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Abstract. The RSA and Rabin encryption functions are respectively defined as
EN(x) = xe mod N and EN(x) = x2 mod N, whereN is a product of two large
random primesp, q ande is relatively prime toϕ(N). We present a simpler and tighter
proof of the result of Alexi et al. [ACGS] that the following problems are equivalent
by probabilistic polynomial time reductions: (1) givenEN(x) find x; (2) givenEN(x)
predict the least-significant bit ofx with success probability12 + 1/poly(n), where
N hasn bits. The new proof consists of a more efficient algorithm for inverting the
RSA/Rabin function with the help of an oracle that predicts the least-significant bit of
x. It yields provable security guarantees for RSA message bits and for the RSA random
number generator for modulesN of practical size.

Key words. RSA function, Rabin function, RSA random number generator, Perfect
pseudorandom number generator.

1. Introduction

Randomness is a fundamental computational resource and the efficient generation of
provably secure pseudorandom bits is a basic problem. Yao [Y] and Blum and Micali
[BM] have shown that perfectrandom number generators(RNG) exist under reasonable
complexity assumptions. Some perfect RNGs are based on the RSA functionEN(x) =
xe mod N [RSA] and the Rabin functionEN(x) = x2 mod N, where then-bit integer
N is a product of two large random primesp,q ande is relatively prime toϕ(N) =
(p − 1)(q − 1) ande 6= 1 modϕ(N). The corresponding RNG transforms a random
seedx0 ∈ [1, N) into a bit stringb1, . . . ,bm of arbitrary polynomial lengthm = nO(1)

according to the recursionbi := xi mod 2, xi := EN(xi−1). The security of these RNGs
was established in a series of works [GMT], [BCS], [ACGS], [VV]: the RSA/Rabin
function can be inverted in polynomial time if one is given an oracle which predicts from
givenEN(x) the least-significant bit ofx with success probability12+1/poly(n). While
the ACGS result shows that the RSA/Rabin RNG is perfect in an asymptotic sense, the
practicality of this result has been questionable as the transformation of attacks against
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these RNGs into a full inversion of the RSA/Rabin function (resp. the factorization ofN)
is rather slow. The main contribution of this paper is a much simpler and stronger proof
of the ACGS result. The new proof gives a more efficient reduction from bit prediction
to full inversion of the RSA/Rabin function. It yields a security guarantee for modules
N of practical size.

Notation. Let N be product of two large primesp,q, 2n−1 < N < 2n. LetZN = Z/NZ
be the ring of integers moduloN and letZ∗N denote the multiplicative subgroup of
invertible elements inZN. We represent elementsx ∈ ZN by their least nonnegative
residue in the interval [0, N), i.e.,ZN = [0, N). We let [ax]N ∈ [0, N) denote the least
nonnegative residue ofax (modN). We use [ax]N for arithmetic expressions overZ
while the arithmetic fora, x ∈ ZN = [0, N) is done moduloN. We let`(z) = z mod 2
denote theleast-significant bitof z ∈ ZN. Let e be relatively prime toϕ(N) = (p −
1)(q − 1) ande 6= 1 modϕ(N). The RSA cryptosystem enciphers a messagex ∈ ZN

into EN(x) = xe mod N. Let O1 be an oracle running in expected timeT which,
given EN(x) and e, N, predicts the least-significant bit`(x) of x with advantageε:
Prx,w[O1EN(x) = `(x)] ≥ 1

2 + ε, where the probability refers to randomx ∈R [0, N)
and the internal coin tossesw of the oracle. We assume that the timeT of the oracle also
covers the time for the evaluation of the functionEN . Throughout the paper we assume
that ε−1, n are powers of 2 andn ≥ 29. We let lg denote the logarithm function with
base 2. All intervals [0, N), [0,8ε−1), etc., are over the integers. For a finite setA let
b ∈R A denote a random element ofA that is uniformly distributed. All time bounds
count arithmetic steps using integers with lg(nε−1)+ O(1) bits. We use integers of that
size for counting the votes in majority decisions.

Halving approximations via binary division. Consider the problem of computingx ∈
ZN from EN(x) andN with the help of the oracleO1 for `(·), but without knowing the
factorization ofN. The new method invertsEN by iteratively halving approximations
uN of random multiples [ax]N with known multipliera, viabinary division, see Fig. 1.

The basic idea is that given an interval containing [ax]N , an interval of half-width
containing [12ax]N can be computed given the least-significant bit`(ax)of [ax]N—Fig. 1
shows these two intervals, the half-width interval is shown for the two values of`(ax).

Fig. 1. Binary division.
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Repeating this process for at mostn iterations the interval narrows down to containing
exactly one element [2−nax]N . At this point,ax and thereforex can be found exactly.
More formally we have [12ax]N = 1

2[ax]N for even [ax]N and [12ax]N = 1
2([ax]N + N)

for odd [ax]N . Given the approximationuN for [ax]N we approximate [12ax]N by
1
2(u + `(ax))N. One binary division halves the approximation error: [1

2ax]N − 1
2(u +

`(ax))N = 1
2([ax]N −uN). The bits̀ (ax) can be obtained for knowna’s with the help

of O1 as in [ACGS]. Actually we improve the relevant procedure in various ways.
Binary division has already been used by Goldwasser et al. [GMT] together with a per-

fect oracle. However, we face the difficulty that the oracle is faulty with a small advantage.
The subsequent works [BCS] and [ACGS] have replaced binary division by the binary
gcd algorithm of Brent and Kung [BK]. On the other hand the analysis of the discrete
log generator [HSS] is based on binary division. We reset binary division together with
halving approximations into the setup of [ACGS]. A cornerstone is majority decisions
via pairwise independent sampling as introduced in [ACGS]. We introduce thecanonical
multipliers2−ta into this sampling method. This leads to an algorithm for RSA inversion
that is much more uniform than the AGCS algorithm because 2−ta does not depend on
the dynamics of the algorithm. This higher uniformity is the basis of our optimizations.

Our results. In Section 2 we present the core of the new algorithm for inverting the RSA
functionEN . It runs in expected timeO(n2ε−2 T + n2ε−6), whereT is the time andε is
the advantage of oracleO1. The expectation refers to the internal coin tosses of the oracle
and the inversion algorithm. This improves the ACGS time bound ofO(n3ε−8 T) for
RSA inversion using suchO1. The new time bound differentiates the costsO(n2ε−2 T)
induced by the oracle calls and all other stepsO(n2ε−6) which we call theadditional
overhead. Subsequent optimizations in Sections 3 and 4 minimize the number of oracle
calls and reduce the additional overhead. Our security result extends to thej th least-
significant message bit for arbitraryj . In the extension to arbitraryj the additional
overhead is proportional to 22 j , whereas the number of oracle calls does not depend onj .

In Section 3 we introduce thesubsample majority rule, a trick that improves the
efficiency of majority decisions via pairwise independent votes. In various applications it
is computationally easy to generate pairwise independent votes as the base of a majority
decision, while mutually independence is not available or too expensive. Following
[ACGS] we can easily generate with the help of the oracle pairwise independent 0,1-
valued votes that each has an advantageε in predicting the target bit̀(at x). A large
sample sizem is necessary in order to make the error probability 1/mε2 of the majority
decision sufficiently small. To reduce the computational costs of the large sample we only
use a small random subsample of it. The votes of the random subsample aremutually
independent, and so a smaller subspace suffices to maintain the error probability of a
majority decision. The time for the subsample majority decision reduces to the size of
the small subsample. The large sample is only mentally used for the analysis, it does
not enter into the computation. Using this trick we gain a factorn/ lg n in the number
of oracle calls and in the time for RSA inversion. The reduced number of oracle calls is
optimal up to factorO(lg n).

In Section 4 we process all possible initial guesses for the approximate locations of
[ax]N, [bx]N simultaneously. This reduces the additional overhead in the time for RSA
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inversion toO(n2ε−4 lg(nε−1)). Section 5 contains conclusions for the security of RSA
message bits and of the RSA RNG for modulesN of practical size. These conclusions
are preliminary as the additional overhead can be further reduced. In Section 6 we extend
the oracle algorithm from inverting the RSA function to inverting the Rabin function and
we derive a security guarantee for thex2 mod N generator under the assumption that
factoring is hard. We consider two versions of Rabin’s function, improving previously
known results of [ACGS] and [VV].

2. RSA Inversion by Binary Division

We introduce a novel method for inverting the RSA function with the help of an oracleO1

that predicts the least-significant message bit with advantageε, but without knowing the
factorization ofN. The core of the new method is the algorithmRSA inversionpresented
below.

High-level description of RSA inversion. We want to computex from EN(x) using
oracleO1 that has anε-advantage for̀(x). We invertEN(x) using the method of binary
division explained in the Introduction. By that method we get from an approximate
locationuN of [ax]N approximate locationsut N of [at x]N where the error ofut+1N is
only half that ofut N. Formally leta0 = a, u0 = u, at = [2−ta]N , andut = 1

2(ut−1 +
`(at x)). The main work ofstage tis to determine the bit̀(at x) by majority decision
using oracleO1. For this we use a second independent multiplierb and an approximate
locationvN of [bx]N . So upon initiation the algorithm picks two random multipliers
a,b ∈ ZN, it guesses̀(ax), `(bx) and approximate locationsuN, vN of [ax]N , [bx]N .
More precisely, it guesses the closest rationalsu, v to (1/N)[ax]N, (1/N)[bx]N so that
8ε−3u,8ε−1v are integers.

