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Abstract. The complexity of breaking cryptosystems of which security is based on
the discrete logarithm problem is explored. The cryptosystems mainly discussed are the
Diffie–Hellman key exchange scheme (DH), the Bellare–Micali noninteractive obliv-
ious transfer scheme (BM), the ElGamal public-key cryptosystem (EG), the Okamoto
conference-key sharing scheme (CONF), and the Shamir 3-pass key-transmission scheme
(3PASS). The obtained relation among these cryptosystems is that

3PASS≤FP
m CONF≤FP

m EG≡FP
m BM≡FP

m DH,

where≤FP
m denotes the polynomial-time functionally many-to-one reducibility, i.e., a

function version of the≤p
m-reducibility. We further give some condition in which these

algorithms have equivalent difficulty. One of such conditions suggest another advantage
of the discrete logarithm associated with ordinary elliptic curves.

Key words. Cryptosystem, Computational number theory, Discrete logarithm, Elliptic
curves, Key exchange, Public-key cryptography, Randomness, Security.

1. Introduction

1.1. Motivation

The discrete logarithm problem, DLP for short, is the problem that on inputy, g ∈ G,
outputs an integerx such thaty = gx, whereG is some finite group with efficiently
computable group law. A cryptosystem based on DLP is secure if the DLP is hard to

∗ A preliminary version of this paper was presented at Eurocrypto ’95, Saint-Malo, 25 May 1995.
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solve. A typical DLP is the case whereG = Z∗p with p prime. In 1976, Diffie and
Hellman [6] first proposed a key exchange scheme that is thought to be secure if the DLP
overZ∗p is hard to solve. A lot of cryptosystems based on DLP have been proposed to
construct a public-key cryptosystem, an oblivious transfer protocol, a key-transmission
scheme, a zero-knowledge proof of possession of information, and so on. It is clear that
all these cryptosystems would no longer be secure if there were an efficient algorithm to
solve the DLP, but no such algorithm is known to exist (see, e.g., [4] and [15]). However,
it is worth noting that the converse does not generally hold, i.e., it is not known that
a polynomial-time algorithm to crack one of these cryptosystems implies feasibility of
the DLP. Recently, great progress has been made by Maurer toward the equivalence
of the DLP and breaking the Diffie–Hellman scheme [11], but the equivalence is not
known to hold without assumption. Therefore, in general, all these cryptosystems could
be breakable without solving the DLP.

In this paper, instead of studying whether there exists a cracking algorithm for cryp-
tosystems without breaking DLP, we investigate the relation among such cryptosystems.
Let S1 andS2 be two cryptosystems both based on some DLP. Our interest is whether
S1 remains secure even if a polynomial-time algorithm to breakS2 has been found, and
vice versa. Although such discussion appears to be essential in clarifying the security
level of the cryptosystem, we know little about that, surprisingly.

1.2. Summary of Results

Let us denote the problems of breaking the Diffie–Hellman key exchange scheme by
DH, the Bellare–Micali noninteractive oblivious transfer scheme [1] byBM, the ElGamal
public-key cryptosystem [7] byEG, the Okamoto conference-key sharing scheme [17] by
CONF, and the Shamir 3-pass key-transmission scheme [25], [21] by3PASS, respectively.

We first show a relationship among these cryptosystems that

3PASS≤FP
m CONF≤FP

m EG≡FP
m BM≡FP

m DH,

where≤FP
m denotes the polynomial-time functionally many to one reducibility. We further

give some condition in which these algorithms are equivalent with respect to certain
reductions. Namely,

1. If the complete factorization ofp − 1 is given, i.e., if the the discrete logarithm
problem is a certified one, then these cryptosystems are equivalent with respect
to expected polynomial-time functionally Turing reduction, i.e.,3PASS ≡FEP

T
CONF≡FEP

T EG≡FP
m BM≡FP

m DH.
2. If the underlying group is the Jacobian of an ordinary elliptic curve overZp with a

prime order, then these cryptosystems are equivalent with respect to polynomial-
time functionally many-to-one reduction, i.e.,3PASS ≡FP

m CONF≡FP
m EG ≡FP

m
BM≡FP

m DH.

We will also investigate the complexity of languages associated with these problems.
Let L3PASS be the language associated with3PASSdefined as

L3PASS= {((A, B,C, p), s) | 3PASS(A, B,C, p) = s},
i.e., its membership problem is to recognize that thes is a correct answer to the instance
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(A, B,C, p) of 3PASS. AlthoughL3PASS is not known to be inP orBPP, we show that
if L3PASS is in P, there is a probabilistic polynomial-time algorithm that reducesDHto
3PASS. Thus, if L3PASS is in P, all the problems to crack these cryptosystems become
equivalent.

In the same way, letLDH be the language associated withDHdefined as

LDH= {((A, B, g, p),C) | DH(A, B, g, p) = C}.

Although LDH is not known to be inP or BPP as observed in [2], we show thatLDH

is random self-reducible in the sense of [27], and thereforeLDH is inPZK, the class of
languages that have perfect zero-knowledge proof systems.

