J. Cryptology (1998) 11: 1-27 Journal of

CRYPTOLOBY

© 1998 International Association for
Cryptologic Research

An Efficient Noninteractive Zero-Knowledge Proof
System for NP with General Assumption$

Joe Kilian
NEC Research Institute, 4 Independence Way,
Princeton, NJ 08540, U.S.A.
joe@research.nj.nec.com

Erez Petrank
Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada M5B 1A4
erez@cs.toronto.edu

Communicated by Oded Goldreich

Received 20 November 1995 and revised 7 October 1996

Abstract. We consider noninteractive zero-knowledge proofs in the shared random
string model proposed by Blum et al. [5]. Until recently there was a sizable polynomial
gap between the most efficient noninteractive proofs for NP based on general complexity
assumptions [11] versus those based on specific algebraic assumptions [7]. Recently,
this gap was reduced to a polylogarithmic factor [17]; we further reduce the gap to a
constant factor. Our proof system relies on the existence of one-way permutations (or
trapdoor permutations for bounded provers).

Our protocol is stated in tH@dden bit modehtroduced by Feige et al. [11]. We show
how to prove that an-gate circuit is satisfiable, with error probabilityi®®, using
only O(nlg n) random committed bits. For this error probability, this result matches to
within a constant factor the number of committed bits required by the most efficient
knowninteractiveproof systems.

Keywords. One-way permutations, Zero knowledge, Efficient proofs, Noninteractive
zero knowledge, Circuit satisfiability.

1. Introduction

A basic issue in cryptography is the tradeoff between resources and security properties.
Ordinary zero-knowledge proofs obtain greater security at the price of requiring greater
interaction between the prover and the verifier. Blum et al. [5] propose a way to eliminate
interaction while preserving the zero-knowledge property. Instead of requiring that the
prover and verifier interact with each other, they only require that there be some common

* Most of this work was done while Erez Petrank was visiting the NEC Research Institute.

2 J. Kilian and E. Petrank

public random string which the prover and verifier have access to. The properties of the
proof (completeness, soundness, and zero knowledge) depend on this shared string indeed
being uniformly selected at random. Their model is known astizeed random string
modelfor noninteractive zero-knowledge proofs.

In this model we enjoy the full security of zero knowledge and still the prover can
send a zero-knowledge proof of a theorem as a single message to the verifier who can
then check the proof without further interaction.

Such noninteractive zero-knowledge proofs turned out to be an important crypto-
graphic primitive. For example, it is used in the signature scheme framework of [2] and
in obtaining secure public-key encryption schemes that are robust against chosen mes-
sage attacks [20]. This motivates the questions of what assumptions are necessary for
noninteractive zero-knowledge proofs and how efficient can these proofs be made?

We also mention that another avenue of eliminating interaction was suggested by Fiat
and Shamir [12]. They suggest a heuristic means for eliminating the need for interaction,
at a cost of slightly weaker security properties. Namely, instead of showing a “zero
knowledge simulation” of their protocol (which would mean that no knowledge leaks
in the execution of the protocol) they show that an efficient algorithm for breaking their
scheme implies an efficient algorithm to factor numbers. Although the security property
is somewhat weaker, the security analysis is rigorous.

1.1. Previous Results

Blum et al. [5] showed how to construct a noninteractive zero-knowledge proof system
for any language in NP given a specific number-theoretic assumption. This assumption
was relaxed to quadratic residuosity by De Santis et al. [9]. (In their joint journal version
[4], they also suggest how to prove “many theorems” while saving in the length of
the random string.) The original solution requingtishared random bits to prove that

an n-node graph is four-colorable, but the efficiency of protocols based on quadratic
residuosity has been recently greatly improved [7], [6]. Given a cryptographic security
parametek, and an allowed error probability, the most efficient of these families of
solutions require®© (nklog(n/e)) shared random bits.

Feige et al. [11] gave the first noninteractive zero-knowledge for NP under a general
complexity assumption. Their construction requires one-way permutations or, for poly-
nomially bounded provers, certified trapdoor permutations (the technical “certification”
requirement was eliminated in [3]). They also obtained much greater generality in how
their proofs could be used (e.g., many provers could prove many theorems using the
same random string). To achieve these results they introducdibithen bitsmodel; all
subsequent progress using general complexity assumptions has used this model. In the
hidden bits model (sometimes called tlamdom committed bit modelthe prover and
verifier are dealt a sequence of random bits, but only the prover is allowed to see the bits.
The prover may reveal a subset of these shared bits to the verifier, and in addition he
sends a message to the verifier. The verifier receives the message, the indices of the bits
he may look at, and the actual bits that appear in these indices. Based on this information,
the verifier chooses whether to accept or reject.

This model may seem strange at first sight, but seems more amenable for designing
protocols. Assuming the existance of one-way permutations we can translate a protocol

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 3

designed for the hidden bits modelinto a protocol for the shared random string model [11].
Roughly speaking, the compilation procedure goes as follows: Each conséditven
the shared random string can be considered by the prover and verifier as a commitment
to a bit in the following way. Thé& bit-strings is interpreted as a commitment to the bit
B(P~1(s)) whereP is the one-way permutation arlis a hard-core bit of the one-way
permutationP. The prover may see what is behind the committed bits since he is all
powerful, but the polynomial time verifier can only see bits that the prover “lets” him
see. Namely, bits for which the prover sends the verifier the inverse of the corresponding
strings. See Section 3 for more details.

The proof system proposed by Feige et al. [11] was much less efficient than those
based on quadratic residuosity: it requi@dk - n*¥2 . logn - log(1/¢)) shared random
bits to prove that an-node graph contains a Hamiltonian cycle with error probability at
moste. Subsequently, Feige [10] has shown how to reduce the required number of bits
by a factor ofn?, thus using onlyO(k - n”/? . logn - log(1/¢)) shared random bits. We
stress that (unless otherwise mentioned) the complexity is stated in the standard model,
and the multiplicative terrk originates from compiling a proof in the hidden bits model
to the standard (shared random string) model.

Recently, a more efficient proof system for NP was given by Kilian [17] who presented
a proof system for circuit satisfiability usir@(k-n-log® n-log(n/¢)) shared random bits
for some constardt In addition to the efficiency of this proof, circuit satisfiability seems
to be the preferred NP-problem for reducing a general predicate. Kilian’s construction is
based on the hidden bits model, and hence is based on the same complexity assumptions
as those of [11].

1.2. Our Results

We improve the protocol of [17] and get a noninteractive zero-knowledge proof system
for circuit satisfiability which uses onl@(knlog(n/e)) shared random bits. Our proof
system is significantly simpler than the one in [17]. As in [11] and [17] we also rely
on the general cryptographic assumption that there exists a one-way permutation, or
trapdoor permutations (though at a loss of efficiency; see the remark) if the prover only
runs in polynomial time.

Inthe hidden bits model, we show how to prove circuit satisfiability ug€iiglg(n/e))
random committed bits. For the case of error probability 1/n°®, this matches the
most efficientinteractive protocol known: we do not know how to achieve this error
probability in the interactive model without usiigg(n Ig n) bit commitments.

In the above we measure efficiency in terms of the number of shared hidden bits
used,|. We remark that the time efficiency is closely related but is determined by the
complexity of the one-way permutation used. More precisely, the verifier has to perform
computation which involves at mokinvocations of the one-way permutations plus a
computation which is “almost” linear in tHe*

1 Almost may mean at most a logarithmic multiplicative factor. This extra factor appears when the model
of computation is a Random Access Machine which performs basic operations in time which is linear in the
lengthof the operands, rather than in constant time.

4 J. Kilian and E. Petrank

A remark about efficient provers We also make a remark about the case of efficient
provers since we consider this an important (practical) aspect of the protocol. In this
case the compilation procedure of [11] requires a “cost” in the soundness error proba-
bility. Specifically, this error probability increases by a factor &f (For the details see
Section 3.) Thus, in this case protocols (in the hidden bit model) have to be design with
error probabilitye substantially lower than . Hence, for some combinations of the
soundness error probability and the security parameter, noninteractive zero-knowledge
proofs remain asymptotically less efficient than their interactive counterparts. In the
interactive case no connection has to be made between the soundness error probability
and the security parameter. (We refer the reader to [18], [1], and [16] for the state of
the art in efficient zero-knowledgeteractiveproofs.)