Our majority decision for̀(at x) further develops the procedure of [ACGS]. It predicts
`(at x) using O1(EN(ct,i x)) for multipliers ct,i =def at (1 + 2i ) + b ∈ ZN, wherei
ranges over the setAm =def {i : |1 + 2i | ≤ m} of size m. Note that the equation
[ct,i x]N = [(1+ 2i )at x+ b x]N induces a uniquely defined integerwt,i with |wt,i | ≤ m
satisfying

[ct,i x]N = [at x]N(1+ 2i )+ [bx]N − wt,i N. (1)

Hencè (ct,i x) = `(at x)(1+ 2i )+ `(bx)− wt,i N = `(at x)+ `(bx)+ wt,i mod 2.
If wt,i and`(bx) are given, theǹ(ct,i x) and`(at x) are linearly related. Therefore a

prediction of̀ (ct,i x) yields a prediction of̀(at x)with the same advantage. Importantly,
the least-significant bit of [at x]N(1+2i ) and [at x]N coincide because 1+2i is odd—an
even factor 2i would cancel out the least-significant bit of [at x]N in (1), and thus the
least-significant bits of [at x]N and [(at (2i ) + b)x]N are uncorrelated. This shows that
multipliers of the format (2i )+ b are useless.

We computewt,i from the approximationsut andv, subject to some error due to the
inaccuracy ofut , v. We call the computedwt,i correctif it coincides with thewt,i defined
by (1). Thei th measurementof the majority decision for̀(at x) guessesO1(EN(ct,i x))
for the left-hand side and computes`(at x)+ `(bx)+wt,i mod 2 for the right-hand side,
and guesses̀(at x) accordingly: “̀ (at x) = 0” iff O1EN(ct,i x) = `(bx) + wt,i mod 2.
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This is correct if the oracle replyO1EN(ct,i x) andwt,i are both correct. The majority
decision for`(at x) makes measurements over them points ct,i , it samples over the
oracle repliesO1EN(ct,i x) for i ∈ Am. A main point will be to have the errors of
the measurements pairwise independent for distincti . This pairwise independence is
induced by the pairwise independence of the multipliersct,i = 2−tat (1+ 2i )+ b ∈ ZN

for randoma,b ∈ ZN and fixedt .

The number of measurements. What is a good choice for the numbermt of measure-
ments at staget ? On the one hand we want to minimize the number of oracle calls∑n

t=1 mt over all stages. On the other hand we need that the error probability of the
guessed̀ (at x), summed over the stagest = 1, . . . ,n, is bounded away from 1. That
error probability depends onmt and on the error|ut − (1/N)[at x]N | of staget .

Suppose we initially guessu so that the approximation error|u − (1/N)[ax]N | is
at mostδ—we justify the choiceδ = ε3/16. Then we have via binary division|ut −
(1/N)[ax]N | ≤ 2−tδ at staget . The numerical error induced into the above computation
of wt,i is at most 2|1+ 2i |2−tδ. Using|1+ 2i | ≤ mt this error is at most 2mt 2−tδ. In
order to preserve theε-advantage of oracleO1 we require that 2mt 2−tδ ≤ ε/4.

Under theses premises we show below that the majority decision for`(at x) errs with
probability at most 4/(9mtε

2). So we need that
∑n

t=1 4/(9mtε
2) < 1. This goal can

be achieved by settingmt = nε−2. However, this implies thatδ ≤ ε3/(8n) andδ−1 is
a factor of the additional overhead which we want to be small. An alternative choice
is mt = 2tε−2, δ = ε3/16 which yields

∑n
t=1 4/(9mtε

2) < 4
9. Here the problem is

that we cannot have an exponential numbermt = 2tε−2 of oracle calls for larget .
To cap these costs we replace 2tε−2 for t ≥ 1 + lg n by 2nε−2. Thus our choice is
mt := min{2t ,2n}ε−2. The deviation from 2tε−2 for t ≥ 1+ lg n adds at most29 to∑n

t=1 4/(9mtε
2), and the number of oracle calls is at most

∑n
t=1 mt < 2nε−2, i.e., it

is polynomial inn, ε−1. Our choice ofmt , δ saves a factorn in the additional overhead
compared with the choicemt = nε−2, δ = ε3/(8n).

Novelties. We introduce thecanonical multipliers at , ct,i and the calculation ofut , wt,i

via binary division. We recursively get the approximate locationut N of [at x]N asut :=
1
2(ut−1+`(at−1x)). This in turn yieldswt,i := but (1+2i )+vc. We may get a faultywt,i

when [at x]N(1+ 2i ) + [bx]N is close to an integer multiple ofN. The corresponding
error ofwt,i will be analyzed in detail.

Comparison with the ACGS method. The ACGS algorithm uses binary division within
the gcd calculation, which for givena,bsearches for integersk, l so that [(ak+bl)x]N =
±1. That use of binary division gives away the advantage that binary division halves
the approximation error. Ourcanonical multipliers ct,i provide higher uniformity than
thedynamicmultipliersak+ bl—that reduce [(ak+ bl)x]N in the gcd algorithm. The
higher uniformity of the new method opens the door to various optimizations that im-
prove efficiency. The oracle is only queried about the canonical pointsEN(ct,i x), this
reduces the number of oracle calls to almost its information–theoretical minimum. Fur-
thermore, the new algorithm guesses the least-significant bits and approximate locations
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of two message multiples [ax]N, [bx]N , whereas the gcd method requires four such
multiples.

RSA inversion
1. INPUT EN(x), N, ε

Initiation Pick random integersa,b ∈R ZN
∼= [0, N), guess rational

integersu ∈ (ε3/8) [0,8ε−3), v ∈ (ε/8) [0,8ε−1) satisfying∣∣∣∣ 1

N
[ax]N − u

∣∣∣∣ ≤ ε3

16
,

∣∣∣∣ 1

N
[bx]N − v

∣∣∣∣ ≤ ε

16
, seta0 := a, u0 := u.

Guessσ0, τ ∈ {0,1} such thatσ0 = `(ax), andτ = `(bx). (The above
guesses are made at random and the condition refers to what we hope
to be the outcome.)

2. FORt = 1 TOn DO
at := 1

2at−1, ut := 1
2(ut−1+ σt−1), m := min{2t ,2n}ε−2

ct,i := at (1 + 2i ) + b, wt,i := but (1 + 2i ) + vc for all i ∈ Am =
{i : |1+ 2i | ≤ m}.
z := #{i ∈ Am|O1EN(ct,i x) = τ + wt,i mod 2}
Majority decision σt := [0 if z≥ m/2 and 1 otherwise]

3. OUTPUTx := a−1
n bunN + 1

2c mod N

In the following analysis we use the conditional probability that step 1 guesses
correctly. Furthermore, when analyzing staget , we assume thatσi = `(ai x) for all
i < t . We refer to that condition as theright alternative. If we are in the right alter-
native u, v, andut are uniquely determined bya,b—we eliminate ties by requiring
[ax]N < uN + (ε3/16)N and [bx]N < vN + (ε/16)N. All probabilities refer to the
random pair(a,b) ∈R (ZN)

2 and to the coin tosses of the oracle.

Halving the approximation error. In the right alternative the approximation error of
ut N to [at x]N halves with each iteration: [at x]N = 1

2([at−1x]N + `(at−1x)N ). Hence

1

N
[at x]N − ut = 1

N
[at x]N − 1

2(ut−1+ `(at−1x)) = 1
2

(
1

N
[at−1x]N − ut−1

)
. (2)

Correctness of output. By (2) RSA inversion succeeds in the right alternative. In this
case we have|(1/N)[anx]N −un| = 2−n|(1/N)[a0x]N −u0| < 1

2. Thusanx = bunN+
1
2c mod N and the output is correct.

Correctness ofwt,i . We callwt,i correct if [ ct,i x]N = [at x]N(1+2i )+[bx]N−wt,i N.
Correctwt,i satisfy the equation

`(ct,i x) = `(at x)+ `(bx)+ wt,i mod 2,

where we use that−wt,i N = wt,i mod 2 holds for oddN. Majority decision replaces
in the latter equatioǹ(ct,i x) by O1EN(ct,i x) and determines̀(at x) so that the equation
holds for the majority of thei ∈ Am. The error probability of this majority decision is
analyzed below.
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Error probability ofwt,i . We show that Pra,b[wt,i errs]≤ ε/4, where “wt,i errs” means
that it is not correct. The error probability ofwt,i depends on thenumerical error

4t,i =def (ut (1+ 2i )+ v)− 1

N
([at x]N(1+ 2i )+ [bx]N)

of the rational numberut (1+ 2i ) + v. While the “correct” value ofwt,i is the integer
part of(1/N)([at x]N(1+2i )+ [bx]N), we computewt,i from ut (1+2i )+v. If wt,i errs
we must have(1/N)|ct,i x|N ≤ | 4t,i |, where|z|N = min([z]N, N − [z]N) denotes the
absolute valueof z in ZN . In fact, the numerical error4t,i can only affect the modN
reduction of [at x]N(1+ 2i )+ [bx]N if that integer has distance at mostN · | 4t,i | to the
nearest integer multiple ofN.

In the right alternative, iterating (2) yields(1/N)[at x]N−ut = 2−t ((1/N)[ax]N−u).
Using 2−tε2|1+ 2i | ≤ 1 for i ∈ Am and the triangular inequality we get

|4t,i | =
∣∣∣∣ut (1+ 2i )− 1

N
[at x]N(1+ 2i )+ v − 1

N
[bx]N

∣∣∣∣
≤ ε

16
(2−tε2|1+ 2i | + 1) ≤ ε

8
.