1.3. Computational Complexity, Communication Complexity,
and Cryptographic Functions

Strength of complexity assumption is an important measure of the security of crypto-
graphic protocols. Impagliazzo and Rudich [8], in fact, presented evidence that secure se-
cret key agreement protocols require stronger complexity assumption than the existence
of one-way permutations. Namely, if there exists a secure secret key agreement protocol
which uses one-way permutations as a black box, thenP 6= NP. While Impagliazzo
and Rudich investigated the gap among several cryptographic primitives under the more
general complexity assumptionP 6= NP, this paper explores the relation among cryp-
tographic primitives under a number-theoretic assumption on the hardness of computing
the discrete logarithms.

A cryptographic protocol often requires a number of interactions. Rudich [22] con-
structed an oracle relative to which secret agreement can be done ink passes, but not
in k − 1, and showed that there exists a 3-pass system based on an assumption which
seems to be weaker than the existence of trapdoor functions.

We should note that the schemes discussed in this paper perform different functions and
require a different number of interactions. Thus the results of this paper reveal relation-
ships among computational complexity assumptions, round complexity, and functions
of cryptographic protocols based on the discrete logarithms.

2. Preliminaries

2.1. Cryptosystems Based on DLP

We give a brief review of the cryptosystems considered in this paper. All these are based
on the discrete logarithm problem (DLP). We restrict ourselves to the case where the
underlying group isZ∗p with p prime. It is reasonable to make this restriction because
the cryptosystems involved all make this restriction. Thus, the DLP is now the problem
that on inputy, g, p, outputsx such thaty ≡ gx (mod p). Hereg does not necessarily
generateZ∗p. For notational convenience, we will simply writegx rather thangx mod p,
etc.

We will refer to Alice and Bob as two parties, respectively, that follow the scheme
and communicate with each other.
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Diffie–Hellman Key Exchange Scheme[6]

Alice and Bob agree onp and the baseg ∈ Z∗p before starting their communication.
Alice picksa randomly fromZp−1, computesA = ga, and sendsA to Bob. Bob picksb
randomly fromZp−1, computesB = gb, and sendsB to Alice. Alice computesC = Ba

and Bob computesC = Ab.

Bellare–Micali Noninteractive Oblivious Transfer Scheme[1]

Alice and Bob agree onp and the baseg ∈ Z∗p and someC ∈ Z∗p. Bob randomly picks
i ∈ {0, 1} and xi ∈ Zp−1, and setsβi = gxi andβ1−i = C · (gxi )−1. Bob publishes
(β0, β1) as his public key whereas he keeps(i, xi ) as his secret key. Suppose Alice wants
to send Bob one of the strings(s0, s1) in an oblivious transfer manner. Alice picks at
randomy0, y1 ∈ Zp−1 and sendsα0 = gy0, α1 = gy1 to Bob. Alice then computes
γ0 = β

y0
0 andγ1 = β

y1
1 , and sendsr0 = s0 ⊕ γ0 andr1 = s1 ⊕ γ1 to Bob, where⊕

designates the bitwise addition mod 2.
On receivingα0 andα1, Bob uses his secret key to computeαxi

i = γi . He then computes
γi ⊕ ri = si .

ElGamal Public-Key Cryptosystem[7]

Bob setsg ∈ Z∗p as the base, picksx ∈ Zp−1 at random, and computesy = gx.
Bob publishesy, g, p as his public key whereas he keepsx as his secret key. Suppose
Alice wants to send a stringm to Bob. Alice picksr ∈ Zp−1 at random, computes
C1 = gr ,C2 = myr and sends(C1,C2) to Bob. On receiving(C1,C2), Bob uses his
secret key to computem= C2/(C1)

x.

Okamoto Conference-Key Sharing Scheme[17]

Alice and Bob agree onp and the baseg ∈ Z∗p before starting their communication.
Alice picksa randomly fromZ∗p−1, computesA = ga, and sendsA to Bob. Bob picksb

randomly fromZp−1, computesB = Ab, and sendsB to Alice. Alice computesC = Ba−1

and Bob computesC = gb.
We will note that the established key depends only on Bob’s randomnessb. Thus

Bob can decide the value of the keygb by himself although Bob cannot send a message
directly. This property has an advantage over the Diffie–Hellman key exchange scheme
in the case of a conference-key sharing scheme for multiple users [17].

Shamir3-Pass Message Transmission Scheme[25]

This is also called the Massey–Omura cryptosystem (see, e.g., [10]), and originally
proposed as a tool for mental poker by Shamiret al. [25], [21]. Alice and Bob agree on
p before their communication. Suppose Alice wants to send a string (message)s to Bob.
Alice picksa ∈ Z∗p−1 at random, computesA = sa, and sendsA to Bob. On receivingA,
Bob picksb ∈ Z∗p−1 at random, computesC = Ab, and sendsC to Alice. On receiving

C, Alice uses her secreta to computeB = Ca−1
and sendsB to Bob. On receivingB,

Bob uses his secretb to computes= Bb−1
.
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Remark 2.1. Shamir’s 3-pass key transmission scheme is useful not only for secret
message transferring but also for an oblivious transfer [19]. An oblivious transfer is a
protocol satisfying the following three conditions:

1. Alice can send any messagem0 or m1;
2. Bob gets only one of messagem0 or m1; and
3. Alice cannot know which message,m0 or m1 Bob obtains.