1.3. Outline of the Paper

In Section 2 we introduce some definitions and technical details that we use in the paper.
In Section 3 we recall thiidden bits modeatf [11] and the compilation from this model

to the standardhared random stringnodel. In Section 4 we give a short introduction

to our approach and a top-down preview of the proof system. In Section 5 we give a
bottom-up full description of the proof system. In Section 6 we prove that the proof
system is valid, and in Section 7 we explain what modifications are needed in the proof
system so that the prover can be implemented efficiently.

2. Preliminaries

We set the notations and definitions we use. A parametrized ensemble of distributions
over a languageé is a setE = {E(x, k) : x € L, k > 1} of distributions, one for each

x € L and security parametér We say that two ensembles of distributiog and

E, over L are indistinguishable with respect to a security paramteq) if for any
polynomial time machine (testet), all constants, and all sufficiently longk it holds

that

1
IProby. g, xkxy [T () = 1] — Proly g, k(xiy[T(S) = 1]| < K(XDE

wheres < E(x, k) stands fors being sampled according to the distributix, k).

A remark about the uniformity of the testeiNote that we may define the tester to be
nonuniform. In this case we would get a similar result for the nonuniform case. Namely, if
there exists a one-way permutation that is robust against polynomial nonuniform attacks,
then the zero-knowledge property (i.e., the indistinguishability between the distribution
output by the simulation and the distribution of the proofs generated by the prover) would
also hold for nonuniform testers.

We now define noninteractive zero-knowledge proof systems.

Definition 2.1 [5]. A noninteractive zero-knowledge proof systima languagel
with security parametdeconsists of a probabilistic proving algorithy a probabilistic
polynomial time verification algorithv’, and a probabilistic polynomial time machine

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 5

(simulator)M with the following property. Let- be arandom string shared by the prover
and verifier, and lek(|x|) be a security parameter. Then:

1. Completenessfor anyx € L and security parametér
ProblV (x, o, P(X, o, k)) = accept]= 1,

where the probability space is taken over the random coin tosfesnflV, and
over the uniform and independent choice of the random bits in the shared random
stringo .2

2. Soundnessfor anyx ¢ L, and any (possibly cheating) provef, and soundness
errore(|x|),

Prob|V (x, o, P'(x, 0, k), k) = accept]< &(|x|),

where the probability space is the same as in the completeness condition.

3. Zeroknowledge:There exists a simulatdd that, oninpuk and security parameter
k, produces a distribution space, and the enseridle, k)}x¢, is indistinguish-
able from the ensemblgo, P(X, o, k))}xcL Which is defined over the distribution
space of a random uniformly choserover {0, 1} and the random choices of the
proverP.

Aremark about the soundness propertysually, in the noninteractive zero-knowledge
setting, the soundness property is stated in a stronger manner. Namely, it is required that
a cheating prover succeeds with only small probability to peowtheorem of lengtim
and not only the one theorem appearing in the input. Our protocol can be made resilient to
such a demand simply by lowering the error probability by a factor6f /e adopt the
soundness property that is usually used for the interactive model, so that a comparison
of our protocol to the interactive model will be fair. In the interactive model there is no
conceivable scenario in which the input should be chegtar the random tape of the
verifier has been determined and shown to the prover. Note that the “standard” harsh
soundness demand is an artifact of the noninteractive zero-knowledge model and not of
any particular noninteractive zero-knowledge proof system.

In this paper we address the problem of circuit satisfiability. However, in order to sim-
plify the presentation, we reduce this problem to a more restricted satisfiability problem:
3-SAT-5. The problem 3-SAT-5 is defined as follows:

Definition 2.2. The problem 3-SAT-5:

Input A 3-CNF formulag with each variable appearing in at most five clauses.
Question s ¢ satisfiable?

It is important that there exists a reduction from circuit satisfiability to 3-SAT-5 which
is linear since we present a proof system for 3-SAT-5 with compleitigk log(n/¢)),

2 The definition of completeness may be relaxed to require only that the acceptance probability (when
x € L) be greater than % ¢(|x|) for some given completeness ereorin our protocol we obtain perfect
completeness as defined above.

6 J. Kilian and E. Petrank

wheren is the size of the 3-SAT-5 formula, and we claim that this proof can serve
for proving circuit satisfiability with complexit¥D (nklog(n/¢)) wheren is the size of

the circuit. Indeed, circuit satisfiability can be easily reduced to 3-SAT using a linear
reduction. Furthermore, the reduction from 3-SAT to 3-SAT-5 can also be done linearly,
by creating a new variable for each copy of the original variable and adding clauses which
force all copies of the same variable to have equal assignment. Thus, it is sufficient to
present a noninteractive zero-knowledge proof system for 3-SAT-5.

3. The Compilation Technique of Feige et al. [11]

Here we formally define theidden bits modebf [11] and show how to use a one-way
permutation to transform a zero-knowledge proof givenin this model to a zero-knowledge
proof in the standard (shared random bits) model. We later state our protocol in the
hidden bits model. The introduction of the model and the proof that it is equivalent to the
shared random string model were given in [11]. We follow the presentation suggested
in [13].

3.1. The Model

In the hidden bits model the common random striddgs selected uniformly, but only

the prover can see its content. The prover sends the verifier a ma3saige reveals

a list of positionsl c {1, 2, ..., poly(|x])} in the random string. That is, the verifier
received and the correct values of the bits in the shared random string whose locations
are mentioned in. We denote byR, the content of the hidden bits at the places pointed
by I. Thus, R, is a bit vector of lengthl |, and if the sequenck includes the indices

i1,12,..., 1)1, thenthejth entry inR, containsR; , i.e., theijth bitin the shared random
string R. The verifier is not allowed to look at any other position in the shared random
string R.

The soundness and completeness requirements remain the same as before. In order to
show that a protocol in this model is zero-knowledge, one has to present a simulator that
simulates the parts of the proof that the verifier can see. Namely, one has to present a
simulator whose output distribution onis computationally indistinguishable from the
distribution of proofsx, R, P(x, R)) for a randomly choseR, and whereP (x, R) =
(T1, 1) is the distribution of proofs output by the prover on ing@nd the shared random
tapeR.

It is easier to design proof systems in this model. It was shown in [11] that given a
one-way permutation, it is possible to compile a zero-knowledge proof system in the
hidden bits model into a zero-knowledge proof system in the standard model. Actually,
for the case of efficient provers, i.e., when the prover can be implemented efficiently
when given some auxiliary help, the compilation requires a famityaggdoor permu-
tations. We begin by presenting the compilation for the simple case where the prover
is computationally unbounded, in which case we use one-way permutations. We then
explain how to extend it to the case of efficient provers where we use trapdoor one-way
permutations.

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 7

3.2. The Compilation Procedure

We give a brief exposition of the compiling procedure of [11]. Bt V) be a zero-
knowledge proof system for a languabjén the hidden bits model, It be a one-way
permutation, and leB be a hard-core bit oF as guaranteed by Goldreich and Levin
[14] (it is shown in [14] that any one-way permutation can be transformed into a one-
way permutation that has a hard-core bit, with a moderate increase in the domain size).
Finally, letm(n) represent the number of hidden bits required by the given proof system.
We would like to construct a zero-knowledge noninteractive prookfor the standard
model.

In the standard (i.e., the shared random string) model the prover and verifier are given
accesstothe inputand to a shared random string/Me require that has lengttk x m(n),
wherek is the security parameter. This means that the overhead of this compilation in
terms of the length of the random string is a multiplicative factok.ofhe prover and
verifier both regard the random string as being composed(aj random strings of
lengthk. In what follows, we denote these stringsdyl <i < m(n).

Intuitively, the stringsi, 1 < i < m(n), will be regarded as hiding the bl F ~1(s)).

Also, if the prover wishes to “show” thigh bit to the verifier, then he may send him the
valuer; = F~Y(s). The verifier can then check that indeEdr;) = s and may also
compute the hidden bB(r;). By the properties of the hard-core predicBtghe verifier

will not be able to guess the value of any hidden bit that is not explicitly shown to him
by the prover.