So far we have shown that incorrectwt,i implies that(1/N)|ct,i x|N ≤ |4t,i | ≤ ε/8.
Thus, the event Errt,i =def [(1/N)|ct,i x|N ≤ ε/8] covers errors ofwt,i . Asct,i is random
in ZN we get Pra,b[wt,i errs]≤ Pra,b[Errt,i ] = ε/4.

Pairwise independence of oracle and approximation errors. The matrix of theZN linear
transformation [

ct,i

ct, j

]
=
[

1,2−t (1+ 2i )
1,2−t (1+ 2 j )

] [
a
b

]
has determinant 2−t+1( j − i ) 6= 0 modN for |2i | < min(p,q). This shows that the
multipliersct,i ’s are pairwise independent for random(a,b). The oracle errors as well
as the events Errt,i are pairwise independent since these events depend only on the
multipliersct,i .

Remark. In [ACGS] and [FS] the approximation errors forwt,i have not been treated
correctly. These errors are—the way they are defined—not pairwise independent for
distinct measurements. This can be corrected by enlarging the approximation error to
an event—like Errt,i —that only depends on the multipliers. The correction increases the
constant factors in the time bounds. We thank D. Knuth for pointing out this mistake and
O. Goldreich for his help in correcting it.

Error probability of the majority decision. The i th measurement—thei th guess of
`(at x)—is correct if the oracle reply andwt,i are both correct. We define 0,1-valued
error variables Xi that cover the error of thei th measurement:

Xi = 1 iff O1EN(ct,i x) 6= `(ct,i x) OR Errt,i .

The Xi ’s are pairwise independent as thect,i ’s are pairwise independent, and Errt,i

depends only onct,i x. We have E[Xi ] ≤ 1
2 − 3

4ε since the oracle has advantageε
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and Errt,i has probability at mostε/4. Moreover, Var[Xi ] < 1
4. A majority decision is

correct iff the majority of them measurements is correct. A majority decision errs only
if (1/m)

∑
i Xi − µ ≥ 3

4ε, whereµ =def (1/m)
∑

i E[Xi ] ≤ 1
2 − 3

4ε. Chebyshev’s
inequalityfor the them random variablesXi with i ∈ Am shows that

Pr

[∣∣∣∣∣ 1

m

∑
i

Xi − E[X]

∣∣∣∣∣ ≥ 3

4
ε

]
≤
(

3

4
ε

)−2

Var

[∑
i

Xi

]
≤ 4

9mε2
.

Here, the last inequality follows from the identity Var[
∑

i Xi ] =
∑

i Var[Xi ]/m2, which
holds for anym pairwise independent random variablesXi . At this point we need that
the Xi are pairwise independent.

Asm=min{2t ,2n}ε−2 the majority decision for̀(at x) errs with probability 4/(9·2t )

for t ≤ 1+lg n and with probability 2/9n for t ≥ 1+lg n. Thus, the probability that some
majority decision is wrong is at most

∑
t≥1 4/(9 · 2t )+ (n− lg n)(2/9n) ≤ 4

9 + 2
9 = 2

3.
Therefore, if step 1 guesses correctly, RSA inversion succeeds with probability at least1

3.

Running time. We give an upper bound for the expected number of steps required to
computex for given EN(x) andN. We separately count the oracle calls and the other
steps which form theadditional overhead.

The oracle is queried aboutEN(ct,i x) for t = 1, . . . ,n andi ∈ Am. The oracle calls
depend ona,b but not onu, v, σ0, τ . So we keepa,b fixed while we try all relevant
possibilities foru, v, σ0, τ . As the algorithm has success rate1

3 and calls the oracle at
mostm≤ 2nε−2 times per stage, the expected number of oracle calls is at most 3·2n2ε−2.
They require 3· 2n2ε−2T steps.

Each majority decision contributes to the additional overhead at most 2nε−2 steps
that are performed with all oracle replies given. The algorithm does not need the exact
rationalut and merely computeswt,i = but (1+2i )+vc using lg(nε−1)+O(1) precision
bits fromut . We see that the additional overhead is at most the product of the following
factors:

1. Number of quadruples(u, v, σ0, τ ): 8ε−3 · 8ε−1 · 2 · 2.
2. Number of stages: n.
3. Number of steps per majority decision: 2nε−2.
4. The inverse of the success rate: 3.

Hence the additional overhead is at most 3·29n2ε−6, and thus the expected time for RSA
inversion is 3n2ε−2(2T + 29ε−4).

Recall that our time bounds count arithmetic steps using integers with lg(nε−1)+O(1)
bits. Integers of bit length lg(nε−1)+1 are used for counting thenε−2 votes of a majority
decision. We use lg(nε−1)+ 3 precision bits fromut when we computewt,i . While the
n stages of RSA inversion are done with lg(nε−1) + 3 bit integers, we need for the
computation of the outputn precision bits ofun. For this we storen precision bits of
eachut . These bits incur only minor costs because we simply shift them at each stage.

Using an oracle for the jth least-significant message bit. The j th least-significant
message bit̀j (x) is calledsecureif EN can be inverted in polynomial time via an oracle
Oj that predicts̀ j (x) for given EN(x). Suppose that oracleOj predicts`j (x) with
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advantageε in expected timeT . RSA inversion using oracleOj for arbitrary j proceeds
in a similar way as forj = 1. It guesses initiallyu, v and L j (ax), L j (bx) ∈ [0,2 j ),
the integers that consist of thej least-significant bits of [ax]N, [bx]N . A main point
is that the majority decision for̀j (at x) takes into account carryovers from thej − 1
least-significant bits. By the linearity ofL j the equationL j (ct,i x) = L j (at x)(1+ 2i )+
L j (bx)− wt,i N mod 2j holds for correctwt,i . This implies the equation

L j−1(ct,i x)+2 j−1`j (ct,i x) = L j−1(at x)(1+2i )+L j (bx)+2 j−1`j (at x)−wt,i N mod 2j .

In order to predict̀ j (at x)we replace in the latter equation`j (ct,i x) by Oj EN(ct,i x) and
we recoverL j−1(ct,i x), L j−1(at x) recursively from the initial valuesL j (ax), L j (bx),
the approximate locationsuN, vN, andN. We choosè j (at x) so that the equation holds
for the majority ofi ∈ Am. We can apply binary division sincè(at x) is always given
via L j (at x).

Next we consider how the time of RSA inversion for the case of arbitraryj compared
with the particular casej = 1. The first factor 82ε−422 of the additional overhead
increases to the number of quadruples(u, v, L j (ax), L j (bx))which is at most 82ε−422 j .
Now the time bound for RSA inversion viaOj is O(n2ε−2(T + 22 j ε−4)), while it is
O(24 j n3ε−8T) for the ACGS algorithm. There is a double advantage in the new time
bound. The factor 24 j decreases to 22 j and it only affects the additional overhead. The
number of oracle calls and the additional overhead can be further reduced by the methods
in Sections 3 and 4.

Simultaneous security of RSA message bits. The m least-significant message bits
Lm(x) ∈ [0,2m) are by definitionsimultaneously secureif given EN(x) they are
polynomial-time indistinguishable from a random numbery ∈R [0,2m). In Section 5.1
of [ACGS] it is shown that theO(lg n) least-significant RSA message bits are secure
or else the RSA function can be inverted in polynomial time. Here we give a stronger
proof of this result, improving the ACGS time bound of oracle RSA inversion. Now RSA
inversion uses adistinguishing oracle Dwhich givenEN(x) distinguishesLm(x) from
a randomy ∈R [0,2m) at tolerance levelδ:

|Pr[D(L j+1(x), EN(x)) = 1]− Pr[D(y, EN(x)) = 1]| ≥ δ
To extend the algorithm RSA inversion from using oracleOj to using a distinguishing
oracleD we follow Section 5.1 of [ACGS]. Yao has shown that every distinguishing
algorithmD yields for somej ≤ m an oracleOj that predicts̀ j (x)when givenL j−1(x)
andEN(x), see Section 3.5, Lemma P1 of [K]. The time boundT of Oj is essentially the
time bound ofD and its advantage isε = δ/m. Consider RSA inversion via oracleOj .
For the prediction of̀ j (ct,i x) the oracleOj must be givenL j−1(ct,i x). As this value is
to be recovered from the initial guessesL j (ax), L j (bx) anduN, vN, the oracle depends
on the correctness of the initial guess. In particularOj must be tried for all 82ε−422 j

tuples(u, v, L j (ax), L j (bx)) which increases the number of oracle calls by that factor.
We see that the RSA function can be inverted using the oracleD in expected

time O(22mn2m6δ−6T). This improves the corresponding ACGS time bound
O(24mn3m8δ−8T). As the new time bound decreases the factor 24m to 22m it doubles the
numberm of simultaneously secure least-significant RSA message bits compared with
the ACGS result.
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Another approach is to apply the XOR Lemma of Vazirani and Vazirani [VV], [G].
Let H ⊂ {1, . . . ,m} be a random nonempty subset. A distinguishing algorithmD
yields an oracleOH which given EN(x) predicts

∑
k∈H `k(x) mod 2 with advantage

ε = δ2−m. The time boundT of OH is essentially that ofD, see the computational XOR
Proposition in [G]. So we have an oracleOj with ε–advantage for thej th message bit
`j (x) for j = max(H), provided we know thekth bit for all k ∈ H\{ j }. Recall that this
condition holds when we apply the oracle inversion algorithm usingOj . This way RSA
inversion using oracleD runs in expected timeO(22mn2δ−2(T + 24mδ−4)). Thus, the
number of oracle calls reduces from 22mn2m6δ−6 to 22mn2m2δ−2 at the expense of an
increased additional overhead ofO(26mn2δ−6).

