliev et al. 2018), and estimated loss of cybercrime 
varies greatly (Biener et al. 2014; DiMase et al. 2015). The 
real impact of cyber risk remains unknown (Shackelford 
2016), mainly due to lack of suitable probabilistic data and 
lack of a universal, standardised impact assessment frame-
work (Radanliev et al. 2020b; Koch and Rodosek 2016). To 
develop such a framework, accumulated risk needs to be 
quantified in real-time and shared across technology plat-
forms (Ruan 2017). This requires a dynamic understand-
ing of the network risk. In addition, new risk elements that 
require cognitive analytics also need to be quantified, such 
as intellectual property of digital information (Anthonysamy 

et al. 2017) and the impact of media coverage (Tanczer et al. 
2018).

3.3  Review on existing cyber risk analytics

The Cyber Value at Risk (CvaR) model (World Economic 
Forum 2015), represents an attempt to understand the eco-
nomic impact of cyber risk for individual organisations. 
CVaR provides cyber risk measurement units, value anal-
ysis methods related to the cost of different cyber-attacks 
type (Roumani et al. 2016), and proof of concept methods 
that are based on data assumptions. Given the lack of data 
needed to validate the CvaR model, these studies calculate 
the economic impact based on organisations’ ‘stand-alone’ 
cyber risk and, therefore, ignore the correlation effect of 
sharing infrastructure and information and the probability 
of cascading impacts, which represents a crucial element 
of I4.0. These limitations of the CvaR model are of great 
concern, e.g. in sharing cyber risk in critical infrastructure 
(Zhu et al. 2011). Critical infrastructures are vital for strong 
digital economies, but issues of synchrony, components fail-
ures, and increasing complexity demand development and 
elaboration of new rigorous CPS methods (Rajkumar et al. 
2010). In the absence of a common reference point of cyber 
risks, existing cyber risk assessment methodologies have led 
to inconsistencies in measuring risk (Agyepong et al. 2019), 
which negatively affects the adaptation of I4.0. Assessment 
of IIoT cyber risk in I4.0 should be based on a system that 
enables cognitive assessment of the cyber network risk, not 
only the stand-alone cyber risks (Craggs and Rashid 2017) 
of a sole company (Radanliev 2014).

Fig. 2  Hierarchical cascading framework design, describing how artificial intelligence is evolving in CPS



789AI & SOCIETY (2021) 36:783–796 

1 3

3.4  Review of financial assessment of cyber risk 
from CPS

In early literature, existing financial models have been pro-
posed to assess information security investment (Anderson 
and Moore 2006; Gordon and Loeb 2002; Rodewald and 
Gus 2005). However, cyber risk covers more elements than 
information security financial cost, such as brand reputation 
(Lee et al. 2019a) or intellectual property (Lee et al. 2019b). 
In terms of modelled economic and financial impact of mas-
sive cyber-attacks, additional questions emerge in relation 
to the impact on public sector, rethinking of business pro-
cesses, growth in liability risk, and mitigation options (Ruf-
fle et al. 2014). Such economic evaluations trigger a debate 
between limited economic lifespans of digital assets and 
value in inheriting ‘out of date’ data (Tan et al. 2008). In 
an I4.0 context, cyber risks are not only simply associated 
with machines and products that store their knowledge and 
create a virtual living representation in the network (Drath 
and Horch 2014) but also to the global flows and markets 
they are part of.

4  Taxonomy of management technologies 
and methodologies on AI‑enabled 
methods

This section redefines the Fig. 1—5C architecture (5 lev-
els of CPS architecture) and creates a taxonomy from the 
chapter 3—literature review. The taxonomy represents a 
list of focal points, listed in a summary table (Table 1), for 
visualising and focusing the direction for a new CPS archi-
tecture. To define the contribution from this study, before 
we present the new cognitive feedback mechanism, we first 
explain the existing 5C architecture in Fig. 1 as described 
in (Lee et al. 2015). The purpose of including Fig. 1 was to 
discuss the weaknesses of the current understanding of CPS 
architecture.

