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Abstract. The linear sequential circuit approximation method for combiners with
memory is used to find mutually correlated linear transforms of the input and output
sequences in the well-known summation generator with any number of inputs. It is
shown that the determined correlation coefficient is large enough for applying a fast
correlation attack to the output sequence to reconstruct the initial states of the input linear
feedback shift registers. The proposed attack is based on iterative probabilistic decoding
and appropriately generated low-weight parity-checks. The required output sequence
length and the computational complexity are both derived. Successful experimental
results for the summation generators with three and five inputs are obtained.
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1. Introduction

A well-known type of keystream generators for stream cipher applications consists of a
number of linear feedback shift registers (LFSRs) combined by a memoryless nonlinear
function. It is shown in [15] and [14] that such structures may be vulnerable to divide-
and-conquer correlation attacks based on the termwise correlation between the keystream
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246 J. Dj. Golić, M. Salmasizadeh, and E. Dawson

sequence and a subset of the LFSR sequences. More importantly, fast correlation attacks
based on iterative probabilistic decoding are introduced in [9] (see also [1], [11], [12],
and [3]). These attacks are successful if the correlation coefficient is large enough and
if the involved feedback polynomials have sufficiently many low-weight polynomial
multiples of moderately large degrees.

The use of combiners with memory to overcome the tradeoff [14] between the linear
complexity and correlation immunity is suggested in [13]. It is shown that one can
achieve the maximum-order correlation immunity, regardless of the linear complexity,
with just one bit of memory. Thesummation generatorproposed in [13] and [8] is such
a nonlinear combiner with memory. For two inputs, it has only one bit of memory, and
for n inputs it hasm= dlog2 ne bits of memory.

The correlation properties of combiners with one bit of memory are investigated
in [10]. For the summation generator with any number of inputs, the corresponding
asymptotic correlation coefficient (both unconditional and conditioned on the output
sequence) is determined in [16]. For a general binary combiner withm memory bits,
the correlation properties are analyzed in [4]. It is shown that in such a combiner there
exists a nonzero linear function (transform) of at mostm+1 successive output bits that is
correlated to a linear function of at mostm+1 successive input bits. The linear sequential
circuit approximation (LSCA) method [4] provides a feasible procedure for finding such
pairs of linear functions with comparatively large correlation coefficients. The LSCA
method consists in determining and solving a linear sequential circuit that approximates
a binary combiner with memory.

It is shown in [4] that every combiner with memory can be rendered zero-order cor-
relation immune by applying an appropriate linear transform to the output sequence.
In this case the resulting correlation coefficient is reduced depending on the number of
nonzero terms in the linear transform applied, but may still be large enough to perform
a basic correlation attack [15] or even the fast correlation attack [9].

A divide-and-conquer attack on the summation generator is proposed in [2]. The
required keystream sequence length is slightly larger than the sum of the input LFSR
lengths, but the attack consists in a search over all possible initial states of all the
LFSRs except for the longest one. Another attack, based on a specific, 2-adic complexity
measure is introduced in [6]. The required keystream sequence length to predict the
whole sequence is on average proportional to the sum of the LFSR periods and the
computational complexity is roughly quadratic in this length.

The first objective of this paper is to apply the LSCA method to the summation
generator with an arbitrary number of inputs and obtain all pairs of mutually correlated
input and output linear functions/transforms with the maximum possible absolute value
of the correlation coefficient. The second objective is to exploit this correlation weakness
to mount a fast correlation attack [3] on the input LFSRs. For the attack to be successful,
sufficiently many low-weight polynomial multiples of the least common multiple of
the LFSR feedback polynomials have to be generated. For this purpose, a polynomial
residue method (initiated in [9]) based on the birthday paradox is used. For the summation
generators with three and five inputs, systematic successful experiments are conducted
for the LFSR lengths chosen according to the computational power available.

Fast correlation attack techniques and the polynomial residue method are reviewed in
Section 2 and the summation generator is defined in Section 3. Linear appoximations
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for the summation generator with any number of input LFSRs and the corresponding
fast correlation attacks are theoretically investigated in Sections 4 and 5, respectively.
The complexities of the proposed and known attacks are compared in Section 5. The
experimental fast correlation attacks on the summation generators with three and five
input LFSRs are presented in Section 6. Conclusions are given in Section 7.

2. Fast Correlation Attacks

The probabilistic model, a method for generating low-weight parity-checks, and an
iterative error-correction algorithm used in fast correlation attacks are outlined in this
section.

2.1. Probabilistic Model

The observed keystream sequencez = {zi }N−1
i=0 is modeled as the output sequence of a

memoryless binary symmetric channel (BSC) with error probabilityp (corresponding
to the known correlation coefficientc = 1− 2p) when the unknown LFSR sequence
a = {ai }N−1

i=0 is applied to its input. The LFSR feedback polynomialf (x) of degreer is
assumed to be known. The set of sequencesa generated from all possible initial states is
then a linear(N, r ) code. The optimal decoding algorithm consists in finding the LFSR
initial state giving rise to a codeworda lying at the minimum Hamming distance from the
received codewordz. This is essentially the basic correlation attack, with computational
complexityO(2r ), proposed in [15]. The decoding error probability will be close to zero
if r/N < C whereC = 1− H2(p) is the capacity of the BSC. Ifc is small, then this
condition reduces toN > r O(1/c2).

