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Abstract. We study the problem of maintaining authenticated communication over
untrusted communication channels, in a scenario where the communicating parties may
be occasionally and repeatedly broken into for transient periods of time. Once a party is
broken into, its cryptographic keys are exposed and perhaps modified. Yet, when aided
by other parties it should be able toregainits ability to communicate in an authenticated
way. We present a mathematical model for this highly adversarial setting, exhibiting
salient properties and parameters, and then describe a practically appealing protocol for
solving this problem.

A key element in our solution is devising aproactive distributed signature(PDS)
schemein our model. The PDS schemes known in the literature are designed for a
model where authenticated communication is available. We therefore show how these
schemes can be modified to work in our model, where no such primitives are available
a priori. In the process of devising these schemes, we also present a new definition of
PDS schemes (and of distributed signature schemes in general). This definition may be
of independent interest.
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1. Introduction

Maintaining authenticated communication over an untrusted network is one of the most
basic goals in cryptography. Practically no cryptographic application can get off the
ground without authenticity, and once authenticity is achieved, other cryptographic goals
(such as secrecy) are usually easier to achieve.

Authenticated communication over adversarially controlled links can be achieved
using a variety of standard cryptographic techniques, provided that some cryptographic
keys are distributed ahead of time (see, for instance, [15], [5], [25], [8], [9], and [2]).
Yet, all cryptographic techniques rely on the ability of the communicating parties to
maintain the integrity and secrecy of their cryptographic keys. Indeed, attacks on the
security of communication systems are often based on obtaining (or even modifying)
these keys through system penetration, rather than via cryptanalysis. We call such attacks
break-in attacks. How can authenticated communication be maintained in the presence
of repeated break-in attacks? In particular, how can a party recover from a break-in and
regain its security? Answering these questions is the focus of our paper.

These questions are at the heart of theproactive approach to cryptography [30], [13].
This approach is aimed at maintaining security of cryptosystems in the presence of
repeated break-ins. As in the “threshold cryptography” approach [14], the proactive
approach calls for distributing the cryptographic capabilities (e.g., the signing key of
a signature scheme) among several servers, and designing protocols for the servers to
carry out the task at hand (e.g., generating signatures) securely as long as not too many
servers are broken into. In addition, a proactive solution introduces periodicrefreshment
phases where the servers help each other to regain their security from possible break-ins.
Consequently, a proactive system remains secure as long as not too many servers are
broken intobetween two invocations of the refreshment protocol. See [19] for a survey
on threshold cryptography and [12] for a survey on proactive security.

Contributions of this paper. This paper can be viewed in two levels: On a concep-
tual level, we investigate the problem of proactive authenticated communication in the
presence of repeated break-in attacks, devise a framework for analyzing it, and describe
a protocol for solving the problem within this framework. On a more technical level,
our main contribution is a transformation, converting any secure Proactive Distributed
Signature (PDS) scheme that works over reliable communication links into one that can
work over faulty (i.e., adversarially controlled) links.

We begin by defining a formal model for the problem of proactive authentication
over faulty links, and exhibiting some fundamental properties and parameters of this
model. Next we concentrate on the construction of secure PDS schemes in this model.
We present a definition of secure PDS schemes, and show how these can be constructed
in our model. (This definition provides an alternative approach to that of Gennaro et al.
[20].) Finally we describe and analyze a general method for transforming any protocol
that works over reliable communication links into one that can work over faulty links.
This method uses in an essential way the PDS schemes constructed before. We stress that
proactive authentication is essential for realizing any of the known proactive protocols
(e.g., [30], [13], [24], [23], [18], and [32]) in a realistic system.
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1.1. The Model of Computation

We consider a synchronous network ofnodes, which communicate via “totally unreli-
able” communication links and are also prone to break-ins. That is, anadversary can
read, modify, delete, and duplicate messages sent over the links, or even inject its own
messages. Break-ins are modeled by allowing the adversary to compromise nodes occa-
sionally, thus obtaining all their secret data; even further, this secret data may be modified
by the adversary. In this highly adversarial model, we address the problem of recovering
from break-ins and regaining authenticated communication. To make a solution possible
we limit the adversary in the following three ways.

First, if the adversary can modify the code of the recovery protocol itself, then there
is no hope for recovery. Therefore we assume that theprogram of each node is written
in a Read-Only Memory (ROM) and cannot be modified by anyone. (See discussion on
the ROM assumption and its realization in Section 6.)

Second, it is not hard to see that no protocol can guarantee authenticated communica-
tion if the adversary can simultaneously break into all the nodes in the network, before
the nodes had a chance to proactively “refresh” their internal data. We thus assume some
bound on the number of nodes that are broken into between any two successive proac-
tive refreshment phases. Below we refer to the time between two successive refreshment
phases as atime unit. We consider adversaries that only break into a minority of the nodes
in any time unit.

Third, a solution may still be impossible even if only a few nodes are broken into at any
given time, since the adversary can block the messages needed for recovery. To overcome
this, we further limit the number and connectivity of links on which the adversary injects,
corrupts, or deletes messages.

To gain some intuition into the problems involved in maintaining authenticated com-
munication in our model, it is instructive to consider the following attack: Consider a
nodeN that was recently broken into, so the adversary knowsN’s secret cryptographic
keys. The adversary, controlling the communication, can now “cut off”N from the rest
of the nodes, and “impersonate”N in their eyes. The impersonation can be kept upeven
after N is no longer broken into, and no node (other thanN itself) can ever notice this
attack. Even worse, if the adversary modified the cryptographic keys withinN’s memory,
thenN cannot verify incoming messages, and so the adversary can also impersonate the
other nodes in the eyes ofN.

Jumping ahead, our approach toward dealing with this seemingly hopeless situation,
when a node cannot even trust its own memory, proceeds as follows. We allow each node
to maintain a small piece of data in ROM, together with its program. This piece of data
is chosen once at system set-up and remains public and unmodified throughout the life
of the system. It holds a verification key of a PDS scheme, whose signing capabilities
is shared by the nodes. This way, as long as the PDS scheme remains secure, a node
will be able to beawareof the fact that it is being impersonated. In addition, we present
a protocol which guarantees that the adversary must “cut off”N from a large fraction
of the network in order to impersonate it, and hence a reasonably restricted adversary
cannot simultaneously impersonate too many nodes.
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1.2. Defining our Goals

Formulating a reasonable notion of solution to the proactive authentication problem is
an important contribution of this paper. In general, ensuring secure communication over
faulty links involves two requirements:

• Authenticity. Nodes do not accept as authentic incoming messages that were mod-
ified (or injected) by the adversary.
• Delivery. Messages that are sent over the network arrive at their destinations.

In most settings, these requirements can be dealt with separately. Indeed, most of the
authentication mechanisms in the literature (e.g., [4], [5], and [2]) only deal with ensur-
ing authenticity and explicitly putting aside the delivery issue. The proactive setting is
different, however, since recovering from break-ins requires that nodes be able to com-
municate with each other. Hence in this work we are forced to combine the authenticity
and delivery issues, and so we construct authentication mechanisms that also guarantee
delivery (provided the adversary is reasonably restricted). In what follows we refer to
links that enjoy both authenticity and delivery asreliable links.

Authenticators. Our solution to the proactive authentication problem is centered around
the notion of aproactive authenticator. Informally, an authenticator is acompiler that
transforms a protocol that expects reliable links into one that can also work over faulty
links.

In defining this notion we follow the general paradigm used for defining secure multi-
party protocols [28], [1], [10]: We first precisely define the “real-life” model of computa-
tion. We call this theunauthenticated-links (UL) model. Next we formalize the “idealized”
model of computation that we want to emulate: here the adversary has similar capabili-
ties, with the exception that it must deliver messages faithfully on the links and it cannot
inject new messages. Call this theauthenticated-links (AL) model. The notion of “em-
ulation” is formulated as follows: we define theglobal output of a protocol, aimed at
capturing the “functionality” of the protocol; next we say that a protocolπ ′ in the UL
modelemulates a protocolπ (designed for the AL model) if, for any (reasonably limited)
adversaryU in the UL model, there exists an adversaryA in the AL model such that the
global output of runningπ withA is indistinguishable from the global output of running
π ′ with U . Finally we define a proactive authenticator3 as a compiler with the property
that, for any protocolπ , the protocolπ ′ = 3(π) emulatesπ in the UL model.

Awareness. Although emulation guarantees thatπ ′ andπ have similar functionality
from a global point of view, it still allows the adversary to impersonate a nodeN occa-
sionally. (This is inevitable, say ifN is being “cut off” the network as described above).
We thus complement the definition of a proactive authenticator by requiring that an im-
personated node beaware of its situation. That is, we require that whenever a node is
being impersonated, it outputs a specialalert signal, which (in most realistic settings)
can then be handled by a higher layer protocol or an operator. In addition, we con-
sider a weaker form of awareness (which can potentially be achieved against stronger
adversaries), where thealert signal is guaranteed only at the first time unit where
impersonations occur (see Section 5.1).
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Awareness is a somewhat nonstandard aspect of our treatment, since it represents a
security requirement on the behavior of “nonfunctional” nodes. However, we view it as
a crucial aspect for any “real world” solution and invest much effort in achieving it. For
one thing, in the practice of computer security, the system managers and security officers
are well equipped to regain control and expose the attackers, once an attack is detected.
Moreover, awareness is important in complementing our model assumptions: in order
to obtain a solution we need to assume that the adversary not only cannot break into too
many nodes at the same time, but it also cannot modify or inject messages on too many
links at the same time. In “real life,” however, injecting messages on links is often much
easier for an attacker than modifying existing messages, and the latter is often easier than
breaking into nodes. (For example, injecting messages on the Internet is almost trivial:
all you need to do is to construct IP packets with a modified source address. Deleting
or modifying messages is harder, as it usually requires that the adversary attacks the
routing mechanism as well.) Viewed in this light, awareness ensures that the adversary
gets “worse results” by mounting the “easy attacks,” since in this case its actions will be
detected.

Related definitions. The authentication problem has been considered in a large number
of works (e.g., [4], [7], [5], [15], [25], [8], [9], and [2]). The notion of authenticators
was also adopted by Bellare et al. [2]. Yet, the model in [2] differs from the one here in
several important aspects. First, they do not deal with recovery from break-ins: in their
model, once a node is “corrupted” it remains so throughout. This frees them from having
to providereliablecommunication, and thus they can afford to not assume any limit on
the number of links or nodes that the adversary may tamper with or corrupt. Next, they
deal withasynchronousnetworks, where here synchrony is necessary in order to allow
for joint refreshment phases. Finally, they emphasize the notion of independentsessions
run by the same parties. (We remark that, although we do not deal with sessions in this
work, they can be incorporated here in a similar way as there.)

1.3. Our Solution

We take the following approach. At the beginning of each refreshment phase every
node chooses at random a pair of signing and verification keys of some (nondistributed)
signature scheme. These keys are meant to be used for authentication in a standard way.
Namely, a node signs each outgoing message, and a received message is accepted only
if verification of the senders signature succeeds. (Alternatively, nodes can exchange
symmetric session keys and use them to authenticate messages.)

The crux of the problem is how to get the newly chosen verification key to the other
nodes. Simply sending the verification key (perhaps signed using the old signing key)
will not do: consider a nodeN that is just recovering from a break-in.N’s old signing
key is compromised. Thus, the adversary can successfully impersonateN by forging
N’s signature and sending a fake new verification key in the name ofN. Furthermore,
N will not be aware of this impersonation. One may attempt to obtain awareness using
signed “echos”: Let each nodeM acknowledgeN’s new verification key back toN and
sign the acknowledgment usingM ’s signing key, soN can verify thatM got its new
public key. However, this may not work, since the adversary can eraseM ’s verification
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key in N’s memory whileN is broken into. Furthermore, it can replace this verification
key by a fake one, for which the adversary knows the corresponding signing key. The
adversary can now impersonateN in the eyes ofM (and, in fact, in the eyes of all other
nodes) and at the same time impersonate all other nodes in the eyes ofN.

The main technical tool that we use to counter such attacks is aproactive distributed
signature (PDS) scheme. Distributed signature schemes can be very roughly described as
follows: As in any other signature scheme, there is a public key, which is used to verify
signatures. The corresponding secret key, however, is not kept by any single node but is
shared among the nodes in a way that enables any large enough subset of them jointly to
sign a given message. At the same time, the adversary cannot forge signatures, even after
breaking into some of the nodes. In aproactive distributed signature scheme, the nodes
refresh their shares of the private signing key at each refreshment phase. This is done
in a way that prevents the adversary from forging signatures as long as not too many
nodes are broken into between two consecutive refreshment phases. We stress that, even
though the shares of the signing key are changed periodically, the public verification key
remains unchanged throughout. We elaborate on PDS schemes in Section 1.4 below.

As mentioned in Section 1.1, we “bootstrap trust” during refreshment phases by letting
each node keep a small, unchanging public key in an unmodifiable ROM together with
the code of the protocol. Specifically, we let each node keep a copy of the unchanging,
public verification key of a PDS scheme in ROM. Thus, a node is always able to verify
and trust signatures with respect to this key. Such signatures can be generated jointly by
the nodes. At each refreshment phase, each node executes the following protocol:

• Choose a new pair of “personal” signature and verification keys of some “standard”
(nondistributed) signature scheme. The new pair of keys should be chosen using
“fresh” randomness. This randomness mustnotbe the output of some pseudorandom
generator whose seed was already known in previous time units. (This is in fact
a property of most proactive solutions: the proactive refreshment phase must use
fresh random choices.)
• Obtain acertificate, generated jointly by all nodes using the PDS scheme, for the

new verification key. The certificate may read:“it is certified that the personal
verification key of Ni for time unit u isv.”

The PDS scheme ensures that at most one certificate is generated for every node
at every time unit. Hence, ifNi obtains a certificate in time unitu, it is guaranteed
that the adversary cannot obtain a fake certificate withNi ’s name on it in this round.
A single instance of the PDS scheme is used to generate the certificates of all the
nodes at all the time units.
• Finally, some work is done in order to maintain the PDS scheme itself. This includes

obtaining fresh shares of the signing key, anderasingthe old shares. See further
discussion on the issue of data erasures in Section 6.