The prover (P’) acts as follows:He computes the bitsy = B(F~(s)) for all

i = 1,2,...,m(n). He invokes the given proveP on the inputx and hidden bits
by, by, ..., bmm to get a pair(l, IT). He sends to the verifiét’ the output(l, IT) of the

proverP and alsa; = F~%(s) for eachi € I.

The verifier (V') verifies the proof as follows:V’ checks that indeed = F(r;) for
eachi € |. OtherwiseV’ rejects the proofV’ computedy, = B(rj) and concatenates
all bj into by. ThenV’ invokesV on (x, by, |,) and accepts only ¥/ accepts.

Claim 3.1. The proof systerP’, V') constructed as above is a zero-knowledge non-
interactive proof for L

Sketch of Proof. Note that since thg are uniformly distributed, and since is a
permutation, thefr ~1(s) is also uniformly distributed and since the hard-coreBofas
constructed in [14]) is unbiased, then the interpretation of the sirgg, . .., Snn) as
hiding the bits

B(F1(s), BF (), ..., B(F X(Snm))

gives us completely random hidden bits. Also, note that the prover cannot influence the
value of the bits in the positions he lets the verifier check, since any srimas only a
single inverse; which then determines the [i(r;). This guarantees that the soundness
and completeness properties are kept.

8 J. Kilian and E. Petrank

For the zero-knowledge property, we note that we can compile an efficient simulation
of P into an efficient simulation oP’. The new simulator invokes the original simulation
to get(x, R/, I1,). It then chooses the strings (forming the shared random string)
as follows: For each; € 1, it selects a random; satisfyingB(rj) = R, and sets
s, = F(rj), and, for each ¢ I, it selects a random strirgy € {0, 1}¥. Then it outputs
the created shared random string, ise. S, - . ., Snm), and the proof which containg
for eachi € | and also(1, IT) as created by the original simulator. In order to see that
this simulation is indistinguishable from the distribution of proofs outputPbynote
that the original simulation is indistinguishable from the proofs generatdt] byd that
B is a hard-core foF. O

3.3. Extension for Efficient Provers

To extend this compilation for the case of efficient provers we use trapdoor one-way
functions. In this case the prover chooses in the beginning a permutation with a trapdoor
that allows him to invert it. He sends the description of the permutation to the verifier
and then the protocol continues as abdve.

For this case the completeness property is not affected. Namely, the honest prover
succeeds with the same probability. Also, the construction of the new simulator from the
old one is practically the same. The new simulator has to use the permutation given by
the original simulation in the beginning of the proof (recall that the new simulator does
not have to be able to invert this permutation). We still have to deal with the soundness
property.

The problem here is that after the shared (hidden) random string is set, the prover
may go over all ® possible permutations, and for each of them examine the different
shared random tape that is implied by the permutation, and choose the one that is best
for him. Note that although we would like to allow an efficient prover to play its part
in the protocol, we do not want to trust the prover to be weak; we want the soundness
property to be robust against powerful provers as well.

We cannot avoid preventing the prover from trying all possible permutations in the
family, so instead we note that this advantage of the prover cannot increase the soundness
error probability by more than a factor df Namely, if the original soundness probability
(in the hidden bits model) is, then the soundness probability of the compiled protocol
(in the shared random string model}is2*. Therefore if one wishes to design a protocol
for efficient provers with error probability; and one wishes to do the design in the hidden
bits model, then the protocol should be designed with error probability 2 The fact
that the error probability can only increase By(2e., the number of permutations in the
family) follows from simple counting arguments: For each specific function the error
probability is at most and there are at mosf unctions.

We further elaborate on the changes needed for efficient provers in Section 7.

3 Actually, we have to take care of the prover indeed choosing a permutation in a predetermined family of
permutations and not selecting a confusing representation which is not a permutation. This issue is dealt with
in [3] and we do not discuss it here.

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 9
4. An Overview of the Protocol

In Section 5 we describe the protocol in full detail. The description there is a bottom-
up description of how the proof system is built on top of the (hidden) random string.
However, we believe that some overview discussion may help before getting into the
details. We begin with describirigfluence gamewhich is a basic idea underlying our
protocol. Influence games, as an underlying idea of a secure construction, were first used
independently in [17] and in [8]. Then we provide a short top-down description of the
proof system, which may help going through the details of Section 5.

4.1. Influence Games

The protocol of [17], as well as ours, is basedinfluence gamedn these games the
prover and verifier have a series of strings with the following properties:

1. The prover can see what bits are hidden in the strings but the verifier cannot. (Note
that these strings are not just the hidden bits, these are more complicated creatures
as follows from the second property.)

2. There are two possible strings:

e Random strings: These are strings of hidden bits that the prover can open and
show their content to the verifier. The values of these bits are randomly chosen
in the beginning of the proof and the prover cannot cheat, i.e., he can only open
these bits to their predetermined value.

e Wild strings: These are strings of hidden bits which the prover can open to
whatever value he likes. Namely, the prover can open each bit of the string to
either O or 1. (This is the “influence” of the game.)

3. The verifier cannot tell between random strings and wild strings.

During the protocol, there is an initial stage in which the prover and verifier work on
building these “influence” strings (Parts 1-3 of our protocol—Section 5) and then there
is a final stage in which they use them to prove (or verify, respectively) that the input
is in the language (Part 4 in our protocol). Basically, the use of these strings gives the
prover some “influence” in opening their values. His goal in this protocol is to open the
strings such that some property regarding the opened bits hold. The protocol is designed
so that wherx € L the prover has enough influence to open the strings appropriately,
whereas ik ¢ L, then the prover does not have enough influence on the values of these
bits and with high probability the bits he will open will not satisfy the desired property.

4.2. A Top-Down Description of our Protocol

We give a top-down description of the protocol based on the influence games described
in the previous subsection. The input to the protocol is a 3-CNF forpulih variables

X1, X2, .. ., Xn and each variable appears in at most five clauses. Alsoblet satisfying
assignment fokp (we describe the protocol for the honest prover). As explained in
Section 4.1, in the beginning of the protocol the prover and verifier work on interpreting
the given random string as strings for the influence game. Actually, they are going to
build, for each variable;, a pair of strings(sf’, sl) such that ift (x;) = false, then the
strings” is a wild string and the string® is a random string, whereasifx;) = true,

10 J. Kilian and E. Petrank

then the strings! is a wild string and the string’ is a random string. This is done in
Parts 1-3 of the protocol. We now explain how the prover uses these strings to show that
indeedr satisfiesp.

For each of the five clauses in whighis involved we select the following substring.

If x; appears negated in a claudg then we select a fifth of the strirg] to represent the
variablex; in the clauseC;, whereas if; is positive (not negated) in the clause, then we
select a fifth of the string! to represeny; in the clauseC;. The substrings are selected
with no overlap, i.e., a character in a string is selected only for one clause. (Here we use
the property that the variable appears in at most five clauses, and we selected only a fifth
of the given string.) Note that the selection is made exactly so thabif x; satisfies

the clause, then the selected string is a wild string and the prover can open it any way
he wants, whereas if the clause is not satisfied by the assignnterthe variablex;,

thenx; is represented by a completely random string ¢@efL}. We stress that only the

wild strings can be modified by the prover. The random strings are fixed (according to
the content of the shared hidden string) and the prover cannot influence them.

After all strings for each clause have been selected, the prover opens the characters in
the selected strings. Each character is opened to a bit (either a zero or a one) and thus we
get for each clause three strings of bits. The verifier checks that for each clause the three
strings of bits revealed by the prover sum up to zero. Namely, the bit-wise exclusive-or
of the revealed strings is a string of zerosrz Iis indeed a satisfying assignmentgp
then the prover can easily pass this test. For each clause, one of the selected strings
contains only wild characters and he can open this string to whatever bit string he needs.
However, ift does not satisfy, then there exists a clause for which all the selected
strings are completely random and the prover will be caught with high probability. To
be more specific, the strings are of len@ldog(n/¢)), and thus (if we set the constants
properly) the probability that the prover will fail in a single clause test (that is not satisfied
by 1) is less thamf2 (¢ /5n). Since the number of clauses is less thartbe proof follows.