The objective of fast correlation attacks is to recover the original LFSR sequence with-
out searching over all 2r initial states. This can be achieved by using iterative probabilistic
decoding procedures based on low-weight parity-checks.

2.2. Parity-Checks

A parity-check is any linear relationship satisfied by an LFSR sequence. It is known that
the parity-checks correspond to polynomial multiplesh(x), h(0) = 1, of f (x) (see [1]).
Our objective is to obtain sufficiently many parity-check polynomialsh(x) of low weight
(number of nonzero terms) and of as small degree as possible, because the maximum
degree used determines the required keystream sequence length. Repeated squaring [9]
of f (x) is a simple weight-preserving technique that can be used if the weight off (x)
is low.

To generate allh(x) of weight at most 2k + 1 and of degree at mostM , M ≥ r , we
use the polynomial residue method [5] which is based on the birthday paradox method
from [9]. First, in O(M) time compute and store the residues of all the monomials
xm mod f (x), 1 ≤ m ≤ M . Second, by bitwise summation, inO(Mk) time compute
and store the residuesxi1+· · ·+ xik mod f (x) for all

(M
k

)
combinations 1≤ i1 < · · · <

i k ≤ M . Third, by a fast sorting algorithm inO(Mk log2 Mk) time sort these residues
(as integers) and find all the matches of 0 (equal residues) and matches of 1 (binary sum
of residues equal to 1). A match of 0 gives a polynomial multiple of even weight at most
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equal to 2k, whereas a match of 1 gives a polynomial multiple of odd weight at most
equal to 2k+ 1.

For a randomf (x), it is argued in [5] that the expected number of polynomial multiples
of any given weightw, w ≥ 2, is for largeM/(w − 1) given as

2−r

(
M

w − 1

)
≈ Mw−1

(w − 1)! 2r
. (1)

This implies that in order for a polynomial multiple of weight 2k+1 and degree at most
M to exist, it is on average necessary and sufficient thatM ≥ (2k)!1/(2k)2r/(2k) (which
is related to the birthday paradox). As a consequence,M = O(2r/(2k)) yields that the
required precomputation storage and time for finding all the parity-check polynomials
of weight at most 2k+ 1 areO(2r/2) andO(r 2r/2), respectively.

Each polynomial multiple of weightw found can be used to formw parity-checks
from the corresponding phase shifts. All the parity-checks obtained can then be tested
for orthogonality (see [11] and [3]), so that some phases of some of the polynomials may
be discarded.

2.3. Iterative Error-Correction Algorithm

We employ an iterative probabilistic parity-check-based decoding algorithm [11] with
a modification given in [3]. The algorithm consists of several rounds, each composed
of a number of iterations. For each ofN observed keystream bits, a set of preferably
orthogonal parity-checks is first determined. The algorithm starts with the observed
keystream sequence{zi }N−1

i=0 and with p < 0.5 as the error probability for each bit.
The keystream sequence is then iteratively modified to yield the reconstructed LFSR
sequence.

In each iteration recalculate the parity-check values and compute the current error
probabilities as the posterior probabilities of error given the previous error probabilities
as the prior probabilities of error. Then complement all the bits with an error probability
larger than one-half. Ifp is not too close to 0.5, then most of the error probabilities typi-
cally quickly converge to zero. The number of errors is thus reduced, but not necessarily
to zero. In order to correct all the errors, the algorithm is repeated for several rounds by
resetting all the error probabilities top. At the end use a simple information set decoding
technique which consists in searching for an error-free sliding window ofr successive
bits. In fact, we applied an improved algorithm with the so-called fast resetting and with
the sliding window technique incorporated in rounds (see [3]).

3. Description of the Summation Generator

The summation generator [13], [8] is a binary nonlinear combiner with memory whose
internal state variable, the carry, takes integer values from the set [0,n− 1], wheren is
the number of inputs. The memory size in bits is thusm= dlog2 ne.

Let Xt = (x1,t , . . . , xn,t ) and yt denote then input bits and the output bit at time
t , respectively, and letSt denote the carry at timet . For simplicity, we keep the same
notation for the carrySt =

∑m−1
j=0 sj,t2 j and for the binary representation of the carry

St = (s0,t , . . . , sm−1,t ). We also use the notationS( j )
t = sj,t , 0 ≤ j ≤ m − 1, S(0)t
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being the least significant bit ofSt . Then the output and the next-state functions of the
summation generator are fort ≥ 0 respectively defined by

yt =
n⊕

i=1

xi,t ⊕ S(0)t , (2)

St+1 =
⌊(

n∑
i=1

xi,t + St

)/
2

⌋
, (3)

with the modulo 2 summation in (2) and integer summation in (3). In other words, at
time t , the input bits and the carry are summed as integers, the least significant bit of the
sum is taken as the output bit, and the remaining part of the sum defines the next carry.

The input sequences,xi = {xi,t }∞i=0, 1 ≤ i ≤ n, are defined as the LFSR sequences
typically generated from distinct primitive feedback polynomials, which are assumed to
be known to the cryptanalyst. The LFSR initial states are controlled by the secret key,
whereas the initial carry,S0, is either fixed or is also controlled by the secret key.