From Fig. 1, we can see that the current five levels cyber 
physical system architecture (5C) includes one level for 
cyber elements. With the rise of connected devices—IoT 
and IIoT, and AI in human–computer interactions, the cyber 
level is obsolete, because each level contains various cyber 
elements. In this study, we seek for improved understanding 
of CPS architecture and we seek that though a taxonomy of 
recent literature.

The new cognitive feedback mechanism builds upon the 
existing recommendations that CPS needs to adapt quickly 
(Niggemann et al. 2015), to create multi-vendor and modular 
production systems (Weyer et al. 2015). Requiring under-
standing of multi-discipline testing (Balaji et al. 2015), sys-
tem sociology (Dombrowski and Wagner 2014), and social 
networks (Wan et al. 2015; Roure et al. 2015).

4.1  Key technologies for self‑adapting system

Before conducting the taxonomic categorisations 
in the summary tables (see chapter 5) in this final sec-
tion we compress the rationale for the categorisations 
(see Table 1). This section also details the four categories, 
which is one less category than the five levels of CPS pre-
sented in Fig. 1. Our CPS architecture does not include the 
‘cyber’ level, which was considered as a separate level in 
the previous architecture. We argue that cyber is far more 
than an individual level: we argue that cyber is part of all 
levels of the CPS architecture.

The academic literature we analysed outlines the evo-
lution of CPS into the more inclusive and encompassing 
system that brings together people, process, data, and 
things—making networked connections and transactions 
more valuable to individuals, organisations, and things. 
Hence, by applying grounded theory for categorising 
the literature analysed, the following key feedback man-
agement technologies predominated: (a) integration of 
physical flows, information flows, and financial flows; (b) 
innovative approaches to managing operational processes; 
(c) exploiting the industrial digitisation to gain competi-
tiveness; (d) and utilisation of Big Data to improve the 
efficiency of production and services. From the extensive 
literature reviewed on this topic, the requirements for 
cognitive feedback are categorised in Table 1 as: follows 
domain communities, processes, societies, and platforms. 
These domains represent how the changing roles of inno-
vation, production, logistics, and the service processes 
require CPS advancements in the following: (a) domain 
communities; (b) internet-based system and service 
platforms; (c) business processes and services, and (d) 
dynamic real-time data from physical and human networks 
(perceived as data from intelligent swamps). This intro-
duces the approach used for the taxonomic categorisations 
and the summary tables in chapter 5.

5  Summary of the taxonomic analysis: 
building summary maps

Although we described the process in the previous section, 
we wanted to explain further that this section—chapter 5—
is summarising the findings from the literature review in 
chapter 4 and categorises the emerging terms and con-
cepts into actions and activities, presented as hierarchical 
cascades of activities in a summary map (Table 1). The 
summary map in Table 1 is the first step in building a 
new theory and improving the current five levels of CPS 
architecture with a new and more up-to-date architecture. 
Before presenting the summary map, we briefly discuss 
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the categorisations as described in the previous section 
(domain communities, processes, societies, and plat-
forms.) and refer to their origin—with references from 
the literature review.

5.1  Taxonomic categorisations for advancing 
the existing 5C architecture

The domain communities, processes, societies, and plat-
forms, are expanded into (1) domain communities; (2) 
internet-based system and service platforms; (3) business 
processes and services, and (4) dynamic real-time data from 
physical and human networks.

Domain communities include the following: Agent-ori-
ented Architecture (Ribeiro et al. 2010), Object-oriented 
Architecture (Thramboulidis 2015), Cloud optimised Vir-
tual Object Architecture (Giordano et al. 2016), supported 
with Virtual Engineering Objects and Virtual Engineering 
Processes with Internet Protocol version 6 (IPv6) connected 
devices and networks (Wahlster et al. 2013).

Internet-based system and service platforms (La and Kim 
2010) are used to model CPS through the Web of Things 
(Dillon et al. 2011), with compiling of data, processes, 
devices, and systems for cognitive analytics and connection 
to cognitive model-driven (robot-in-the-loop) manufactur-
ing systems (Jensen et al. 2011; Shi et al. 2011; Wang et al. 
2014). Internet-based system and service platforms can be 
used to promote model-based development platforms, such 
as behaviour modelling of robotic systems, e.g. Automata 
(Ringert et al. 2015). Internet-based systems and service 
platforms can enable the development of social manufac-
turing and interconnect with the Internet of People to create 
CPS collaborative communities (Lee et al. 2014).