For the rest of the time unit, the obtained certificates are used in the standard way: That
is, each node signs each of its messages using its current signing key, and attaches the
corresponding verification key along with the newly obtained certificate. The recipient of
a message verifies the certificate using the verification key in its ROM, and then verifies
the senders signature of the messages. Alternatively, the nodes can use the certificates to
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exchange a shared key for the rest of the time unit, and use the shared key to authenticate
messages. If a node fails to obtain a certificate for its new verification key, or if it fails
to refresh its share of the PDS scheme, then this node issues an alert signal.

In what follows we analyze this construction and show that it guarantees emulation and
awareness properties (as discussed above) as long as the adversary is “not too powerful.”

1.4. Proactive Signatures Over Faulty Links

All the PDS schemes known in the literature (e.g., [23], [20], [18], and [32]) are designed
for a model where authenticated communication and broadcast primitives are available.
The main technical contribution in this work is therefore to make these schemes work
in the faulty-link model. This is done by constructing a “specialized version” of our
authenticator, which takes any secure PDS scheme in the AL model and transforms it
into a secure PDS scheme in the UL model. Note that most schemes in the literature
assume a broadcast channel on top of reliable links, whereas our AL model does not
provide such a channel. Yet, a broadcast channel can be emulated in the AL model using
standard agreement protocols [31], [26], [27], [16], and [17].

Defining proactive signatures. To construct and prove a transformation such as above,
we must have a definition for a “secure PDS.” Unfortunately the literature so far does
not contain any definition that suits our needs, so we start by presenting one in this work.
Our definition is quite general, and applies also to threshold (non-proactive) signature
schemes. It can also be regarded as a generalization of the notion of (centralized) signature
schemes existentially secure against chosen message attacks [22]. (Gennaro et al. present
two definitions ofthreshold distributed signature schemes in [20]. See more discussion
on the relations between these definitions and ours in Section 3.4.)

Our definition again follows the usual paradigm for secure multiparty protocols. That
is, we first formalize an ideal model for signature schemes. In this ideal model there are
no cryptographic keys. Instead, an incorruptibletrusted party keeps a database of signed
messages. When enough signers wish to sign a message within a given time frame, the
trusted party adds this message to the database. To verify whether a given message is
signed, it suffices to query the database. Next we define a PDS scheme (either in the UL
model or in the AL model) as one that emulates the ideal model process. The notion of
emulation is the same as was discussed above for authenticators.

Realizing proactive signatures over faulty links. In order to transform a PDS scheme in
the AL model to one in the UL model, we need reliability of the links (i.e., authenticity
and delivery). We obtain delivery by a simple echo mechanism which, together with
the assumed limitations of the adversary, ensures that enough messages arrive at their
destinations. To get authenticity we apply essentially the same method as for the gen-
eral proactive authenticator, using the PDS scheme itself to certify the local keys at the
beginning of each refreshment phase. Our transformation does more work than is nec-
essary for secure PDS schemes, to achieve extra properties that are needed to guarantee
awarenessof our proactive authenticator. (See the first remark in Section 4.3.3.)
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1.5. Road Map

The rest of this paper is organized as follows. In Section 2 we formally define the two
main computational models, namely the AL model and the UL model. We also define
the central primitive of this paper: proactive authenticators. In Section 3 we define PDS
schemes, both in the AL model and in the UL models. In Section 4 we show how to
construct a PDS scheme in the UL model, given any PDS scheme in the AL model. In
Section 5 we construct and prove the security of the proactive authenticator described
above. Finally Section 6 contains discussions of several related issues.

A reader who is only interested in the PDS construction can skip most of the paper and
only read Sections 4.1 and 4.2. For the definitions and security proof of this construction,
one should read also Sections 2 (except 2.3), 3, and the rest of 4. The definition and
construction of authenticators are found in Sections 2.3 and 5.

2. Models of Computation and Proactive Authenticators

Before defining proactive authenticators we describe the two underlying computational
models. Both models postulate an adaptive, mobile adversary (i.e., an adversary that may
break into different nodes at different points in time, where the decision to break into
a particular node is based on the information gathered so far). One model (Section 2.1)
assumes that the communication links are authenticated and reliable; the other model
(Section 2.2) allows messages to be maliciously modified, deleted, and injected on the
links. These two models are used in the definition of proactive authenticators (Section
2.3), as well as in the definition of PDS schemes (Section 3).

First we review some basic notions that underlie our formalization. Aprobability
ensemble X = {X(k,a)}k∈N,a∈{0,1}∗ is an infinite sequence of probability distributions,
where a distributionX(k,a) is associated with each values ofk ∈ N anda ∈ {0,1}∗.

The distribution ensembles we consider in what follows describe computations where
the parametera describes the input and the parameterk is taken to be thesecurity
parameter. All complexity characteristics of our constructs are measured in terms of the
security parameter. In particular, we will be interested in the behavior of our constructs
when the security parameter tends to infinity.

Definition 1 (Statistical Indistinguishability). Two distribution ensemblesX andY are

statistically indistinguishable (written X
s≈ Y) if for all c > 0, for all sufficiently largek

and alla we have

SD(X(k,a),Y(k,a)) < k−c,

where SD denotes statistical distance, or total variation distance (that is, SD(Z1, Z2) =
1
2

∑
a |Prob(Z1 = a)− Prob(Z2 = a)|).

Definition 2 (Computational Indistinguishability) [21], [35]. Two distribution ensem-

blesX andY arecomputationally indistinguishable (written X
c≈ Y) if for every algorithm

D that is probabilistic polynomial-time in its first input, for allc > 0, all sufficiently
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largek, all a, and all auxiliary informationw ∈ {0,1}∗ we have

|Prob(D(1k,a, w, X(k,a)) = 1)− Prob(D(1k,a, w,Y(k,a)) = 1)| < k−c.

Note that Definition 2 gives the distinguisherD access to an arbitrary auxiliary infor-
mation stringw (thus forcing the definition to be a nonuniform complexity one). It is
stressed thatw is independent from the random choices ofX andY.

2.1. The Authenticated-Links(AL) Model

We consider asynchronousnetwork ofn nodes,N1, . . . , Nn, where every two nodes
are connected via a reliable communication channel. Each nodeNi has inputxi and
randomnessri . The inputxi consists of piecesxi = xi,1, xi,2, . . . where the piecexi,w is
given to nodeNi at the onset of communication roundw. Also, to model the ability of
nodes to make fresh random choices at refreshment phases, we think ofri as consisting
of piecesri = ri,1, ri,2, . . . where the pieceri,w is chosen by nodeNi only at the onset
of communication roundw. In addition toxi andri , each node is givenn, the number of
nodes, and a security parameterk (we letk be encoded in unary, to allow the nodes to
be polynomial in their input length). Aprotocol π is the collection of programs run by
the nodes.

The computation and adversary. The computation proceeds in rounds; in each round,
except the first, each node receives all the messages sent to it in the previous round (these
messages are received unmodified). It also gets its local input and randomness for this
round. Next the node engages in an internal computation, specified by the protocolπ .
This computation may depend on its internal state, the messages it received, and the
current time, and generates the outgoing messages and perhaps also some local output
for this round.

A probabilistic polynomial time adversary, called anAL mobile adversary and denoted
A, gets as input the security parameterk and the number of nodesn (both encoded in
unary), and interacts with the nodes as follows:A learns all the communication among
the parties, and may alsobreak into nodes andleave nodes at will. We say that a node
is “broken” at a certain time, if the adversary broke into it before that time and did not
leave it yet. When breaking into a node,N, the adversary learns the current internal
state of that node. Furthermore, in all the rounds from this point and until it leavesN,
the adversary may send messages in the name ofN, and may also modify the internal
state (i.e., the memory contents) ofN. The only restriction is thatN may have some
Read-Only Memory (ROM), which is fixed at the onset of the protocol and cannot be
changed afterwards, not even by the adversary. Typically, this is where the protocol code
itself is stored. (In the UL model we also allow an additional small part of the memory
to be ROM.) When the adversaryleaves a nodeN, it can no longer send messages in
N’s name, and has no more access to the internal state ofN. In particular, the adversary
does not see the random choices ofN in forthcoming rounds.

We allow rushing. That is, in each communication round the adversary first learns
the messages sent by the nonbroken nodes, and only then generates the message of
the broken nodes. In addition, the adversary can choose to break into new nodes after
learning the messages sent by each node.
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Fig. 1. Time units and refreshment phases.

We assume an initialset-up phase where the parties communicate without the inter-
vention of the adversary. That is, during this phase the adversary does not break into
parties and does not learn the messages sent on the links. Typically, the set-up phase is
used to choose and exchange cryptographic keys. We remark that the set-up phase can
be replaced by an execution of a centralized set-up algorithm. We chose the distributed
formalization since it somewhat simplifies the syntax later on.

Time units, refreshment phases, and the power of the adversary. We divide the lifetime
of the system intotime units and let time units have small overlap; that is, a time unit
starts slightly before the preceding time unit ends. We call the small overlap arefreshment
phase. (The reason for the name is that nodes typically “refresh their cryptographic keys”
during this overlap.) See Fig. 1. Typically, the duration of a refreshment phase is several
communication rounds (i.e., up to a few seconds), where a time unit may last hours,
days, or even months.

Definition 3 (t-Limited Adversary). An AL-model adversaryA is called t-limited
with respect to protocolπ if, on any inputs and random inputs for the parties and
adversary,A breaks into at mostt nodes at each time unit.

When the protocolπ is clear from the context, we sometimes omit it and just say that
A is t-limited. It should be noted that even a 1-limited adversary can break into all nodes
at one point or another, as long as at most one node is broken into at each time unit.

Executions, transcripts, and outputs. An execution of a protocolπ with security pa-
rameterk, input vectorEx, adversaryA, and randomnessEr = r A, r1, . . . , rn (r A for A,
andri for nodeNi ) is the process of runningπ,A with inputs Ex and randomnessEr as
described above. Thetranscript of this execution, denotedAL-TRANSπ,A(k, Ex, Er ), records
all the information relevant to this execution. This includes the inputs and randomness
of the nodes and adversary, all the messages sent on the links, and the local outputs of all
nodes and adversary. In particular, the transcript of an execution uniquely determines the
outputs of all the parties and the adversary from this execution. LetAL-TRANSπ,A(k, Ex)
denote the random variable having the distribution ofAL-TRANSπ,A(k, Ex, Er ) whereEr is
uniformly chosen in its domain. In what follows we often identify an execution with its
transcript. (We use the notion of transcripts only in our proofs of security in Sections 4
and 5.)

Theglobal output of an execution contains only the information that is relevant for the
functionalityof the protocol with regard to the external world. Roughly, it includes the
local outputs of the parties (as specified by the protocolπ ), together with the adversary’s
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output and some other relevant data. More precisely, in each communication round, a
node that is not broken into outputs whatever is instructed by its protocol, broken nodes
have empty output, and the adversary may also have output of its own. Also, whenever a
nodeNi is broken into, the line “Node Ni is compromised ” is added toNi ’s output.
The line “Node Ni is recovered ” is added toNi ’s output when the adversary leaves
Ni . (We stress that a node does not necessarily “know” when it is broken or recovered.
The above notices can be thought of as part of a “system log” that is addedexternallyto
the node’s output in order to better capture the functionality of the protocol.)

The global output of the computation up to roundw is the concatenation of the local
outputs from all rounds of all the nodes and adversary. When dealing with protocols for
specific tasks, it may be convenient to let the global output contain additional information
that is relevant to this task. For example, in the definition of PDS schemes, the global
output contains information about whether messages have valid signatures or not. See
Section 3.

Let AL-OUTπ,A(k, Ex, Er ) denote the global output of the execution with transcript
AL-TRANSπ,A(k, Ex, Er ). It is convenient to think of the global output as ann + 1 vec-
tor where the zeroth component contains the adversary’s output and thei th component
contains the output ofNi . Let AL-OUTπ,A(k, Ex) denote the random variable describing
AL-OUTπ,A(k, Ex, Er )whereEr is uniformly chosen from its domain. LetAL-OUTπ,A denote
the probability ensemble{AL-OUTπ,A(k, Ex)}k∈N,Ex∈{0,1}∗ .

2.2. The Unauthenticated-Links(UL) Model

The UL model is similar to the AL model, except for the following two modifications.
First, in addition to its capabilities in the AL model, here the adversary (called aUL
mobile adversary and denotedU) may modify, delete, and inject messages sent on the
links. That is, as in the AL model, at the end of each round each node sends messages
to other nodes. Yet here it is the adversary that decides on the values of the messages
received by the nodes at the beginning of the next round. These values need not be related
in any way to the values that were sent. (We note, however, that an adversary which is “not
too powerful” delivers most messages without changing them. See discussion below.)
Second, we allow the nodes to write to a special small ROM at the end of the set-
up phase. As explained in the Introduction, this provision is what makes a reasonable
solution possible.

An execution of a protocolπ with random inputsEr , input vectorEx, and a UL ad-
versaryU is defined in a similar manner to the AL model, except that here the adver-
sary has the additional capabilities described above. (We stress that the adversary re-
mains inactive during the set-up phase.) Transcripts are defined as in the AL model. We
let UL-TRANSπ,U (k, Ex, Er ) and UL-TRANSπ,U (k, Ex) have analogous meaning, in the UL
model, toAL-TRANSπ,A(k, Ex, Er ) and AL-TRANSπ,A(k, Ex). The definition of the global
output will depend on a parameter, defined below, used to measure the power of the
adversary in controlling the communication links. We thus turn to defining the power of
the adversary.

The power of a UL adversary. Capturing the type of adversaries that our constructions
withstand in the UL model takes some care. Here we characterize the power of the
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adversary by two parameters. Roughly, one parameter specifies the number of nodes
the adversary can break into in each time unit, and the other specifies the number and
connectivity of communication links it disrupts. To make this precise, we start with a
definition of reliable links.