(Of course, in the real proof the bits will not be “completely random” and we will have
to be more careful in the analysis.)

Thus, given a pair of strings for each variable with the above characteristics, it is
possible to check whethersatisfiesp. However, we still have to explain how to build a
pair of strings for each variable. We do that in the full description of the protocol in the
next section.

5. The Protocol in Detail

We present a noninteractive zero-knowledge protocol for 3-SAT-5. As mentioned in
Section 2, this implies the following theorem:

Theorem 1. Circuit satisfiability can be proven by a noninteractive zero-knowledge
proof system whose length i@k - log(n/¢)), where k denotes the security parameter
¢ is the error probabilityand n is the size of the circuit

As explained above, if we want efficient provers, then we loose a factolirothe
above and get that the length of the shared random stri@yrd? - log(n/e)). In the

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 11

description we use the hidden bits model. See Section 3 for the details. We say that the
prover “opens” a bit to the verifier meaning that the prover lets the verifier see this bit
in the hidden random string. In the terminology of Section 3 this means that the prover
includes the index of the bit in the skt

The Protocol. Denote the input formula by and denote the number of variablesin

by n. Recall that in our model the prover and verifier share a random tape which only the
prover can see and the prover specifies which bits the verifier will see too (“opens” bits
for the verifier). The proof consists of the prover sending one message, together with
the indices that the verifier may look at. The verifier, based on this message (the proof)
and the bits he sees in the shared random (hidden) string, decides whether to accept the
claim that the input formula is satisfiable.

In our proof system (as in other noninteractive zero-knowledge proof systems) the
prover's message includes a statement or an interpretation of the structure of the shared
random string in a way that several properties are satisfied if and only if the ippist (
in the language (3-SAT-5).

Our proof system is a direct improvement over the protocol in [17] which in turn is
inspired by the protocol of [11].

5.1. Interpreting Pairs of Bits as Characters

The prover and verifier first establisharactersin the shared random hidden string. A
character can have three possible values: 0, 1, and a wild character (WC). Characters are
encoded by pairs of hidden bits in the following way:

00—the character 0,
10—the character WC,
01—the character WC,
11—the character 1.

Each pair of hidden bitsis interpreted as a hidden character. We next setup a procedure
by which the prover can “open” a character. Namely, a prover can show the verifier that
a character (which consists of a pair of hidden bits) contains a certain value. Throughout
the proof, the prover will open a character either to the value 1 or to the value 0. To prove
that a character has value 0, the prover will open one of the two hidden bits and show
thatitis a 0. To show that a character is 1, the prover will open one of the hidden bits (in
the pair) and show that it is a 1. Clearly, a wild character can be opened both ways, since
both 0 and 1 can be opened in such a character. We make explicit use of the fact that the
character WC can be opened by the prover both to the value 0 and to the value 1.

Whenever the prover has to open a character which is nota WC, he must choose which
of the two bits to open. It is important for the zero-knowledge property that in all these
cases the prover chooses between the two possibilities at random. If, for example, the
prover always opens the first bit, then he reveals information about whether or not the
opened characters are WC, since an opening of a second bit will imply that this is a WC
character. In the rest of this description we assume that the decision of which bit to open
is made at random.

12 J. Kilian and E. Petrank

To summarize our interpretation of the random tape so far, we have a stream of
uniformly independently chosen characters of value 0, 1, and WC. The character 0 and
the character 1 appear each with probabilifgt and the character WC appears with
probability 1/2. The prover can open the character 0 and 1 to their correct value, and he
can open the character WC to both values 0 or 1 as he wishes.

5.2. Sieving Good Blocks

In the next step of the interpretation of the shared hidden random string we consider
blocks ofa consecutive characters (whatdas a constant to be determined later (see
Section 6.2.2). In fact, we consider the given stream of characters as a sequence of pairs
of blocks. We call a pair of blockgoodif one of the blocks in the pair contains only WC
characters and the other block does not contain any WC character. For each variable

1 <i < n, the prover initially considerg log(n/e) pairs of blocks (for a constang

to be determined later (see Section 6.2.2), and the error probal)ibtyd lets only the

good blocks prevail for the rest of the proof.

In the first part of the proof the prover completely opens each character in every block
that is not good. These blocks are not used again in the proof. We stress that the prover
not only opens these characters (as we defined an opening of a character by opening one
of its hidden bits), but rather opens the two hidden bits in each of the characters, so that
the verifier can check that the discarded blocks are indeed not good.

First Part of the Proof. The prover opens all hidden bits in all pairs of blocks which
are not good

The verifier verifies that all blocks that were opened were indeed not good. Otherwise
he stops immediately and rejects. Also, the verifier checks for each variathlat the
number of pairs of remaining blocks, denotgdi.e., the number of pairs of blocks that
were claimed to be good fog (these are still hidden), is close to its expected value. If
¢; is not in the rangeti, t;] to be specified below, then the verifier stops immediately
and rejects.

We compute the expected valuefpfand determine the bountisandt,. The proba-
bility that a random pair of blocks is good is@,/2)* - (1/2)* (choose which member of
the pair is the WC block, then it has probabilityy2)* to consist only of WC characters,
and the other block has probabilit}/2)* to contain no WC character inside). Therefore,
the number of good blocks between théog(n/e) random blocks initially considered
for the variablex; is a random variablé; that has expected valueZ* . g - log(n/e).

By the Chernoff bound, the deviation éf from its expected value is big with low
probability. Specifically,

2,922

Prot{ ‘Ei — 2%t g Iogg (1)

n
> yplog g} <2270y

The parametey is a constant which determines the tightness of the bound. We set its
value later (see Section 6.2.2). Now set the deviation bounds that the verifier insists

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 13

on as

n
t, 222+ _)glog— and

&

n

tp £ @ 4 y)plog .
By the Chernoff bound, if we set the constanaccording to

3. 272014’2

5 ;
then the random variablg is betweert; andt, with probability at least - ¢/4n for a
random stream of characters.

After the good pairs of blocks have been selected (by discarding the bad ones), the
prover and verifier leave only the first good blocks and discard the ldst- t; good
blocks. In this way we have a fixed number of blocks (itghlocks) for each of the
variables. Note that whex € L this step can be done with high probability. We remark
in Section 6.4 about what the prover may doit L andl; is not between; andt,.
Whenx ¢ L and the prover is trying to cheat, then, still with high probabilityis
betweent; andt,. In this case the worst scenario is that the prover finds anf§ypod
pairs, he claims that there atregood pairs; — t; of them were actually bad), and by
the end of the process he is left withblocks out of which, — t; are actually bad pairs
of blocks.

To summarize this step, for each variallethe (honest) prover and verifier are left
with t; good pairs of blocks, each consisting of one block of WC characters and one
block containing no WC characters. A dishonest prover may claim that some bad pairs
of blocks are good, but with probability at least-1s /4n the number of pairs of blocks
he can cheat on is at mast— t;.

Thus we end this step having a set of good pairs of blocks associated with each variable.
Next, we begin to associate the shared random string (which is now a random stream of
good pairs of blocks) with a satisfying assignment of the formula

y = @

5.3. Setting the Polarity of the Pairs of Blocks According
to the Satisfying Assignmentgo

Each pair of blocks contains a block of WC characters and a (random) block without
WC characters. The order of the blocks in each pair is random. In the second part of
the proof, the prover reorders these pairs according to some satisfying assignment to the
variables in the formula. Let T denote such an assignment. The prover reorders all of
the block pairs corresponding to each variahleso that ift (x;) = false then the first

block in each block pair correspondingxpis set to be the WC block and f(x;) =

true, then the second block in each block pair corresponding te set to be the WC

block. The reordering of the pairs of blocks constitutes the second part of the proof.