However, certain attacks (on the third condition above) were pointed out (e.g., [3]).
Shamiret al. [25], [19] applied the protocol above into shuffling cards together among
two parties in an electronic poker game. Thus, we consider that the Shamir’s 3-pass is a
more functional protocol than an oblivious transfer. The protocol is as follows:

Before starting the protocol,A (Alice) andB (Bob) agree on a primep.

1. For two messagem0 andm1, A randomly picksa ∈ Z∗p−1, computesα0 = m0
a

andα1 = m1
a, and sends(α0, α1) to B.

2. B picks e ∈ {0, 1} and randomly selectsb ∈ Z∗p−1, then computesβ = αb
e, and

sendsβ to A.
3. A computesγ = βa−1

, and sends it toB.
4. B obtainsme by computingγ b−1

.

2.2. Definitions of Problems

We give the formal definitions of the problems to crack the cryptosystems considered
in this paper. These problems will be formalized as something like functions from some
tuple of6∗’s to 6∗, where6∗ is the set of all possible strings over the finite alphabet
6 = {0, 1}.

DLP(y, g, p) is the problem that on inputp prime andy, g ∈ Z∗p, outputsx ∈ Zp−1

such thaty = gx if such anx exists.
DH(A, B, g, p) is the problem that on inputp prime andA, B, g ∈ Z∗p, outputs

C ∈ Z∗p such thatC = gab, A = ga, andB = gb if such aC exists.
BM((α0, α1), (r0, r1),C, (β0, β1), g, p) is the problem that on inputp prime and
α0, α1, r0, r1, C, β0, β1, g ∈ Z∗p with β0β1 = C, outputs one of(s0, s1) such
thatsi = γi ⊕ ri , γi = gxi yi , αi = gyi , βi = gxi if such ansi exists (i = 0 or 1).

EG(C1,C2, y, g, p) is the problem that on inputp prime andC1,C2, y, g ∈ Z∗p,
outputsm ∈ Z∗p such thatC2 = mgxr , y = gx, C1 = gr if such anm exists.

CONF(A, B, g, p) is the problem that on inputp prime andA, B, g ∈ Z∗p, outputs
C ∈ Z∗p such thatA = ga wherea ∈ Z∗p−1, B = Ab, whereb ∈ Zp−1, andC = gb

if such aC exists.
3PASS(A, B,C, p) is the problem that on inputp prime andA, B,C ∈ Z∗p, outputs

s such thatA = sa, B = sb, C = sab, anda, b ∈ Z∗p−1 if such ans exists.

The functions above always return a correct answer if there is a solution to the query.
However, there is no mention of the behavior in the case when there is no solution to the
query. However, we consider stronger functions which output⊥ if there are no solutions,
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where⊥ is the special string to designate the status that the function has no returnable
value (Theorem 3.3).

2.3. Reducibility

In order to compare the relative complexity of different functions, we use the concept
of reducibility. Intuitively a function f is reducible to another functiong if the value of
the first functionf is computed by an algorithm which uses an algorithm for the second
functiong as a subroutine. We will consider three types of such reducibilities based on
the types of subroutines.

Definition 2.2. A function f is polynomial-time functionally Turing reducible to a
functiong (in symbols f ≤FP

T g) if a polynomial-time oracle Turing machine with access
to values ofg can computef . Regarding the complexity of such a algorithm we suppose
that the cost of one calling the oracleB is just one step.

Definition 2.3. A function f is expectedpolynomial-time functionally Turing re-
ducible to a functiong (in symbols f ≤FEP

T g) if an expected polynomial-time oracle
Turing machine with access to values ofg can computef . (Note. We say that a machine
M is expected polynomial-timeif there exists ane> 0 such that, for allx ∈ {0, 1}∗, the
expectation, taken over the infinite bit sequencesr , of (tM(x, r ))e is bounded above by
|x| (i.e., E((tM(x, r ))e) ≤ |x|).)

Definition 2.4. A function f is polynomial-time functionally many-to-one reducible
to a functiong (in symbolsf ≤FP

m g) if there exists a pair of polynomial-time computable
functionsh1, h2 such that for every input stringx, f (x) = h2(g(h1(x))).

3. Main Results

3.1. Relationships Among the Cryptosystems

We first show the following relation among these cryptosystems.

Theorem 3.1. 3PASS≤FP
m CONF≤FP

m EG≡FP
m BM≡FP

m DH≤FP
m DLP.

Proof. Since it is clear thatDH≤FP
m DLP, we show that3PASS≤FP

m CONF, CONF≤FP
m

EG, EG ≡FP
m DH, andBM≡FP

m DH.

3PASS≤FP
m CONF:

Let (A, B,C, p) = (sa, sb, sab, p) be an instance of3PASS.