The next-state function (3) is not balanced, that is, its output is not balanced (uniformly
distributed) if its input is balanced. However, in the probabilistic model where the input
sequences are regarded as purely random (that is, as mutually independent sequences of
independent and uniformly distributed binary random variables), it is shown in [16] that
(3) defines an ergodic Markov chain. Its stationary (asymptotic) probability distribution
is given by (see [16] and [7])

ps = 1

n!

s∑
l=0

(−1)l (s− l )n
(

n+ 1

l

)
. (4)

Here ps denotes the probability that the carry is equal tos− 1, 1≤ s ≤ n.
The correlation coefficient between any two binary random variablesa andb is defined

asc(a,b) = Pr{a = b} − Pr{a 6= b}, and the correlation coefficient of a single binary
variablea is defined asc(a) = c(a,0). Assume that the random carry variableS has
the probability distribution (4). Then the (asymptotic) correlation coefficient of the least
significant bitS(0) depends onn and is given as

cn(S
(0)) =

n∑
s=1

(−1)s+1 ps. (5)

It is shown in [16] thatcn(S(0)) = 0 for evenn and that for oddn, cn(S(0)) is different
from zero and exponentially converges to zero withn. It turns out that for oddn, if n is
not too big (e.g.,n ≤ 9), the correlation coefficient is large enough to apply successful
fast correlation attacks.

For evenn, however, it is shown in [16] that the asymptotic conditional correlation
coefficientcn(S(0)), conditioned on a sufficiently long series of successive ones/zeros
in the output sequence converges to+/− cn−1(S(0)), respectively, wherecn−1(S(0))
is the unconditional correlation coefficient defined by (5). Forn = 2, the asymptotic
conditional correlation coefficient is thus equal to±1, which is sufficient to mount
successfully a (fast) conditional correlation attack [10].
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Due to the binary summation in (2), the summation generator is maximum-order
correlation immune [13]. That is, for any given initial carry, the output sequence is (sta-
tistically) independent of any proper subset of the input sequences assumed to be purely
random. Consequently, any linear transform of the input sequences that is correlated to
a linear transform of the output sequence must involve all the input sequences.

4. Linear Approximations and Correlation Coefficients

In this section the best linear approximations for the summation generator with an ar-
bitrary number of inputs and the corresponding maximum correlation coefficients are
determined.

It is shown in [16] that the asymptotic probability distribution (4) is symmetric, that
is,

pn+1−s = ps, 1≤ s ≤ n. (6)

As a consequence, the correlation coefficient (5) of the least significant carry bitS(0)

vanishes for evenn. It is also established in [16] that (5) can be put into the form

cn(S
(0)) = 2−n

(
σodd(n+ 1)

b(n−1)/2c∑
l=0

(−1)l p2l+1+ σeven(n+ 1)
bn/2c∑
l=1

(−1)l+1 p2l

)
, (7)

where, for any positive integerν,

σodd(ν) =
b(ν−1)/2c∑

l=0

(−1)l
(

ν

2l + 1

)
, (8)

σeven(ν) =
bν/2c∑
l=0

(−1)l
(
ν

2l

)
. (9)

By using the identityσeven(ν)+ σodd(ν)i = (1+ i )ν = 2ν/2ei νπ/4, wherei = √−1 in
the field of complex numbers, it is shown in [16] that for evenν, ν = 2k,

σeven(2k), σodd(2k) =


2k,0 if k ≡ 0 (mod 4),
0,2k if k ≡ 1 (mod 4),
−2k,0 if k ≡ 2 (mod 4),
0,−2k if k ≡ 3 (mod 4).

(10)

Analogously, for oddν, ν = 2k− 1, we get

σeven(2k− 1), σodd(2k− 1) =


2k−1,−2k−1 if k ≡ 0 (mod 4),
2k−1,2k−1 if k ≡ 1 (mod 4),
−2k−1,2k−1 if k ≡ 2 (mod 4),
−2k−1,−2k−1 if k ≡ 3 (mod 4).

(11)

For oddn, n = 2k− 1, in view of (10), the correlation coefficient (7) reduces to

cn(S
(0)) = 2−(n−1)/2


∑k−1

l=1 (−1)l+1 p2l if k ≡ 0 (mod 4),∑k−1
l=0 (−1)l p2l+1 if k ≡ 1 (mod 4),
−∑k−1

l=1 (−1)l+1 p2l if k ≡ 2 (mod 4),
−∑k−1

l=0 (−1)l p2l+1 if k ≡ 3 (mod 4).

(12)
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It then follows [16] that|cn(S(0))| < 2−(n−1)/2, and direct computation reveals that
cn(S(0)) is different from zero (see [16] for oddn ≤ 11).

For oddn, our main objectives here are to obtain all the linear functions of the input bits
that are correlated to the output bit with the correlation coefficient±cn(S(0)) and also to
examine whether this correlation coefficient has the maximum possible absolute value.
For evenn, we want to find all the linear functions of the input bits that are correlated
to a linear function of the output bits with the correlation coefficient of the maximum
possible absolute value which has to be determined too.

The LSCA method [4] can help us find such mutually correlated input and output
linear functions for both even and oddn. The essence of this method is to find good
linear approximations to the output boolean function and to the boolean components
of the next-state function of a binary combiner with memory and to solve the resulting
linear sequential circuit. Since the output function (2) is already linear, we have to find
linear approximations toS(0)t with nonzero correlation coefficients. For oddn, we can
approximateS(0)t as zero or one, but this does not exhaust all possibilities. For evenn,
we have to find other linear approximations toS(0)t as a boolean function ofXt−1 and
St−1 (see (3)).