Business processes and services need to be intercon-
nected into industrial value chains to integrate machine 
information into decision making and be connected to the 
Internet of Services for service oriented CPS architecture 
(Wang et al. 2015) and Cloud distributed planning manu-
facturing. Business processes and services in CPS can also 
promote knowledge development of business areas and 
applications.

Dynamic real-time data from physical and human net-
works (perceived as dynamic intelligent swamps) of modules 
connected to physical and human networks, can operate as 
systems of systems, and can act as mechanisms for real-time 
distribution (Kang et al. 2012) and feedback directly from 
users and markets.

5.2  Summary map of emerging terms 
and concepts—presented as actions 
and activities

The categories of key elements for artificial cognition in 
CPS are presented in Table 1. The relationships of these 
elements to CPS is grouped with the grounded theory into 
the following categories: CPS—cognitive communities, 
CPS—cognitive processes, CPS—cognitive societies and 
CPS—cognitive platforms. These categories and the syn-
ergies between the elements lead to artificial cognition in 
CPS for self-aware process are categorised in Table 1. The 
taxonomic analysis of the literature reviewed is applied to 
structure closely related concepts higher and looser rela-
tionships lower within each category in the Table 1 sum-
mary maps. These communities, processes, societies, and 
platforms emerged from categorising the literature review 
findings. The taxonomic interpretation of the relationships 
between these concepts is built upon the literature findings 
and represent the backbone of theoretical development and 
its understanding of interconnected concepts in this paper. 
We created the taxonomic categorisations in Table 1 to seek 
improvement and update of the existing CPS architecture 
(see Fig. 1). In the taxonomy, we relate the merging concepts 
to the original concept in Fig. 1, but we do not include the 
‘cyber’ layer. We considered cyber to be an integral part 
of all layers in CPS architecture. Hence, the taxonomy in 
Table 1 contains four levels of CPS architecture.

In brief, the summary table (Table 1) can also be seen as 
multiple cascading hierarchies of actions—found in litera-
ture as terms and concepts. The six terms mentioned in the 
introduction of chapter 3—literature review, are dissected in 
greater detail, with more specific focus on presenting actions 
and activities, not desired objectives. For example, from the 
six terms, we used the first term ‘(1) economic potential;’ 
and in the literature review, we investigated for actions and 
activities that are related to this term. In the summary table 
(Table 1), we can see new terms and concepts, e.g. Busi-
ness processes and services; Model-driven manufacturing 
systems; etc. The wording in these terms and concepts is 
structured in a more actionable form. For example, the term 
(1) ‘economic potential’ does not provide any guidance on 
how this economic potential can be achieved. We just dis-
covered that ‘economic potential’ was strongly present in 
literature on cyber physical system architecture. So we used 
this term as one of the six guidance terms in the introduction 
of chapter 3. But in the summary table (Table 1), we can see 
these terms as actionable concepts, e.g. ‘Model-driven man-
ufacturing systems’ that explain what needs to be done to 
reach the ‘economic potential’. The summary table (Table 1) 
presents multiple cascading hierarchies of actions that are 
used in the design of the cascading hierarchy framework in 
(in Fig. 2). Instead of presenting these actions and activities 
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as categories related to the six terms, we used the recom-
mendations from the literature where we found the related 
actions and activities. We wanted to determine if these six 
terms are true representation of all the terms and concepts in 
literature, or was a different structure more relevant.

The summary maps in Table 1 confirm that a notion of 
artificial cognition in CPS goes beyond machine to machine 
(M2M) (Wan et al. 2013; Stojmenovic 2014), and beyond 
the proposed 3 level CPS, which are (1) services, (2) cloud, 
and (3) physical object layers. Artificial cognition in CPS 
also goes beyond the existing knowledge of 5C architec-
ture (as seen in Fig. 1). When artificial cognition in CPS is 
combined with intelligent manufacturing equipment (Posada 
et al. 2015), then a new set of communities, processes, socie-
ties, and platforms (categorised in Table 1) emerge. When 
combined, these new machineries represent intrusive self-
building technologies, triggering an inevitable and autono-
mous evolution of artificial cognition in CPS.