3PASS(A,B,C,p) = CONF(C,A,B,p) = CONF((sb)a, (sb)b
−1a, sb, p) = (sb)b

−1 = s.

CONF≤FP
m EG:

Let (A, B, g, p) = (ga, gab, g, p) be an instance ofCONF.

CONF(A, B, g, p) = 1

EG(g, 1, gab, ga, p)
.
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EG≤FP
m DH:

This is a trivial reduction. Let(C1,C2, y, g, p) = (gr ,mgxr , gx, g, p) be an instance of
EG. Since the oracleDHreturnsgxr to the query(C1, y, g, p),m is immediately computed
by m= C2/gxr .

DH≤FP
m EG[18]:

Let (A, B, g, p) = (ga, gb, g, p) be an instance ofDH. gab is the inverse of the answer
of the oracleEGto the query(A, 1, B, g, p).

BM≡FP
m DH[16]:

It is not hard to see thatBM≤FP
m DH becauseDH returnsγi = gxi yi to the query

(αi , βi , g, p), and si is computed bysi = γi ⊕ ri . Conversely, for(A, B, g, p) =
(ga, gb, g, p), an instance ofDH, we let

((α0, α1), (r0, r1),C, (β0, β1), g, p) = ((A, A), (0, 0), B2, (B, B), g, p).

Since we setr0 = r1 = 0, the oracleBM((A, A), (0, 0), B2, (B, B), g, p) returnssi =
ri ⊕ γi = 0⊕ gab = gab, no matter which valuei takes.

This completes the proof.

Remark 3.2. The recent published textbook by Stinson [26] gives the theorem on “EG
≡FP

m DH” with a proof.

We do not know ifDH≤FP
m 3PASS. However, if we consider more strong cracking

algorithms which answer the special symbol “⊥” when there is no solution to the instance,
we obtain a further result. Consider the following function:

3PASS?(A, B,C, p) is the problem that on inputp prime and A, B,C ∈ Z∗p,
outputss such thatA = sa, B = sb, C = sab, anda, b ∈ Z∗p−1 if such ans
exists. Otherwise, it outputs⊥.

Theorem 3.3. DH≤FEP
T 3PASS?.

Proof. Let (A, B, g, p) = (ga, gb, g, p) be an instance ofDH. We transform it into an
instance of3PASS? by

(Agu, Bgv, g, p) = (ga+u, gb+v, g, p),

whereu andv are randomly picked fromZp−1. We show that if3PASS?(ga+u, gb+v, g, p)
returnss other than⊥, thens = g(a+u)(b+v). Once thiss is obtained, the output of
DH(A, B, g, p) is computed asgab = g(a+u)(b+v)/(AvBuguv).

If the oracle returnss, it satisfies that for someα, β ∈ Z∗p−1,

sα = ga+u, sβ = gb+v, sαβ = g.

Thus, overZord(g),

rα = a+ u, rβ = b+ v, rαβ = 1,
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where ord(g) designates the order ofg, andr is an element inZord(g) such thats = gr

mod p. Then, we have that(a + u)(b+ v) = r 2αβ = r (rαβ) = r . Thus,s = gr =
g(a+u)(b+v). Note thatrαβ = 1 mod ord(g) implies thatr, α, β ∈ Z∗ord(g), and botha+ u
andb+ v are inZ∗ord(g).

Conversely, if no suchr, α, β exist, the oracle returns⊥. Therefore, anotheru, v ∈
Zp−1 should be picked, and this is repeated until the oracle returns a string other than⊥.

To summarize, the Algorithm 1 namedDHto3PASS solvesDH using the oracle
3PASS?.

%Algorithm 1
% DHto3PASS
input A, B, g, p
s :=⊥
while (s=⊥) do

pick u, v ∈ Zp−1 at random
A′ := Agu; B′ := Bgv

s := 3PASS?(A′, B′, g, p)
end while
C := s/(AvBuguv)

outputC
end

Now we estimate how many times the while-statement is repeated. The probabilityρ

that the oracle returns a string other than⊥ to a query is the probability that botha+ u
andb+ v are inZ∗ord(g), which is greater than or equal to the probability that botha+ u
andb+ v are inZ∗p−1. Thus,ρ ≥ (ϕ(p− 1)/(p− 1))2, whereϕ is the Euler’s totient
function. Sinceϕ(n) ≥ ln(2)·n/ln(2n) for a positive integern [20], the expected number
of repetition of the while-statement is less than(ln(2(p−1))/ln(2))2, which is bounded
by a polynomial in|p|. Thus,DHreduces to3PASS? in probabilistic polynomial-time.

This completes the proof.

Remark 3.4. The Algorithm 1 above does not give the answer “⊥” even when the input
of DHhas no solution. So, we do not know ifDH?≤FEP

T 3PASS?. However, we can obtain
a polynomial-time reduction fromDH? to 3PASS? with one-sided error by terminating
the algorithmDHto3PASS within a suitable step, as shown in Algorithm 2.