3. Subsample Majority Decision

According to the ACGS method we have generated a large sample of pairwise indepen-
dent points [at (1+ 2i )+ b)x]N from two random points [at x]N, [bx]N . By that method
we get via oracleO1 a large number of pairwise independent guesses for the unknown
bit `(at x) given sufficiently close approximations of [at x]N, [bx]N . Next, we reduce
the computational costs of the ACGS method maintaining the structure of the pairwise
independent sample of ACGS:

We introduce thesubsample majority decision, a trick that reduces the number of
oracle calls for RSA inversion by a factor(1/n) lg n. Consider the error variablesXi

that cover the error of thei th measurement in a majority decision for`(at x). The error
probability of a majority decision is 4/(9mε2), so we need a large sample sizem to
make this error small. To reduce the computational costs of the large sample we only
use a small random subsampleA′m′ of m′ ¿ m randomly selectedi ∈ Am. The ran-
domly selectedXi (k) aremutually independent, even though the originalXi are merely
pairwise independent. While the subsample induces only a small additional error prob-
ability, the time for the subsample majority decision is reduced fromm to m′. The large
sample merely appears in the mental error analysis, it does not enter into the compu-
tation. We can even fix a random multisetA′m′ ⊂ {i : |1 + 2i | ≤ m} for all SMAJ
calls, where amultisetis a set with multiplicities. Theorem 3 uses such a fixed multi-
setA′m′ .

Subsample Majority Decision (SMAJ). Pick a random(i (1), . . . , i (m′)) ∈R (Am)
m′

and let A′m′ = {i (1), . . . , i (m′)} with multiplicities. Decide that “̀(at x) = 0” iff
O1EN(ct,i (k)x) = `(bx)+ wt,i (k) mod 2 holds for at least half of thek = 1, . . . ,m′.

We randomly selecti (1), . . . , i (m′) with repetition from Am so that theXi (k) are
mutually independent. Consider the error variablesXi of Section 2 with E[Xi ] ≤ 1

2 −
3
4ε and Var[Xi ] < 1

4 and let X =def (1/m)
∑

i∈Am
Xi . The SMAJ rule errs only if

(1/m′)
∑m′

k=1 Xi (k) ≥ 1
2, i.e., if the majority of measurements of the subsample err. Since

E[X] ≤ 1
2− 3

4ε the SMAJ rule errs only if eitherX ≥ E[X]+ 1
4ε or if (1/m′)

∑m′
k=1 Xi (k) ≥

X + 1
2ε. For the second event we let the valuesXi with i ∈ Am be fixed while the

randomization ofXi (k) is over the random selectioni (k) ∈R Am of Xi (1), . . . , Xi (m′).
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Then the variablesXi (1), . . . , Xi (m′) are identically distributed andmutually independent
with mean valueX. We use the Hoeffding bound [H] as in Exercise 4.7 [MR]:

Hoeffding’s Bound. For fixedXi ’s and random(i (1), . . . , i (m′)) ∈R (Am)
m′ ,

Pr

[
1

m′

m′∑
k=1

Xi (k) ≥ X + 1
2ε

]
< exp(−2m′( 1

2ε)
2).

Proposition 1. If the errors Xi are pairwise independent andE[Xi ] ≤ 1
2 − 3

4ε, then
SMAJ errs with probability at most4/mε2+ exp(− 1

2m′ε2).

Proof. We have seen that the SMAJ rule errs only if eitherX ≥ E[X] + 1
4ε or

(1/m′)
∑m′

k=1 Xi (k) ≥ X + 1
2ε. The probability of the first event is at most

Maxi Var[Xi ]/m(ε/4)2 ≤ 4/mε2 by Chebyshev’s inequality for the pairwise indepen-
dent eventsXi . Then the variablesXi (1), . . . , Xi (m′) are identically distributed andmutu-
ally independentwith mean valueX.By Hoeffding’s bound the probability of the second
event is at most exp(− 1

2m′ε2).

RSA inversion using the SMAJ rule. We modify the stagest ≥ 4 + lg n of RSA
inversion as follows. Apply the SMAJ rule and Proposition 1 withm = 24ε−2n (rather
thanm = 2ε−2n ) andm′ = 2ε−2 lg n and use the multipliersct,i with i ∈ A′m′ ⊂ Am.
At stagest ≤ 3+ lg n we usem = 2tε−2 and no subspace sampling. The algorithm of
Section 4 starts at stage 4+ lg n.

We have1
2m′ε2 = lg n > 1.4426 lnn. A single SMAJ call at staget ≥ 4+ lg n fails

by Proposition 1 with probability 4/mε2+ n−1.4426< 1/3n for n ≥ 29. Thus, all SMAJ
calls of stagest ≥ 4+ lg n succeed except with probability13. They require at most
2n lg n ε−2 oracle calls. These bounds are used in Section 4.

All majority decisions at stagest ≤ 3+ lg n have error probability49. Thus RSA inver-
sion succeeds at least with probability 1− 4

9 − 1
3 = 2

9. Neglecting the
∑

t≤3+lg n 2tε−2 =
16nε−2 oracle calls of stagest ≤ 3+ lg n we get

Theorem 2. Using an oracle O1 that,given EN(x)and N,predicts̀ (x)with advantage
ε in time T, the RSA function EN can be inverted in expected time9n(lg n)ε−2·(T+28ε−4).

A main point is that the number of oracle calls for RSA inversion is at most 9nε−2 lg n,
whereas the ACGS algorithm requires(64)3 (π2/3)n3ε−8 oracle calls, with
(64)3 (π2/3) ≈ 219.7. We can further reduce in Theorem 2 the factor 9 to 2: By guessing
upon initiation closer approximationsuN, vN to [ax]N, [bx]N we can raise the success
rate 2

9 closely to 1. This merely increases the additional overhead. On the other hand the
inversion algorithm makes almost optimal use of the oracle calls, as argued below.

Oracle optimality. We want to invertEN(x) with the help of an oracleO1 where
O1EN(x)predicts̀ (x)with advantageε for randomx. We are not interested in the known
subexponential time algorithms that invertEN without using the oracle. We exclude these
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algorithms by restricting the access toEN(x) exclusively to oracle queriesO1EN(ax)
for multipliers a of the algorithms choice. We let the multipliersa be computed with
unlimited computational costs. This makes the oracle replies the only possible source of
information for the recovering ofx. We call this computational model theoracle access
model. It covers all known oracle algorithms for RSA inversion.

Theorem 3. Inverting EN(x) in the oracle access model requires(ln 2/4)nε−2 oracle
calls.

Theorem 3 has been suggested by Goldreich. By that theorem, the number 9nε−2 lg n
of oracle calls in Theorem 2 is minimal up to a factorO(lg n). Informally an oracle
call reveals only anε2-fraction of a random bit while we must recover ann-bit random
stringx.

We need some concepts from information theory, see, e.g., Section 1.11 of [LV].
The Shannonentropy H(X) = −∑α pα lg pα measures the information content (or
uncertainty) of a discrete random variableX with probabilities pα = Pr[X = α].
Theconditional entropy H(X|Y) of X givenY is defined the same way with thepα ’s
replaced by the conditional probabilities Pr[X = α | Y]. It is well known thatH(X|Y) =
H(X,Y) − H(Y), where the probability distribution of(X,Y) is thejoint distribution
of X andY with probabilitiespα,β = Pr[X = α,Y = β]. Moreover, the information in
X aboutY is defined asI (X : Y) = H(Y) − H(Y|X), and thusI (X : Y) = H(X) +
H(Y)− H(X,Y). By definition I (X : Y) is the part ofH(Y) that is complementary to
H(Y|X). We clearly haveI (X : Y) = I (Y : X) and by that symmetryI (X : Y) is called
themutual informationin X andY. Finally, let H2(p) = −p lg p− (1− p) lg(1− p)
denote thebinary entropy function.

Proof. Let the random variableX be uniformly distributed overZN representing
random RSA messages. When queried aboutEN(cX), oracle O1 replies by the bit
O1EN(cX). The entropy of that bit is at most 1. We study the mutual information

I (X : O1EN(cX)) = H(X)− H(X | O1EN(cX))

of X and the oracle’s reply. AsO1EN(cX) hasε-advantage in predicting̀(cX), this
mutual information satisfies

H(X)− H(X | O1EN(cX)) ≥ H(`(cX))− H(`(cX) | O1EN(cx))

≥ H2(
1
2)− H2(

1
2 + ε) = 1− H2(

1
2 + ε).

Here we use thatI (X : O1EN(cX)) ≥ I (`(cX) : O1EN(cX)), the latter is the mutual
information of`(cX) and O1EN(cX). Moreover,H(`(cX)) = H2(

1
2) = 1, and the

conditional entropyH(`(cX) | O1EN(cX)) is H2(p) wherep = Prx,w[O1EN(cX) =
`(cX)] ≥ 1

2 + ε. As H2(
1
2 + p) is monotonously decreasing forp > 1

2 we get the lower
bound 1− H2(

1
2 + ε).

Moreover, if O1EN(cX) reveals no further information oncX—information about
the bits other thaǹ(cX)—then I (X : O1EN(X)) = 1− H2(

1
2 + ε). In particular there

exist oraclesO1 havingε-advantage for̀(X), whereI (X : O1EN(X)) = 1−H2(
1
2+ε)
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≈ (4/ ln 2) ε2 + O(ε4). Using such oracleO1, every RSA inversion algorithm must
perform at least(ln 2/4)n ε−2 (1 − O(ε2)) oracle calls as it must recovern bits of
information ofX. This holds becauseH(X) = n while each oracle call provides at most
I (X : O1EN(cX)) ≈ (4/ ln 2) ε2+ O(ε4) information aboutX.