Definition 4 (Reliable Links). LetE be an execution of a protocolπ with adversary
U . A link between nodesNi and Nj is reliable during a certain time interval inE, if
during this time:

(a) NeitherNi nor Nj is broken into.
(b) Every message sent on this link arrives unmodified at the other node at the end of

the communication round in which it was sent. Also,Ni , Nj do not receive any
other message on this link.

(This time interval does not have to be a time unit. It can also be part of a time unit,
or it can span several time units.) If either (a) or (b) does not hold, we say that the link
betweenNi andNj is unreliable.

We comment that since this is a synchronous model, we do not worry about ordering
of messages (without loss of generality a party sends only one message to each other
party at each round, and all the messages that were sent at a round arrive together at
the beginning of the next round). Also, the definition above excludes “replay attacks,”
since a replayed message is considered “another message,” and hence it is excluded by
condition (b) above.

At any time during an execution of a protocolπ with adversaryU , we distinguish be-
tween three categories of nodes in the network: broken, disconnected, and operational.
Broken nodes are those broken into by the adversary. Defining disconnected and oper-
ational nodes is more subtle. In principle, we would like to have a parameters, so that
a node is disconnected if it has at leasts unreliable links, and is operational otherwise.
Formalizing this notion in a meaningful way requires some care, however.

Recall that nodes use their reliable links to regain their security after a break-in.
Consider now a set of nodes that were broken in time unit(u − 1) but are not broken
in time unitu, and that have reliable links to one another during time unitu. Although
these nodes are not broken and have “many reliable links” in this time unit, they may
still be unable to recover from a break-in. The reason is that they may only be able to
communicate with nodes that were also broken in the previous time unit, and thus may
have no one that can actually help them to recover. We therefore formulate the notion of
an operational node in an inductive manner, making sure that a node that is operational
in time unit u is able to communicate with nodes that were operational in time unit
u− 1.

Definition 5 (Operational Nodes). LetE be an execution of ann-node protocolπ with
UL adversaryU , and lets ≤ n. For each communication round in this execution, the set
of s-operational nodes during this round is defined inductively as follows:

1. In the first communication round of the first time-unit, thes-operational nodes are
all those that are not broken.
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2. A node which wass-operational at the previous communication round, remains
s-operational at the current round, provided that:
(a) It was not broken at this round.
(b) During this round it has reliable links with at leastn− s+ 1 nodes that were

alsos-operational at the previous communication round. (Alternatively, it has
unreliable links to less thans others-operational nodes.)

3. A node,N, which wasnot s-operational at the beginning of time unitu, becomes
s-operational at the end of the refreshment phase of this time unit only when:
(a) It was not broken throughout this refreshment phase.
(b) There is a setS, consisting of at leastn − s+ 1 nodes that ares-operational

throughout this refreshment phase, such thatN has reliable links with all the
nodes inS throughout this refreshment phase.

We note that a 1-operational node has good links to all other nodes, whereas an
n-operational node only has a good link to just one other node. This somewhat counter-
intuitive terminology will become convenient in the proof of our main theorem
(Section 4.3).

Definition 6 (Disconnected Nodes). A node is said to bes-disconnected at a certain
communication round in time unitu if it is not broken but also nots-operational in this
communication round. (Intuitively, a node iss-disconnected if it hassor more unreliable
links.)

We remark that just like the broken nodes, the identities of the disconnected nodes at
each point during the execution are determined by the actions of the adversary up to this
point. One difference between broken and disconnected nodes, however, is that being
broken is a zero/one situation (a node is either broken or not) while being disconnected
is parameterized. Namely, an(s+1)-disconnected node is “more disconnected” than an
s-disconnected node.

Still, for the purpose of defining the power of the adversary, we need to count how
many nodes are impaired by the adversary, so we set a thresholds such that a node is
considered disconnected if it is at leasts-disconnected. Thus the power of the adversary
is defined by means of two parameters: the “disconnection threshold”s and a boundt
on the number of nodes “impaired” by the adversary in every time unit. That is:

Definition 7 ((s, t)-Limited Adversary). Consider an execution ofπ with the UL ad-
versaryU . We say thatU is (s, t)-limited in this execution if during every time unit, at
mostt nodes are either broken ors-disconnected.U is (s, t)-limited with respect toπ if
it is (s, t)-limited in any execution with nodes runningπ .

It is stressed that in order for an adversary tonot be(s, t)-limited, it must “attack” at
leastt nodesat the same time unit, where attacking a node means either breaking into it,
or actively modifying the communication ons of its links. This may be a difficult task
even whens andt are even modestly large.
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The output of an execution. We can now return to defining the global output of an
execution. The global output of an execution is similar to the AL model, except that here,
the line “Node Ni is compromised ” is added toNi ’s output whenever it stops being
s-operational. (This happens not only when it is broken into, but also when it becomess-
disconnected.) Similarly, the line “Node Ni is recovered ” is added toNi ’s output
only when it becomess-operational again. (Note that, since the definition of the protocol’s
output depends on the parameters, one can have different definitions for the output of the
protocol, depending on what properties one wants to prove about this protocol.) We let
UL-OUTπ,U ,s(k, Ex, Er ) andUL-OUTπ,U ,s(k, Ex) have analogous meaning, in the UL model,
to AL-OUTπ,A(k, Ex, Er ) andAL-OUTπ,A(k, Ex) from above, with respect tos-operational
nodes. LetUL-OUTπ,U ,s denote the probability ensemble{UL-OUTπ,U ,s(k, Ex)}k∈N,Ex∈{0,1}∗ .

In the next section, where we define authenticators, it is convenient to have a single
parameter (rather than two) to describe the power of the adversary in the UL model.
Hence, the definitions below use Definition 7 withs = t . Similar definitions can be
made for other settings ofs andt , but we do not discuss them in this paper.

2.3. Proactive Authenticators

This section defines the requirements from a “compiler” that transforms protocols that
assume a network with authenticated links (and repeated break-ins) into protocols that
can run over a network withunauthenticated links (and repeated break-ins). We call such
compilersproactive authenticators.

In the text below we ignore many syntactic issues related to “how do you describe a
protocol?” We assume some standard way of describing protocols, and define authenti-
cators as procedures that operate on such descriptions. Anauthenticator takes for input a
description of a protocol in the AL model, and outputs a description of another protocol
(for the same number of nodes) in the UL model. Our main security requirement from
such a compiler, calledemulation, roughly means that any protocol in the AL model is
transformed into a protocol in the UL model with essentially the same functionality. This
requirement follows the general paradigm of defining secure multiparty protocols [28],
[1], [10]. We complement this requirement with an alternative one, calledawareness,
that means that a node will notice whenever it is being “impersonated” by the adversary.

Definition 8 (Emulation). Letπ andπ ′ be protocols in the AL and UL models, respec-
tively. We say thatπ ′ t -emulates π in the UL model if for any (t, t)-limited UL adversary
U there exists at-limited AL adversaryA such that

AL-OUTπ,A
c≈ UL-OUTπ ′,U ,t . (1)

Note that requirement (1) incorporates many conditions. In particular, the combined
distributions of the outputs of the parties, the adversary’s output, and the identities
of broken nodes, should be indistinguishable on the two sides of (1). In general, this
condition captures the required notion of “security equivalence” between the protocols
in the sense that any consequences of the actions of the strong UL adversary against
nodes running protocolπ ′ can be imitated or achieved by the weaker AL adversary
against nodes running protocolπ , without requiring breaking into more (or different)
nodes. See [10] for more discussion.
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Definition 9. An authenticator3 is t-emulating if, given any protocolπ in the AL
model,3 generates a protocol3(π) thatt-emulatesπ in the UL model.

Awareness. As explained in the Introduction, the emulation property allows a limited
number of nodes to be disconnected from the rest of the network, and consequently
be impersonated by the adversary. This is an inevitable characteristic of our model.
Yet, we can guarantee that a node will belocally aware of the fact that it is being thus
attacked. Such a guarantee may still be valuable; in particular, if the nodes operate in
an environment where a higher level protocol or a human operator can use out-of-band
communication to restore security, then detecting an attack may be nearly as good as
preventing it.

Before we define awareness, we must first define what it means for the adversary to
“impersonate” a node in the network in the eyes of other nodes. To this end, we restrict
ourselves to a special type of authenticators, which we calllayered authenticators. Given
a protocolπ , a layered authenticator3 generates a protocol3(π) that consists of two
modules, calledlayers. At the top layerπ runs unchanged. At the bottom layer, for each
message thatπ instructs to send and receive, the node follows some procedure specified
by 3. In addition, in the system set-up and in each refreshment phase the nodes also
execute some refreshment protocol specified by3.

Definition 10 (Internal and External Views, Impersonation). Let3 be a layered au-
thenticator and letπ be ann-node protocol, and consider an execution of3(π) in the
presence of a UL model adversaryU . Consider a time unitu within this execution and
let Ni be a node that is not broken during time unitu.

The internal view of Ni duringu is the sequence of all the messages that are sent and
received by the top layer (i.e., by protocolπ ) duringu.

Theexternal view of Ni in time unitu consists of all the messages that appear, in the
internal views of other nonbroken nodes in the network, to be received fromNi duringu.

We say that a nodeNi is beingimpersonated at time unitu if its external view contains
a message which is not in its internal view.

We stress that a nodeN is not impersonated when messages that it sends do not arrive
at their destinations. It is only impersonated when messages that it does not send are
accepted by other nodes as authentic messages coming fromN.

Definition 11. A layered authenticator3 is (s, t)-aware if any protocol generated by
3 satisfies the following property: For any(s, t)-limited UL adversaryU , every imper-
sonated node outputs a special alert signal in each time unit in which it is impersonated,
except with a negligible probability in the security parameterk.

(A functionδ: N→ [0,1] is negligible if for all c > 0 and all large enoughk we have
δ(k) < k−c.)

Naturally, we want protocols that outputalert only with “good reason.” This is
guaranteed by the emulation requirement: Since thealert output never appears in a
global output in the AL model, we are guaranteed that in a protocol generated by a
t-emulating authenticator3 no t-operational node outputsalert as long as the UL



76 R. Canetti, S. Halevi, and A. Herzberg

adversary is(t, t)-limited. At the same time, the definition oft-emulation allows nodes
that are nott-operational in the UL model to outputalert , since the global output treats
a node that is nott-operational as broken, even if this node is onlyt-disconnected.

3. Defining Proactive Distributed Signature (PDS) Schemes

Our main technical tool is a transformation from any “secure PDS scheme in the AL
model” into a “secure PDS scheme in the UL model.” However, before we can present
the construction we first need to define secure PDS schemes. Below we present a general
paradigm for defining “secure distributed signature schemes.” This paradigm generalizes
the notion of security against existential forgery under chosen message attack [22]: even
after seeing signatures on messages of its choice, an adversary should be unable to come
up with any new message and a valid signature on this message. We use this general
paradigm to define secure PDS schemes in the AL and UL models. The general paradigm,
as well as the particular definitions, may well be of independent interest.

We follow the general framework of defining secure distributed protocols. That is,
we describe anideal process that captures the required functionality from a distributed
signature scheme; next we define a secure scheme as one which emulates the ideal process
in the sense of Section 2.3. This approach does not require a distributed signature scheme
to be based on any “traditional,” or centralized, signature scheme. Yet, when reduced to
the special case of centralized signature schemes, the definition below coincides with
the one in [22]. At the end of this section (Remark 7) we briefly discuss the alternative
approaches taken in [20] toward defining secure distributed signature schemes.

In Section 3.1 we describe the ideal model for PDS schemes. In Section 3.2 we describe
some syntax related to PDS schemes in the AL and UL models, and in Section 3.3 we
present the definition. Finally, in Section 3.4 we discuss some of our choices.

3.1. The Ideal Process

We first describe the ideal process for distributed (threshold) signatures. We note that
the onlyfunctionalitywe care about in a signature scheme is that potential verifiers are
able to distinguish between messages that were properly signed and messages that were
not. More precisely, we need the following functionality:

Threshold. A message is signed only if enough signing parties (calledsigners) agree
to sign it.

Correctness.A message is verified only if it is signed.
Public verifiability. The status of a message can be verified without the participation

of any of the signers.

We view the signatures attached to messages and the keys used to verify these signa-
tures merely as tools for obtaining this functionality. Consequently, cryptographic keys
and signatures do not appear in the ideal process. Instead, in the ideal process there
is a trusted party that keeps a database of “signed messages.” Initially the database is
empty. The trusted party inserts a message to the database once it is asked to do so by
an appropriate subset of the signers. Verification is done simply by checking whether or
not a message appears in the database.



Maintaining Authenticated Communication in the Presence of Break-Ins 77

More precisely, in the ideal process there aren signers N1 · · · Nn and asignature
verifier V . (V is used to ensure that signed messages can be verified without interacting
with the signers.) The parties communicate with atrusted party T and a probabilistic-
polynomial-timeideal-model forger IF . There is no communication among the signing
parties. The process is parameterized byt , the threshold for signing messages, and by a
security parameterk. (The role of the security parameter in the ideal model is to bound the
running time of the ideal-model forger: since the forger is a polynomial-time algorithm,
its running time is bounded by some polynomial ink.) In addition, the forger and the
signers may have external inputs; these inputs are not used directly by the signing parties;
their goal is to capture external information that the forger may have (much like auxiliary
input for general protocols). The interaction proceeds as follows:

1. Initially, the forgerIF is givenk andn (encoded in unary). The signing parties,
the verifier, and the trusted party have no input. The trusted party initializes theset
of signed messages M ← ∅.

Also, all the involved parties have access to a common variable called thetime
unit counter and denotedu. (As seen below, the counter is meant to capture the
synchrony of the network.) Initiallyu is set to 1, and the adversary can increment
u at wish.

2. The adversary invokes signers of its choice with arbitrary values (these values rep-
resent messages to be signed.) When a signerNi gets a valuem from the adversary
at time unitu, it sends a request “sign (m,u)” to the trusted partyT , and appends
the line “Ni is asked to sign m at time unit u” to its output.

3. Once the trusted partyT receives “sign (m,u)” requests from at leastt+1 sign-
ers, and these requests agree onm andu, it adds(m,u) to the setM of signed mes-
sages. Every signer that sent a “sign (m,u)” request, receives a response “(m,u)
is signed ” from T , and appends this response to its output. (Note that this for-
malization forces all requests to sign a message to arrive at the same time unit).