%Algorithm 2
% DHto3PASSwith one-sided error
input A, B, g, p
s :=⊥; C :=⊥; i := 1
T := q(|p|) %some polynomial in|p|
while ([s=⊥] ∧ [i ≤ T ]) do

pick u, v ∈ Zp−1 at random
A′ := Agu; B′ := Bgv
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s := 3PASS?(A′, B′, g, p)
i := i + 1

end while
if s 6=⊥, thenC := s/(AvBuguv)

outputC
end

We do not know ifDH≡ DH? or 3PASS ≡ 3PASS? because there are no known
efficient algorithms to check the answers of these cracking algorithmsDHand3PASS.
Nevertheless, we show thatDHis reducible to3PASSover some special discrete loga-
rithms.

3.2. The Case of Certified Discrete Logarithms

First we show that if the complete factorization ofp−1 is given and the base is a generator
of Z∗p, i.e., if the discrete logarithm problem is a certified one, there is a probabilistic
polynomial-time algorithm that solvesDHusing3PASSas an oracle. This reducesDHto
3PASS, and the above reductions become equivalent.

Theorem 3.5. If the complete factorization of p−1 with p prime is given and the base
g is a generator ofZ∗p,

DH≤FEP
T 3PASS.

Proof. In the proof of Theorem 3.3, we have shown thatDHreduces to3PASS?, where
3PASS? is an algorithm which returns a special symbol “⊥” if and only if there is no
solution. Now we consider a weaker algorithm which returns any polynomially bounded
string instead of⊥. However, this happens if eithera+ u or b+ v is not inZ∗p−1. Thus,
if we restrict ourselves to the query such that botha + u andb+ v are inZ∗p−1, and
if the instance ofDHis appropriate, then the answer from the oracle is always correct.
Therefore, we modify the algorithmDHto3PASS as shown in Algorithm 3.

%Algorithm 3
% DHto3PASSfor CertifiedDLP
input A, B, g, p = pe0

0 pe1
1 · · · pek

k + 1
d := false
while (d = false ) do

pick u, v ∈ Zp−1 at random
X := Agu; Y := Bgv

d :=
[

k∧
i=0

X(p−1)/pi 6= 1

]
∧
[

k∧
i=0

Y(p−1)/pi 6= 1

]
end while
s := 3PASS(X,Y, g, p)
C := s/(AvBuguv)

outputC
end
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Here,d = true if and only if both X andY are generators ofZ∗p, which implies
that botha+ u andb+ v are inZ∗p−1. The expected number of repetition of the while-
statement is bounded by(ln(2(p− 1))/ln(2))2, which is also bounded by a polynomial
in |p|.

den Boer [5] showed that the Diffie–Hellman problem is as strong as the discrete
logarithms for certain primes. It is remarkable that Maurer [11] made this result stronger
to cover generic cyclic groups. Letϕ(N) be the order of the groupZ∗N .

Theorem 3.6[5] (see also [11]). If ϕ(p− 1) is smooth, i.e., it consists of small prime
factors with respect to a fixed polynomial in q(|p|), thenDLP≤FEP

T DH.

We should note that our reductions keep the modulus, then the following is induced.

Corollary 3.7. Suppose thatϕ(p−1) is smooth, i.e., it consists of small prime factors
with respect to a fixed polynomial in q(|p|). If the complete factorization of p− 1 with
p prime is given and the base g is a generator ofZ∗p, then

3PASS≡FEP
T CONF≡FEP

T EG≡FEP
T BM≡FEP

T DH≡FEP
T DLP.

3.3. The Case of Elliptic Discrete Logarithms

Next we consider these cryptosystems based on the elliptic-curve discrete logarithm
problem [9], [13], denoted byEDLP.

Here we briefly review theEDLP. Let C(a, b)p be an elliptic curve defined overZp,
wherep prime 6= 2, 3, with parametersa, b ∈ Zp, that is,

C(a, b)p = {(x, y) ∈ Zp × Zp | [y = x3+ ax+ b] ∧ [a, b ∈ Zp]

∧[4a3+ 27b2 6≡ 0 (mod p)]} ∪ {O},

where O is the point at infinity. The Jacobian ofC(a, b)p, which happens to be the
same asC(a, b)p, forms an abelian group. TheEDLP is the problem that on input a
point Q ∈ C(a, b)p and the base pointP ∈ C(a, b)p, outputsm such thatQ = m P if
such anm exists. Here, we denote bym P them-time addition of the pointP. The order
of C(a, b)p, denoted by #C, is computed in time polynomial in|p| [24]. The order is
bounded as−2

√
p ≤ #C(a, b)p − (p+ 1) ≤ 2

√
p.

The elliptic curveC(a, b)p defined overZp is said to be supersingular if and only if
#C(a, b) = p+ 1. Nonsupersingular elliptic curves are called ordinary. Thus an elliptic
curve group with prime order is ordinary and simple, where by a simple group we mean
that there is no nontrivial normal subgroup inC(a, b)p. If C(a, b)p is supersingular, the
EDLPreduces in probabilistic polynomial-time to a discrete logarithm problem over the
multiplicative group of a certain extension field ofZp [12]. However, no such reduction
algorithm is known to exist for elliptic-curve groups with prime order [14].