It follows that

S(0)t =
⌊(

n∑
i=1

xi,t−1+ S(0)t−1

)/
2

⌋(0)
⊕ S(1)t−1, (13)

where, as before,St =
∑m−1

j=0 S( j )
t 2 j , m= dlog2 ne. It is assumed that the carrySt−1 (and

henceSt too) has the asymptotic probability distribution given by (4). In a simplified
notation, we have to analyze the following boolean function:

z=
⌊(

n∑
i=1

xi + s0

)/
2

⌋(0)
⊕ s1. (14)

Here X = (x1, . . . , xn) is uniformly distributed and independent of(s0, s1), with the
probability distribution ps0,s1 derived from (4) asp0,0 =

∑b(n−1)/4c
l=0 p4l+1, p1,0 =∑b(n−2)/4c

l=0 p4l+2, p0,1 =
∑b(n−3)/4c

l=0 p4l+3, andp1,1 =
∑b(n−4)/4c

l=0 p4l+4.

Lemma 1. Let L(X) be any linear function of X and let L(X) ⊕ xi1 ⊕ xi2 be a lin-
ear function such that xi1 and xi2 are distinct variables not appearing in L(X). If the
correlation coefficient between z and L(X) is equal to c, then the correlation coefficient
between z and L(X)⊕ xi1 ⊕ xi2 is equal to−c.

Proof. Letca,b denote the correlation coefficient betweenzandL(X)when conditioned
on any particular value(a,b) of (xi1, xi2). Then

c(z, L(X)) = 1
4(c0,0+ c0,1+ c1,0+ c1,1). (15)

SinceL(X) is degenerate in bothxi1 andxi2 and since (14) is symmetric with respect toX,
we have thatc0,1 = c1,0. As forc0,0 andc1,1, if, for anyX and(s0, s1) such that(xi1, xi2) =
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(0,0), only the value of(xi1, xi2) is changed into(1,1), then the corresponding value of
z is complemented. As a consequence, sinceL(X) is degenerate in bothxi1 andxi2, we
get thatc0,0 = −c1,1. Then (15) reduces toc(z, L(X)) = c0,1/2.

On the other hand, letc′a,b denote the correlation coefficient betweenz andL(X) ⊕
xi1 ⊕ xi2 when conditioned on any particular value(a,b) of (xi1, xi2). Then, analo-
gously,

c(z, L(X)⊕ xi1 ⊕ xi2) = 1
4(c
′
0,0+ c′0,1+ c′1,0+ c′1,1), (16)

wherec′0,0 = c0,0, c′1,1 = c1,1, c′0,1 = −c0,1, andc′1,0 = −c1,0. Hencec(z, L(X)⊕ xi1 ⊕
xi2) = −c0,1/2.

Lemma 2. Let σodd(n − 1) andσeven(n − 1) be defined by(8) and (9), respectively.
Then the correlation coefficient between z and x1 is given as

cn(z, x1)=2−(n−1)

(
σodd(n−1)

b(n−1)/2c∑
l=0

(−1)l p2l+1+σeven(n−1)
bn/2c∑
l=1

(−1)l+1 p2l

)
. (17)

Proof. Letcs0,s1;x1 denote the correlation coefficient betweenzandx1 when conditioned
on any particular values(s0, s1) andx1, that is,

cs0,s1;x1 = Pr{z= x1|s0, s1; x1} − Pr{z 6= x1|s0, s1; x1}. (18)

Let cs0,s1 denote the correlation coefficient betweenz andx1 when conditioned on any
particular value(s0, s1), that is,

cs0,s1 = 1
2(cs0,s1;0+ cs0,s1;1). (19)

Then

cn(z, x1) =
∑
s0,s1

ps0,s1cs0,s1. (20)

We first computec0,0. From (14) we directly get

Pr{z= 0|0,0;0} = Pr


⌊(

n∑
i=2

xi

)/
2

⌋(0)
= 0


= Pr

{
n∑

i=2

xi ≡ 0 or 1(mod 4)

}

= 2−(n−1)
∞∑

l=0

((
n− 1

4l

)
+
(

n− 1

4l + 1

))
, (21)
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where as usual
(
ν

µ

) = 0 if µ > ν. Similarly, we have

Pr{z= 1|0,0;0} = Pr


⌊(

n∑
i=2

xi

)/
2

⌋(0)
= 1


= Pr

{
n∑

i=2

xi ≡ 2 or 3(mod 4)

}

= 2−(n−1)
∞∑

l=0

((
n− 1

4l + 2

)
+
(

n− 1

4l + 3

))
. (22)

In view of (18), (21) and (22) imply

c0,0;0 = 2−(n−1)
∞∑

l=0

((
n− 1

4l

)
+
(

n− 1

4l + 1

)
−
(

n− 1

4l + 2

)
−
(

n− 1

4l + 3

))
. (23)

On the other hand, we similarly obtain

Pr{z= 1|0,0;1} = 2−(n−1)
∞∑

l=0

((
n− 1

4l + 1

)
+
(

n− 1

4l + 2

))
, (24)

Pr{z= 0|0,0;1} = 2−(n−1)
∞∑

l=0

((
n− 1

4l

)
+
(

n− 1

4l + 3

))
. (25)

Hence

c0,0;1 = 2−(n−1)
∞∑

l=0

(
−
(

n− 1

4l

)
+
(

n− 1

4l + 1

)
+
(

n− 1

4l + 2

)
−
(

n− 1

4l + 3

))
. (26)