This evolution goes beyond the existing description of 
5C architecture (in Fig. 1). The new description of artifi-
cial cognition in CPS (as seen in Table 1) is based on the 
integration of artificial intelligence (AI), machine learning, 
the cloud, and IoT, creating systems of machines capable of 
interacting with humans (Carruthers 2014). For example, 
the application of behaviour economics into CPS already 
enables market speculation on human behaviour (Rutter 
2015), and even neuromarketing (Lewis and Brigder 2004), 
to determine consumer purchasing behaviour. We can expect 
to see autonomous CPS adopting the use of these methods 
to predetermine human behaviour.

Technologies described in Table 1 that would enable arti-
ficial cognition in CPS include software defined networks 
(Kirkpatrick 2013) and software-defined storage (Ouyang 
et al. 2014), built upon the following: protocols and enter-
prise grade cloud hosting; AI, machine learning, and data 
analytics (Kambatla et al. 2014; Pan et al. 2015); and mesh 
networks and peer-to-peer connectivity (Wark et al. 2007). 
Without cognitive risk analytics, the embedded control of 
CPS is creating security and risk management vulnerabilities 
from integrating less secured systems, triggering questions 
regarding risk management and liability for breaches and 
damages (Boyes et al. 2018). Without cognitive risk analyt-
ics, many other technical challenges can be foreseen in the 
CPS vital domains—especially in the design, construction, 
and verification of CPS (Anthi et al. 2019).

6  From summary maps to conceptual 
framework

In this section, we use the hierarchical cascading method, 
with categorical coding (Radanliev 2014), to build a concep-
tual framework based on the findings in the summary map 

Table 1. Our aim was not to confirm that the embodiment of 
AI in the IIoT is leading to a transformation in AI; we con-
sider that as a given—postulate from the beginning of this 
study. Our aim in this section was to present advancement 
to the current 5 levels CPS architecture (5C) as presented 
in Fig. 1 and to integrate the plethora of emerging concepts 
from our literature review, which are not included in the 
current 5C architecture—(in Fig. 1).

The summary maps in Table 1 should be seen from a 
conceptual standpoint, and not from engineering perspective 
on the definition of terms. If seen on a standalone bases, the 
summary maps in Table 1 could be seen as concepts that rep-
resent a diverse set of different terms. From reading the sum-
mary maps categorisations in Table 1, the Internet Protocol 
v6 is categorised as a platform, while from an engineering 
perspective IPv6 is a networking protocol. There are mul-
tiple categorisations of this type. To reduce the categories 
and themes in our pursuit of deeper understanding of these 
categories, the grounded theory approach used the Pugh-
controlled convergence and, in the process, themes are asso-
ciated with the ‘best fit’ categories. The rationale for this cat-
egorisation is as follows: Protocol (e.g. the Internet Protocol 
v6) is the official procedure or system of rules governing the 
communication or activities of programs and/or industries. 
Platform on the other hand refers to the technologies that 
are used as a base upon which other applications, processes 
or technologies are developed. A CPS in the context of this 
categorisation is a platform, while the languages it uses to 
communicate (e.g. IPv6) with software are the protocol.

Further clarification as why such categorisations have 
been made by applying the Pugh-controlled convergence to 
reduce the number of categories is that we can consider a 
platform as a software, while protocol is more like a theory, 
or theoretical model which a platform can be based on. In 
the interest of keeping the cascading hierarchy design to a 
level that can easily be understood, the presented categorisa-
tions have been associated in abbreviated form in Table 2.