It is not hard to see all the cryptosystems considered in this paper can actually be con-
structed overC(a, b)p as analogues of those overZ∗p, and the reductions shown in Theo-
rem 3.1 also hold for theEDLP-based systems. LetDHE (resp.BME,EGE,CONFE, 3PASSE)
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designate theEDLP-basedDH(resp.BM, EG, CONF, 3PASS) problem. We have the fol-
lowing theorem.

Theorem 3.8. If the cryptosystems are based on the discrete logarithm problem whose
underlying group is the Jacobian of an elliptic curve defined overZp with prime order,
then

3PASSE ≡FP
m CONFE ≡FP

m EGE ≡FP
m BME ≡FP

m DHE.

Proof. As Theorem 3.1, it is easily seen that3PASSE ≤FP
m CONFE ≤FP

m EGE ≡FP
m BME

≡FP
m DHE. Thus, it suffices to show thatDHE ≤F P

m 3PASSE. Let E be an elliptic curve
defined overZp with p prime 6= 2, 3, and let #E = q with q prime. For an instance
(A, B, P, E, p) = (aP, bP, P, E, p) of DHE, if A 6= O andB 6= O, then botha and
b are units inZq. This is becauseE is simple. Thus, the oracle3PASSE always returns
the correct answer to a query(A, B, P, E, p). Hence,DHE ≤F P

m 3PASSE.

There is little known research on the distribution of the prime-order elliptic curves
over all elliptic curves. A construction of the prime-order elliptic curves is also studied
in [14], and finding more efficient algorithms to construct such ordinary elliptic curves is
an interesting future topic. Thus, the previously known merit of ordinary elliptic curves
overZp is just that it is immune from the attack by [12]. Our theorem above is based
on another interesting property of ordinary prime-order elliptic curves overZp that any
nonzero element has the inverse.

3.4. Languages Associated with the Cryptosystems

We return to the cryptosystems based onDLPdefined overZ∗p.
Associated with the problemsQ, we define the languageLQ by

LQ= {(x, y)| Q(x) = y},

whereQis one ofDLP, DH, BM, EG, CONF, or3PASS. The problem to decide membership
in LQ is to recognize thaty is an answer to the instancex of Q. This language is also
known as the graph ofQwhenQ is regarded as a function. Clearly, these languages are
in NP ∩ co-NP. Indeed,LDLP is inP. However, it is not known that one ofLDH, LBM,
LEG, LCONF, or L3PASS is inP orBPP. The same observation onLDHcan also be found in
[2]. Thus, there may be a reduction sequence among these languages which is different
from the reductions given in Theorem 3.1, though, at the moment, no reductions among
LDH, LBM, LEG, LCONF, andL3PASS are known.

One connection to the reductions among the cracking problems is shown in the fol-
lowing.

Theorem 3.9. If L 3PASS is inP, DH≤FEP
T 3PASS.

Proof. We exploit Algorithm 1 in the proof of Theorem 3.3 which reducesDH to
3PASS∗. Note that3PASS∗ returns⊥ when there is no solution to the instance, whereas
3PASSdoes not. However, one can now check in deterministic polynomial time that the
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value returned from3PASSis correct because by the assumption,L3PASS is in P. As a
slightly modified version of Algorithm 1, the Algorithm 4 shown below reducesDHto
3PASSin expected polynomial time.

%Algorithm 4
input A, B, g, p
d := false
while (d = false ) do

pick u, v ∈ Zp−1 at random
A′ := Agu; B′ := Bgv

s := 3PASS(A′, B′, g, p)
d := [((A′, B′, g, p), s) ∈ L3PASS]

end while
C := s/(AvBuguv)

outputC
end

This completes the proof.

Also we obtain

Corollary 3.10. If L 3PASS is inP, then3PASS≡FEP
T CONF≡FEP

T EG≡FP
m BM≡FP

m DH.

The corollary above gives a characterization of the complexity ofL3PASS, i.e.,L3PASS

in not inP if one of these equivalence relationships fails to hold. Note that, at present,
assumingL3PASS ∈ P is not known to be related to the assumptions in Maurer’s work
[11] on the equivalence ofDLPandDH.

The following theorem implies thatLDH has a perfect zero-knowledge interactive
proof.

Theorem 3.11. The language LDH is random self-reducible in the sense of[27].

Proof. For an instance((A, B, g, p),C), let A′ = Agr , B′ = Bgs, andC′ = C AsBr grs

to make another instance((A′, B′, g, p),C′), wherer ands are randomly picked from
Zp−1. Note that if A = ga, B = gb, andC = gab, then A′ = ga+r , B′ = gb+s, and
C′ = g(a+r )(b+s). Hence, the distribution ofA′ (resp.B′,C′) is exactly the same as that
of A (resp.B,C). It is clear that if((A′, B′g, p),C′) is in LDH, so is((A, B, g, p),C).
This impliesLDH is random self-reducible.