4. Processing All Approximate Locations Simultaneously

So far RSA inversion processes all pairs of locations(u, v) separately. Simultaneously
these pairs can be processed much faster. We simulate for allu, v the algorithm RSA
inversion using the SMAJ rule of Section 3, wherem= 24nε−2 andm′ = 2ε−2 lg n. All
SMAJ calls are performed with the same random multisetA′m′ ⊂ Am of sizem′.

We skip the first 3+ lg n stages of the algorithm of Section 3, these stages iteratively
improve the precision of the approximate locations and differ from the rest. So our simu-
lation starts at staget = 4+ lg n and ends at staget = n. It picks randoma,b ∈R ZN and
precomputes all oracle repliesOt,i := O1EN(ct,i x) for i ∈ A′m′ andct,i = at (1+2i )+b.
It tries for the fixeda,b all u ∈ B := (ε3/27n) [0,27nε−3) and allv ∈ (ε/8) [0,8ε−1).
The intervalB is chosen so that|(1/N)[ax]N − u| ≤ ε3/28n holds for someu ∈ B.
This is the precision required at staget = 4+ lg n of RSA inversion, whereut ∈ (ε3/8 ·
2t ) [0,8 · 2tε−3). At stagest > 4+ lg n we stick to the precision level of stage 4+ lg n,
we roundut to the nearest rational inB. The rounding induces no extra error ofwt,i .

Recall that the SMAJ rule sets, in thei -measurement,σt to 0 iff (3) holds for at least
half of thei ∈ A′m′ :

Ot,i = τ + but (1+ 2i )+ vc mod 2. (3)

The main work is to compute, for allu ∈ B, v ∈ (ε/8) [0,8ε−1), all t , andτ ∈ {0,1},
0(u, v, τ, t) =def #{i ∈ A′m′ | Ot,i = τ + bu(1+ 2i )+ vc mod 2}.

Once we are given all0-values we easily simulate the algorithm RSA inversion for
all u ∈ B, v ∈ (ε/8) [0,8ε−1) andσ0, τ ∈ {0,1} in time O(n2ε−4) because there are
O(nε−4) quadruples(u, v, σ0, τ ) to start with, and RSA inversion sets “σt = 0” iff
0(ut−1, v, τ, t) ≥ m′/2.

So it remains to compute all0-values. Recall that there are|B| ·8ε−1 ·2 · (n− lg n) <
211n2ε−4 such values, each depending onm′ = 2ε−2 lg n equations. Our aim is to
compute all these values in time almost linear in the number of values.

Computation of all0-values. Equation (3) can be written withut = u as

Ot,i = τ + b(s+ s̄)ε/8c mod 2, (4)

where we defines := b(2iu mod 1)8ε−1c ∈ [0,8ε−1) ands̄ := b(u+ v mod 1)8ε−1c ∈
[0,8ε−1). Obviously (3) and (4) are equivalent, except whens+ s̄ = −1 mod 8ε−1.
This equivalence is due to the additivityb(s+ s̄)ε/8c = bsε/8c + bs̄ε/8c which holds
for all integerss, s̄ with s+ s̄ 6= −1 mod 8ε−1. For simplicity we neglect the condition
s+ s̄ 6= −1 mod 8ε−1. 1

1 In the cases+ s̄ = −1 mod 8ε−1 we must have|((1+ 2i )at + b)x|N ≤ ε/4. If the i with s+ s̄ =
−1 mod 8ε−1 are all counted incorrectly, the error probability ofwt,i increases at most byε/4.
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As the valuesτ, s̄ in (4) do not depend oni we can eliminateτ, s̄ from the problem.
We reduce the0-values to the following8ν-values which do not depend onτ, s̄, v:

8ν(s,u, t) := #

{
i ∈ A′m′

∣∣∣∣∣ b(2iu mod 1)8ε−1c = s mod 8ε−1

Ot,i = ν

}
,

for ν = 0,1, s ∈ [0,8ε−1), u ∈ B. By (4) we have

0(u, v, τ, t) =
∑
(ν,s)

8ν(s,u, t),

where the sum ranges over all pairs(ν, s) ∈ {0,1} × [0,8ε−1) with ν = τ + b(s+
s̄)ε/8)c mod 2 and̄s := b(u+ v mod 1)8ε−1c.

Given all8ν–values we first compute8∗ν(S,u, t) :=∑0≤s<S8ν(s,u, t) for all S∈
[0,8ε−1) and allν,u. Rewriting the above sum

∑
(ν,s) 8ν(s,u, t) we get the equation

0(u, v, τ, t) = 8∗τ (8ε−1− s̄,u, t)+ (8∗1−τ (8ε−1,u, t)−8∗1−τ (8ε−1− s̄,u, t)),

where we separately sum withν = τ over thes satisfying 0≤ s+ s̄ < 8ε−1 and with
ν = 1+ τ mod 2 over thes with 8ε−1 ≤ s+ s̄< 16ε−1. We need one addition for each
of the 211n2ε−4 8∗ν–values and two additions per0–value. So we get all0-values using
3 · 211n2ε−4 steps. It remains to compute the8ν–values.

Computation of all8ν–values. 1. We must compute 211n2ε−4 8ν–values. Theν, s
in the definition of8ν(s,u, t) are determined byi,u, t and thus, for fixedu, t , them′

i ’s distribute into 16ε−1 boxes(ν, s,u, t) corresponding to the pairs(ν, s). Specifically
8ν(s,u, t) is the number ofi ’s in box (ν, s,u, t). We partition each box into 8ε−1

subboxescontaining thei with i = c mod 8ε−1 for c ∈ [0,8ε−1). Let 9ν(c, s,u, t)
denote the number ofi ’s in subbox(ν, c, s,u, t). We compute the9ν-values first. The
point is that many subboxes coincide for distincts,u for the samet . For example, if we
form subboxes for the even and the oddi , the same subboxes appear foru andu + 1

2
because((2 i 1

2) mod 1)8ε−1 = 1 in the definition of8ν .
In general we writeu ∈ B uniquely in the formu = u′ + j ε/8 with u′ ∈

(ε3/27n) [0,24nε−2) and j ∈ [0,8ε−1). Clearly,9ν(c, s,u′ + j ε/8, t) = 9ν(c, s −
2 jc,u′, t), where thes-coordinates are always taken mod8ε−1, and which follows
from (2c ( j ε/8) mod 1)8ε−1 = 2cj mod 8ε−1. Thus we only need to compute the
9ν(c, s,u′, t) for all u′ ∈ B ∩ [0, ε/8). We distribute, for fixedu′ ∈ B ∩ [0, ε/8)
and fixedt , them′ i ’s into the subboxes(ν, c, s,u, t) and we count accordingly. This
requires at mostm′ · |B| ·2·n/8ε−1 = 26n2ε−4 lg n steps. Note that most of theO(n2ε−5)

subboxes remain empty without incurring any costs.
2. Finally we compute8ν(s,u, t) =

∑
c9ν(c, s,u, t) for all ν ∈ {0,1}, all s,u, t

summing up overc ∈ [0,8ε−1). This is done by an FFT–like network, where subsums
are used repeatedly. In depthe of the network we form the sum over the9ν(c, s,u, t)
for the 2e c’s that coincide modulo 8ε−1/2e, we do this for all residue classes modulo
8ε−1/2e. Each of these sums is the sum of two subsums of the preceding layer in depth
e− 1. Each subsum in depthe repeats 2e times as the values foru, c andū, c̄ coincide,
9ν(c, s,u, t) = 9ν(c̄, s, ū, t) if c = c̄ mod 8ε−1/2e and 2e−1u = 2e−1ū mod 1. (In this
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case the values(2iu mod 1)8ε−1 = (2cu mod 1)8ε−1 in the definition of8ν coincide
for c,u andc̄, ū. )

The FFT network has depth lg(8ε−1) and after elimination of the redundancies there
are 210n2ε−4 vertices per layer. We have reduced the number of vertices per layer by a
factor 2 due to the identity9ν(c, s,u, t) = 9ν(c, s,u + 1

2, t). Another reduction by a
factor 2 is possible since80(s,u, t) + 81(s,u, t) does not depend on the oracle calls.
The resulting network has size 29n2ε−4 lg(8ε−1).

Time bounds. The dominant part of the time bound for0 is the size 29n2ε−4 lg(8ε−1)

of the FFT network for step 2. In the right alternative each SMAJ call errs by the analysis
of Section 3 with probability at most 1/3n. We perform less thann consecutive stages
starting in stage 4+ lg n. The inversion of the RSA function succeeds with probability2

3.
The elimination of the first 3+lg n stages has doubled the success probability. Neglecting
minor terms,EN can be inverted in expected time

3n(lg n)ε−2T + 3 · 28n2ε−4 lg(8nε−1). (5)

Theorem 4. Processing all pairs(u, v) simultaneously, the additional overhead of
RSA inversion is at most O(n2ε−4 lg(nε−1)).

The additional overhead in Theorem 4 is quadratic inn, while in Theorem 2 it is linear
in n. We believe that a factorn can be saved in Theorem 4. In the right alternative the
fraction of measurements that predict “`(at x) = 0,1” is 0(u, v, l , t)/m′. By Cheby-
shev’s inequality this fraction must be close to1

2 ± ε, whereε is the exact advantage
of O1. We can discard the pairs(u, v) for which0(u, v, l , t)/m′ differs more thanε/2
from both 1

2 ± ε.