Finally, (23) and (26) combined by (19) yield

c0,0 = 2−(n−1)
∞∑

l=0

((
n− 1

4l + 1

)
−
(

n− 1

4l + 3

))
= 2−(n−1)σodd(n− 1). (27)

The remaining three cases are treated in an analogous way and as a result we get

c1,0 = 2−(n−1)
∞∑

l=0

((
n− 1

4l

)
−
(

n− 1

4l + 2

))
= 2−(n−1)σeven(n− 1), (28)

c0,1 = −2−(n−1)σodd(n− 1), (29)

c1,1 = −2−(n−1)σeven(n− 1). (30)

According to (20), (27)–(30) finally yield

cn(z, x1) = 2−(n−1)σodd(n− 1)(p0,0− p0,1)+ 2−(n−1)σeven(n− 1)(p1,0− p1,1), (31)

which is equivalent to (17).
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Lemma 3. For odd n, cn(z, x1) = 0, and for even n, n = 2k,

cn(z, x1) = 2−n/2


−∑k−1

l=0 (−1)l p2l+1 +
∑k

l=1(−1)l+1 p2l if k ≡ 0 (mod 4),∑k−1
l=0 (−1)l p2l+1 +

∑k
l=1(−1)l+1 p2l if k ≡ 1 (mod 4),∑k−1

l=0 (−1)l p2l+1 −
∑k

l=1(−1)l+1 p2l if k ≡ 2 (mod 4),
−∑k−1

l=0 (−1)l p2l+1 −
∑k

l=1(−1)l+1 p2l if k ≡ 3 (mod 4).

(32)

Proof. For evenn, n = 2k, (32) is a direct consequence of (17) and (11). For oddn,
n = 2k + 1, (17) and (10) result incn(z, x1) being given by the right-hand side of (12)
with a difference thatn = 2k+ 1 instead ofn = 2k− 1. The following concise form of
(12),

cn(z, x1) = 2−(n−1)/2

{±∑k
l=1(−1)l+1 p2l if k ≡ 0 (mod 2),

±∑k
l=0(−1)l p2l+1 if k ≡ 1 (mod 2),

(33)

shows that this difference is essential. Namely, for both even and oddk, the symmetry
equation (6) forces (33) to be equal to zero.

Let c(n) be defined ascn(S(0)), by (12), if n is odd and ascn(z, x1), by (32), if n is
even. Let alsocmax(n) = |c(n)|. Then, in view of (2), Lemmas 1–3 result in the following
theorem, which completely specifies the correlation between the current output bit and
linear functions of the current and preceding input bits.

Theorem 1. For any time t≥ 1, assume that the current and the preceding inputs to
the summation generator are mutually independent and uniformly distributed and that
the preceding carry has the asymptotic probability distribution(4).

If the number n of binary inputs is odd, then the correlation coefficient between the
current output bit and the binary sum of the current input bits and any numberµ,
0 ≤ µ ≤ n, of the preceding input bits is equal to c(n) if µ ≡ 0 (mod 4), to −c(n) if
µ ≡ 2 (mod 4), and to zero ifµ is odd.

If the number n of binary inputs is even, then the correlation coefficient between
the current output bit and the binary sum of the current input bits and any numberµ,
0 ≤ µ ≤ n, of the preceding input bits is equal to c(n) if µ ≡ 1 (mod 4), to −c(n) if
µ ≡ 3 (mod 4), and to zero ifµ is even.

For each 1≤ n ≤ 10, the computed value of the maximum correlation coefficient
cmax(n), a representative input linear function with the minimum number of terms, and
the output affine function to be used in fast correlation attacks are displayed in Table 1.

We conjecture that Theorem 1 identifies all input linear functions that are correlated
to the current output bit with the correlation coefficient having the maximum absolute
value. This is supported by the experimental fast correlation attacks on the summation
generators with three and five inputs which always converged to a linear (or affine)
transform of the input sequences determined by Theorem 1.

Another argument for this conjecture is provided by the LSCA method itself. Namely,
to obtain nonzero correlation coefficients between the current output bit and linear func-
tions of more than two successive inputs, we should consider more than just a single
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Table 1. Maximum correlation and best linear approximation.

n cmax(n) Best linear approximation Output

1 1.00000 x1,t zt

2 1
2 = 0.50000

⊕2
i=1 xi,t + x1,t−1 zt

3 1
3 ≈ 0.33333

⊕3
i=1 xi,t z̄t

4 5
24 ≈ 0.20833

⊕4
i=1 xi,t + x1,t−1 z̄t

5 2
15 ≈ 0.13333

⊕5
i=1 xi,t zt

6 61
6! ≈ 0.08472

⊕6
i=1 xi,t + x1,t−1 zt

7 272
7! ≈ 0.05396

⊕7
i=1 xi,t z̄t

8 1385
8! ≈ 0.03435

⊕8
i=1 xi,t + x1,t−1 z̄t

9 7936
9! ≈ 0.02186

⊕9
i=1 xi,t zt

10 50521
10! ≈ 0.01392

⊕10
i=1 xi,t + x1,t−1 zt

round of the next-state function (3). Due to multiple linear approximation to the internal
state bits required, the overall correlation coefficient is expected to decrease.

