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Abstract. Let f be an unpredictable random function takibg- c)-bit inputs tob-bit
outputs. This paper presents an unpredictable random funtttaking variable-length
inputs tob-bit outputs. This construction has several advantages over chaining, which
was proven unpredictable by Bellare, Kilian, and Rogaway, and cascading, which was
proven unpredictable by Bellare, Canetti, and Krawczyk. The highlight here is a very
simple proof of security.
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1. Introduction

Whenk is kept secret, the function syrdefined in [9], taking 384-bit inputs to 256-bit
outputs, appears to be unpredictable. There is a $1000 reward for anyone who can predict
surf.

Starting from suif one can construct efficient secret-key solutions to a variety of
cryptographic problems; see, for example, [8] and [5]. These solutions are provably
secure, in the sense that anyone who can break them can also brga&radidollect the
$1000 reward, in a few extra steps. Different solutions compete on the exact meaning
they give to “efficient” and “few.”

In this paper I introduce the “protected counter sum” construction. Given a funttion
from 384-bit inputs to 256-bit outputs, | construct a functigrfrom variable-length in-
puts to 256-bit outputs. | show thatfifis an unpredictable random function th&tis also
unpredictable. See Section 4. This construction compares favorably with chaining, which
was proven unpredictable in [7], and cascading, which was proven unpredictable in [3].

* The author was supported by the National Science Foundation under Grant DMS-9600083.

185



186 D. J. Bernstein

All the ideas in the protected counter sum construction are already present in [5] and
[3]. My main contribution is the exact security analysis, specifically Theorem 3.1.

Implementation | wrote a portable C library for protected counter sums, using, surf

as the underlying random function. The library, compiled vgitle 2.6 on a Pentium,
occupies 716 bytes. It uses approximately 600 Pentium cycles pgiallfior byte-to-

word conversion and other housekeeping. The total time for a short message (up to one
256-bit block) is 6219 Pentium cycles. The total time for a long message is 3043 cycles
per input block; this is 8.4 million bits per second on a Pentium-100.

Terminology This paper uses standard terminology from probability theory. See the
Appendix for the definition of “random.” Warning for readers unfamiliar with probability
theory: random variables are not necessarily uniformly distributed.

An oracle algorithm is an algorithm that uses an oracle.

2. Unpredictable Random Functions

Fix setsSand T, with T finite. Let A be an oracle algorithm that prints either 0 or
1. A functionh: S — T can be viewed as an oracle that prih{x) given x. Define
A(h) € {0, 1} as the result of running with this oracle.

Let f andg be random functions fron$to T, i.e., random variables all of whose
values are functions fror8to T. The A-distance betweenf and g is

| PrACT) = 1] — PrlA(g) = 1]I.

If the A-distance betweeri andg is negligible for every practical algorithrA then
f and g haveindistinguishable distributions. (This concept is parametrized by the
notions of “negligible” and “practical.”)

In particular, letg be a uniform random function fror8 to T. A random function
f: S— T isunpredictableif f andg have indistinguishable distributions.

Examples A uniform random function is unpredictable.

A uniform random constant function froBto T is predictable, if & > 1and # > 1.
Letk be a uniform random element ®f and consider the function+— k from Sto T.
Let A be an oracle algorithm that feeds two distinct inputs to the oracle and prints 1 iff
the outputs are the same. Then thelistance is - 1/#T.

Whenk is a uniform random 1024-bit string, the random function,sdefined in [9]
seems to be unpredictable: there are no known practical algorithms that pregiotifurf
any noticeable probability. However, my ignorance does not constitute a proof. Perhaps
every easily computed low-entropy random function is predictable.

Generalizations For any measurable space and any notion of an oracle on that space,

one can consider distinguishability, using that oracle, of random elements of that space.
For example, a uniform random constant function is unpredictable witiegime or-

acle i.e., an oracle that will answer only one question. One-time security is not sufficient

for most practical applications.
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The following random function on a finite field is unpredictable with ratime
oracle; see page 486 of [17] and [11]. Select independent uniform random elements
Ko, K1, . .., kn_1 in the field, and consider the function— kg + kix + - - - + kp_1x" 1.