4. The adversary may break into a signerNi at any time by invoking it with a “break-
in” input. The effect here is that the line “Ni is compromised ” is appended to
Ni ’s output, and the forger learns the signers input. Also, from this point and until
the adversary leavesNi , the output ofNi is under the control of the adversary.

The adversary can leave a broken node at any time by invoking it with a “re-
cover” input. Here the line “Ni is recovered ” is appended to theNi ’s output,
andNi then resumes outputting values as in Steps 2 and 3.

5. The adversary may query the verifierV with a messagem. If m ∈ M then V
responds with “m is verified ” and appends a similar line to its output. Oth-
erwiseV responds with “m is not verified ,” but does not add anything to
its output. See Remark 2 at the end of this section for a discussion on this detail.

6. The interaction ends when the adversary halts. The output of the interaction is the
concatenation of the outputs of the adversary, then signers, and the verifier.

Output. The(n+ 2)-vector

ID-SIGt,IF (k, Ex, Er ) = 〈ID-SIGt,IF (k, Ex, Er )A, ID-SIGt,IF (k, Ex, Er )1
· · · ID-SIGt,IF (k, Ex, Er )n, ID-SIGt,IF (k, Ex, Er )V 〉
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denotes theglobal output of an execution of the system above and the adversaryIF
on randomnessEr , input Ex = xF, x1, . . . , xn for the forger and signers, thresholdt ,
and security parameterk. (The adversary output isID-SIGt,IF (k, Ex, Er )A, the output of
signerNi is ID-SIGt,IF (k, Ex, Er )i , and the verifier’s output isID-SIGt,IF (k, Ex, Er )V .) Let
ID-SIGt,IF (k, Ex) describe the distribution ofID-SIGt,IF (k, Ex, Er )whenEr is uniformly dis-
tributed over its domain. LetID-SIGt,IF denote the ensemble{ID-SIGt,IF (k, Ex)}k∈N,Ex∈{0,1}∗ .
See Remark 1 in Section 3.4 for discussion on the need for including the adversary output
in the global output.

3.2. The Structure and Operation of PDS Schemes

We now describe the syntax and operation of PDS schemes, either in the AL or the UL
model.

Syntax. A PDS scheme has four components: a key generation protocolGen, a dis-
tributed signing protocolSign, a verification algorithmVer, and a distributed refresh
protocolRfr.

• In the key-generation protocol,Gen, each node is given a security parameterk
(encoded in unary), and it outputs a pair(pki , ski ). (The intent is that thepki ’s are
the same for all the nodes, and that theski ’s are shares of the corresponding secret
key.)
• In the signing protocolSign, each signing nodeNi is given as input a triple
(pk, ski ,m), plus perhaps some additional information, and outputs a valueσ . (The
intent is thatσ is a signature onm, verifiable by the public keypk.)
• The verification algorithmVer is given as input a triple(pk,m, σ ). It outputs a binary

pass/fail value. We say thatσ is a valid signature onm with respect to public key
pk if Ver(m, σ, pk) = pass.
• In the refresh protocolRfr, each signing nodeNi is given as input a pair(pk, ski ),

and it outputs a valuesk′i . (The intent is thatsk′i is the new share of the secret key.)

Operation. A PDS scheme proceeds as follows, in both the AL and UL models. Let
S = (Gen,Sign,Ver,Rfr) be ann-node PDS scheme and letF be a forging adversary
(in either of these models). An execution ofS with F consists of the following process,
involving n signersN1, . . . , Nn, the adversaryF , and an (unbreakable)signature verifier
V . (As in the ideal model, the signature verifier captures public verifiability of the
generated signatures. Its only role is to run the public verification algorithm on given
(message,signature) pairs.) Also here, the nodes may have (auxiliary) input, which they
ignore.

Set-up phase. The nodesN1 · · · Nn execute the key-generation protocolGen. During
this phase the adversary cannot break any node or interrupt the communication,
and it also does not learn the communication.

We denote the output of nodeNi by (pk, ski ). Note that since this phase is
executed in an “adversary free” environment, we can assume that at the end of this
protocol all the nodes indeed have the same public key,pk. Below we also assume,
without loss of generality, thatk is implicit in the keys generated byGen(k).
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Once the execution ofGen is terminated, the adversary in given the inputsn, k, t
as well as public keypk.

Signatures. The adversary (in either model) can send a special message “sign m”
to any of the signing nodes. Upon receipt of this message,Ni outputs “Ni is
asked to sign m at time unit u” whereu is the current time unit, and
runs protocolSign on input(pk, ski , 〈m,u〉). This protocol is executed in either
the AL or the UL model. If at the end of the execution ofSign, Ni obtains a valid
signature on〈m,u〉 (with respect topk), then the line “〈m,u〉 is signed ” is
added to its output.

Verification. The adversaryF can send to the signature verifierV a pair(µ, σ ). The
verifier V runs algorithmVer on (pk, µ, σ ); if the verification succeeds, thenV
outputs “µ is verified .” If the verification fails then it outputs nothing (see
Remark 2 in Section 3.4). We stress thatV cannot be broken into.

Refreshment. In the refreshment phase at the beginning of each time unitu, the nodes
run protocolRfr (either in the AL or UL model). NodeNi invokesRfr on input
(pk, ski,u−1) and a fresh random inputri,u. (We letski,0 = ski .) The value ofski,u

is set to the output ofRfr. Onceski,u is calculated,Ni erasesthe valuesski,u−1 and
letsski,u replaceski in protocolSign.

The execution terminates when the adversaryF halts. The output of each party is the
concatenation of all its intermediate outputs up to that point. The global output of the
execution is the concatenation of the outputs of the adversaryF , the signersN1, . . . , Nn

and the verifierV .

Notation. The(n+ 2)-vector

AL-SIGS,AF (k, Ex, Er ) = 〈AL-SIGS,AF (k, Ex, Er )A, AL-SIGS,AF (k, Ex, Er )1
· · · AL-SIGS,AF (k, Ex, Er )n, AL-SIGS,AF (k, Ex, Er )V 〉

denotes the global output of an execution of the schemeS with the AL-model adversary
AF on randomnessEr , inputsEx = xF, x1, . . . , xn for the forger and signers, and security
parameterk. (The adversary output isAL-SIGS,AF (k, Ex, Er )A, the output of signerNi is
AL-SIGS,AF (k, Ex, Er )i , and the verifier’s output isAL-SIGS,AF (k, Ex, Er )V .) We denote by
AL-SIGS,AF (k, Ex) the distribution ofAL-SIGS,AF (k, Ex, Er )whenEr is uniformly distributed.

EnsemblesUL-SIGS,UF andUL-SIGS,UF are defined similarly with respect to a UL-
forgerUF and schemeS.

3.3. Security of a PDS Scheme

Security is defined via emulation of the ideal signature process. Namely, a PDS scheme
is deemed secure if any adversarial behavior against it can also be carried out in the ideal
model.

Definition 12. An n-node PDS schemeSis t -secure in the AL model if for any t-limited
AL-forgerAF there exists an ideal-model forgerIF such that

AL-SIGS,AF
c≈ ID-SIGt,IF . (2)
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S is (s, t)-secure in the UL model if for any (s, t)-limited UL-forgerUF there exists an
ideal forgerIF such that

UL-SIGS,UF
c≈ ID-SIGt,IF . (3)

Remark 4 below discusses the relations between the PDS threshold and the power of
the adversary.

3.4. Discussion

Remark1:The structure of the global output. As in the case of Definition 8, the require-
ment that the global output of the real-life computation be distributed indistinguishably
from the output of the global output of the ideal process implies many conditions. In par-
ticular, it implies that in the real-life computation the verifier does not accept a message
as signed, unless at leastt + 1 signers were sent a “sign m” message. It also implies
that whenever at leastt + 1 “good nodes” invoke the signature protocol on the inputm,
then a signature is obtained and becomes publicly available.

Intuitively, there is no real need to incorporate the output of the adversary in the global
output, since we do not care about information gathered by the adversary during the
computation, as long as this information does not help the adversary to forge signatures.
Indeed, it can be readily seen that removing the adversary output from the global output
does not affect the definition. (That is, a definition that is identical to Definition 12
except that the the global output does not include the adversary output, is equivalent to
Definition 12, in both the AL and UL models.) We choose to include the adversary output
in the global output in order to conform with the format of Definition 8. In particular,
this choice becomes useful in Section 5, where we show that the transformation from a
PDS scheme in the AL model to one in the UL model is general enough to be a proactive
authenticator.

Remark2: The verifier’s output. We motivate our choice to have the verifierV output
nothing when a verification of some signature fails: Assume that in such a caseV outputs
a failure message (in all models). Then the following trivial (and harmless) adversarial
behavior cannot be emulated in the ideal model. The adversary sends toV a pair(m, σ )
wherem is a message that was legally signed, butσ is not a valid signature form. Now,
in the ideal modelV would output thatm is OK since it is in the database of signed
messages, but in both the AL and the UL modelsV would rejectm. By havingV output
nothing in case of failure we allow the ideal-model forger to decide whether to query
V with m, based on whether in the real-life model the forger queriedV with a correct
signature.

On a more abstract level, this provision captures an inevitable weakness of digital
signatures relative to the ideal process: using digital signatures, a verifier cannot tell the
difference between the case where a document was never signed and the case where the
document was signed but the presenter of the document simply failed to present a valid
signature.

Remark3: Public verifiability. By making the database in the ideal model completely
public, Definition 12 models a setting whereeveryonecan verify whether a given message
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is signed. This simple scenario is sufficient for the purpose of this paper. Yet we note that
digital signatures may be used also in scenarios where it is important that only holders
of a valid signature should be able to verify that a message is signed. Such scenarios
may be modeled via ideal processes that are different from the one here.

Remark4: The threshold values. Recall that a PDS scheme includes a thresholdt ′

(where at leastt ′ + 1 nodes are needed to generate a signature). The various models of
computation, on the other hand, include some measuret for the power of the adversary,
which is the number of nodes it can compromise in any time unit. Clearly, we must have
t ′ + 1> t , or else the adversary will be able to generate signatures. Similarly, we must
havet ′ + 1 ≤ n − t , so that nodes that are not compromised will be able to generate
signatures. (The combination of these two requirements implies that the boundt < n/2.)
In Definition 12 above we sett ′ = t . Although there may be settings in which it makes
sense to set the thresholdt ′ to some other value betweent andn − t − 1, this extra
generality is not really needed in this paper.

Remark5: Time granularity. In order to generate a signature on a messagem, our
definition requires that the adversary’s requests to signm are madewithin a single time
unit. This particular “granularity of time” is convenient in the proactive setting. In other
settings different granularity may be required (for instance, it may be required that all
requests are made within the same communication round).

Remark6: Postexecution corruptions. General definitions of security of protocols in
the presence of an adaptive adversary make the following additional requirement from a
secure protocol [1], [10]: The ideal-model adversary should be able to handle corruption
requests madeafter the protocol execution is completed. (These requests may be made
when the adversary interacts with other protocols run by the party.) Here we do not need
to make this additional requirement, since the PDS scheme remains active throughout
the execution of the system.

Remark7: Alternative definitions. Gennaro et al. present two definitions of security of
threshold (not proactive) signature schemes in a setting where the communication links
are authenticated and abroadcastchannel exists [20]. One definition, calledunforgeability,
essentially requires that, even after interacting with the signers, the adversary be unable
to generate signatures unless sufficiently many signers have agreed to sign the message.
In addition, a collaboration of sufficiently many signers should always be able to generate
signatures. This definition is essentiallyequivalentto our definition, when formulated
in their setting. (Yet, some extra work is needed for formulating the [20] unforgeability
definition in our unauthenticated setting.)

Their other definition, calledsimulatability, proceeds roughly as follows. Start from
some particular centralized signature scheme (in the case of [20] this is the DSS scheme),
and regard its key-generation and signing algorithms as probabilistic functions. Next,
require that the distributed key-generation and signing protocols of the threshold scheme
securely evaluate the corresponding centralized functions, according to some standard
definition of secure multiparty function evaluation. Informally, one is now guaranteed
that “the threshold scheme mimics whatever properties the centralized scheme has.”
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This approach allows discussing schemes that have weaker properties than existen-
tial security against chosen ciphertext attacks. That is important in their case, since the
DSS scheme, and consequently their construction, is not known to be existentially se-
cure against chosen message attack under standard assumptions. Yet this approach is
somewhat indirect in nature since it bases itself on some specific centralized scheme and
does not explicitly require any unforgeability properties. In addition, the secure function
evaluation requirement is quite strong. In particular, there exist threshold schemes that
are unforgeable but do not securely evaluateanyfunction whatsoever.

4. Constructing PDS Schemes in the UL Model

We use the following basic result as our starting point:

Theorem 13. If trapdoor permutations exist, then for any n≥ 2t+1 there exist n-node
t-secure PDS schemes in the AL model.

The theorem can be proven using generic techniques from the literature. One may
start from any secure (centralized) signature scheme. Such schemes can be realized
using specific computational assumptions such as factoring (e.g., [22] and others), any
trapdoor permutation [3], [29], or even any one-way function [34]. This centralized
scheme can be transformed into a threshold scheme (assuming secure channels and
a broadcast channel), using techniques for secure multiparty computations [6], [33].
Next, the threshold scheme can be made proactive, again using techniques for secure
multiparty computations [30]. Finally, the secure channels can be implemented using
noncommitting encryption [11], and the broadcast channel can be implemented using
an agreement protocol, such as the one in [16]. The result is a (rather inefficient, but still
polynomial-time) secure PDS scheme in the AL model.

Furthermore, recent works show how to construct more efficient secure PDS schemes
in the AL model from many centralized signature schemes such as El-Gamal, DSS, and
RSA [23], [20], [18], [32]. (In order to use these schemes in our construction one has to
assumethat the underlying centralized signature schemes are existentially unforgeable
against chosen message attacks. Sometimes this assumption can be supported by analyses
in idealized models, such as therandom oracle model.)