5. Security of RSA Message Bits and of the RSA RNG

An important question of practical interest is how to generate efficiently many pseu-
dorandom bits that are provably good under weak complexity assumptions. Provable
security for the RSA RNG follows from Theorems 2 and 4. Under the assumption that
there is no breakthrough in algorithms for inverting the whole RSA function Theorems 2
and 4 yield provable security for RSA message bits and for the RSA RNG for modules
N of practical size—n = 1000 andn = 5000, respectively.

The fastest known factoring method. The fastest known algorithm for factoringN
or for breaking the RSA cryptoscheme requires at leastL N [ 1

3,1.9]1+o(1) steps, where
L N [v, c] = exp(c · (ln N)v(ln ln N)1−v). L N [ 1

3,1.9] is the conjectured run time of the
number field sieve method with Coppersmith’s modification using several number fields
[BLP]. Factoring even a nonnegligible fraction of random RSA modulesN requires
L N [ 1

3,1.9] steps by this algorithm.

Practical security of RSA message bits. Consider the time bound (5) for RSA inversion
with the oracle time boundT := 3.16·1013, n := 1000,ε := 1

100. The time bound (5) for
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RSA inversion is about 1022 which is clearly less thanL N [ 1
3,1.9] ≈ 1025.5, for N ≈ 2n,

the time of the fastest known algorithm for factoringN. This yields a security guarantee
for the least-significant message bit: for givenEN(x) it is impossible to predict̀(x)with
advantage1

100 within one MIP-year (3.16·1013 instructions) or else the RSA functionEN

can be inverted faster than is possible by factoringN using the fastest known algorithm.
The contribution of the additional overhead to the time bound (5) is about 1.4 · 1018

for n = 1000,ε = 1
100. There is an interesting consequence. Each of the eight least-

significant RSA message bits satisfies essentially the same security guarantee as the least-
significant one because the additional overhead of oracle RSA inversion via oracleOj is
proportional to 22 j , see the end of Section 2, the claim holds since 1.4·1018214 ≈ 2.3·1022.

On the other hand the ACGS result does not give any security guarantee for modules
N of bit length 1000, not even against a one-step attacker withT = 1. The ACGS time
bound for inversion is 219.7100031008 ≈ 8.5·1030À 1025.5, which means that the ACGS
time for RSA inversion does not beat the time for factoringN by known algorithms.

Practical and provably secure random bit generation. Let N = p · q be a random
RSA modulus with primesp,q, let x0 ∈R [0, N), and letebe a fixed RSA exponent—e
is relatively prime toϕ(N) = (p − 1)(q − 1) and e 6= 1 modϕ(N). Based on the
Blum–Micali construction [BM], the RSA RNG produces from random seeds(x0, N)
the bit stringb = (b1, . . . ,bm) as

xi = xe
i−1 mod N, bi = xi mod 2 for i = 1, . . . ,m.

A distinguishing algorithm Drejectsb produced as above attolerance levelδ if, for
randoma ∈R {0,1}m,

|Prb[D(b) = 1]− Pra[D(a) = 1] |≥ δ.

A tolerance levelδ = 1
100 is considered to be sufficient for practical purposes.

Theorem 5. Let the RSA RNG produce from random seeds(x0, N) of length2n an
output b = (b1, . . . ,bm) of length m. Every distinguishing algorithm D of running
time T, that rejects the output at tolerance levelδ, yields an algorithm that inverts the
RSA function EN in expected time3n(lg n)m2δ−2T + O(n2m4δ−4 lg(nmδ−1)) for a
polynomial fraction of N.

Proof. Suppose the bit stringb ∈ {0,1}m is rejected by some testA in time T(A) and
tolerance levelδ. By Yao’s argument, see, e.g., Section 3.5, Lemma P1, of [K], and since
the distribution ofb is shift-invariant (EN is a permutation ), there is an oracleO1, which
given EN(x) andN, predicts̀ (x) in time T(A)+mn2 with advantageε := δ/m for a
nonnegligible fraction ofN. By the time bound (5), and assuming thatT(A) dominates
mn2, we can invertEN in the claimed expected time.

Odlyzko [O] rates the 1995 yearly world computing power to 3·108 MIP-years, where
an MIP-year corresponds to 3.16· 1013 instructions. Then 3· 108 MIP-years correspond
to 1022 instructions.
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Corollary 6. The RSA random generator produces for n= 5000,from random seeds
(x0, N)of bit length104,at least m= 107 pseudorandom bits that withstand all statistical
tests performable with at most1022 steps at tolerance levelδ = 1

100,or else the whole RSA
function EN can be inverted in less than LN [ 1

3,1.9] steps for a nonnegligible fraction
of N.

Proof. We apply Theorem 4 with theO-constant 3· 28 of the time bound (5). This
inverts the RSA functionEN using about 8· 1047 steps whileL N [ 1

3,1.9] > 3.7 · 1050

for N ≈ 25000.

6. The Rabin Function and thex2 mod N Generator

We extend the results of the previous sections from the RSA functionEN(x) = xe modN
to Rabin’s encryption function [R] wheree = 2. The corresponding RNG is the
x2 mod N generator. The least-significant bit of the Rabin function and thex2 mod N
generator have been proved to be secure under the assumption that factoring integers is
hard [ACGS], [VV]. We show that this security even holds for modulesN of practical
size, i.e., we improve the time bound of the oracle factoring algorithm.

Throughout the section letN be aBlum integer—a product of two primesp andq
that are congruent to 3 mod 4. LetQRN andZ∗N(+1) be the groups of residues modN
that are squares, respectively have Jacobi symbol +1. Then−1 is a quadratic nonresidue
modulo N, −1 ∈ Z∗N(+1). We have a chain of groupsQRN ⊂ Z∗N(+1) ⊂ Z∗N that
increase by a factor 2 with each inclusion. For further details on the Jacobi symbol see
[NZ].

We distinguish three variants of the Rabin functionx 7→ x2 mod N, theuncentered,
thecenteredand theabsoluteRabin function:

• The original, unmodifieduncenteredRabin functionEu
N(x) = x2 mod N ∈ (0, N).

• ThecenteredRabin functionEc
N(x) = x2modN ∈ (−N/2, N/2),

• TheabsoluteRabin functionEa
N(x) = |x2modN| ∈ (0, N/2).

The uncentered Rabin functionEu
N outputs the residue in(0, N) whereasEc

N outputs
x2modN, the residue in the symmetrical interval(−N/2, N/2). Note that|x2modN| =
min([x2]N, [N − x2]N) ∈ [0, N/2) is theabsolutevalue ofx2 ∈ ZN. As N is a Blum
integer we have−1 ∈ Z∗N(+1)\QRN . Moreover, the setMN =def Z∗N(+1) ∩ (0, N/2)
has cardinality|Z∗N|/4, and is a group under the operationa◦b =def |ab|N . It is important
that:

• The uncentered Rabin functionEu
N permutes the setQRN ∩ (0, N).

• The centered Rabin functionEc
N permutes the setQRN ∩ (−N/2, N/2).

• The absolute Rabin functionEa
N permutes the setMN = Z∗N(+1) ∩ (0, N/2).

The whole point is thatZ∗N(+1) can be decided in polynomial time whereasQRN is
presumably difficult to decide. SoEa

N permutes a nice, polytime recognizable setMN ,
whereas bothEc

N, Eu
N permute “complicated” sets. We note that

Ec
N(x) = ±Ea

N(x), Ea
N(x) = |Ec

N(x)|, Eu
N(x) ∈ {Ec

N(x), Ec
N(x)+ N}.
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ThusEc
N extends the output ofEa

N by one bit—the sign.
Previous oracle inversion algorithms forEa

N have been proposed in [ACGS] and for
Eu

N in [VV]. We improve the previous time bounds.

The x2 mod N generator. Thex2 mod N generator transforms a random seed(x0, N)
into a bit string(b1, . . . ,bm) as xi := EN(xi−1),bi := `(xi ) for i = 1, . . . ,m. We
distinguish three variants of this generator, theuncentered, thecentered, and theabsolute
RNG, according to the three variants of the Rabin functionEN . Specifically, theseed
x0 is random in the setQRN ∩ (0, N), QRN ∩ (−N/2, N/2), respectivelyMN for the
uncentered, centered, respectively absolute Rabin function. Historically the uncentered
RNG has been introduced as thex2 mod N generator [BBS]. However, the absolute and
the centered RNG coincide and yield better results.

The absolute and the centered RNG coincide in the output. Let xa
i , xc

i , xu
i denote the

integerxi in the i th iteration withEa
N, Ec

N, Eu
N and inputx0 = xa

0 = xc
0 = xu

0. Using
Ec

N(x) = ±Ea
N(x) we see by induction oni that xc

i = ±xa
i and`(xc

i ) = xc
i mod 2=

xa
i mod 2= `(xa

i ).
On the other hand, the uncentered RNG is quite different and unsymmetrical. It out-

puts the XOR of̀ (xc
i ) and the sign-bit [xc

i > 0]. It comes as no surprise that we can
establish better security for the absolute—and the equivalent centered—RNG than for
the uncentered one.

Oracle inversion of the absolute Rabin Function. We would like to modify the oracle
algorithm for RSA inversion from the RSA function to the permutationEa

N on MN . The
modified algorithm uses an oracleO1 which givenEa

N(x) and N predicts for random
x ∈R MN the bit `(x) with advantageε. The inversion algorithm uses the canonical
multipliersct,i = at (1+ 2i )+ b of Section 2.