The conjecture is also confirmed by computing the correlation coefficients between all
the linear functions of at most three successive outputs and inputs forn = 3 andn = 5.
In both cases, the maximum correlation coefficient found iscmax(n). For three successive
inputs and the current output, the correlation coefficient takes intermediate values and
the largest ones computed are± 1

8 and± 7
128 for n = 3 andn = 5, respectively. More

precisely, the number of such input linear functions with the correlation coefficient equal
to 1

8,− 1
8, 7

128, and− 7
128 is 9, 3, 30, and 30, respectively. In addition, forn = 3, we also

computed the correlation coefficients between the current output bit and linear functions
of four successive inputs (effectively) and the largest one obtained is± 1

16.
From (12) and (32) it follows thatcmax(n) < 2−(n−1)/2 for oddn andcmax(n) < 2−n/2

for evenn, respectively. It turns out that the values ofcmax(n) are not much smaller than
what can be obtained by a random memoryless combiner withn inputs.

5. Fast Correlation Attacks on Summation Generator

In this section a theoretical analysis of fast correlation attacks on the summation gen-
erator is presented. The general case of an arbitrary number of inputs and parity-check
polynomials of an arbitrary weight is considered.

According to Section 4, the fast correlation attack based on iterative error-correction
decoding uses the output sequence or the binary complement of the output sequence.
The LFSR sequence to be reconstructed is a linear transform of the input sequences
corresponding to one of the input linear functions with the maximum absolute value of
the correlation coefficient,cmax(n). Let L+ andL− denote the numbers of input linear
functions with the correlation coefficientcmax(n) and−cmax(n) to the current output bit,
respectively. To minimize the number of possible input linear transforms, the attack is
run on the output sequence ifL+ ≤ L− and on its binary complement ifL+ > L−.
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The error probability for the associated BSC channel isp = (1− cmax(n))/2. In view
of maximum-order correlation immunity, the corresponding LFSR feedback polynomial
( f (x) of degreer ) is the least common multiple of the individual input LFSR feedback
polynomials. If these polynomials are distinct and primitive, thenf (x) is their product.
The parity-checks to be used in the attack can be obtained by the polynomial residue
method described in Section 2.2.

If odd-weight parity-checks are predominant, then the iterative error-correction al-
gorithm, if successful, is expected to converge randomly to a linear transform of the
input sequences with the correlation coefficientcmax(n). If even-weight parity-checks
are predominant, then the algorithm may also converge to the binary complement of a
linear transform of the input sequences with the correlation coefficient−cmax(n). This is
because every even-weight parity-check polynomial for the feedback polynomialf (x)
contains 1+ x as a factor and is thus also a parity-check polynomial for the feedback
polynomial(1+ x) f (x), which corresponds to the bitwise binary complement of any
LFSR sequence satisfyingf (x). The experiments reported in the next section confirm
this behavior.

A unique solution for the unknown LFSR initial states consistent with the keystream
sequence is obtained as follows. For any assumed input linear/affine transform, all the
LFSR initial states are recovered by solving the corresponding linear equations and are
then tested for consistency with the given keystream sequence. If the initial carry is secret
key controlled, then its correct value has to be guessed out ofn possible values.

The computational complexity of the iterative error-correction algorithm is propor-
tional to the keystream sequence length and to the number of parity-checks per bit used
in the attack. The required keystream sequence length is proportional to the maximum
degree of the parity-check polynomials used which isO(2r/(w−1)) for average LFSR
feedback polynomials, provided that the parity-check weightw is fixed. Since the re-
quired number of the parity-checks depends only onw and on the correlation coefficient
(see (36) below), both the keystream sequence length and the computational complexity
increase asO(2r/(w−1)) if w is fixed.

Our objective now is to examine the case whenr is large andw is varied. LetJ(w) and
Jmax(w) respectively denote the average and the maximum numbers of the parity-checks
per bit needed for a successful fast correlation attack on a given summation generator and
let M be the maximum degree of the associated parity-check polynomials. The required
keystream sequence length is typicallyN = νM , whereν is a relatively small constant
(e.g., 1< ν ≤ 10). The average required computational complexity per one round of
the iterative error-correction algorithm is aboutC = N(w − 1)J(w) (in appropriate
units), and the number of rounds is roughly independent ofw. According to (1), since
the required number of the parity-check polynomials isJmax(w)/w, one may on average
expect that

M ≈
(
(w − 1)!

w

)1/(w−1)

Jmax(w)
1/(w−1) 2r/(w−1), (34)

where the orthogonality condition is for simplicity disregarded. Ifν is not close to one
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(e.g.,ν ≈ 10), thenJmax(w) ≈ J(w), so that

C ≈ ν(w − 1)

(
(w − 1)!

w

)1/(w−1)

J(w)w/(w−1) 2r/(w−1). (35)

It remains to assessJ(w). Let c = cmax(n). Under the assumption that the parity-
checks are orthogonal and thatJmax(w) ≈ J(w), the convergence condition [12] indi-
cates that the iterative error-correction algorithm will on average be successful if

(
1+ cw−1

1− cw−1

)J(w)

>
1+ c

1− c
, (36)

which for smallc can be well approximated as

J(w) >
1

cw−2
. (37)

Note that the number of the parity-checks needed for a successful fast correlation attack is
in practice larger than the value predicted by (36), because in the experiments the parity-
checks are not necessarily orthogonal, the errors are not independent as in the BSC
model, the constantν is close to one, and the best linear approximation is not unique.
However, apart from a multiplicative constant, (37) seems to be a good approximation
as far as the dependence onw is concerned.