In this section we show that under the same conditions, there also existn-node(t, t)-
secure PDS schemes in the UL model. Specifically, we show that anyn nodet-secure
secure PDS scheme in the AL model (withn ≥ 2t + 1) can be transformed into ann
node(t, t)-secure PDS scheme in the UL model.

More precisely, letALS = 〈AGen, ASign, AVer, ARfr〉 be ann nodet-secure PDS
schemes in the AL model, as in Definition 12. In addition we use a centralized signature
scheme,CS = 〈CGen,CSign,CVer〉, that is existentially unforgeable under an adaptive
chosen message attack as in [22]. Given schemesALS andCS, we construct ann node
PDS scheme in the UL model, denotedULS = 〈UGen,USign,UVer,URfr〉, and show
thatULS is (t, t)-secure:

Theorem 14. If ALS is an n node t-secure PDS scheme in the AL model with n≥ 2t+1,
and CS is a centralized signature scheme existentially unforgeable under an adaptive
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chosen message attack, then the resulting schemeULS is an n node(t, t)-secure PDS
scheme in the UL model.

The transformation ofALS to ULS uses the idea of alayered authenticator(see Sec-
tion 2.3). That is, the schemeULS can be thought of as having two layers: At the top layer
we haveALS running unchanged. At the bottom layer the nodes follow some protocol
for each message thatALS instructs to send and receive, and in addition take some steps
during each refreshment phase.

The crux of the construction is the protocol executed in the proactive refreshment
phases. Here the nodes “bootstrap” their trust in their memory and their ability to au-
thenticate communicated data. This “bootstrapping” process consists of two parts: First
each node chooses a new pair of signing and verification keys of schemeCS, and tries
to obtain a certificate, verifiable using the verification key ofALS, to its newly chosen
verification key ofCS. This certificate is generated by the nodes using their signing keys
for ALS from the previous time unit. At the second part of the “bootstrapping” process the
nodes generate their signing keys ofALS for the new time unit, anderasetheir old keys.

The rest of this section is organized as follows: In Section 4.1 we describe some
tools used in the construction. These are simple protocols that obtain “somewhat reliable
communication” over unauthenticated links. In Section 4.2 we present the schemeULS,
and in Section 4.3 we prove the security of this scheme in the UL model.

4.1. Communicating over Faulty Links

Below we describe three communication protocols used in our construction of PDS in the
UL model, give some intuition for their use, and prove a few basic properties about them.

To help the intuition, we use the suggestive names “accept” and “receive” in the de-
scription below to describe receipt of messages: intuitively, a node “receives” a message
if this message was delivered to it, and it “accepts” the message if it believes that this
message is authentic.

Connectivity. We start with a protocol to guarantee that the adversary must disrupt many
links to prevent messages from being delivered. The protocol, which we call DISPERSE,
is just a “two-phase echo,” and is described in Fig. 2.

We stress that the DISPERSEprotocol does not guarantee that only authentic messages
are received, nor does it ensure that messages are not retransmitted. The only guarantee
it offers is that if there is a path in the network betweenNi and Nj of length at most

Protocol DISPERSE(m, i, j )

Sending a stringm from nodeNi to nodeNj .
1. NodeNi sends the message “forward m to Nj ” to all other nodes.
2. Upon receipt of a message “forward m to Nj ,” allegedly from Ni , a

nodeNk sends the message “forwarding m from Ni ” to Nj .
3. Node Nj marks all the stringsm for which it received a message

“ forwarding m from Ni ” as being received fromNi .

Fig. 2. Code of the DISPERSEprotocol.
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two, consisting only of reliable links, then any message that is sent between these nodes
using the DISPERSEprotocol arrives at its destination. In conjunction with our definition
of operational nodes (Definition 5) we get the following lemma

Lemma 15. Let n be the number of nodes in the network and let s≤ b(n− 1)/2c. If
Ni , Nj are two s-operational nodes in some time interval, then during this time interval
Nj receives every message that Ni sends to it using theDISPERSEprotocol.

Proof. According to Definition 5, ifNi , Nj are s-operational, then they both have
reliable links to at leastn− s> n/2 others-operational (and, hence, nonbroken) nodes.
Therefore there must exists at least one nonbroken node with reliable links to bothNi

andNj , and so this node will forward toNj all the messages thatNi sends to it using the
DISPERSEprotocol.

Authenticity. Although the DISPERSEprotocol offers some connectivity advantages, it
does not offer any authenticity. In particular, the adversary can easily forge a message
from Ni to Nj without breaking into either of them (and without even modifying any
message on the direct link between them). To obtain some authenticity guarantees, we
combine the DISPERSEprotocol with digital signatures. Digital signatures require each
nodeNi to have the following:

(a) A pair of signature and verification keys for the centralized signature schemeCS.
Below we respectively denote these keys bysu

i andvu
i whereu is the time unit,

and refer to them as thelocal keysof Ni in time unitu.
(b) A public verification key for the PDS schemeALS, which we denote byvcert and

refer to as the theglobal verification key.
(c) A signature on the assertion “the public key of Ni in time unit u

is vu
i ” which can be verified with the global verification key. We call this signature

thecertificateof Ni during time unitu, and denote it bycertui .

These keys are used in a standard way to authenticate messages. Namely, in order
to authenticate a messagem from node Ni to node Nj in communication roundw
during time-unitu, nodeNi computes a signature on〈m, i, j,u, w〉, and appends its
local verification key and certificate. On the receiving end,Nj checks that the message
has the right form, uses its global verification keyvcert to verify the signatures on the
certificate, and then verifies the signature on the message. More precisely, we have
algorithms CERTIFY and VER-CERTthat are described in Fig. 3, and protocol AUTH-SEND

that is described in Fig. 4. In what follows we sometimes use the termproperly certified
messageto describe a message that passes the verification algorithm.

Partial agreement. Our construction needs to have the nodes agree on the value to
be signed. To that end we use the following standard PARTIAL -AGREEMENT protocol.
Intuitively, the goal of this protocol is to ensure that there is a single valuey such that
every node either ends up with the valuey, or ends up with no value at all. This protocol
is described in Fig. 5. The property of this protocol needed for our construction is proved
in Lemma 16.
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Algorithm CERTIFY
(
m, i, j,u, w, su

i , vu
i , certui

)
1. Compute a signatureσ ← CSign

(
vu

i , su
i , 〈m, i, j,u, w〉).

2. Outputmsg= 〈m, i, j,u, w, σ, vu
i , certui 〉.

Algorithm VER-CERT( j, i,u, w,msg, vcert)

1. Check format: parsemsg = 〈m, i ′, j ′,u′, w′, σ, v, cert〉. If i ′ 6= i (wrong
source),j ′ 6= j (wrong destination), oru′ 6= u or w′ 6= w (wrong time),
then rejectmsg.

2. Check certificate: run

AVer(“ the public key of Ni in time unit u is v,′′ cert, vcert).

If verification fails, rejectmsg.
3. Check signature: runCVer(v, 〈m, i, j,u, w〉, σ ). If verification fails, reject

msg.
4. If all three steps succeed,acceptmsg.

Fig. 3. The CERTIFY and VER-CERTalgorithms.

Lemma 16. Assume that during some execution of protocolPARTIAL -AGREEMENTthere
exists a set S of nonbroken nodes of size at leastd(n+ 1)/2e such that for each pair of
nodes Ni , Nj ∈ S:

(a) Nj receives every message that Ni sends to it using theDISPERSEprotocol.
(b) Nj acceptsas authentic from Ni all and only the messages that Ni certifies.

Then in this execution the following holds:

1. If all the nodes in S start this execution with the same input value x, then they all
output x.

2. If one of the nodes in S outputs a value y6= ϕ, then every node in S outputs either
the same value y orϕ. (In other words, there exists a value y such that the output
value of every node in S is in{y, ϕ}.)

Protocol AUTH-SEND
(
m, i, j,u, w, su

i , vu
i , vcert, certui

)
Sending a stringm from Ni to Nj in communication roundw during time unit
u using local keyssu

i , vu
i , global verification keyvcert and certificatecertui .

1. NodeNi setsmsg= CERTIFY(m, i, j,u, w, su
i , vu

i , certui ), and invokes pro-
tocol DISPERSE(msg, i, j ).

2. Whenever protocol DISPERSEwithin nodeNj marks a messagemsg as re-
ceived from nodeNi , nodeNj invokes VER-CERT( j, i,u, w,msg, vcert) and
accepts mfrom Ni if V ER-CERT acceptsit. (The value ofw used in VER-
CERTis exactly two communication rounds before the current one, which is
supposed to be when the message was sent).

Fig. 4. Code of the AUTH-SENDprotocol.



86 R. Canetti, S. Halevi, and A. Herzberg

Protocol PARTIAL -AGREEMENT
(
i, x,u, w, su

i , vu
i , vcert, certui

)
Node Ni starts with input valuex in communication roundw of time-unit u
and uses local keyssu

i , vu
i , global keyvcert, and certificatecertui .

1. For every other nodeNj , nodeNi invokes AUTH-SEND(x, i , j , u, w, su
i , vu

i ,
vcert, certui ).

2. Ni collects all the input values that wereacceptedin Step 1. Every node
from whomNi acceptsmessages in Step 1 with more than one input value
is marked “cheater.”

If there exists a setMAJi of nodes that are not marked “cheaters,” so that
|MAJi | ≥ d(n+ 1)/2e and all the nodes inMAJi have the same input value,
then we denote this value byyi . If there is no such set then we denoteyi = ϕ,
andMAJi = ∅.

3. For any certified messagemsg that wasacceptedin Step 1 from a node in
MAJi , nodeNi invokes DISPERSE(msg, i, j ) to distributemsg to all other
nodesNj .

4. Ni applies verification procedure VER-CERT(i, j,u, w,msg, vcert) for each
messagemsg that was received in Step 3 and that allegedly contains the
input value ofNj . Every node from whichNi acceptsmessages in either
Step 2 or 4 with more than one input value is marked “cheater.”

5. Denote byMAJ′i the set of nodes that were inMAJi in Step 2, and were
not marked “cheaters” in Step 4. IfMAJ′i still contains at leastd(n+ 1)/2e
nodes, thenyi is the output value ofNi . Otherwise,Ni outputsϕ.

Fig. 5. Code for protocol PARTIAL -AGREEMENT

Proof. 1. Since each nodeNi ∈ Sonly certifies a single input value, and the messages
that other nodes inS acceptfrom Ni in this executionE are those thatNi certifies, then
no node inSever marks any other node inS “cheater.”

Since they all send the same input valuex, then this value is a majority value in all
of them in Step 2, and, moreover, for eachNi ∈ S we haveS⊆ MAJi . This is still true
in Step 4, and so|MAJ′i | ≥ |S| ≥ d(n+ 1)/2e for all Ni ∈ S, hence all the nodes inS
output the valuex.

2. Assume to the contrary thatNi ∈ S outputsyi 6= ϕ, andNj ∈ S outputsyj 6= yi

(and alsoyj 6= ϕ). Since bothMAJ′i andMAJ′j contain at leastd(n+ 1)/2e nodes, then
there exists at least one nodeNk ∈ MAJ′i ∩ MAJ′j .

However,Nk appears inMAJ′i with input valueyi and inMAJ′j with input valueyj .
Therefore, in Step 3,Ni and Nj send (using DISPERSE) two different messages, both
certified byNk, where one message states that the input value ofNk is yi and the other
states that the input ofNk is yj . Since we assume that messages sent betweenNi andNj

in the executionE is received, then bothNj andNi must markNk as “cheater” in Step 4.
Contradiction.

4.2. A PDS Scheme in the UL Model

Fix n andt with n > 2t . Our construction of the PDS schemeULS = (UGen,USign,
UVer,URfr) in the UL model, given the centralized signature schemeCS =
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(CGen,CSign,CVer) and the PDS schemeALS = (AGen, ASign, AVer, ARfr), pro-
ceeds as follows.

SchemeULS runs the schemeALS when each message is sent via protocol AUTH-SEND

using the centralized signature schemeCS. This guarantees existence of a large enough
clique of nodes, among which the communication is authenticated and reliable. We show
that such a clique is sufficient for the schemeALS to remain secure within each time
unit. At the beginning of each time unit we use the schemeALS itself to certify each
node’s new keys for this time unit, as sketched at the beginning of Section 4. Below we
describe the different components in detail.

4.2.1. Key Generation, UGen

Recall that sinceUGen is executed during system set-up, we assume that no nodes
are broken during its execution, and that all the messages arrive unmodified at their
destination.

On security parameterk nodeNi first executesAGen, the key generation protocol of
ALS, to obtain the public keyvcert and the secret sharesh0

i . Next Ni executes the key
generation algorithm ofCS to obtain〈v0

i , s0
i 〉 ← CGen(k). Finally, Ni sendsv0

i to all
the nodes, and they all execute the distributed signature protocolASign to generate a
certificate forv0

i , namely,

cert0i ← ASignsh0
1,...,sh0

n
(“ the public key of Ni in time unit 0 is v0

i ”)

Node Ni then “burns”vcert in its read-only memory, and stores(sh0
i , v0

i , s0
i , cert0i ) in

regular memory.
Throughout the protocol, during time unitu each nodeNi has local keysvu

i , su
i , share

shu
i and certificatecertui stored in regular memory.

4.2.2. Signature and Verification, USign,UVer

The protocolUSign is similar to the signature protocolASign of ALS, except that for
every messagem that is sent inASign from Ni to Nj in time unit u, the sender in
USign invokes AUTH-SEND, using its current keyssu

i , vu
i , certui , to sendm. In addition,

the receiver accepts its messages via AUTH-SEND.
The centralized verification algorithm remains unchanged,UVer = AVer.

4.2.3. Refreshment Protocol, URfr

The refreshment protocolURfr is divided into two parts: In the first part each node
generates new local keys of the centralized schemeCS and obtains a certificate for
its new verification key. In the second part the nodes execute the refreshment protocol
ARfr of the PDS schemeALS, with the exception that messages are transmitted via
AUTH-SEND.