3.5. Single-Use Versus Multiple-Use in Cryptosystems

Consider the situation that we use the Shamir 3-pass scheme for transferring the same
messages many times. In such a case, an adversary can get more information than
single transfer. We discuss the relative security between single-use and multiple-use in
the cryptosystem. So, we formulate the followingk-3PASSproblem:
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k-3PASS is the problem that on inputp prime andA1, B1,C1, . . . , Ak, Bk,Ck,∈
Z∗p, outputss such thatAj = saj , Bj = sbj , Cj = saj bj , andaj , bj ∈ Z∗p−1

( j = 1, . . . , k) if such ans exists.

We show that multiple use is as secure as single use.

Theorem 3.12. For any fixed k≥ 1, 1-3PASS(= 3PASS) ≤FP
m k-3PASS.

Proof. Let (A, B,C, p) be an instance of 1-3PASS. Pick (u1, v1), . . . , (uk, vk) ∈
Z∗p−1× Z∗p−1 at random. Put

Ai = Aui , Bi = Bvi , Ci = Cui vi (1≤ i ≤ k).

Then, ((A1, B1,C1, p), . . . , (Ak, Bk,Ck, p)) is an instance ofk-3PASS. 1-3PASS
(A, B,C, p) is computed as

1-3PASS(A, B,C, p) = k-3PASS((A1, B1,C1, p), . . . , (Ak, Bk,Ck, p)).

The theorem above suggests a role of the randomness of each party in the scheme. The
same property holds in some other cryptosystems, namelyk-EGandk-CONFdefined as
follows:

k-EG is the problem that on inputp prime andC11,C21, . . . ,C1k,C2k, y, g ∈ Z∗p,
outputsm ∈ Z∗p such thatC2 j = mgxrj , y = gx, C1 j = gr j ( j = 1, . . . , k) if
such anm exists.

k-CONFis the problem that on inputp prime andA1, . . . , Ak, B, g ∈ Z∗p, outputs
C ∈ Z∗p such thatA = gaj where aj ∈ Z∗p−1, B = Ab

j where b ∈ Zp−1

( j = 1, . . . , k), andC = gb if such anC exists.

Theorem 3.13. For any fixed k≥ 1, 1-EG(= EG) ≤FP
m k-EG.

Proof. Let (C1,C2, y, g, p) be an instance of 1-EG. We show that for anyk ≤ q(|p|)
with q polynomial, this can be transformed into an instance ofk-EGin polynomial-time.
First, picku1, . . . ,uk ∈ Zp−1 at random. Then, put

C1i = C1gui , C2i = C2yui (1≤ i ≤ k).

SinceC1i = gr+ui andC2i = mgx(r+ui ), we now have an instance ofk-EGas

((C11,C21, y, g, p), . . . , (C1k,C2k, y, g, p)).

Then

1-EG(C1,C2, y, g, p) = k-EG((C11,C21, y, g, p), . . . , (C1k,C2k, y, g, p)).

Okamoto [17] observed such a property in his scheme.

Theorem 3.14[17]. For any fixed k≥ 1, 1-CONF(= CONF) ≤FP
m k-CONF.
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4. Concluding Remarks

We have given the reductions among the problems to break some cryptosystems based
on the discrete logarithms overZ∗p (Theorem 3.1). Specifically, we have shown that these
problems are equivalent under the stronger function model (Theorem 3.3), although none
of them is known to be equivalent to the discrete logarithm problem itself.

We have also shown that the equivalence occurs if the discrete logarithm problem is a
certified one overZ∗p (Theorem 3.5), or if it is the elliptic-curve discrete logarithm prob-
lem associated with an ordinary elliptic curve defined overZp (Theorem 3.8). Therefore,
if one cryptosystem is breakable, so are the others. This means that if one wants to crack
one of the cryptosystems, there are several possible approaches to the algorithm for
breaking the target cryptosystem. However, this also implies that one cryptosystem is as
secure as the others, namely, the provable security of the cryptosystems. Although those
theorems can be interpreted in two ways as above, it is true that they give an interesting
aspect of the cryptosystems based on the certified discrete logarithm or the ordinary
elliptic-curve discrete logarithm.

Further, we have defined some languages associated with those problems. We have
pointed out that each language to recognize the correct answer of the problem is not
known to be inP, whereas the language corresponding to the discrete logarithm problem
is inP. Some questions remain open:

• DoesL3PASS reduce toLDH with respect to≤p
T -reducibility?

• DoesLDH reduce toL3PASS with respect to≤p
T -reducibility?

• DoesL3PASS have a perfect zero-knowledge interactive proof?

Acknowledgments

We would like to thank the following people. Toshiya Itoh pointed out a flaw of a math-
ematical formula in an earlier version of this paper. Kojiro Kobayashi gave us invaluable
comments on the (non-)transitivity of randomized reducibilities. Motoji Ohmori helped
us improve the proof for the equivalence ofBMandDH. Tatsuaki Okamoto informed
us of his conference-key sharing scheme discussed in his Ph.D. thesis. The anonymous
referees gave us many helpful comments on this paper.