Notes In [29], while introducing the Turing test, Turing discussed the claim that an

observer of mechanical behavior could always figure out the underlying rules of behavior.
He pointed out that a particular easily computable low-entropy random function seemed
to be unpredictable. Unfortunately the details of Turing’s example were never published.

A specific asymptotic form of Turing’s notion of unpredictability was introduced by
Goldreich et al. in [15], and studied further by Luby and Rackoff in [19]. The theorems
stated in [15] and [19], being purely asymptotic, are irrelevant to applied cryptography,
though the constructions underlying the theorems are useful.

Several recent papers by Bellare et al., including [7], [5], and [3], continue Turing’s
concrete study of unpredictability, taking constant factors and practical issues into ac-
count.

“Unpredictable” has several aliases in the literature: “cryptographically strong” (see
[26] or [15]), “cryptographically secure” (see [20]), and “pseudorandom” (see, e.g., [19]).
“Fixed-input/variable-input pseudorandom function” is used in [3] where | would say
“unpredictable random function on blogkeessages” respectively. | find it distasteful
to use “pseudorandom” to mean “passes all statistical tests”; for 50 years the standard
meaning of “pseudorandom” has been “passeBestatistical tests.” See [16], [10], [22],

[20], or page 950 of [21].

3. Proving Information-Theoretic Unpredictability

Let SandT be finite sets. Led;, 0, . . . , gm be distinct elements &. Arandom function
f from Sto T is within ¢ of uniform on {qi, Oo, ..., Om} if

1-—
PILF (G = 1. TG =20 F(Gm) =] = S

forevery(ry,ro, ..., rm) € TM.

Theorem 3.1. Let f be a random function from S to Assume that f is withia of
uniform on every set of size at mostlet A be an oracle algorithm that performs at
most n distinct oracle querie$hen the A-distance between f and uniform is at most

The run time ofA is irrelevant.

Proof. Write P;(E) for the probability ofE if A usesf as an oracle. Leg be a
uniform random function frons to T. This proof compare$; (E) with Py(E) for
various eventg.

Fixg = (q1,%,...,0m) € S"andr = (ry,ro,...,rm) € T™with g1, d2, .. ., Om
distinct andm < n. Define Xq,, as the event thdi(qg;) = r; for eachj, whereh is the
oracle used byA. By hypothesisP; (Xqr) > (1 — &) /#T™ = (1 — &) Py(Xqr).

Next defineYy, as the event that (1A prints 1; (2) A performs exactlym distinct
oracle queries; (3) for each the jth distinct query fromA is gj—i.e., g; is the first
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query,q is the first query different fronq,, etc.; and (4) for eacl, the oracle’s reply
tog; isr;.

The conditional probability ofY,, given X, is predetermined by, it does not
depend orh. Indeed, it is the chance thatdecides to day;, to doq, given (g, r1), to
dogs given(qy, r1, 02, r2), etc., and finally to stop and print 1 givéa, r, ..., Om, Fm)-
ThusPs (Yg,r) = (1 — &) Py(Yq,r).

The probability thatA prints 1 is the sum of th&,, probabilities over all possible
(q,r). Conclusion: Prp(f) = 1] > (1 — ¢) Pr[A(g) = 1] > Prl[A(g) = 1] — .
Similarly, Pr[A(f) # 1] > Pr[A(g) # 1] — . Thus theA-distance betweeffi andg is
at mosts. O

Theorem 3.1 can be generalized in several ways. It is not necessary to assughe that
is finite. It is also not necessary to limit the number of queries fignas long asf is
within ¢ of uniform on every possible set of queries.

4. Protected Counter Sums

Let f be a function from(b + c)-bit blocks to b-bit blocks. Let(ps, p2, ..., Px)
be a sequence dif-bit blocks, of lengthk between 0 and2— 1 inclusive. | define
fT(p1, P2, ..., px) as thecounter sum f(1, py) + (2, p2) +--- + f(k, px), and
f(p1, p2, ..., px) as theprotected counter sum f (0, f+(py, p2, ..., px)). Herei
means any convenient encodingi dhto ¢ bits, and+ is a convenient group operation
on b-bit blocks, such as exclusive-or.