Part (I). This part can be thought of as taking place “at the end of the previous time
unit” (i.e., time unitu − 1), since during this part nodes still use their local keys from
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the previous time unit for authentication. Yet, we remind the reader that, technically
speaking, the refreshment phase belongs to both time units.

1. Each nodeNi runs the key generation algorithm ofCS to obtain a new pair of local
signature and verification keys(su

i , vu
i )← CGen(k).

2. Next, Ni sends to all other nodes the message “the public key of Ni in
time unit u is vu

i .” This message is sent “in the clear” without any authen-
tication. (The reason is thatNi may be trying to recover from a break-in, and thus
it may not have the necessary keys to authenticate its communication.)

3. When a nodeNj receives a keyv, allegedly from some other nodeNi , then Nj

invokes a copy of PARTIAL -AGREEMENT with v as the input, and using the keys
from the time unitu− 1, to get

vu
i, j = PARTIAL -AGREEMENT

(
j, v,u− 1, w, su−1

j , vu−1
j , vcert, certu−1

j

)
.

Notice that in this stepNj participates inn copies of PARTIAL -AGREEMENT, one
for each nodeNi . These copies can all be executed in parallel. IfNj receives more
than one valuev allegedly fromNi , thenNj runs PARTIAL -AGREEMENTon the first
such value. (It is stressed that PARTIAL -AGREEMENT is run onlyonceper node per
refreshment phase.)

4. If the output ofNj from the PARTIAL -AGREEMENT protocol from Step 3,vu
i, j , is

different thanϕ, then Nj invokes the signature protocolUSign (still using the
keys from time-unitu − 1) to obtain a signature on the assertion “the public
key of Ni in time unit u is vu

i, j .” If at the conclusion of the signature
protocolNj obtains a valid signature on that assertion, then it sends this signature
to Ni .

5. If Ni receives from any node a valid signature with respect tovcert on the asser-
tion “the public key of Ni in time unit u is vu

i ,” then this signa-
ture becomescertui . Otherwise,Ni setssu

i = vu
i = certui = ϕ. In this caseNi

outputs “alert .”

When Part (I) is over, each nodeNi replaces the local keyssu−1
i , vu−1

i , andcertu−1
i with

su
i , vu

i , andcertui , respectively.

Part (II). This part can be thought of as happening “at the beginning of the current time
unit” (i.e., time unitu) since nodes now use their new keys from Part (I) for authentication.
Yet, the previous time unit is not done until the old secret keys of schemeALS are
erased.

In this part the nodes execute the share refreshment protocolARfr. As in the signature
protocol, for every messagem that is sent fromNi to Nj , the sender inURfr invokes
AUTH-SEND, using its new keyssu

i , vu
i , certui , to sendm.

We stress that protocolARfr instructs each nodeNi to erase from its memory the share
of the global signing keyshu−1

i . The local output of this protocol becomesshu
i .

If, at the end of the refreshment protocol, a nodeNi either hassu
i = vu

i = certui = ϕ
or has failed to refresh its share during Part (II), thenNi outputs “alert .”
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4.3. Proof of Theorem14

Before presenting the formal analysis, we give a high-level overview. According to
Definition 12, to prove thatULS is (t, t)-secure in the UL model, we need to show that for
every(t, t)-limited UL-forger that interacts withULS there exists an ideal-model forger
such that the corresponding global outputs are indistinguishably distributed. Using our
assumption thatALS is t-secure in the AL model, it is sufficient to show that for every
(t, t)-limited UL-forger that interacts withULS there exist at-limited AL-forger that
interacts withALS and generates an indistinguishably distributed global output. More
precisely, fix an arbitrary(t, t)-limited UL-forgerUF . It suffices to show at-limited
AL-forgerAF interacting withALS that satisfies

AL-SIGALS,AF
c≈ UL-SIGULS,UF . (4)

In the rest of the proof we construct forgerAF and show (4). In fact, thestatistical
distancebetween the two sides of (4) is shown to be negligible.

As usual,AF operates via a simulation ofUF , where the activity of the “upper
layer” of ULS (which is identical toALS) is carried out by the parties in the AL model,
and the “lower layer” ofULS is imitated byAF itself. To prove (4) we define “good
executions” as those where no messages are forged by the simulated adversaryUF , and
where all the operational nodes have valid certificates for their local keys (Definition 18).
Then we show that good executions have the same probability weight according to both
AL-SIGALS,AF and UL-SIGULS,UF , and that executions which are not good have only
negligible probability weight. The first assertion follows almost immediately from the
way we define the simulatorAF (Lemma 21). The second part is proven via a sequence
of claims, roughly sketched below: Consider a partial executionE, which is good up to
the end of time unitu− 1. Then:

• If Ni is operational in time unitu, then from the properties of PARTIAL -AGREEMENT

it follows that many operational nodes participate in signingNi ’s local public key
in the refreshment phase at the beginning of this time unit (Lemma 20).
• It follows from the security of theALS scheme in the AL model, combined with

the fact thatE does not contain any forged messages during the refreshment phase,
that Ni will get a valid certificate on its local public key in this refreshment phase,
except with negligible probability (Lemma 26).
• Similarly, since each operational node participates in signing at most one certificate

for every node, it follows that ifNi obtains a certificate on its local public key, then
UF does notobtain a certificate forNi on any other key, except with negligible
probability (Lemma 27).
• Finally, since the only certificate forNi in this time unit is for the keyvu

i , then
the only way to forge a message fromNi would be to sign it with respect tovu

i .
However, as long asNi is not broken,UF does not know the corresponding secret
key su

i and hence cannot sign messages with respect tovu
i , except with negligible

probability (Lemma 28).

We conclude thatE is also a good execution up to the end of time unitu, except
with negligible probability. (Note that, although the above sketch suggests a proof by
induction, the actual proof proceeds by usingAF to construct forgers for schemesALS
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andCS, that succeed in breaking their corresponding schemes with probability that is
related to the probability of bad executions. This, in particular, allows comparing the
relative security of schemes in the two models.)

The construction of UF is presented in Section 4.3.1, and analyzed in Section 4.3.2.

4.3.1. The AL-Forger,AF
LetUF be any(t, t)-limited UL-forger. We now describe at-limited AL-forgerAF that
simulatesUF . On a high level,AF runs the algorithmUF as a black-box, imitating
the UL-model network thatUF expects to interact with. To carry out this imitation,AF
uses its access to the schemeALS in the AL model, and implements by itself the parts in
ULS that are not present inALS (i.e., the “lower layer” of the two layers that constitute
ULS). The operation ofAF is demonstrated pictorially in Fig. 6.

Notations. In the description below we refer to the AL-network, whichAF has ac-
cess to, as the “real network” and the UL-network thatAF imitates forUF we refer
to as the “imitated network.” Similarly, we distinguish between “real communication
rounds” in the real network and “imitated communication rounds” in the imitated net-
work (typically we need several rounds of the imitated network for every round in the
real network). Also, the nodes in the real network are called “real nodes” and are denoted
N ′1, N ′2, . . . and those in the imitated network are called “imitated nodes” and are denoted
N1, N2, . . . .

Initialization. WhenAF is started, it is given the security parameterk and the number
of nodesn, its input xF, a public keyvcert (generated inAGen(k)), and access to the

Fig. 6. Operation of the simulatorAF . The solid areas represent the upper layer ofULS (i.e., the scheme
ALS). The grey areas represent the lower layer ofULS.
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real network wheren nodes are running the protocolALS with shares of the secret key
corresponding tovcert.
AF then generates the following keys: For each imitated nodeNi it runs a copy of

the key-generation algorithm ofCS to obtain〈v0
i , s0

i 〉 ← CGen(k). Then for everyi it
asks all the nodes in the real network for a signature on the assertion “the public
key of Ni in time unit 0 is v0

i ,” and denotes the resulting signature bycert0i .
Such signatures will be generated since the AL-model nodes receive the same message
to sign and none of them is broken. Finally,AF initializesUF , giving it k, n, xF, and
vcert. Throughout the execution, during time unituAF maintains for each imitated node
Ni the local keysvu

i , su
i andcertui .

Execution. During the execution,AF interacts with the real nodes and the black-box
representingUF . In this interactionAF keeps track of the reliable links in the imitated
network, by recording all the messages that it sends to and receives fromUF . This way,
AF can also keep track of which imitated node ist-operational at any given time.

Below we describe the events that occur in the interaction ofAF with UF and with
the real nodes, and howAF reacts to these events.

Disconnected and broken imitated nodes.For each imitated nodeNi , AF keeps
a status variable, which can be either “operational” (ifNi is t-operational in the
current imitated communication round), “disconnected” (ifNi is nott-operational
butUF did not ask to break it), or “broken” (ifUF asked to break it and did not
ask to leave it yet).

When an imitated nodeNi moves from “operational” to “disconnected”AF
breaks into the corresponding real nodeN ′i . As long asNi remains “disconnected”
AF lets the broken real nodeN ′i execute the original protocolALS, but it may
occasionally change its memory contents to reflect acceptance of messages which
were not actually sent in the real network, and it may also send messages on behalf
of Ni to other nodes in the real network. (This reflects the intuition that sinceNi

is disconnected, it may appear to be broken in the eyes of the other nodes even if
it is not really broken.)

If UF asks to break an imitated nodeNi , AF marksNi as “broken.” Then it
breaks into the real nodeN ′i (if it is not broken already) and providesUF with the
contents ofN ′i ’s memory (includingNi ’s input), and also with the keysvu

i , su
i , certui

that it maintains for the imitatedNi . WhenUF asks to change the contents of the
memory of a broken imitated nodeNi , AF makes the corresponding changes in
the memory of the real nodeN ′i or the keys that it maintains forNi .

WhenUF leaves an imitated nodeNi , thenAF changes the status ofNi from
“broken” to “disconnected,”but does not leave the real node N′i yet. AF leaves
N ′i only when the imitated nodeNi becomes “operational.”

Real communication rounds.At the beginning of every real communication round,
AF records all the messages that were sent by the nonbroken nodes in the real
network. For every messagem that the nonbroken real nodeN ′i sends to real node
N ′j , AF imitates an execution of the protocol AUTH-SEND, among the imitated
nodes, using the local keysvu

i , su
i , certui that it maintains for the imitatedNi , and

the global verification keyvcert.
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Notice that the imitation of this protocol does not involve any communication in
the real network. Rather, it consists only of messages sent back and forth between
AF and its black-boxUF , whereAF executes the parts of all the imitated nodes
that are not marked as “broken.”

If an imitated nodeNj , which is marked “disconnected,”acceptsa message
stringm from another imitated nodeNi , thenAF modifies the memory of the real
nodeN ′i (which is broken) to reflect acceptance of the messagem from the real
nodeN ′i . Also, if an imitated nodeNj acceptsa message stringm from another
imitated nodeNi that is marked “disconnected,” thenAF sendsm to the real node
N ′j on behalf of the (broken) real nodeN ′i .

Bad event (A): If an imitated nodeNj that is marked “operational”acceptsa
message stringm from another imitated nodeNi that is also marked “operational,”
and the real nodeN ′i did not send the messagem to the real nodeN ′j in this
communication round, thenAF outputs “failure ” and halts.

Imitated global signatures.When imitated nodeNi that is not “broken” gets a request
from UF to sign messagem, thenAF asks the real nodeN ′i to sign message
m. The real nodes then execute the protocolASign, with AF treating the real
communication rounds as described above.

Imitated refreshment phases.Below we require that the imitated refreshment phases
begin before the refreshment phases in the real network, so that Part (II) of the
refreshment protocolURfr is aligned with the refreshment protocolARfr. (This
means that the time units in the imitated network start slightly before the time
units in the real network.) At the beginning of an imitated refreshment phase in
time-unitu,AF imitates an execution of Part (I) of the refreshment phaseURfr.
This is done by executing the following procedure for every imitated nodeNi that
is not marked “broken”:
1. Execute a copy of the key-generation algorithm ofCS to obtain〈vu

i , su
i 〉 ←

CGen(k).
2. Sendvu

i to all the imitated nodes. This amounts to givingUF the messagevu
i

on behalf of the imitated nodeNi , and asking that this message be delivered to
all the nodes.

3. For each imitated nodeNj that is not marked “broken,” invoke a copy of pro-
tocol PARTIAL -AGREEMENT, using as input value the string thatUF delivered
on behalf ofNi (of course, this string may or may not be equal tovu

i ).
We note again that this imitated execution does not involve any commu-

nication in the real network, but only involves messages sent back and forth
betweenAF and its black-boxUF .

Bad event (B): If at the conclusion of an imitated invocation of PARTIAL -
AGREEMENT there exist two imitated “operational” nodes with two different
local output values, both different fromϕ, thenAF outputs “failure ” and
halts.

4. For every imitated nodeNj that is not “broken,” if the local output ofNj from
the execution of PARTIAL -AGREEMENTwasyj 6= ϕ, thenAF asks the real node
N ′j for a signature on the assertion “the public key of Ni in time
unit u is yj .” The real nodes then execute the protocolASign, with AF
treating the real communication rounds as described above.
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5. If at the conclusion of the signature protocol, real nodeN ′j returns a valid sig-
nature on the valueyj , thenAF asksUF to deliver this value to imitated node
Ni on behalf of imitated nodeNj .

6. If UF delivers to imitated nodeNi a valid signature on the assertion “the
public key of Ni in time unit u is vu

i ,” thenAF sets this signa-
ture to becertui . Otherwise,AF setssu

i = vu
i = certui = ϕ.

Recall that in this case a node in the UL model would outputalert . To
emulate this behavior in the AL model,AF instructs the (corrupted)Ni in the
AL model to outputalert. Here we use in an essential way the fact that
nodes outputalert only when they are nott-operational.

When this process is over,AF imitates Part (II) of the refreshment phase by
invoking the refreshment protocolARfr, treating the real communication rounds
as described above.

Bad event (C): If at the end of the refreshment phase, there exists an imitated
“operational” nodeNi with su

i = vu
i = certui = ϕ, thenAF outputs “failure ”

and halts.

Output. WhenUF halts with some output,AF outputs whateverUF does and halts.
If any of the bad events (A), (B) or (C) happens, then the output ofAF is the transcript
of the execution up to this point, followed by the word “failure .”