Second Part of the Proof. For each pair of blockgobtained from the shared random
tapg, which was not dropped in the previous step of the prtiaf prover specifies a
bit. If a pair is assigned the bib, then its order is keptwhereas if a pair of blocks is
assignedL, then the order of the blocks in the pair is reversed for the rest of the proof

14 J. Kilian and E. Petrank

The verifier does not check anything, but only reverses the order of the blocks where
necessary. Note that he is essentially rearranging pointers; he still does not know the
values of the hidden characters.

To summarize this step, thenesprover now has pairs of blocks, each associated with
a variable, such that each variable’s pairs are ordered (polarized) in the same manner,
corresponding to the variable’s assignment.

In the following step we merely check that the pairs of blocks are indeed polarized
consistently. This by itself does not guarantee that the polarization matches a satisfying
assignment to the formula

5.4. Checking the Consistency of the Polarization

We now describe a consistency test for the pairs of blocks associated with a variable
X . This test is repeated for each of the variables. Recall that wethaeairs of blocks

which are supposed to be polarized. The test consists of many basic tests; each basic
consistency test is performed on a couple of pairs. We have to specify what the basic
test is and also which pairs are going to be tested against each other. We begin with the
second.

We consider an expander graph wittvertices (see, for example, [19] for a possible
constructions of expanders). Each vertex corresponds to a pair of blocks, and the edges, as
appearing in the expander, determine which pairs are going to be checked one against the
other (through the basic test). In what follows, we denote the degree of the expanider by
and the expansion rate ly = 1+ 8. Namely, each subsétof the vertices of cardinality
at most|A| < t;/2 has at leash - |A| neighbors, or at least- | A| neighbors which
are not inA. Actually, in order to get better parameters for the expanders (i.e., a smaller
ratio ofd/8) and considering the requirements really needed by our constructions, it will
suffice for us if the expansion property only holds for sétsf cardinality at least; /10.

Next we describe the basic consistency test as applied on two pairs of blocks. Let
these two pairs be numbergcandk, and denote byB?, B') and(BY, By) the blocks
in these pairs. Recall that the requirement to make the basic test originates from the
existence of an edge= (j, k) in the expander. We usg/2d specific characters of each
of the four blocks involved in this test. Letbe theith edge (1< i < d) adjacent to
vertexj representing the paiiB?, sz), then we use the charactdes- (i — 1))/2d + 1,
(a-(—1)/2d+2,..., (- (—1)/2d+a/2din Bj0 andin le to form the strings of
characters(e) ands/(e) correspondingly. We do the same for the p@f, B}) to get
(sg(e), s&(e)). So the character-strings which are used for the test specified by the edge
e=(j,k are(sjo(e), st(e)) and(s2(e), st(e)). Note that we never use the same character
for two different tests. If the prover is honest and follows the protocol, then the blocks
are good and well polarized, and thsirie) ands{(e) contain only wild characters and

q}*t (e andglft(e) are random ovel0, 1}, wheret is 0 if 7(x;) = falseand 1 otherwise.
In this case the prover can open the values of these characters such that

s'(e) = s(e) and

s'(e) = (@),

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 15

since the prover can open the WC characters to whatever value he wants. We define this
as the basic consistency test.

Third Part of the Proof. The prover opens the first half of the characters in each block
such thatfor each edge e- (], k) in the expandeif e is the th edge of vertex j and the
mth edge of vertex kand let BL(i) denote the value that the prover opens in the block
Bjt for the ith characterthen it should hold that the opened values satisfy

. (=1 A -(m-1) .
Bf(aTJH) = B%<QT+|> and

o fa(=1) s fa-(m=1)

forall 1 < i < «a/2d. Namely all the basic consistency tests associated with all the
expander edges hald

The verifier verifies that all the characters which should have been opened were indeed
opened, and that for each edge of each expander, the consistency test is satisfied.

To summarize, in this step we “lost” half of the characters which we cannot use in the
following, but we gained some assurance that there is some consistency in the polarity
of the pairs. We analyze the degree of this assurance in the analysis of the protocol (in
Section 6).

For the next stage, we do the following concatenation process. For each of the variables,
we concatenate all the first blocks in all its corresponding pairs to a single string, and
concatenate all the second blocks in all its pairs to another string. So for each variable
we have two strings, and if the prover is honest, then one of these strings is a string of
WC characters only and the other string is a random string {fel}. The length of
each string ig; - «/2 since we are left with only half of the characters in each otthe
blocks.

5.5. Last StepShowing that Satisfies

In this last step the prover uses the polarization of the pairs of strings, which should
represent, to show that the formula is satisfiable. If the prover behaves according
to the protocol, then it should hold that for each variablel < i < n, the prover and
verifier share a pair of (long) strings of (hidden) characters. One of the strings consists
of WC characters only, and the other string is a random string{@vé$ which contains
no wild characters. Also, the string of WC characters is the first in the paixi) =
falseand the second in the pairif{x;) = true. Recall that the prover has the ability to
open all the characters in the wild string either to O or to 1 as he wishes, but the other
string is fixed.

For eachx;, we take the pair of long strings (composed of many pairs of blocks) and
partition it into five pairs. One pair for each appearance df the formula. Each piece
is still a pair of long strings that will be used to check the assignment to the clause. The
details follow.

For each clause, we make a test. Loosely speaking, for each variable in the clause we
take part of its string (of characters) so that if the variable satisfies the clause (i.e., it

16 J. Kilian and E. Petrank

is assignedrue and appears positively in the clause or it is assigiaézk and appears
with a negation in the clause), then the prover can completely control the opening of
the string that corresponds to the variabler Bissignss a value that does not satisfy
the clause, then ideally the prover can open the corresponding string in only one way
which corresponds to a random string oy@r1} (in the full analysis, we must consider
deviations from this ideal). After determining the three strings that correspond to the
clause, the prover has to open the strings such that their bit-wise exclusive-or is equal
to the all zero string. If the prover can control one of the strings (or, equivalently,
makes one of the literals satisfy the clause), then he can easily pass this test. Otherwise,
the prover has to open three random strings, and their exclusive-or is zero with small
probability.

More formally, if clauseC; contains thdth appearance (¥ | < 5) of variablex;
and if the strings associated wikh are (B?, le) (each of length; - «/2), then if the

(negated) literakj appears in the clause then we select the B]?t(sk) for

tla t]_a’

2 10

t -1 t -1
L e R -

-1
k=757 5 2

while if the (unnegated) literad; appears in the clausg then we select the biIle(k)
for

| -1 tloz | -1 t]_Ol | -1 tla tloz
ke — —+1, — - —+2,..., — - — .
5 2+’ 5 2+’ 5 2+1O

Thus, for each clause, we select three strings of leagttD - t;. Intuitively, if the
assignment satisfies one of the literals in the clause, then the string that corresponds
to this literal contains only WC characters.

After selecting the three strings of the clause, the prover opens all the characters in all
of these strings so that the bit-wise exclusive-or of the strings eqt/ald®

In case the prover has more control over the opening of these characters (e.qg., if more
than one variable is assignide in the clause and so more than one string is a wild string
which can be opened arbitrarily), then the prover uses his degrees of freedom randomly.
Namely, he opens all WC characters at random conditioned on the linear constraint that
has to hold for the test. This random selection is crucial for the zero-knowledge property,
since as we will see the simulator will open the characters randomly, conditioned only
by the linear constraint posed by the proof. Also, recall that if the character is not WC,
then the prover opens a randomly chosen bit in the pair.

Fourth Part of the Proof. The prover opens all the remaining characters so that
for each clausgits three corresponding string@s explained aboyéhave a bit-wise
exclusive-or which equal /10,

The verifier checks that each clause indeed passes the test, and that all characters were
indeed opened legitimately. In this case, he accepts. Otherwise, he rejects.

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 17
6. Analysis of the Protocol

6.1. Completeness

This is the easy part of the proof. It should be clear that the prover can perform all his
tasks when the input formulais indeed satisfiable. He will fail only when the number

of good blockst;, for some variable, is not in the range betwedn andt,. By the
Chernoff inequality (see (1) and (2)), this happens with probability at most

&
n-—<e.