Consequently, (35) can be reduced to

C ≈ ν(w − 1)

(
(w − 1)!

w

)1/(w−1)

c−w(w−2)/(w−1) 2r/(w−1). (38)

So, the computational complexity is given as the product of three factors, as functions
of w: the first increases roughly asν(w − 1)2/e, the second exponentially increases
asc−(w−1)+1/(w−1), and the third decreases as 2r/(w−1). A similar expression holds for
the keystream sequence lengthN = νM with a difference that the first factor is lin-
ear inw − 1 and that the second factor,c−1+1/(w−1), is roughly constant. Therefore,
N is predominantly determined by the third factor 2r/(w−1). Unlike N, C is predomi-
nantly determined by the product of the last two factors,c−(w−1)+1/(w−1) 2r/(w−1), which

initially decreases withw, then achieves its minimum value 22
√
(r−log2 c−1) log2 c−1

for
wopt ≈

√
r/log2 c−1− 1+ 1, and increases with further increase ofw. Accordingly, we

get

Cmin ≈ ν

e
22
√
(r−log2 c−1) log2 c−1+log2 2

√
r/log2 c−1−1 (39)
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and the corresponding value ofN is given as

N ≈ ν

ec
2
√
(r−log2 c−1) log2 c−1+log2

√
r/log2 c−1−1. (40)

To simplify the comparisons given below, we use the approximations

Cmin ≈ 22
√

r log2 c−1
(41)

andN ≈ 2
√

r log2 c−1
.

Assuming that the LFSR lengths are approximately equal, the minimum computational
complexity (41) can be compared with the computational complexities of the divide-
and-conquer attack [2], 2r (n−1)/n, and of the 2-adic complexity attack [6], 22(r/n+log2 n)

(neglecting the multiplicative constants). ThusCmin < 22r/n if r > n2 log2 cmax(n)−1.
Finally, we compare the keystream sequence length and the computational complexity

required for the successful fast correlation attack with those required for the successful
basic correlation attack based on the method [4] which reduces the summation generator
to a zero-order correlation immune combiner. Namely, choose the shortest of the LFSRs,
make the product,̂f (x), of the distinct feedback polynomials of the remaining LFSRs,
and find a polynomial multipleh(x) of f̂ (x) of low weightw. Then apply the linear
transform defined byh(x) to the output sequence. According to Theorem 1, the linearly
transformed output sequence is bitwise correlated to the same linear transform of the
chosen LFSR sequence or of its binary derivative. The correlation coefficient can be
well approximated ascmax(n)w or −cmax(n)w, assuming that the correlation noise is
memoryless.

The correlation attack then consists of guessing the initial state of the chosen LFSR and
of estimating the bitwise correlation coefficient between the linearly transformed LFSR
and output sequences. The guessed initial state is assumed as correct if the estimated
correlation coefficient is consistent with±cmax(n). The required linearly transformed
output sequence length isri O(cmax(n)−2w), whereri is the chosen LFSR length.

Assume for simplicity that the LFSR lengths are equal and letc = cmax(n). The
required keystream sequence length can then be approximated as

N ≈ 22w log2 c−1+log2(r/n) + 2r (n−1)/(n(w−1)). (42)

The first and the second terms stand for the length needed for testing the correlation
and for the expected degree of the parity-check polynomialh(x). The required compu-
tational complexity isC ≈ w 2r/n 22w log2 c−1+log2(r/n) and the required storage space for
computing the input linear transform isS≈ 2r (n−1)/(n(w−1)).

As w increases,C increases andS decreases and there is an optimal valuewopt

minimizing the keystream sequence lengthN. Nmin is approximately achieved if the two
terms in (42) are equal. That is,wopt ≈

√
(n− 1)r/(2n log2 c−1)+ 1 and

Nmin ≈ 2
√

2r (n−1) log2 c−1/n (1+ r/n) , (43)

Copt ≈ 2
√

2r (n−1) log2 c−1/n+r/n. (44)
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Note that the minimum computational complexity (41) is smaller thanCopt if

r > n2 log2 cmax(n)
−1
(
2−

√
2(n− 1)/n

)2
. (45)

6. Experimental Results

The objective of this section is to examine experimentally the vulnerability of the sum-
mation generators with three and five inputs to fast correlation attacks.

6.1. Three Inputs

The summation generator with three inputs is a binary nonlinear combiner with two bits
of memory. According to Theorem 1,cmax(3) = 1

3, which is large enough to apply the
fast correlation attack. The current output bit is correlated with the correlation coefficient
− 1

3 to the binary sum of the three current input bits, and with the correlation coefficient
1
3 to the binary sum of the three current and any two preceding input bits (there are
three such linear functions). Consequently, the fast correlation attack is run on the binary
complement of the output sequence.

Experiments were conducted on four summation generators. The tap settingsTapsi
for LFSRi , i = 1,2,3, the degreer , and the weightwp of the resulting product feedback
polynomial are shown in Table 2.

In each case, the attack was performed for 20 randomly chosen initial contents of
the LFSRs for two sets of (not necessarily orthogonal) parity-checks: one, I, with pre-
dominant weight 5 and the other, II, with predominant weight 7 or 6 (depending onr ).
The parity-check sets were obtained by the method described in Section 2.2 fork = 2
and k = 3, respectively. For each out of the 20 initial contents, the number of the
parity-checks used and the keystream sequence length were both minimized.