4.3.2. AnalyzingAF
We start by noting thatAF is a “legal” AL-model adversary since it never modifies
messages sent over the links of the real network. Also, at any time during the simulation
the number of nodes thatAF breaks equals the number of nodes that are either broken
or t-disconnected in the imitated execution of the UL-model network withUF . Hence,
if UF is a(t, t)-limited UL-forger, thenAF is at-limited AL-forger.

We proceed to show thatAF simulatesUF with only negligible deviation. That is,

AL-SIGALS,AF
s≈ UL-SIGULS,UF . (5)

(Recall that
s≈ negligiblestatisticaldistance.) This is shown as follows. We first observe

that as long as none of the bad events (A), (B), or (C) happens, the output of the AL-
model forgerAF described above is also a syntactically valid output for the UL-model
forgerUF . More formally, fix a value of the security parameterk and an input vectorEx
for the rest of the proof. Then any execution in the support set ofAL-TRANSALS,AF (k, Ex)
in which the bad events (A), (B), and (C) do not happen is also in the support set of
UL-TRANSULS,UF (k, Ex). (Here we identify an execution and its transcript.)

Identify a setGOOD of “good executions.” Next we demonstrate the following two
facts:

Fact 1. Conditioned on the setGOOD, the above two distributions (on the global outputs
of executions) are identical. In fact, we show that in this case even the distributions on
transcripts are identical. Namely, for any executionE ∈ GOOD we have

Pr
[
AL-TRANSALS,AF (k, Ex) = E

] = Pr
[
UL-TRANSULS,UF (k, Ex) = E

]
.
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Fact 2. The probability weight of executions that are not good is negligible in both
distributions. That is, there exists some negligible functionν(k) such that

Pr
[
AL-TRANSALS,AF (k, Ex) /∈ GOOD

]
< ν(k)

and

Pr
[
UL-TRANSULS,UF (k, Ex) /∈ GOOD

]
< ν(k).

The combination of Facts 1 and 2 proves (5) (and so completes the proof of the theorem).
We start by defining good executions.

Definition 17 (Forged Messages). LetE be an execution ofULS with UF in the UL
model, and letmsg= 〈m, i, j,u, w, σ, v, cert〉 be a message, delivered byUF to some
node in the network allegedly from nodeNi during time unitu within the executionE
(but outside Part (I) of the refreshment phase at the beginning of this time unit, since
messages that were sent during this part of the refreshment protocol are verified with the
keys of the time unitu− 1, and are considered in that time unit).

We say thatmsg is forgedif:

(a) msg is properly certified, i.e., VER-CERT( j, i,u, w,msg, vcert) = accept, where
vcert is the global verification key in this execution.

(b) Ni did not send any properly certified messagemsg′ = 〈m, i, j,u, w, σ ′, vu
i , certui 〉,

with the same values ofm, i, j,u, w as inmsg, during communication roundw
in time unitu.

(Intuitively, we mean to say thatNi did not sendmsg in that round. However,
since there could be many different valid signatures on the same message and
it may be possible to obtain one valid signature from another one on the same
message, we have to use the above complicated-looking formal condition.)

(c) Ni was not broken in time unitu, up to and including communication roundw.
Moreover, at the end of Part (I) of the refreshment phase in time unitu, Ni hassu

i ,
vu

i , andcertui different thanϕ. (Notice that, in our scheme,certui 6= ϕ implies that
certui is a valid certificate forvu

i .)

Definition 18 (Good Executions). LetE be an execution ofUF with the UL-model
network. We say thatE is agood executionup to time unitu, if

• E does not contain forged messages until the end of time unitu, and
• for every nodeNi that ist-operational in any time unitu′ ≤ u, it holds thatsu′

i , vu′
i ,

andcertu
′

i are all different thanϕ.

Let GOOD be the set of executions that are good throughout.

Note that each execution inGOOD belongs to the support set of both
AL-TRANSALS,AF (k, Ex) andUL-TRANSALS,AF (k, Ex). Also, there is an efficient algorithm
which, given the transcript of an execution, decides whether this execution is good.

Before we proceed with proving the two above facts, we need to prove two technical
lemmas about the executions of protocol PARTIAL -AGREEMENTin the refreshment phases.
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Lemma 19. Let E be an execution ofULS, which is good up to time unit u−1, let E′ be
any execution ofPARTIAL -AGREEMENTin E up to the refreshment phases at the beginning
of time unit u, and denote by S the set of nodes that are t-operational throughout the
execution E′. Then, at the end of the execution E′, there exists a single value y such that
the local output of each node in S is either y orϕ.

Proof. It is enough to show that the setSsatisfies the premise of Lemma 16. First, since
UF is(t, t)-limited andn ≥ 2t+1, then the size ofSis at least|S| ≥ n−t ≥ d(n+ 1)/2e.
Next, since all the nodes inS are t-operational and since every message is sent using
the DISPERSEprotocol, then by Lemma 15 every node inS receives every message that
every other node inSsends to it.

Since E does not contain forged messages up to time unitu − 1 (which includes
the refreshment phase at the beginning of time unitu), then the only properly certified
messages that nodes inS receive from other nodes inS, and hence the only ones they
accept, are the ones that these other nodes sent. Finally, sinceE is good then all the
nodes inShave valid local keys and certificates for roundu− 1, and so every message
that is sent by a node inS is properly certified, and thus isacceptedby all nodes inS.

Lemma 20. Let E be an execution ofULS which is good up to time unit u− 1, and let
Ni be a node that is t-operational at the end of the refreshment phase of time unit u in
E. Then there exists a set S of at least n− t nodes such that:

(a) All the nodes in S are operational throughout this refreshment phase.
(b) At the conclusion of the invocation ofPARTIAL -AGREEMENT regarding Ni ’s local

public key, the local output of all the nodes in S is equal tovu
i , the public key that

Ni sent to them in this refreshment phase.

Proof. Recall from Definition 5 that sinceNi is operational at the end of the refreshment
phase at the beginning of time unitu, then it has reliable links to a setSof at leastn− t
nodes that are operational throughout this refreshment phase. Using the same arguments
as in Lemma 19, this setSsatisfies the premise of Lemma 16. Also, sinceNi had reliable
links to all of them, then they all start PARTIAL -AGREEMENTwith vu

i as their local input.
Now Lemma 16 implies that they all end the execution of PARTIAL -AGREEMENTwith vu

i
as their local output.

Lemma 21(Fact 1). For any execution E∈ GOOD we have

Pr
[
AL-TRANSALS,AF (k, Ex) = E

] = Pr
[
UL-TRANSULS,UF (k, Ex) = E

]
.

Proof. We show that there exists a bijectionsim: {0,1}∗ → {0,1}∗ between the ran-
domness used in AL-TRANSALS,AF (k, Ex) and the randomness used in
UL-TRANSULS,UF (k, Ex), so that for every security parameterk and randomnessEr :

1. If AL-TRANSALS,AF (k, Ex, Er ) /∈ GOOD, then alsoUL-TRANSULS,UF (k, Ex, sim(Er )) /∈
GOOD.

2. If AL-TRANSALS,AF (k, Ex, Er ) ∈ GOOD, then UL-TRANSULS,UF (k, Ex, sim(Er ))
∈ GOOD.
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We constructsim(Er ) as follows. Intuitively,sim(Er ) is the random-input vector that
corresponds to the execution of the imitated network withinAF , in the execution
AL-TRANSALS,AF (k, Ex, Er ). More precisely,sim() takes the part ofEr used byAF to
imitate Pi for UF , and moves it to the random input ofPi itself. That is, letEr = r0 . . . rn

be a random-input vector for an execution ofALS with AF , and letr0,i be the part ofr0

that is used byAF to imitatePi in the imitated network. Then insim(Er ) the valuer0,i is
removed fromr0 and is added tori at the appropriate location.

It is clear thatsim() is one-to-one and onto (since it only reorders the bits of its input).
Moreover, from the construction we also have that ifAL-TRANSALS,AF (k, Ex, Er ) is not a
good execution, then neither isUL-TRANSULS,UF (k, Ex, sim(Er )).

We show thatAL-TRANSALS,AF (k, Ex, Er ) ∈ GOOD implies that

AL-TRANSALS,AF (k, Ex, Er ) ∈ GOOD.

In particular, we show that in this caseAL-TRANSALS,AF (k, Ex, Er ) =
UL-TRANSULS,UF (k, Ex, sim(Er )). For that, we only need to show thatAF never outputs
“ failure ” in a good execution. Bad events (A) and (C) in the definition ofAF are ex-
cluded by the definition of good executions, and bad event (B) is ruled out by Lemma 20.
The lemma follows.

It remains to show Fact 2. This is done as follows: We first define three sets of
executions,BAD1, BAD2, andBAD3, corresponding to the three types of failures inULS,
such that each executionE /∈ GOOD must be in eitherBAD1, BAD2, or BAD3. Then
we show that the probability of each one of these three sets is negligible in the security
parameterk.

Definition 22. An executionE is said to be abad execution of the first typeif there exists
a time unitu such thatE is good up to time unitu− 1, but at the end of the refreshment
phase in time unitu there exists at-operational nodeNi for whichsu

i = vu
i = certui = ϕ.

The set of bad executions of the first type is denotedBAD1.

Definition 23. An executionE is said to be abad execution of the second type, if E is
not a bad execution of the first type, and there exists a time unitu such that:

(a) E is good up to time unitu− 1.
(b) E contains a forged messagemsg= 〈m, i, j,u, w, σ, v, cert〉.
(c) The first such forged message inE hasv 6= vu

i (i.e., the local public key inmsg
is not the local public key for whichNi obtained a certificate in the refreshment
protocol).

The set of bad executions of the second type is denotedBAD2.

Definition 24. An executionE is said to be abad execution of the third typeif it is not
a bad execution of the first or second type, and there exists a time unitu such that:

(a) E is good up to time unitu− 1.
(b) E contains a forged messagemsg= 〈m, i, j,u, w, σ, v, cert〉.
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(c) The first such forged message inE hasv = vu
i (i.e., this is the local public key for

which Ni obtained a certificate in the refreshment phase).

The set of bad executions of the third type is denotedBAD3.

Lemma 25. Every execution in the support set ofAL-TRANSALS,AF (k, Ex) is either in
BAD1, BAD2, BAD3 or in GOOD.

Proof. Since every execution is vacuously good up to time unit 0, then every nongood
execution has a last time unit up to which it is good. Since all the ways that an execution
can stop being good are covered in Definitions 22–24, then every nongood execution
must be in eitherBAD1, BAD2, or BAD3.

In Lemma 26 we show that bad executions of the first type correspond to failures
of ALS where the nodes cannot generate a certificate for a “good local key.” Since we
assume thatALS is secure, these executions have only a negligible probability. Formally,
we prove

Lemma 26. Letε1(k)
def= Pr[AL-TRANSALS,AF (k, Ex) ∈ BAD1]. ThenAL-SIGALS,AF (k, Ex)

can be distinguished from the output of any ideal-model adversary with an advantage of
at leastε1(k).

Proof. Let E ∈ BAD1, and consider the global output ofE during the refreshment
phase at the beginning of time unitu. From Lemma 19 it follows that in each execution
of PARTIAL -AGREEMENT, at most one valuey 6= ϕ is output byt-operational nodes, and
so bad event (B) does not happen.

Moreover, by Lemma 20, there is a set of at leastn−t t-operational nodes which all have
local outputvu

i from PARTIAL -AGREEMENT. Therefore,AF will ask the corresponding
n− t real nodes for a signature onvu

i , and so all these real nodes will output this request
to signvu

i . However, we know that none of the corresponding real nodes can obtain a
signature onvu

i . (Otherwise,AF would have the corresponding imitated nodes send this
signature toNi over the reliable links thatNi has with them, and thenNi would not have
su

i = vu
i = certui = ϕ).

It follows that in any executionE ∈ BAD1 there must exist a set of at leastn− t real
nodes, which log a request for a signature onvu

i but do not log a message confirming that
it was indeed signed. Such an execution cannot happen in the ideal model, regardless of
what the ideal-model adversary does.

Next we show that bad executions of the second type correspond to a failure ofALS
where the adversary can generate a certificate for a “bad local key.” Again, sinceALS is
secure, then these executions too have only a negligible probability.

Lemma 27. Let ε2(k)
def= Pr[AL-TRANSALS,AF (k, Ex) ∈ BAD2]. Then there exists a

t-limited AL forgerAF ′ such thatAL-SIGALS,AF ′(k, Ex) can be distinguished from the
output of any ideal-model adversary with an advantage of at leastε2(k).
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Proof. To capture the intuition thatUF can only get a certificate for the “wrong key”
by forging signatures of the underlying AL-model PDS, we make use of the signature
verifierV of the PDS scheme. Recall that the signature verifier is an external, unbreakable
node, running only the verification algorithm of the PDS. When the scheme is started
with the global verification keyvcert, V can be invoked on pairs(x, σ ) and as a result
it outputs “x is verified ” if σ is a valid signature onx with respect tovcert, and
outputs nothing otherwise. The output ofV then becomes part of the global output of
the protocol (and in particular it needs to be simulated in the ideal model for the protocol
to be secure).
AF ′ behaves exactly likeAF , but in addition it also queriesV on some pairs. Specif-

ically, for every messagemsg= 〈m, i, j,u, w, σ, v, cert〉, delivered byUF to any im-
itated node,AF ′ invokesV to verify the signaturecert on the message “the public
key of Ni in time unit u is v.”

Let E ∈ BAD2, and letmsg= 〈m, i, j,u, w, σ, v, cert〉 be the first forged message in
E. Using the same argument as in the proof of Lemma 26 above, there is a set of at least
n− t t-operational nodes, all with local outputvu

i 6= ϕ from the corresponding invocation
of PARTIAL -AGREEMENT. It now follows from Lemma 19 that not-operational node has
any other local output, and in particular not-operational node has the local outputv
(which appears in the forged messagemsg).

Therefore, there cannot be more thant real nodes that are asked to sign the asser-
tion x = “ the public key of Ni in time unit u is v.” On the other hand,
sincemsg is forged thencert is a valid signature on the above assertion, and henceV
will output “x is verified .”