4n

6.2. Soundness

We analyze the probability that the prover can produce a convincing proof (on a random
string) for a nonsatisfiable formula The prover convinces the verifier if:

1. For each variablg, the number of good blocks claimed by the prover is at least
t; and at most,.

2. All polarity tests hold.

3. All clause tests hold.

Recall that?; denotes the actual number of good pairs of blocks in the shared hidden
string, and not the number of pairs that the cheating prover might have chosen to keep.
We assume that the prover always passes the first test. Actually, this is not the case,
since if¢; > tp, then the prover must fail the first test, because he cannot open enough
bad pairs. However, our assumption may only increase the soundness error (i.e., the
probability that the prover succeeds). It turns out that the prover can pass the other two
tests with a very small probability, and this suffices for the soundness analysis.

We assume that if; is not in the range betwedn andt,, then the prover always
succeeds in convincing the verifier. Again, this is not correct, but this assumption can
only increase the error. The case that one oftthd < i < n) is not in the right range
happens with probability at most

& &
n.-— <-.
in — 4
We continue the soundness analysis assuming that for hlk i < n, it holds that
ty < ¢ < t,. Conditioning on this event, we compute the probability that conditions 2
and 3 hold. We show that they hold with (conditional) probability at mg& Thus,
the probability that the prover can convince the verifier is at mo$tis holds for any
possibles < 1/4 chosen for the system.
Assume now that thé’s are all in the range betwedanandt,. We first note that in
this conditional space one important property still holds as in the unconditional space.
That is, the non-WC characters in the good block pairs are uniform and independent
over {0, 1}. Namely, we note that the number of good pairs of blocks is independent of
the specific content of the non-WC characters in the good pairs of blocks. This property
is essential for the rest of the proof.
We assume a case that is best for the cheating prover. This can only increase the
probability that the cheating prover succeeds in convincing the verifier. We assume that

18 J. Kilian and E. Petrank

the prover can claim that a lot of bad pairs of blocks are good pairs and keep them for
the rest of the proof. The case in which he can keep the maximum number of bad blocks
is when the actual number of good paifs,ist;. In this case the prover can claim that
there ard, good pairs of blocks and leate—t; bad pairs for future use in the proof. The
prover can also determine the location of thigse t; pairs. Note that in any other case

the prover has less control over the proof, since he can use and determine the locations
of less pairs of blocks.

Furthermore, we allow the prover more freedom. We assume that, in all the bad pairs
of blocks that the prover announces as good, all the characters are WC. Namely, the
prover has complete control over these pairs and he can open each of the characters in
these blocks to whatever value he wants. Note that in any other case the prover has less
control since the value of some of the characters will be set to a specific bit instead of
the prover being able to determine their values in a manner that best suits his goal.

Recall that after the good pairs of blocks are pointed out by the prover, we truncate the
last pairs so that we are left with exactlypairs of (supposedly) good blocks for each
of the variablesg, 1 <i < n. Again, we assume the best possible case for the prover
in which the truncated pairs are all good pairs of blocks, whiletthet; bad pairs of
blocks still remain for the rest of the proof.

To summarize, we consider the worst case in which theré; grairs of blocks left
for the rest of the proof, out of whidh — t; pairs are bad. The bad pairs contain blocks
with only WC characters, and the location of the- t; bad pairs in the list of; pairs
is determined by the prover. However, it is important to note that the blocks that do not
contain WC characters contain strings that are uniformly and independently chosen in
{0, 1}°.

Next, we define an assignmento the variables of the formula. We shall show that
if this assignment does not satigfy(as must be the case here since we assumetisat
not satisfiable), then conditions 2 and 3 hold with small probability. Consider the good
pairs of blocks after being polarized in the second part of the (noninteractive) proof. For
any variablex; consider the majority of the polarization in the— (t, — t;) good-block
pairs which correspond tg. Since the prover is not necessarily honest, some of these
pairs may have their WC block as the first block and some of the pairs may have their
WC block as the second block. We defing) to befalseif in the majority of the pairs
the first block in the pair is the WC block, and we defir{®;) to betrue if in the majority
of the pairs the second block is the WC block (ties are broken arbitrarily).

Each variable has a degree of consistency with this assignment. Define the consistency
of the variablex; to be the fraction of the good pairs that have polarization equal to
the majority polarization of the variable (by whieftx;) is determined). Clearly, each
variable has consistency at leagR1We are going to partition the analysis into two cases.
One possible case is that one of the variables has consistency lesg@han@then we
show that the consistency test of the polarization (the third part of the proof) passes with
low probability. The second possibility is that all variables are at leg@tc®nsistent.

In this case we recall that cannot satisfy all clauses (singeis not satisfiable) and

we show that the prover can pass the test of a clause which is not satisfieditly

low probability. We show that whichever of the above is valid, the prover succeeds in
convincing the verifier with probability at mosy2.

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 19

6.2.1. A Probabilistic Argument

For each of the above possibilities, we use the following method by which we prove that
the prover fails with high probability. We define a randomized prover that chooses his
cheating strategy at random, and compute the probability that the proof which the ran-
domized prover produces passes the relevant tests. Next, we show that even if the prover
chooses his best strategy (rather than selecting his strategy at random), the probability
that he manages to convince the verifier still remains low.

We begin with an overview. The cheating prover has some freedom which emerges
from his ability to claim that some bad blocks are good. He is going to use this freedom
in order to change the order of the good blocks in the proof. For example, if the value
of the third good block does not fit some test, then the prover can make it fourth by
declaring a bad block (appearing before the third block) to be good. Thus, on top of his
complete influence on the opening of bad blocks, the prover also gains some advantage
by influencing the order of the good blocks. Note that (although we shall not use this
fact) this freedom is given to him only once, and should allow him to pass all tests.

Next we note that the number of possible choices given to the prover can be upper
bounded by some exponential (in the number of blocks) term which describes the num-
ber of possibilities to insert the bad blocks in between the good blocks. However, the
probability of the verifier not detecting an error in the polarity tests or in the clause tests
is exponentially small both in the number of good blocks and also itetigghof each
block. This difference gives us the edge in the soundness analysis, and a sufficiently
large (still a constant) block-size would make the second expression (i.e., the probability
to fail) kill the first expression (i.e., the freedom given to the prover). The formal details
follow.

6.2.2. Case | There Exists an Inconsistent Variable

Choose avariablg (1 < i < n)and assume that the consistency;d lower than 9.

We calculate the probability that the prover has a winning strategy for the third part of
the proof (the consistency test of the polarization). In the end of the (Case I) analysis, we
multiply this probability byn (the number of variables) to compute an upper bound on
the probability that there exists a variable with consistency less tf@ar®d the prover

still passes the consistency tests.

As mentioned, we begin by calculating the probability that the prover can pass the
consistency test (third part of the proof) when he chooses his strategy at random. Recall
that we are assuming a worst case scenario in which therte peérs of blocks for;
out of whicht, — t; pairs of blocks were declared good by the prover but contain, in fact,
only WC characters.

In the polarization consistency test the prover has to open half of the characters in
each block. The randomized prover opens all the non-WC characters to 0 or 1 as he
must, and he opens all the WC characters in the best way, so that the test that they
are engaged in is satisfied. (Recall that each character is engaged in at most one test.)
However, the prover still has two things to choose. First, he can determine where to put
thet, —t; bad pairs of blocks amongst tigdog(n/¢) pairs. Second, he can decide which
pairs are polarized inconsistently with the majority of the pairs. We let the randomized
prover pick these at random. Namely, he picks at randiom t; places for the bad

20 J. Kilian and E. Petrank

pairs between thg log(n/e) pairs, and he picks /9 (or more) good pairs that will be
polarized inconsistently (with the polarity of the majority of the pairs).

What is the probability that the prover passes the consistency test? Recall that each
basic consistency test is performed on two pairs. If the pairs are polarized in the same
manner, then the test is easily passed by the prover opening the wild characters properly.
Also, if anything is tested against a bad pair, then the prover easily passes the test since
it has one of the pairs consisting of wild characters only. However, when two good pairs
of opposite polarization are tested against each other, then each of the non-WC blocks in
both pairs contributes a completely random string (2d bits and the two strings must
be equal. This happens with probability exactty/2d.