References

[1] Bellare, M. and Micali, S., Non-interactive oblivious transfer and applications, In:Advances in
Cryptology—Crypto ’89, Lecture Notes in Computer Science, vol. 435, Springer-Verlag, Berlin, pp. 547–
557, 1990.

[2] Brands, S., An efficient off-line electronic cash system based on the representation problem, CWI Tech-
nical Report CS-R9323, April 1993.

[3] Coppersmith, D., Cheating at mental poker,Advances in Cryptology—Crypto ’85, Lecture Notes in
Computer Science, vol. 218, Springer-Verlag, Berlin, pp. 104–107, 1986.

[4] Coppersmith, D., Odlyzko, A. M., and Schroeppel, R., Discrete logarithms inGF(p), Algorithmica,
vol. 1, pp. 1–15, 1986.

[5] den Boer, B., Diffie–Hellman is as strong as discrete log for certain primes,Advances in Cryptology—



A Structural Comparison of the Computational Difficulty of Breaking Discrete Log Cryptosystems 43

Eurocrypt ’88, Lecture Notes in Computer Science, vol. 403, Springer-Verlag, Berlin, pp. 530–539,
1990.

[6] Diffie, W. and Hellman, M. E., New directions in cryptography,IEEE Trans. Inform. Theory, vol. IT-22,
no. 6, pp. 644–654, 1976.

[7] ElGamal, T., A public key cryptosystem and a signature scheme based on discrete logarithms,IEEE
Trans. Inform. Theory, vol. IT-31, no. 4, pp. 469–472, 1985.

[8] Impagliazzo, R. and Rudich, S., Limits on the provable consequences of one-way permutations,Proc.
21st STOC, pp. 44–61, 1989.

[9] Koblitz, N., Elliptic curve cryptosystems,Math. Comput., vol. 48, pp. 203–209, 1987.
[10] Koblitz, N., A Course in Number Theory and Cryptography, Graduate Texts in Mathematics, vol. 114,

Springer-Verlag, New York, 1987.
[11] Maurer, U. M., Towards the equivalence of breaking the Diffie-Hellman protocol and computing dis-

crete logarithms,Advances in Cryptology—Crypto ’94, Lecture Notes in Computer Science, vol. 839,
Springer-Verlag, Berlin, pp. 271–281, 1994.

[12] Menezes, A., Okamoto, T., and Vanstone, S. A., Reducing elliptic logarithms to logarithms in a finite
field, Proc. 23rd STOC, pp. 80–89, 1991.

[13] Miller, V., Uses of elliptic curves in cryptography,Advances in Cryptology—Crypto ’85, Lecture Notes
in Computer Science, vol. 218, Springer-Verlag, Berlin, pp. 417–426, 1986.

[14] Miyaji, A., On ordinary elliptic curve cryptosystems, inAdvances in Cryptology—Asiacrypt ’91, Lecture
Notes in Computer Science, vol. 739, Springer-Verlag, Berlin, pp. 460–469, 1993.

[15] Odlyzko, A. M., Discrete logarithms in finite fields and their cryptographic significance,Advances
in Cryptology—Eurocrypt ’84, Lecture Notes in Computer Science, vol. 209, Springer-Verlag, Berlin,
pp. 224–314, 1985.

[16] Ohmori, M., Personal communication via email, 1995.
[17] Okamoto, T., Encryption and authentication schemes based on public-key systems Ph.D. Thesis, The

University of Tokyo, 1988.
[18] Okamoto, T., Personal communication via email, 1994.
[19] Rabin, M., How to exchange secrets by oblivious transfer, Technical Memo TR-81, Aiken Computation

Laboratory, Harvard University, 1981.
[20] Ribenboim, P.,The Book of Prime Number Records, Springer-Verlag, New York, 1988.
[21] Rivest, R. L., Cryptography, Chapter 13 ofHandbook of Theoretical Computer Science, Vol. A,

Algorithms and Complexity(Jan van Leeuwen, ed.) MIT Press, Cambridge, MA, pp. 717–755, 1990.
[22] Rudich, S., The use of interaction in public cryptosystems,Advances in Cryptology—Crypto ’91, Lecture

Notes in Computer Science, vol. 576, Springer-Verlag, Berlin, pp. 242–251, 1992.
[23] Sakurai, S., and Shizuya, H., Relationships among the computational powers of breaking discrete log

cryptosystems,Advances in Cryptology—Eurocrypt ’95, Lecture Notes in Computer Science, vol. 921,
Springer-Verlag, Berlin, pp. 341–355, 1995.

[24] Schoof, R., Elliptic curves over finite field and the computation of square roots modp, Math. Comput.,
vol. 44, pp. 483–494, 1985.

[25] Shamir, A., Rivest, R. L., and Adleman, L., Mental Poker, MIT/LCS, TM-125, Feb. 1979.
[26] Stinson, R. D.,Cryptography: Theory and Practice, CRC Press, Boca Raton, FL, pp. 267–268, 1995.
[27] Tompa, M. and Woll, H., Random self-reducibility and zero-knowledge interactive proofs of possession

of information,Proc. 28th FOCS, pp. 472–482, 1987.


