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Abstract. We present some observations on public-key cryptosystems that use the
Chinese remaindering algorithm. Our results imply that careless implementations of
such systems could be vulnerable. Only one faulty signature, in some explained context,
is enough to recover the secret key.
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1. Introduction

In public-key cryptosystems two distinct computations can be distinguished: the com-
putation that makes use of the secret, public-key pair, and the one that only makes
use of the public key. The former usually corresponds to the secret decryption or to
the signature generation operation, the latter to the public encryption or to the signa-
ture verification operation. In this paper we restrict our attention to public-key crypto-
systems in which the former computation can be sped up using the Chinese remainder-
ing algorithm. Examples of such cryptosystems are: RSA [16], LUC [19], KMOV [11],
and Demytko’s cryptosystem [6]. We show that devices implementing the signature gen-
eration of any of these cryptosystems may be tricked into revealing their secret key, if
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the following three conditions are met:

(1) the message as signed is known;
(2) a certain type of faulty behavior occurs during signature generation;
(3) the device outputs the faulty signature.

Leakage of the secret key can be averted by making sure that either of these three con-
ditions will not be met. This can be done by adding enough random noise to the message
to be signed, by making sure that the system works properly and that faulty behavior
cannot be induced, by checking the correctness of the signature before outputting it, or
by any combination of these three safety measures. We note that many devices already
implement at least one of these countermeasures. Thus we feel confident that the practi-
cal impact of our observation is minimal. Therefore, if carefully implemented, Chinese
remaindering based cryptosystems are not more vulnerable than usual cryptosystems.

We note that the same observation applies to decryption using the Chinese remainder-
ing algorithm, if the decrypting party shows the faulty decryption to another party. The
details of this “generalization” are straightforward.

The analysis of cryptosystems in the presence of faults was launched by newspaper
publications that cited a Bellcore press releaseNew Threat Model Breaks Crypto Codes.
Thereafter, several researchers reported some possible implications in both public-
key [12], [3], [8], [20], [9], [17] and private-key [4], [9], [13] cryptography. The method
presented in this paper improves Bellcore’s result, later published in [5], in the following
way. Their method requires two “Chinese remaindering” signatures on the same mes-
sage, one correct and one faulty, whereas our version requires the message and only a
single faulty signature. Our version is therefore “more realistic” and potentially more
dangerous.

The problem of the presence of faults in cryptosystems can be turned into an active
attack by inducing faulty behavior on computational devices. For example, this can be
achieved by ROM overwriting, EEPROM modification, gate destruction, RAM rema-
nence, etc. [1], [2], [7], [10], [14], [15]. Since these techniques are not fully published
or described (and thus controversial), we do not elaborate or comment.

Our main objective is to dwell on the importance of a careful implementation of
cryptosystems. Suppose you are in a context involving trusted third parties (e.g., banks)
and where thousands of signatures are produced each day. If, for some reason or other,
a single signature is faulty, then the security of the whole system may be compromised.

2. Potential Vulnerability of RSA Using Chinese Remaindering

Let p andq be two primes and letn = pq. Imagine a messagem is signed with the secret
exponentd using RSA:s = md modn. Using the Chinese remaindering theorem, the
value ofs can be computed more efficiently fromsp = md mod p andsq = md modq.
Suppose an error occurs during the computation ofsp (we denote the faulty value bys′p),
but not during the computation ofsq. Applying Chinese remaindering ons′p (6= sp) and
sq will give the faulty signatures′ for messagem. Then the computation of

gcd(s′e−m(modn),n)

will give the secret factorq, wheree is the public exponent.
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Remarks. (1) If the attacker does not know the public modulusn, he may still be able
to recover the secret parameterq. Indeed, ife is small, he has some probability to find
q by trying to factorizes′e − m over the rational integers. This probability becomes
nonnegligible if he possesses two or several faulty signatures, because in that case,
he can recoverq by computing gcd(s′1

e − m1, . . . , s′k
e − mk). Furthermore, from the

knowledge of one or several valid signatures, the attacker can also recoverp in a similar
way.

(2) A nontrivial factor ofn may be derived in any scenario where exactly one of the
remainders used in the Chinese remaindering is incorrect. This includes, for instance,
incorrect retrieval of (a possibly correctly computed)sp. Thus, the presence of a perma-
nent failure, like a damaged wire, as opposed to a transient computational failure, may
also expose secret information.

3. Generalization to Other Cryptosystems

In this section,n = pq denotes the RSA-modulus, ande andd are respectively the
public and the secret exponents. The message to be signed ism, and the corresponding
signature iss. Let

S: Zn→ Zn,m 7→ s= S(m)
be an RSA-type signature function. If the signatures of messagem is computed with
the Chinese remaindering theorem, then the previous observation still applies.

Proposition 1. If s′ is a faulty signature such that s′ 6≡ s(modp) but s′ ≡ s(modq),
then

gcd(S−1(s′)−m,n)

will give the secret factor q.

Proof. Sinces′ ≡ s(modq) and s′ 6≡ s(modp), we haveS−1(s′) ≡ S−1(s) ≡
m(modq) andS−1(s′) 6≡ m(modp). Hence,S−1(s′)−m(modn) is divisible byq and
not by p.

Consequently, the observation of Section 2 works for all RSA-type cryptosystems.

Example 1. The LUC cryptosystem is based on Lucas sequences. The signature func-
tion is defined asS(m) = Vd(m,1) modn, and the verification function asS−1(s) =
Ve(m,1) modn, whereed≡ 1 mod lcm(p− 1, p+ 1,q− 1,q+ 1). If s′ 6≡ s(modp)
buts′ ≡ s(modq), then

gcd(Ve(s
′,1)−m(modn),n)

will give q.

Example 2. The Demytko cryptosystem uses thex-coordinate of points on elliptic
curves over the ringZn. Such a curve will be denoted byEn(a,b). The x-coordinate
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of the multiple of a point can be computed thanks to the division polynomials (see Ex-
ercise 3.7 of [18]) considered as polynomials inZn[a,b, x]. The signature function is
defined asS(m) = 8d(m)/9d(m)2 modn, and the verification function asS−1(s) =
8e(s)/9e(s)2 modn, where ed ≡ 1 mod lcm(#Ep(a,b),#Eq(a,b),#Ep(a,b),
#Eq(a,b)).1 If s′ 6≡ s(modp) buts′ ≡ s(modq), then

gcd

(
8e(s′)
9e(s′)2

−m(modn),n

)
will give q.
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