Note a delicate point in our claim that the strings compared are random. Indeed the
contents of the strings were chosen uniformly at random, but it is known in advance
which pairs are tested against each other and the prover may use his advantage in setting
theplacesof the bad pairs or decidinghich pairsare inconsistently polarized in order
to set specific pairs against each other and enhance the probability of the good pairs
to pass the test. Nevertheless, this is not the case here. We are considering now the
randomized prover who chooses the places of the bad pairs and the good pairs that are
inconsistently polarized at random, and thus the good pairs relate to one another in a
completely independent and random manner.

Now we compute how many oppositely polarized good pairs are tested against each
other. By our assumption, there are at lg@st- (t, — t1))/9 good pairs which are not
polarized consistently with the majority of the pairs. By the setting of the parameters
a, v (see below in this proof) we get thé — (t, — t1))/9 > t;/10. Therefore we
have at least; /10 good pairs which are not polarized as the majority good pairs are
polarized. By the expansion property of the expander graph we use, these pairs have at
leastt; - §/10 neighbors that are either consistently polarized with the majority or are

bad (not good) pairs. Since the number of bad pairs is at thest;, we get that at least

m = t1-8/10— (t, —ty) tests are made between good pairs that are oppositely polarized.

Since we do not recycle characters, all these tests are completely independent, and the
test is passed with probability 2™/24,
Recall that

tt = 272 B IogD and
&
tp = @2+ 4 y)plog-.
&
Thus,

n/s$§
m:ﬁlog;<E~(2‘2°‘+1—y)—2y).

To summarize, the probability that the randomized prover passes this test is at most
2—B10g(n/e)((@8/20d)(2 %+ ~y)~(a/d)y)
We now consider an arbitrary prover, not limited to a random strategy. The random-

ized prover chooses between its strategies at random. The choice is made between the
('fff’t‘l/”)) possibilities to fix the places of the bad pairs, and between choosing the

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 21

inconsistently polarized pairs. The number of options for this second choice can be
bounded by 2. Also, the randomized prover passes the test with probability at most
2-Blog(n/e)(s/200) 2 ~y)~(@/d)y) By simple counting arguments, if the prover uses his
best strategy, then the probabilify, that the prover passes this test is at most

- <ﬁ log(n/ €)> ot p—F10g(n/e) (@8 /20)(2 %+ —y)~(@/d)y)
- th—1;

< 2Blogn/e)(H@y)+272 " —y —(@s/20d) 22 —y)+(@/d)y)
whereH is the entropy (in base 2). For the valuesyoind« that we shall choose it
holds thatH (2y) < 4.5«y and thus,

p < 28 |09(n/8)(50!)/+2’2"“(l—a8/20d)).

Settinge = 21d/6 (for example, for the expanders suggested by [19], we:getl55),

p< 28 |09(ﬂ/8)(50t1/*(1/20)2’2"“)_

We also seyy = 2-22+1/125y andp = 3- (125x)? - 2% (note that this setting satisfies
the requirement posed in (2)) and we obtain

2
p < 2-2logm/e) _ (f) .
n

So the prover passes the consistency test of a spgcifiith probability at moste/n)2.
Thus, the probability that there exists an inconsistent variable yet the prover can still
pass all the consistency tests is at mégh < ¢/4.

6.2.3. Case It All Variables Are Almost Consistent

Assume that the consistency of all the variables is at legkt&gain, we consider the
randomized prover that acts as before. That is, the prover selects at random the places of
thet, — t; bad pairs of blocks in between ti#dog(n/¢) blocks, and selects at random
which good pairs will have an inconsistent polarization. In all other senses (i.e., opening
WC characters) the prover always makes his best choice in order to pass all tests.
Recall that we have defined an assignmettiat corresponds to the majority of the
polarities in each variable. Since the input formula is not satisfiable (we are analyzing
the soundness of the protocol) there exists a clause thaes not satisfy. We compute
the probability that the prover can pass the clause test for this specific clause. In the end
of the (Case Il) analysis, we multiply this probability by the number of clauses in order
to get an upper bound on the probability that the prover passes all the clause tests while
there exists a clause that is not satisfiecby
Fix a specific clause and let the literals in this clause/or andw. (Each of them
is either a variable or a negation of a variable.) Each variable contributes a string of
characters,, sy, ands, of lengtha/10. We get onlyx/10 characters from each block
since we used /2 characters for the consistency check and since we use the rest of the
a/2 characters for five different clause tests. Recall that we never use a character twice.

22 J. Kilian and E. Petrank

Sincet assigns each of the literals the valiadse and the literals are /® consistent,
then we can deduce the following on each one of the strings.

Each of the strings,, s, ands, is composed of some random characters and some
WC characters. We check how many WC characters can be there. By the guarantee on
the consistency, we know that at leagf®f the good pairs contribute random blocks
to each of the strings. However, there are also the bad blocks which contain only WC
characters. So adding both of these numbers, we get that the number of WC characters is
at most% (t1 — (to—t1)) +to —t1, and by the setting of the parameterandy, we get that
this is at most; /5. This bound implies that in each string there are at Iéaﬁ -a/10
random characters and at mésttl -a/10 WC characters.

Note again that the claim on randomness is based on the prover selecting the places
of the bad pairs and the inconsistently polarized good pairs at random.

Recall that for the clause test the prover must open all characters such that the bit-wise
exclusive or of the strings;, s,, ands, equals 8%/1°, What is the probability that the
randomized prover passes this test? For the prover, the best possible arrangement of the
WC characters in the three strings sy, ands, is when their indices do not overlap,
and then the prover has control ovgep t1 - /10 characters. Still, all the rest of the
characters are completely random and sum up to 0 with probabjltySince all these
characters are completely random and independent, the probability that the randomized
prover passes this test is at most

9—2at1/50

As before, we consider an arbitrary prover. The number of possible strategies from which
the randomized prover has chosen at random is bounded by

((Blog(n/e)) . 2t1)3
2yBlog(n/e)

(as in Case (I) but for three variables). So if the prover chooses the best strategy instead
of picking a strategy at random, the probability,that he passes the test satisfies:

p < 23ﬂIog(n/s)H(2y)+3t1—2at1/50

— 2Blog(n/e)-(3H (2y)—y (3—20/50)+-271(3—2x/50)) .

Again, using the assignmentsdo 8, andy, we get that the probability that the prover
passes this test even when he chooses his best strategy is &t myst

Now, we remember that this calculation applies to a specific clause. Since (in the
worst case) the prover may choose the unsatisfied clause, and since there are at most 5
clauses (in 3-SAT-5 formula with variables), then the probability that the prover will
pass all the clause tests although there exists a clause tias not satisfy is at most
5¢2/n < g/4.

6.2.4. Combining Both Cases

In both cases the prover is caught with high probability. If the variables are not polarized
consistently, then he is caught at the consistency test with probability at leasy4
and if he sets the polarization of the variables almost consistently, then he is caught in

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 23

at least one of the clause tests with probability at leastsl/4. Combining both, we
conclude that the prover is caught with probability at least 12. Also, our analysis was
conditioned on the event that the conditions given in the Chernoff inequality hold (see
(1)) and by the setting of the parameters this happens with probadiityTherefore,

the overall probability that the prover manages to convince the verifier on angnput
which is not satisfiable is at most

6.3. Zero Knowledge

In order to prove the zero-knowledge property of the protocol, we have to show that
there exists a probabilistic polynomial time simulatdrwhich on inputy € 3-SAT-5
outputs a distribution on the message, revealed indices and contents of the hidden bit
string at these indices, and whose output distribution is computationally indistinguish-
able from the distribution output by the (honest) prover on a uniformly chosen hidden bit
string.

The simulator begins by producing a genuine random string which will help him
simulate the hidden bit string. Next, the simulator follows the prover strategy as far as
it can. Namely, it produces characters, gathers the characters into blocks, and reveals
indices and contents of all the bad blocks. At this stage (before the second part of the
proof), the simulator replaces all the characters in the good blocks by WC characters. The
simulator does that by picking at random between the pairs “01” or “10” and replacing
the original “hidden” bits in these places by the new bits. Note that in the rest of the
proof only one bit in each character is opened, and the content of this bit as well as the
order of this bit in the pair will be completely random as in the original proof, except
for the linear constraints checked by the verifier which hold both in the proof and in the
simulation.