Table 2  Emerging 4 levels CPS architecture

Artificial cognition in CPS

CPS—cog-
nitive com-
munities

CPS—
cognitive 
processes

CPS—cognitive societies CPS—
cognitive 
platforms

5C: AoA, 
OoA, 
VOA, 
VEO, 
VEP

CDN IoT IPv6

MDMS CfAA WoT, SM, IoP ISP, MBDP
SoA BPS, DPP IoS KDoA
DIS PHN SoS RtD
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The cascading hierarchy design in Table 2 represents 
the first step in the conceptual framework design in Fig. 2. 
The similarities between Table 2 and Fig. 2 are clear. The 
differences between the new understanding of artificial 
intelligence in CPS in Fig. 2 are also clear and very dis-
tinguishable from the existing understanding of artificial 
intelligence in CPS as seen in Fig. 1. Our approach for 
building the conceptual framework (Fig. 2) is based on 
an extensive review of literature that included multiple 
systems, models, and methodologies from over 90 leading 
articles on this topic. Concepts that reappeared in multiple 
articles were selected as the most prominent, and the rela-
tionships were recorded from each article. This enables a 
new approach to building the conceptual framework, based 
on complex socio-economic, organisation goals and policy 
issues that were identified in over 90 leading articles in 
this field, published in the past decade.

The taxonomy of abbreviations in Table 2 was derived 
from the taxonomy of literature in Table 1, which catego-
rises the emerging concepts into a structure for artificial 
cognition in CPS. The structure relates the cognition in 
CPS with IIoT, bringing together the IoP and IoS, along 
with the process and transaction of IoT data. For example, 
the IoT data from DIS (see Tables 1 and 2 for definitions 
of abbreviations) connected to IoP and IoS, (representing 
systems of systems) enhance the cyber risk avoidance with 
real-time distribution and feedback directly from users and 
markets.

Thus, the evolution of cognition in CPS space adds a new 
perspective to the existing cyber risk avoidance mechanisms. 
The inter-relationships between these elements are crucial 
for defining dynamic cyber risk analytics with real-time 
probabilistic data. The current approaches taken for cyber 
risk analytics assume development of IoP and IoS and reli-
ability of IoT. A deeper understanding of the relationship 
between IoT and I4.0, following the categories presented in 
Table 1, is required to develop a dynamic cyber risk analyt-
ics structure.

Furthermore, Table 2 shows that cognitive CPS capa-
bilities are related to the integration of cyber physical 
capabilities into the industrial value chains. Hence, the 
proposed structure for cognitive CPS uses principles of 
IoT and integrates network intelligence, providing conver-
gence, orchestration, and visibility across otherwise dis-
parate systems. The proposed cognitive CPS also provides 
a structure for the operation and management of multi-
ple CPS-related elements in the context of I4.0. Figure 2 
shows the inter-relationship between different cognitive 
CPS communities, processes, societies, and platforms. The 
integration of cyber physical capabilities into the cognitive 
CPS involves the integration of IoT, WoT, SM, IoP, and 
IoS into SoS. With the use of Grounded Theory and Pugh-
controlled convergence, the categories (from Table 1) are 

correlated in a hierarchical framework in Fig. 2, and cor-
respond with the taxonomy (in Table 2). These are estab-
lished models for decomposing and reverse engineering 
design processes. The hierarchical cascading in Fig. 2 
explores the potential for automated and semi-automated 
methods that could be applied to ascertain and accelerate 
(and start to automate) the evolution of autonomous arti-
ficial intelligence in CPS. The concepts and the hierarchi-
cal structure in Fig. 2 originate from the summary map 
and the hierarchical cascading of actions in Table 1. The 
abbreviations are present in Table 1, and categorisation 
of taxonomic imperatives is first presented in Table 2. In 
Fig. 2, we apply the findings to build a conceptual diagram 
for visualising the updated CPS architecture.

The conceptual diagram in Fig. 2 originates from the 
re-evaluated five levels in the original 5C architecture, 
but without the ‘cyber’ level—described in Fig. 1. The 
remaining four levels are updated with concepts emerg-
ing from recent literature on this topic, with a time span 
between 2010 and 2020. We identified from literature (in 
the summary map Table 1) new and emerging concepts 
related to CPS architecture that are not included in the 
current 5C architecture. In Fig. 2, we present a hierarchi-
cal integration of these new and emerging concepts and 
present an updated 4C architecture—four levels of CPS 
architecture.