The counters 1 ..,k hide input patterns. The surfi*(py, ..., px) is predictable
from its linear structure—if; is changed, the output difference is independermi.ef
butitis protected insidé (0, -), sSo an attacker cannot recognize output differences other
than 0.

Let A be an oracle algorithm. Consider the following oracle algorithimrun A,
answering a query farps, pz, . .., p) with h(0, h(1, p1) +h(2, p2) + - - - +h(k, p0),
whereh is the oracle forA'. Note thatA’ using f is the same a# using f'.

Theorem 4.1. Let f be arandom function frorgb + c¢)-bit blocks to b-bit blockd_et
A be an oracle algorithm that performs at most n distinct oracle quetiese be the
A-distance between’ ind uniform Let § be the A-distance between f and uniform
Thens > ¢ — (5)27°.

Thus ' is unpredictable iff is unpredictable. For example, K breaks suif with
probability over 2%, performing fewer than® oracle queries, thed' breaks sugf
with probability over 2°7. Hereb = 256.

Proof. Let g be a uniform random function frortb + c)-bit blocks tob-bit blocks.
Then§ is the A-distance betweeri’ andg’, since PriN(f) = 1] = Pr[A(f") = 1]
and PriA(g) = 1] = Pr[A(g) = 1]. By Theorem 5.3, thé\-distance betweeg’ and
uniform is at mos{(3)2". O
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Generalizations The crucial property off * is that it hascomputationally uniform
differences f*(p) — f*(d) appears to be uniform for any fixed distinct inpytsd.
See Theorem 5.1. In particuldr! (p) is almost never equal tb* (d). Unless the attacker
stumbles acrosp andd with f*(p) = f*(d), all his inputs tof (0, -) will be distinct,
so the outputs will appear to be independent.

The same functiorf = was used for authentication in [5]. The crucial property is again
that f ™ has computationally uniform differences. See Theorem 7 of [24].

There are alternatives tb* that are very fast for long messages amdvablyhave
almost uniform differences. See, for example, [24] and [28].

Other constructions The usual fixed-length-input chaining MAC, which magas p2, ps
to f (f(f(py)+ p2) + pa), is unpredictable wheffi is an unpredictable random function
on b-bit blocks. This was proven by Bellare et al. in [7].

Another available construction is cascading, proven unpredictable for fixed-length
inputs by Bellare et al. in [3]. Cascading, unlike chaining and protected counter sums,
demands a low-entropy random function.

Counter sums have several advantages over chaining and cascading, as noted in [5].
First, it is somewhat tricky to modify chaining and cascading to handle variable-length
inputs. Second, chaining and cascading appear to lose security for long messages; counter
sums do not. Third, chaining and cascading are inherently serial; counter sums can be
evaluated quickly for long messages by a parallel machine.

5. The Uniform Case

The proof of Theorem 4.1 reduces to Theorem 5.3, proven below.
In this section “message” means “sequence of fewer thdmit blocks.”

Theorem 5.1. Let g be a uniform random function frofh + c¢)-bit blocks to b-bit
blocks Let p and d be distinct messag@&®en g (p) — g™ (d) is uniform

Proof. Sayp = (p1, p2, ..., px) andd = (dy, dp, ..., d)). The point is that, among
g, py),..., a9k, pk), 9@, dy),...,gd, d), there is at least one term that is indepen-
dent of all the rest. Ik > | theng(k, py) isit. If k < | theng(, d) isit. If k = | and
pi # di theng(i, d)) is it.

That termis uniform. Thus the difference betwegh, p1)+9(2, p2)+- - -+ gk, p«)
andg(l, d;) + g(2, dp) + - -- + gd, d) is also uniform. O

Theorem 5.2. Let g be a uniform random function frofh + c)-bit blocks to b-bit
blocks Let ¢, ..., gm be distinct messageand let n, ..., ry, be b-bit blocks Then
g'(g;) = rj for all j with probability at least(1 — ()27°)2-™".