How to interpret the oracle. The difficulty is that the queries to the oracle may be of the
wrong form. Namely, if we feed the oracle withEa

N(ct,i x)—wherect,i x 6∈ MN—then
the oracle’s answer does not correspond toct,i x but rather to the square root of(ct,i x)2

that resides inMN . This may happen if eitherct,i 6∈ Z∗N(+1) or [ct,i x]N > N/2. The
casect,i 6∈ Z∗N(+1) is easy to detect, in this case we discard the multiplierct,i .

We detect the case [ct,i x]N > N/2 with high probability via the approximationwt,i N
of [ct,i x]N . If ct,i x ∈ Z∗N(+1) and [ct,i x]N > N/2, then the oracle’s answer corresponds
to −ct,i x since−ct,i x ∈ MN and (−ct,i x)2 = (ct,i x)2. In this case the oracle guess
corresponds to

`(−ct,i x) = `(N − [ct,i ]N) = 1+ `(ct,i x) mod 2.

So if [ct,i x]N > N/2 we must reverse the guessO1Ea
N(ct,i x). Figure 2 shows “[ax/2]N >

N/2” as a function of̀ (ax).

The distribution of multipliers with Jacobi symbol+1. On average half of the multi-
pliersct,i = at (1+ 2i ) + b are inZ∗N(+1), which follows from|Z∗N(+1)| = |Z∗N |/2.
However, we have to get sufficiently close to the density1

2 for a specific subset, corre-
sponding to thei ∈ Am, and forall stagest . Otherwise we need higher accuracy for the
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Fig. 2. Binary division via modN.

approximate locationuN of [ax]N that has to be guesssed upon initiation. This point
affects the time analysis, it has been neglected in [ACGS].

Peralta [P] shows that for every prime numberP, for distinct fixed integersA1, . . . , Am

∈ Z∗P, and randomX ∈R Z∗P the distribution of the sequence of quadratic characters
of X + A1, . . . , X + Am deviates from the uniform distribution on{±1}m by at most
m(3+√P)/P. We apply this result to the prime factorsp,q of N with X = b andAi =
at (1+2i ) for thei ∈ Am, and we use thatb mod p, b modq are independent for random
b ∈R ZN. Then Peralta’s result shows that for randomb ∈R ZN the fraction of multipliers
ct,i = at (1+ 2i )+ b with |1+ 2i | ≤ m that are inZ∗N(+1) is 1

2 + O((m(3+√ p̄)/ p̄)),
where p̄ := min(p,q), for everyt = 1, . . . ,n. The differenceO((m(3+ √ p̄)/ p̄)) of
this fraction to1

2 is so small that its effect is negligible over alln stages of the inversion
algorithm.

Technical details that deviate from RSA inversion. The following changes compared
with RSA inversion accompany the smaller density≈ 1

2 of the multipliersct,i ∈ Z∗N(+1):

• Doublem. With high probability there are aboutm multipliersct,i ∈ Z∗N(+1) with
|1+ 2i | ≤ 2m.
• The numerical error4t,i of ut (1+ 2i )+ v doubles asi andm double.
• Use an initial approximationv for (1/N)[bx]N of double distance, the numerical

error4t,i doubles anyway. So initially guess thev ∈ (ε/4) [0,4ε−1) that is closest
to (1/N)[bx]N . The number ofv–values halves.
• In casewt,i errs, then(1/N)|ct,i x|N may be twice as large, as the numerical error
4t,i doubles. Ifwt,i errs, we have(1/N)|ct,i x|N ≤ ε/4.
• The new error event Errt,i = [(1/N)|ct,i x|N ≤ ε/4] has probability at mostε/2

(ε/4 for RSA inversion). The increased error Errt,i will be reduced by an “addi-
tional” error.

Computeat , ct,i ,ut , wt,i as for RSA inversion. Decide that 2[ct,i x]N < N iff b2(ut (1+
2i ) + v)c is even. If 2[ct,i x]N > N, reverse the guess for̀(at x) by simply adding
w′t,i := b2(ut (1+ 2i )+ v)c mod 2 in the equation of thei th measurement. Thus, guess
that “̀ (at x) = 0” iff at least half of thei satisfyO1Ea

N(ct,i x) = `(bx)+wt,i+w′t,i mod 2.
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Error analysis. There is an “additional” error if the equivalence 2[ct,i x]N < N ⇔
b2(ut (1+2i )+v)c = 0 mod 2 does not hold. From the error analysis ofwt,i in Section 2
we see that this event occurs only if|2ct,i x|N ≤ ε/4. The latter event is part of the error
event Errt,i = [|ct,i x|N ≤ (ε/4)N] and it cancels out: if the parities ofwt,i andw′t,i are
both incorrect these errors cancel each other. Therefore the error of thei th measurement
is covered by the eventε/8 < |ct,i x|N ≤ ε/4 which has probability at mostε/4, the
same as for RSA inversion.

Time bounds. We use half the number ofv and the same number ofu as for RSA
inversion and thus the additional overhead forEa

N inversion is half that for RSA inversion,
while the number of oracle calls is the same. On the other hand, the method of [ACGS]
makesEa

N inversion 44 times slower than RSA inversion.
Furthermore, the improvements of Sections 3 and 4 carry over toEa

N . This extends
Theorems 2 and 3 from the RSA function to the absolute Rabin functionEa

N and Theo-
rem 5 and Corollary 6 from the RSA RNG to the absolute/centeredx2 mod N generator.
We neglect the difference between the uniform distribution onZN andZ∗N . Note that the
time to compute two Jacobi symbols—that comes with each oracle call—is negligible
provided thatT À n lg n.

Theorem 7. The assertions of Theorems2 and 3 hold for the absolute Rabin func-
tion Ea

N in place of the RSA function EN . Theorem4 and Corollary 6 hold for the
absolute/centered x2 mod N generator in place of the RSA generator.

The strength of Theorem 7 is that it proves security provided that factoring Blum
integers is hard. This follows because the problems of invertingEa

N and of factoringN
are equivalent [R]. Here is the standard way of factoringN = p · q using an inversion
algorithm forEa

N . Let Da
N denote the permutation onMN that is inverse toEa

N . Obviously,
Da

N Ea
N yields a 4–1 mapping fromZ∗N to MN . Two inputsx, y collide under this mapping

if and only if x = ±y mod p andx = ±y modq. Exactly one of four colliding inputs is
in MN . Therefore the eventsp | (z−Da

N Ea
N(z)) andq | (z−Da

N Ea
N(z)) are independent

for randomz ∈ Z∗N, and each event occurs with probability1
2. This shows that{gcd(z±

Da
N Ea

N(z), N)} = {p,q} holds with probability1
2 for randomz ∈ Z∗N.

In particular,N can be factored in expected time 2·3n(lg n)ε−2T+3·28n2ε−4 lg(8nε−1)

using an oracle withε–advantage in predicting̀(x) from givenEa
N(x). This improves

the O(n3ε−8T) time bound of [ACGS].

Comparison with the muddle square method. It is interesting to compare the centered
x2 mod N generator with the randomizedx2 mod N generator implied by the general
result of Goldreich and Levin [GL], [L]: iteratively squarexi mod N and output the
scalar productsbi = 〈xi , z〉 mod 2 for i = 1, . . . ,m with a fixed random bit string
z. Knuth [K, Section 3.5, Theorem P] shows thatN can be factored in expected time
O(n2δ−2m2T(A) + n4δ−2m3) for a nonnegligible fraction of theN if we are given a
statistical testA that rejects(b1, . . . ,bm) at tolerance levelδ. This yields a security
guarantee for themuddle square methodthat is similar to the one of Corollary 6.
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The problem of inverting the uncentered Rabin function. Consider the permutations
Ec

N, Eu
N acting on the set of quadratic residues. The problems of invertingEc

N andEu
N

are equivalent as we can easily transform one output into the other using thatEu
N(x)−

Ec
N(x) ∈ {0, N}. We would like to modify the oracle algorithm for RSA inversion

to the inversion ofEu
N . Let O1 be an oracle which, givenEu

N(x) and N, predicts the
least-significant bit ofx ∈ QRN with advantageε, Prx,w[O1(Eu

N(x)) = `(x)] ≥ 1
2 + ε

for x ∈R QRN , and the coin tossesw of O1. We face the problem that the correct
interpretation of the oracle repliesO1Eu

N(ct,i x) requires the quadratic residuosity ofct,i x.
For simplicity we only use multipliersct,i that are quadratic residues. The subgroupQRN

of Z∗N has order|Z∗N |/4. To compensate the reduced density of the usable multipliers
the inversion algorithm guesses initially an approximate locationuN for [ax]N with 1

4
times the distance for RSA inversion.

Deciding quadratic residuosity. Blum et al. [BSS] have shown in Lemma 2 of [BBS]
that every oracleO1 as above—that givenEu

N(x) predicts withε-advantage the least-
significant bit ofx—can be used to predict quadratic residuosity withε-advantage:

For all ā ∈ Z∗N(+1) and randomz ∈R QRN the following equivalence holds with
probability 1

2 + ε:

ā ∈ QRN ⇐⇒ O1Ec
N(āz) = `(āz).