Since this review paper is built upon the notion of 
updating the existing 5C architecture in Fig. 1, we used 
the same conceptual order, but we integrated the improve-
ments found in recent literature. We identified a lot of 
new terms, springing up between 2010 and 2020, and we 
wanted to put them in conceptual order. We anticipated 
this to be a required first step and a real service to future 
studies aiming to build a diagnostic architecture. The 
conceptual diagram in Fig. 2 derives new understanding 
on why cognitive evolution in cyber physical systems is 
inevitable and autonomous with the increased integration 
of connected devices (IoT). The hierarchical cascading in 
Fig. 2 is designed using the grounded theory approach for 
relating emerging concepts. The emerging concepts identi-
fied in the literature review are first presented in the sum-
mary maps, and then taxonomic approach is used to relate 
the categories and organise in a hierarchy of most closely 
to most distantly related. Conceptual design is then used 
to cascade the hierarchy in a framework. The framework in 
Fig. 2 explores how automated and semi-automated meth-
ods are accelerating (starting to automate) the evolution of 
autonomous artificial intelligence in CPSs. The framework 
in Fig. 2 represents a new mechanism and prototype of a 
hierarchical structure that facilitates deeper understanding 
of interconnected concepts—both being crucial given that 
there is no direct reference in literature to artificial cogni-
tion in CPS and cyber risk analytics.
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For final comparison, we present a visualisation in Fig. 3 
that compares the emerging four levels of CPS architecture. 
In Fig. 3, we can see that CPS as a concepts has evolved 
significantly since the 5 levels CPS architecture in Fig. 1.

In Fig. 3, we can see how the taxonomy from the sum-
mary map in Table 1 has been integrated in the four levels 
CPS architecture. We can also compare Figs. 1 and 3 to 
visualise the differences between the CPS architectures from 
2015 and 2020. Although Fig. 2 presents the same informa-
tion, in a conceptual diagram, we designed Fig. 3 for easier 
comparison.

7  Discussion

The updated four levels—CPS architecture in Fig. 2 offers 
a new and important step in updating our understanding of 
how CPS operate in 2020. Since the existing 5 levels CPS 
architecture (see Fig. 1) is few years old, and there has been 
many changes in connected systems since its creation, we 
considered this update timely and of relevance. We also 
argue that with the rise in new IoT and IIoT, complex, cou-
pled and connected systems, such updates should occur at 
much faster intervals. This paper adopted the argument that 
AI should ‘be programmed with a virtual consciousness and 
conscience’ (Meissner 2020), because we are in the middle 
of a new AI revolution that is changing our economy and 
society. There are studies investigating whether AI can cre-
ate ‘novel though’ (Fazi 2019). The mechanism in this paper 
describing how AI is evolving into CPS is based on grouping 
of future and present techniques and presenting the design 
process through a new hierarchical cascading design for a 
conceptual framework.

The conceptual framework in Fig. 2 details significant 
advancements over the past 5 years that can be seen in the 
most closely related framework on this topic in Fig. 1. For 
example, cognition in Fig. 1 is based solely on decision 

support system for prioritising workload, with a single focus 
on industrial processes. The new conceptual framework pre-
sented in Fig. 2 includes social machines, connected devices, 
and knowledge developments, among new concepts such as 
internet of services and internet of people.

The differences between the new framework in Fig. 2 and 
the earlier framework as seen in Fig. 1 mean that AI is evolv-
ing at a much faster rate than industrial understanding of this 
process. The new framework in Fig. 2 captures the changes 
in connected devices generating vast amounts of data, cap-
tured and stored in different heterogenous formats (e.g. 
high-dimensional data, real-time data, translytic data, spa-
tiotemporal data). The new framework in Fig. 2 details the 
process of how the new data are captured, stored, processed, 
analysed, and used in near real-time, with low-latency. This 
is a very different process than our past understanding of 
CPS cognitive decision-making tasks, as seen in Fig. 1.