Proof. By Theorem 5.1g7(qi) = g*(qg;) with probability 2-° for fixedi # j. Thus

g (). ..., g7 (qm) are distinct with probability at least-1 (%) 2°. Assume that in fact
they are distinct; theg(0, g™ (q1)), - . ., 9(0, g™ (qm)) are uniform and independent, so
they equary, . .., rm with conditional probability 2™®. O
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Theorem 5.3. Let g be a uniform random function froth + c)-bit blocks to b-bit
blocks Let A be an oracle algorithm that performs at most n distinct oracle queries
Then the A-distance betweehagd uniform is at mosf))2".

Proof. Definee = (})27°. By Theorem 5.2¢’ is within ¢ of uniform on every set of
sizem < n, since()27° < e. Apply Theorem 3.1. O

Notes Lemma 3.1 of [7], which is analogous to Theorem 5.3, is proven in [7] with
several pages of analysis of various conditional probabilities. It would be easier to use
the “end-to-end” approachillustrated here, combining Theorem 3.1 with a bound similar
to Theorem 5.2.

6. An Attack

The bound})27" in Theorem 5.3 is almost optimal whenever it is smaller than, say, 1%.

Indeed, fixn < 2°, and fixn distinctb-bit blocksaqq, . . ., g.. Consider the following
algorithmA using an oraclé: feedqy, . .., g, toh; print Lifthe result$i(qy), . . ., h(gn)
are all distinct; otherwise print O.

If his an oracle for a uniform random function, then the redulitg) are distinct with
probability p, wherep = [o-y_,(1 — k27).

If, on the other handy is an oracle fog’, whereg is a uniform random function, then
the resulth(g) = g(0, g(1, gv)) are distinct with probabilityp?.

The A-distance betweeg’ and uniform is thusp — p?. Note that 1- x < p <
1—x+x?/2wherex = (5)27°; hencep— p? = p(1—p) = (1—X)(X—X?/2) = X(1—
X)(1 — x/2). Compare this lower bound with the upper bounckdfom Theorem 5.3.
If x < 1/100 then the two bounds are almost exactly the same.

Appendix. Basic Probability Theory

Probability theory considers a set Pr of possible universes. Pr is a probability space, i.e.,
a measure space of total measure 1. For an introduction to measure theory see, e.g., [25].
An eventis a measurable subset of Pr. The measure of an dventcalled the
probability of E, written Pr[E]. For example, flip a fair coin. LeE be the event that the
coin comes up heads, i.e., the set of universes in which the coin comes up heads. Fairness
means that the measure Bf—the probability that the coin comes up heads—/2.1
Let E andC be events, with the probability 6 nonzero. Theonditional probability
of E givenC is the probability ofE N C divided by the probability o€.

Random variablesLet X be a measurable spacer@ndom element of X is a measur-
able function from Pr toX. If the elements oK are “objects” then “random element of
X" is abbreviated as “random object.”

Let v be a random element of. Thedistribution of v is the measure oKX induced
by v. Under this measureX is a probability space. For example, the result of a fair coin
flip is a random element of the sfiteadstails}, with distribution /2 heads, 12 tails.
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A random element oK can be used in a formula as if it were an elemenkoff v
is a random element of, andy is a measurable function froxito Y, theng(v)—i.e.,
the composition o andv—is a random element &f.

Letvq, vo, ..., vy berandom elements of various sets. If the distributiamafv,, . . .,
vp) is the product measure induced by the distribution of eathenvy, v, ..., v, are
independent

Uniform random variables Theuniform distribution on a finite setX is the measure
assigning value #X to each element oK. A random element oK is uniform if its
distribution is uniform. For example, a uniform random 4-bit string is a random 4-bit
string that takes each possible value with probabiljty6l

Let SandT be sets, withT finite. Let X be the set of functions frorBto T. The
uniform distribution on X is the product measure induced by the uniform distribution on
T. (ForfiniteX thisis the same as the uniform distribution defined abovs.) %, . . . , s,
are distinct elements @&, andty, t, . .., t, are elements of , then a uniform random
functiong: S — T satisfiesg(s;) = t1, 9(2) = to, ..., 9(SK) = t, with probability
1/#T".
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