So we predict “̄a ∈ QRN” iff O1Ec
N(āz) = `(āz). The resultingε-advantage for

quadratic residuosity can be easily amplified. Specifically, to predict quadratic resid-
uosity with error probability at most 1/8m we pick m := ε−2dln me independent
z1, . . . , zm ∈R QRN , and we decide that “ā ∈ QRN” iff O1EN(āzi ) = `(āzi ) holds for
the majority of thei . By Hoeffding’s bound this majority decision has error probability
at most exp(−2mε2) ≤ exp(−2 lnm) = m−2 ≤ 1/8m for m≥ 8.

How to interpret the oracle. If we feed the oracle withEu
N(ct,i x)—wherect,i x 6∈

QRN—then the oracle’s answer does not correspond toct,i x but rather to the square root
of (ct,i x)2 that resides inQRN ∩(0, N). This may happen if eitherct,i ∈ Z∗N(+1)\QRN

or ct,i x 6∈ Z∗N(+1). The casect,i 6∈ Z∗N(+1) is easy to detect, in this case we discard the
multiplier ct,i .

If ct,i x ∈ Z∗N(+1), then the oracle’s answer corresponds to eitherct,i x or to
−ct,i x since (−ct,i x)2 = (ct,i x)2. If ct,i x 6∈ QRN then we must reverse the guess
O1Eu

N(ct,i x).

Inverting the uncentered Rabin function. We describe how the algorithm differs from
the RSA inversion. Letm be as for RSA inversion. We first assume that 2 is inQRN .

Initially pick randoma,b ∈R ZN and produce all quadratic residues of either type
c1,i := (a/2)(1+2i )+borc′1,i := ai+b/2 with |1+2i | ≤ 4m. On average there are about
m quadratic residues of either type. Guess the closest rationalsuN, vN to [ax]N, [bx]N

so that 32ε−3u,8ε−1 are integers. Also guess`(ax), `(bx). At staget determinè (ax/2)
by majority decision using oracleO1 and the multipliersc1,i = (a/2)(1+2i )+b ∈ QRN .
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Details of the majority decision of̀(ax/2). Compute fromu, v the integerw1,i which
most likely satisfies

[c1,i x]N = [ax/2]N(1+ 2i )+ [bx]N + w1,i mod 2.

Decide that̀ (ax/2) = 0 iff the majority of the multipliersc1,i satisfies

O1EN(c1,i x) = `(ax/2)+ `(bx)+ w1,i mod 2.

Given `(ax/2) we can in the same way determine`(bx/2) using the multipliers
a′1,i = ai + (b/2) ∈ QRN with |1+ 2i | ≤ 4m. Then replacea,b by a/2,b/2 ∈ ZN and
go to the next stage. The new multipliersc1,i andc′1,i are again inQRN since we divide
them by the quadratic residue 2.

The case that2 is a quadratic nonresidue. In this case we separately determine the
quadratic residues of both typesc1,i , c′1,i for the stagest = 1 andt = 2. We use the
quadratic residues of stage 1 at the odd stagest and the quadratic residues of stage 2 at
the even stagest . This is correct since we divide the residues by a power of 4 compared
with stages 1 and 2.

Time bounds. The extra work inEu
N inversion—versus RSA inversion—is to decide

which of thect,i andc′t,i , x are inQRN . We first discard the multipliers with Jacobi symbol
−1. Then we are left with about 4m+1= O(nε−2) quadratic residuosity decisions. We
have shown above that we can decide each of these quadratic residuosities—with error
probability at most 1/8m—usingε−2dln ne calls to the oracleO1. So we get all 4m+ 1
decisions usingO(nε−4 lg(nε−1)) oracle calls. Reducing the additional overhead as in
Section 4 we get the following theorem which improves theO(n3ε−11T) time bound of
[VV].

Theorem 8. Using an oracle which given EcN(x) predicts `(x) with advantageε
in time T the(un-)centered Rabin function EcN can be inverted in expected time
O(nε−4 lg(nε−1)T).

7. Conclusion

We give stronger security proofs for the input bits of the RSA/Rabin function given
the value of the function. Assuming that there are no faster algorithms for inverts of
the RSA/Rabin function than via the currently known factoring algorithms we prove
security for RSA message bits, for the entire RSA RNG and for the centeredx2 mod N
generator for modulesN of practical size, e.g., of bit length 1000 and 5000, respectively.
For the first time this yields provably secure and practical RNG under the assumption
that factoring integers is hard. Other efficient RNGs have been proved to be secure under
complexity assumptions that are less widely studied, e.g., [MS] and [FS1].

Our main result shows that the asymptotic theory of perfect RNGs originating from
the work of Yao [Y] and Blum and Micali [BM] has a practical impact. Note that the
statements of this theory only hold forsufficiently longseeds of the random generator,
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whereas in applications the seeds are limited by precise bounds, e.g., by bit length 1000
or 5000. Our results bridge the gap between asymptotics and praxis. To close this gap
we give explicit constant factors for all time bounds. In addition we use a complexity
assumption for the problem of factoring integers of bit length 1000 and 5000. Such a
precise assumption is possible by the extensive work on the factoring problem done over
the last years, where the results of theoretical analysis and of practical implementations
of algorithms are surprisingly close, see [LL]. The whole argument set forth in [ACGS]
and finalized in the present paper is not at all trivial. It is all the more surprising that this
has a practical impact, a well-designed theory can be practical.

The present paper relies heavily on its precursor [ACGS]. Specifically we use the
method of pairwise independent sampling for majority decision of [ACGS]. We further
refine this method by the rule of subsample majority decision (SMAJ). SMAJ may be
of independent interest and may have applications beyond this paper. The other main
improvement over [ACGS] originates from the observation that binary division is more
appropriate for RSA inversion and easier to analyze than the binary gcd method used in
[BCS] and [ACGS]. In fact we have reinvented binary division which has already been
used in [GMT]. Binary division bears fruits beyond the present work. In a subsequent
paper [S] we introduce a novel bit representation of moduloN integers so that the RSA
message bits in the new representation areall individually secure.

In a sense we not only improve the results of [ACGS], we present the essentially
optimal reduction from RSA bit prediction to full RSA inversion—optimal in the number
of calls of the prediction oracle. The reduction of the number of oracle calls is possible
by the SMAJ rule. The reduced number of oracle calls is minimal up to a factorO(lg n)
for all algorithms for RSA inversion in a suitable model of algorithms.

Our complexity analysis separates the number of oracle calls from the remaining steps
which we call theadditional overhead. We substantially reduce the additional overhead
by simulating the algorithm RSA inversion in parallel for all values of the unknown
approximation points(u, v). Our parallel simulation via an FFT network is almost linear
time in the number of values of(u, v) times the numbern of stages (n is the bit length
of the RSA message). We believe that the latter factorn can still be removed.

Acknowledgments

We gratefully acknowledge the comments of D. E. Knuth and of an anonymous referee.
We thank O. Goldreich for his sustained and insisting suggestions for improvements. All
this led to a considerably improved presentation of the material.

References

[ACGS] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr: RSA and Rabin Functions: Certain Parts Are as
Hard as the Whole.Siam J. Comput. 17 (1988), 194–209.

[BBS] L. Blum, M. Blum, and M. Shub: A Simple Unpredictible Pseudo-Random Number Generator.Siam
J. Comput. 15 (1986), 364–383.

[BCS] M. Ben-Or, B. Chor, and A. Shamir: On the Cryptographic Security of Single RSA Bits.Proc. 15th
ACM Symp. on Theory of Computation, April 1983, pp. 421–430.



244 R. Fischlin and C. P. Schnorr

[BLP] J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance: Factoring Integers with the Number Field Sieve.
In The Development of the Number Field Sieve(A.K. Lenstra and H.W. Lenstra, Jr., eds.), pp. 50–94.
LNM 1554. Springer-Verlag, Berlin, 1993.

[BK] R. P. Brent and H. T. Kung: Systolic VLSI Arrays for Linear Time GCD Computation. InVLSI 83,
IFIP (F. Anceau and E.J. Aas, eds.), pp. 145–154. Elsevier, Amsterdam, 1983.

[BM] M. Blum and S. Micali: How to Generate Cryptographically Strong Sequences of Pseudorandom
Bits. Siam J. Comput., 13 (1984), 850–864.

[FS] J. B. Fischer and J. Stern: An Efficient Pseudo-Random Generator Provably as Secure as Syndrome
Decoding.Proc. EUROCRYPT’96, pp. 245–255. LNCS 1070. Springer-Verlag, Berlin, 1996.

[FS] R. Fischlin and C. P. Schnorr: Stronger Security Proofs for RSA and Rabin Bits.Proc. Eurocrypt
’97, pp. 267–279. LNCS 1233. Springer-Verlag, Berlin, 1997. This is a preliminary version of the
current paper.

[G] O. Goldreich: Three XOR Lemmas—An Exposition. ECCC TR95-056, http://www.eccc.uni-
trier.de/eccc/.

[GL] O. Goldreich and L. A. Levin: Hard Core Bit for Any One Way Function.Proc. ACM Symp. on
Theory of Computing, 1989, pp. 25–32.

[GMT] S. Goldwasser, S. Micali, and P. Tong: Why and How to Establish a Private Code on a Public Network.
Proc. 23rd IEEE Symp. on Foundations of Computer Science, Nov. 1982, pp. 134–144.

[H] W. Hoeffding: Probability in Equalities for Sums of Bounded Random Variables.J. Amer. Statist.
Assoc. 58 (1963), 13–30.

[K] D. E. Knuth:Seminumerical Algorithms, 3rd edn. Addison-Wesley, Reading, MA, 1997. Also amend-
ments to Volume 2. January 1997. http://www.cs-staff.Stanford.EDU/˜uno/taocp.html
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