The weightw, the average numberKav, the maximum numberKmax, and the maximum
degreeMmax of the parity-check polynomials used as well as the average valueNav and
the standard deviationσ(N) of the keystream sequence length in successful experiments
are all shown in Tables 3 and 4, for the parity-check sets I and II, respectively. For
comparison, the keystream sequence length obtained by theory is also shown in Tables 3
and 4 (i.e.,Nth = νM , whereM is given by (34) andJ(w) determined by (36), assuming
thatν = 2 and thatw is the predominant weight).

In the caser = 30 shown in Table 4, where even parity-check weight, 6, is pre-
dominant, the algorithm converged randomly to one of the four input affine transforms
identified above. In other cases, where the predominant parity-check weight is odd, it
converged to the bitwise sum of the input LFSR sequences.

6.2. Five Inputs

The summation generator with five inputs is a binary nonlinear combiner with three
bits of memory. According to Theorem 1,cmax(5) = 2

15, which is, although smaller
than 1

3, also large enough to apply the fast correlation attack. The current output bit is



Table 2. Input LFSRs and product feedback polynomial,n = 3.

Taps1 Taps2 Taps3 r wp

0, 4, 9 0, 3, 10 0, 2, 11 30 17
0, 3, 9 0, 2, 10 0, 3, 15 34 19
0, 3, 10 0, 2, 11 0, 3, 17 38 19

0, 1, 3, 4, 13 0, 1, 15 0, 2, 3, 5, 16 44 17

Table 3. Parity-check polynomials, set I, and keystream sequence length.

r w Kav Kmax Mmax Nav σ(N) Nth

4 1 1 83830
5 118 169 1,495

210.7 28.5 210.3

34 5 137 170 2,877 211.4 28.7 211.3

38 5 79 79 4,990 212.5 29.5 212.3

44 5 127 135 14,954 213.9 29.6 213.8

Table 4. Parity-check polynomials, set II, and keystream sequence length.

r w Kav Kmax Mmax Nav σ(N) Nth

5 4 6 559
30 6 425 518 585 29.5 27.7 28.1

7 282 282 250

5 13 152 800
34 6 146 240 849 29.9 29.0 29.1

7 5,360 5,945 650

6 19 19 83038
7 5,360 5,945 650

210.7 29.4 29.8

44 7 2,600 2,600 1,800 211.4 29.7 210.8

Table 5. Input LFSRs and product feedback polynomial,n = 5.

Taps1 Taps2 Taps3 Taps4 Taps5 r wp

0, 1, 4 0, 2, 5 0, 1, 6 0, 1, 7 0, 2, 3, 4, 8 30 13
0, 1, 6 0, 1, 7 0, 2, 3, 4, 8 0, 4, 9 0, 3, 10 40 21

Table 6. Parity-check polynomials and keystream sequence length.

r w Kav Kmax Mmax Nav σ(N) Nth

5 8,338 9,272 3,915
30 6 598 598 604 212.1 210.4 211.5

7 130 130 223

40 5 14,800 14,800 24,968 214.9 211.8 214.0
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correlated to six and ten linear functions of the corresponding two successive inputs with
the correlation coefficient equal to215 and− 2

15, respectively. Any of the six functions
is the binary sum of the five current and zero or four preceding input bits, whereas any
of the ten functions is the binary sum of the five current and two preceding input bits.
Consequently, the fast correlation attack is run on the output sequence.

The fast correlation attack is conducted in the same way as in the case of three inputs
except that there are more multiple linear/affine approximations to be checked in the
final stage. Experiments were conducted on two summation generators. The tap settings
Tapsi for LFSRi , 1 ≤ i ≤ 5, the degreer , and the weightwp of the resulting product
feedback polynomial are shown in Table 5.

In each case, the attack was performed for 20 randomly chosen initial contents of the
LFSRs by using (not necessarily orthogonal) parity-checks of predominant weight 5.
For each out of the 20 initial contents, the number of the parity-checks used and the
keystream sequence length were both minimized. The results obtained by experiments
and by theory are shown in Table 6. In all the cases, the predominant parity-check weight,
5, is odd and the algorithm converged randomly to one of the six input linear transforms
identified above.

7. Conclusions

It is shown that the summation generators with three, five, and any moderately large
numbern of input LFSRs may be vulnerable to fast correlation attacks based on iterative
probabilistic decoding. Mutually correlated linear transforms of the input and output
sequences are identified by the linear sequential circuit approximation method using
the known asymptotic probability distribution of the carry. The underlying maximum
correlation coefficient,cmax(n), is derived for anyn. For success, sufficiently many low-
weight parity-check polynomials can be generated by a polynomial residue method.

For random feedback polynomials with the least common multiple of degreer and
any fixed parity-check weightw, the average required keystream sequence length and
the computational complexity are bothO(2r/(w−1)), whereas the precomputation storage
and time for finding the parity-check polynomials areO(2r/2)andO(r 2r/2), respectively.
However, primitive feedback polynomials may exist for which these figures are much
smaller. Whenw is varied, it is shown that the minimum computational complexity can be

approximated asCmin ≈ 22
√

r log2 cmax(n)−1
and is achieved ifw ≈ √r/log2 cmax(n)−1+1.

The corresponding keystream sequence length is thenN ≈ 2
√

r log2 cmax(n)−1
.

Successful experimental results are systematically obtained for the summation gener-
ator with three inputs and variousr by using the polynomial multiples of weight 5 and
of weight 6 and 7 combined, respectively, and, also, for the summation generator with
five inputs by using the polynomial multiples of predominant weight 5.
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