We conclude that any bad execution of the second type contains a messagex for which
at mostt nodes output a request for signature, and yet the signature verifier confirms that
it is signed, and such an execution cannot occur in the ideal model.

In the next lemma we show that bad executions of the third type correspond to a failure
of the centralized signature schemeCS. Again, sinceCS is secure, it follows that they
too occur only with a negligible probability.

Lemma 28. Let ε3(k)
def= Pr[AL-TRANSALS,AF (k, Ex) ∈ BAD3], and let p(k) be a poly-

nomial upper bound on the number of time units in the executions ofALS with security
parameter k. Then there exists a forgerCF for the centralized signature schemeCS,
which obtains existential forgery using an adaptive chosen message attack, with proba-
bility of at leastε3(k)/(n · p(k)).

Proof. CF is given a public keyv for the schemeCS and access to a signer with the
corresponding signing key, and its goal is to achieve existential forgery under an adaptive
chosen message attack.
CF first picks uniformly at random a time unitu ∈ {1, . . . , p(k)} and a nodei ∈
{1, . . . ,n}. It then imitates an entire execution ofAF , playing the role of all the real
nodes,AF itself andUF . The only difference is that in time unitu, instead of picking
the local keys for imitated nodeNi using the key-generation algorithm, it sets the public
keyvu

i = v (wherev is the public key thatCF got as input). When nodeNi needs to sign a
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message relative tovu
i ,CF uses its access to the signer to get this signature. Finally, if this

execution turns out to contain a forged messagemsg= 〈m, i, j,u, w, σ, v, cert〉 (with
i , u, andv as above), thenCF outputs the message/signature pair(〈m, i, j,u, w〉, σ )
which is a valid pair with respect tov, andCF did not ask for a signature onmsg. In this
case we say that the forgery was successful.

It is straightforward to see that the simulatedAF sees exactly the same view as in a
real interaction with schemeALS, and that successful forgery occurs with probability at
leastε3(k)/(n · p(k)).

Lemmas 26–28 yield

Corollary 29 (Fact 2). Bad execution of the first, second, and third type have a negli-
gible probability weight inAL-SIGALS,AF (k, Ex). Namely,

Pr
[
AL-TRANSALS,AF (k, Ex) /∈ GOOD

] = Pr
[
UL-TRANSULS,UF (k, Ex) /∈ GOOD

]
< ν(k),

whereν(·) is a negligible function.

This concludes the proof of Theorem 14.

4.3.3. Remarks on the Construction

An extra property of the schemeULS. Some components of the construction above
are not strictly needed to obtain secure PDS schemes, but are important to ensure some
extra properties, that are used to obtain awareness in the construction of authenticators
in the next section. Clearly, thealert outputs are not used in the analysis of the scheme
above, but are needed for awareness. Moreover, it can be verified that Step 3 of the
refreshment phase (i.e., protocol PARTIAL -AGREEMENT) is not necessary for proving that
ULS is (t, t)-secure. The purpose of this step is to ensure the following property:

Recall that in the security proof we proved that, for every(t, t)-limited UL adversary
UF and security parameterk, there is a setGOOD of executions with probability weight
1− ν(k) under the distributionUL-SIGULS,UF (k, Ex) whereν(k) is negligible ink, and
such that each execution inGOOD satisfies the following requirement: ifNi , Nj are not
brokenin time unitu, and if su

i , vu
i , andcertui are different thanϕ, then every message

that Nj acceptsfrom Ni was indeed sent byNi in this time unit.
In the proof of Theorem 14, it suffices to apply this requirement only to nodesNi that

areoperationalduring this time unit. Yet, the fact that this requirement applies even to
nonoperational nodes is used in Section 5 to showawarenessof the authenticator based
on ULS for the case that the adversary is(t, t)-limited.

Stronger Adversaries. In the definition of reliable links (Definition 4) we require that
messages will not be injected to these links. Yet, the schemeULS remains secure even
if we allow the adversary to inject messages on reliable links at all times,exceptduring
Step 2 in Part (I) of the refreshment phase. In other words, whenever the nodes have
valid keys they can recognize and discard bogus messages. The only time where injecting
bogus messages can be harmful is during the first round of the refreshment phase, where
nodes are trying to get their new keys across to the other nodes, in an unverified way.
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We also note that although the adversary can break the protocol by injecting too many
bogus messages during that step, we would still get awareness in this case, since nodes
will notice that they did not obtain certificates and will output “alert .”

5. Emulating Authenticated Channels

In this short section we describe and prove the security of our proactive authenticator.
As seen below, most of the work was done in Section 4, and very little remains to be
said here.

A modular way to construct a proactive authenticator given a PDS schemeS in the
UL model may proceed as follows. Given a protocolπ (designed for the AL model), the
nodes first runS; at each communication roundw, each nodeNi that is instructed byπ
to send a messagem to nodeNj asks all nodes to invoke the signing protocols ofSon the
extended message〈m, l , i, j 〉. Once a signature is generated, all the nodes will forward
the extended message, accompanied by the generated signature, toNj . In addition, it is
specified that the nodes do not sign more than one message fromNi to Nj at each round,
thatNj rejects unsigned messages, and thatNi outputs “alert ” if it does not obtain the
required signature.

The above approach, although modular, is very inefficient: it requires an invocation of
the signing protocol of the PDS schemeS for every message. We avoid this inefficiency
(at the price of breaking the modularity) by noticing that our construction of a PDS
scheme in the UL model (Section 4.2) already provides the nodes with signing keys for
a centralized signature scheme and with certificates for the corresponding verification
keys. These can be used directly to authenticate the messages of the “higher layer”
protocolπ . That is, our authenticator, denoted3, is very similar to the PDS scheme
ULS. It starts with a PDS schemeALS = 〈AGen, ASign, AVer, ARfr〉 in the AL model
and a centralized signature schemeCS. Given a protocolπ (designed for the AL model),
3 proceeds as follows:

1. Modify π by adding the key generation algorithmAGen to the set-up phase ofπ ,
and executing the refreshment protocolARfr at the beginning of every time unit.
The resulting protocol is denotedπ+ALS.

2. Transformπ+ALS into a protocol for the UL model exactly asALS is transformed
to construct schemeULS in Section 4. The messages ofπ are handled in the same
way as the messages ofASign. That is, each message is sent (and received) using
protocol AUTH-SEND.1

3. The outputs ofπ , as well as the “alert ” outputs ofULS, are copied to the output
of the constructed protocol. The other outputs ofULS are kept internal and arenot
copied to the output.

Let3(π) denote the resulting protocol.

1 Alternative constructions may simply send eachπ -message signed and certified (not via AUTH-SEND),
or even exchange a secret key between each two parties and authenticateπ -messages using that key. Such
construction does not guaranteedeliveryof messages, thus they are not authenticators according to our defi-
nition; yet they provide authentication according to the standard interpretation of this term, namely, that only
authentic messages are accepted as such.
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Theorem 30. Let n≥ 2t + 1. If the PDS scheme in use is t-secure in the AL model,
then the authenticator3 described above is t-emulating.

Proof. The proof is almost identical to the proof of Theorem 14 (except for small
formalities).

Proposition 31. Let n≥ 2t + 1. Then the authenticator3 is (t, t)-aware.

Proof. We show that, as long as the adversary is(t, t)-limited, everynonbroken node
that is impersonated outputs “alert ” in the same time unit. Recall that a node with
certui = ϕ always outputs “alert .” Furthermore, it follows from the extra property of
schemeULS (see the remark at the end of Section 4) that a nonbroken node for which
certui 6= ϕ cannot be impersonated (except with a negligible probability).

5.1. Dealing with Stronger Adversaries

We briefly discuss some properties of our scheme when the UL adversary isnot (t, t)-
limited. In most distributed settings, if the adversary can corrupt players beyond some
preset bound, then “all bets are off,” and the protocol cannot guarantee any security. In
our setting, this problem is even more acute since we must also assume limitations on
the ability of the adversary to tamper with communication links. As it is often easier to
disrupt communication links than it is to break into nodes in the network, it is desirable
to have a mechanism that can at least alert us to the fact that the adversary is disrupting
too many links.

It is important to note the difference between this type of “awareness” and the type that
we discussed above. The awareness condition from above islocal (i.e., a node should
be aware of its own condition), it is supposed to hold throughout the protocol, and it
only holds as long as the adversary is appropriately limited. The awareness here, on the
other hand, isglobal (i.e., we would like some node to figure out that something in the
protocol went wrong) and it may only hold the first time something goes wrong (since
after that we may not be able to guarantee anything anymore), but we would like it to
hold even in the presence of stronger adversaries.

In the current solution we only partially guarantee this global awareness property: we
can only achieve it when the adversary is capable of injecting too many bogus messages
on the links, but otherwise is not stronger than in our assumptions. Specifically, we
consider an adversary which is “almost(t, t)-limited,” except that it can inject messages
on arbitrarily many links. Call this type analmost (t, t)-limited adversary. In the presence
of an almost(t, t)-limited adversary, we can no longer ensuret-emulation, since this
adversary can send many bogus public keys in Step 2 of Part (I) of the refreshment phase
(see Section 4.2.3), thereby preventing the nodes from obtaining certificates. However, if
this happens, then these nodes output “alert .” Now we have two cases: either this only
happens to a few nodes, in which case the emulation can still go through, or it happens
to “too many nodes,” in which case we can detect that the adversary is not(t, t)-limited.

As of yet, we do not know how to guarantee the “global awareness” in case the
adversary can also modify or delete messages on too many links. This drawback could
be overcome if we had a secure PDS scheme in a model where the links are authenticated
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but not necessarily reliable (i.e., where the adversary cannot inject or modify, but can
discard arbitrarily many messages on the links). It is clear that in this case we cannot
guarantee that the nodes be able to produce signatures, but it may still be possible to
ensure that the adversary cannot forge signatures. However, we do not know whether
such PDS schemes exist; this is an interesting open problem.

6. Discussion

This concluding section further discusses a few aspects of the definition and construc-
tions.

The ROM assumption. Recall that our solution assumes the existence of ROM in each
node, which the attacker can read but cannot modify. This requirement seems justifiable
as it can be implemented in a variety of ways, and corresponds neatly to the well-accepted
mechanisms for virus detection and removal. Note that we actually need two different
types of ROM: The program can be stored in a memory that is “burned in” by the factory
and never modified since. In contrast, the public key of the PDS scheme is written only
during the start-up (or installation) phase, and varies from system to system.

One way to implement the ROM is by using a backup tape (or a CD-ROM) which is
read during each refreshment phase. Another possibility is taking advantage of an appro-
priately designed operating system, which can guarantee a “virtual ROM” in software.
That is, the OS can deny writing access to certain memory locations fromanyprocess,
except processes that are active only at start-up time. This makes it easy to put a public
key in this virtual ROM, hence facilitating our solution.

In the absence of ROM in the nodes, one can use the network itself as a source of
“reliable memory,” as described in [30]: At the beginning of each refreshment phase the
nodes send each other the verification key of the PDS in use, and each node decides on
the “right key to use” by majority vote. However, this solution has a few drawbacks. For
one, the nodes still need some ROM to store the recovery code itself. In addition, this
solution does not guarantee awareness: a node can be impersonated without knowing it,
if the adversary sends to it the wrong key at the beginning of the refreshment phase.

Dealing with erasures. A basic assumption underlying the proactive approach is that
the nodes successfully and completelyerasecertain pieces of sensitive data in each
refreshment phase. (Specifically, in our protocol the nodes must erase their old shares
of the signing key of the PDS scheme.) Here, if a node fails to erase this data, then the
security ofall the nodesmay be compromised.

Note that successfully erasing data is not a trivial task. It is not enough to simply release
the appropriate memory locations—the data has to be overwritten. (In fact, if the data
was stored on magnetic media for more than a few seconds, then even overwriting it may
not be sufficient.) Also, involuntary data back-ups (say, by the operating system) must
be prevented. Therefore, trustingother nodesto erase data locally may be problematic
in a completely distributed setting where nodes are not fully trusted.

Nonetheless, this assumption is necessary for any proactive solution, and there are
many realistic settings in which it is a reasonable assumption to make. (For example,
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notice that old secrets should only be “erased” to the point that they are not available to
the adversary in case of a break-in. Hence, backup tapes that are kept off-line may be
acceptable, if we only worry about “remote break-ins” from the network. See [11] and
[10] for further discussion of this issue.

Scalability issues. To use our protocol in a very large network (e.g., the Internet), it
is possible to partition the network to local neighborhoods, and then to perform the
protocol in these local neighborhoods, with each neighborhood running its own PDS
scheme. A node will obtain a certificate from one or more of the neighborhoods it
belongs to. The unchanging verification keys of all the neighborhoods can be signed
at system start-up by a global certification authority. In addition, there would also be a
“higher level” PDS scheme, which can be run to regain security in neighborhoods that
lost their “neighborhood public key” (say, because the adversary broke into too many
nodes).

The partition impacts both security and performance of the protocol, and the designer
should pick a partition that offers a good tradeoff. For many practical scenarios, a two-
level solution, in which ann-node network is partitioned intoO(

√
n) clusters ofO(

√
n)

nodes each, would give good tradeoff. However, if the original scheme can tolerate
adversaries who break up ton/2 nodes, the resulting scheme can only tolerate adversaries
who break up ton/4 nodes (since the adversary needs to compromise more than

√
n/2

neighborhoods, and compromising a neighborhood requires the compromise of at least√
n/2 nodes).
There may exist other refinements to the scheme that handle scalability even better

than partitions, at least in asymptotic terms. This is an interesting research problem.

Relaxations for small t. Note that Step 1 in protocol DISPERSEand Step 3 in proto-
col PARTIAL -AGREEMENT can be modified as follows, without affecting the agreement
properties achieved: Instead of sending a message to all other parties, the sending node
sends the message only to 2t + 1 of the parties. Consequently, the complexity of these
protocols (and of the entire proactive authenticator) is reduced fromO(n2) to O(nt)
messages per node. This distinction may become significant whent is known to be small
relative ton.
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