The main point of discussion from the new conceptual 
framework is that CPS are capable of much more than we 
describe in existing frameworks on CPS cognition in Fig. 1. 
With the availability of new types of data from IoT devices, 
CPS are becoming more automated. For example, with the 
new translytic data, CPS can transact and analyse data. With 
spatiotemporal data, CPS can map the demand in real-time. 
And with the complexities of high-dimensional data, CPS 
can understand the relationships between seemingly unre-
lated events and create new services and products. These 
new data streams are highly complex, and only AI can 
analyse such data and derive predictions with low-latency. 
Hence the evolution of AI in CPS is inevitable, autonomous, 
and it is already happening.

The arguments presented in this research are focused 
on understanding how the increased computational power 
of connected devices, has created intrusive self-building 
CPS, that represent human-like performance, triggering the 
creation of collective intelligence. The aggregated knowl-
edge synthesised from recent literature, created a more 

Fig. 3  Emerging CPS architec-
ture—4 levels



794 AI & SOCIETY (2021) 36:783–796

1 3

comprehensive understanding of the current evolution of 
AI in CPS. We should not wait another 5 years before a new 
framework is designed to explain how AI is evolving with 
the emergence of new data formats, analysed with increased 
computational powers in connected devices.

8  Conclusion

In this paper, we have produced a hierarchical cascading 
framework for analysing the evolution of AI decision-mak-
ing in cyber physical systems. The significance of the new 
framework is the findings that (1) such evolution is auton-
omous because of the increased integration of connected 
devices (IoT) in cyber physical systems; (2) such evolution 
is inevitable, because only AI can analyse the volume of data 
generated in low-latency, near real-time, hence, only AI can 
create value from new and emerging forms of big data. Nev-
ertheless, we argue that the main value of the new 4 levels of 
CPS architecture, is the perception of cyber-physical systems 
as physical and human networks, where cognition emerges 
from the cyber-physical ‘societies’ and ‘communities’ (see 
Table 1). Our interpretation of CPS architecture perceives 
cyber-physical systems as social machines, and we place 
value in human interaction with such systems. In previous 
CPS architecture (Fig. 1), we can see that human interven-
tion is predominated in the configuration level and the CPS 
depend on human cognition and there is a separate layer for 
‘cyber’. In our 4 levels of CPS, we integrated the ‘cyber’ 
in all levels, and we argue that there is a value for artificial 
intelligence to learn from human–computer interactions. 
Instead of relying only on feedback from connected devices, 
in some scenarios, human input is of much greater value. 
We have seen this in the current efforts to monitor a fast 
spreading pandemic—Covid-19. All contact tracing apps are 
based on human–computer input. Relying on computer data 
alone, was considered too slow and ineffective. We use this 
as a final example to rationalise our argument for perceiving 
future cyber-physical systems operating as social machines, 
obtaining input from humans and connected devices.

To present this rationale, in the taxonomic methodology, 
we adapted the summary map method, for transparency and 
justifications for concept selection and we used the litera-
ture review for decisions on the design of the hierarchical 
cascading. Out attempt in this paper was to contribute to the 
cultural practice of engineering discussion, on how artificial 
intelligence is evolving over time, by presenting a snapshot 
in time on this topic. It is evident that our analysis builds on 
considerable assumptions and guesses based on findings and 
taxonomic categorisation of existing literature. Our discus-
sion in this paper points to the importance of understand-
ing the impact of connecting complex and coupled systems. 

Complex interconnected and coupled systems can evolve 
automatically with the continuous technological upgrades 
in existing CPS. The new hierarchical cascading framework 
in this paper identifies approaches to model imperative 
mechanisms within complex interconnected and coupled 
systems. In important environments for AI, such as IoT, we 
can model the connections and interdependencies between 
components to both external and internal IoT services and 
CPS in summary map. The summary map identifies the 
imperative categories for the evolution of artificial cognition 
in CPS. By applying established engineering design models, 
the summary map is advanced in a hierarchical structure 
for artificial intelligence in CPS. However, more empirical 
and philosophical research is needed on this topic before we 
can argue a comprehensive understanding on how artificial 
intelligence is evolving behind complex interconnected and 
coupled systems.
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