After substituting the characters, the simulator polarizes the blocks randomly. Namely,
for each remaining block, a bit is chosen uniformly and independently and these bits are
sent in the second part of the proof. The remaining pairs of blocks are subsequently used
in the order specified by this random polarization.

Next, the simulator passes all the required tests by opening the relevant characters
appropriately. Note that each test is made of two or three characters of which at least one
must be a WC character and the rest can be completely random. The opening of the WC
character in the original proof is done so that it satisfies the linear constraint posed by
the proof. In the simulation the simulator produces the same distribution on the opened
characters. Namely, all the opened characters are uniformly cho$@nlingiven that
they have to satisfy the relevant test. (Note that it is not correct to always open a pair to
0-1 when the exclusive-or of these bits has to equal 1, since in the original proof the pair
0-1 has the same probability as 1-0.) Since no character is used twice, the distribution of
the proof output by the simulation (on satisfiable formulas) is identical to the distribution
of the real proof.

To summarize, since the bits opened by the simulation are completely random (uni-
formly chosen) conditioned on the linear constraints posed by the verification process,
and since this is also the case for the real prover, on a uniformly chosen hidden bit string,
the output of the simulation is exactly identical to the original proof. Note, however,
that we cannot claim frorperfectzero knowledge since the compilation procedure of

24 J. Kilian and E. Petrank

[11] (see Section 3) imposes a distribution that is only computationally indistinguishable
from the original proof.

6.4. A Remark on Perfect Completeness

Itis desirable for a proof system to have a perfect completeness property. Namely, that if
the input formula is indeed satisfiable, then the prover will always be able to prove that
this is the case. However, in our protocol even if the input fornguia satisfiable, the
prover may still not be able to prove it since the conditions stated in the Chernoff bound
do not always hold for the shared random string of the proof.

To fix the protocol to have perfect completeness, we allow the prover to show that
this is the case (by opening all the characters of the shared random string and showing
that the number of good blocks is not within the desired bound). In this case the verifier
accepts (although he gets no statement about the input formula). Using this augmented
protocol, we gain perfect completeness and the soundness analysis remains unchanged
since we have assumed that in this rare case, the prover always succeeds in convincing
the verifier.

6.5. Complexity

Our proof use€(log(n/¢)) hidden bits for each variable, i.€3(klog(n/e)) random
bits for each variable. Thus the overall number of hidden bits we uSgridog(n/e))
and the length of the shared random tape we usxlislog(n/e)).

7. Efficient Provers

The compilation procedures of [11] and [3] can be made to work for polynomial-time
bounded provers with access to a witness for the NP problem. However, a few changes
have to be made which affect the cryptographic assumption we use. We give a further
exposition of these techniques in this section.

We assume the existence offamily of certified trapdoor permutation&oosely
speaking, a familyF of trapdoor permutations is a set of permutatips: {0, 1} —

{0, 1}%}i ¢, such that:f; (x) can be efficiently computed given x), it is hard to compute
fi‘l(y) given (i, y), for eachi there exists drapdoor t(i) such that it is possible to
compute efficientlyffl(y) given(i, y, t(i)), and there exists an efficient algorithm that
given the security parametkr sampled < | N {0, 1} uniformly together witht (i),
i.e., there is an efficient sampler that samgles(i)) such that is uniformly chosen in

I N {0, 1}K.

The additional “certification” property is that giverit is possible to verify efficiently
thati € 1, i.e., fi € F. Specifically, if f; is in F, then we know thaf; is a permutation.
Actually, the need for the certification is removed by [3].

Our proof system for an efficient prover involves an additional preliminary step.
Note that the only use we made of the power of the prover is in inverting the one-way
permutation while interpreting the shared random string in the compilation procedure.
This enabled the shared random string to be interpreted as hidden bits only shown to the
prover.

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 25

In order to remove this need for powerful computation, we let the prover choose at
random(i, t(i)) such thai e | N {0, 1} and the whole proof is carried out with the
one-way permutatiorfi. At the beginning of the proof, the prover states the indes is
going to use and the verifier verifies that indées | . Note that it is important to verify
this sincef; must be a permutation for the soundness of the proof system. After that, the
proof system is the same and the efficient prover can infygsing the trapdoat(i))
whenever needed.

The completeness and the zero-knowledge analysis remain the same, butthe soundness
property has to be computed again, since the prover gains a new power: he can interpret
the shared random string jih N {0, 1}¥| different manners (according to the choice of
fi € F) and perhaps he can choogethat most helps him to cheat on a nonsatisfiable
input formulag. Note that although the honest prover can be run efficiently, we would
like to defend ourselves against computationally unbounded cheating provers.

We treat the soundness analysis in the same manner as we did in the original sound-
ness analysis. Namely, first we analyze what happens when the prover really chooses
uniformly f; € F and then we compute the advantage he may get when picking the
best possiblef; € F. So whenf; is picked at random, the probability that the prover
succeeds in cheating the verifier is the same as computed in Section 6.2. Therefore, the
probability that the prover succeeds in cheating when he canfpiekF that best serves
his purpose is at most

el N[0, 1K <& 2K,

as needed.

To summarize, in order to run the compilation procedure with an efficient prover, we
use a familyF of certified trapdoor permutations, we add a preliminary stage in which
the prover chooses and states a menfper 7, and then the prover and verifier interpret
the shared random string according to the permutafjan the rest of the proof. The
soundness probability suffers a loss of a factor'of 2

7.1. Eliminating the Certification Requirement

The need for certification in this setting was first noted by Bellare and Yung [3]. They
also suggested a way to eliminate this requirement. Loosely speaking, they replace the
requirement for efficient verification thdt is a permutation by a proof (of the prover)
that f; is “close” to a permutation. The idea of the proof is that the prover has to invert
random strings i0, 1}. In our setting, after the prover seletts |1 N {0, 1}*, he uses a
predetermined part of the shared random string to demonstrate the permutation property
of fj. This part of the random string is partitioned into blockskdfits and, for each
blocku € {0, 1}, the prover specifiesﬁ(l(u), i.e., the inverse of the bloakunder the
mappingf;.

If a § fraction of the strings if0, 1} do not have preimages and the prover tries to
invert (log(1/w)) - 8~ strings in{0, 1}¥, then he is caught with probability at least 1.

Denote byl the number of hidden bits used in the proof, iles O(kn - log(n/e)). We

selects &' 1/1 - log(n/e) to be the fraction of bad strings i®, 1} which we allow,

andw = ¢/n to be the degree of reassurance. Therefore, we have to use additional
O(log(1/w) - 8~1) (which is O(l)) tests to make sure that with probability at megh

26 J. Kilian and E. Petrank

it holds that f; violates this property and the prover is not caught. Note that we only
multiply the length of the random string by a constant, so the complexity is not changed.

We first note that since there are at mo$tpdssible permutations that the prover
can choose, the test fails one of them with probability at leas®t - . However, this
loss of a factor of ®in the soundness error probability was already taken into account
so we do not count it again. So now assume that we are dealing with a fuhctoon
which at moss fraction of the points if0, 1} have two inverses. In this case the prover
gains an additional power in the proof: the ability to open the committed bits that have
two inverses in both possible ways. We call theselitd As before, we let the prover
choose the opening of the bad committed bits at random and we then conclude that the
prover can use this to raise his probability to cheat the verifier by a factor of at fhost 2
whereb is a random variable that represents the number of bad committed bits between
thel bits used for the original proof.

If the number of bad committed bits < 3log(n/¢), then we are done, since our
soundness analysis is robust to the prover increasing his humber of possibilities by a
factor of (n/¢)3. So we compute the probability that the number of badtbidses not
exceed 3log/¢). The expected number of bad bitd i$ = log(n/¢). By the Chernoff
inequality, we get

Prob{b > 3log E}
&
&
.

It was shown in [3] that this proof is zero knowledge. It should also be clear that if
¢ € 3-SAT-5 and the (honest) prover indeed selects a permutation, then he cannot fail.

Summing up, we can use the technique of [3] in order to relax the cryptographic
assumption from the existence of a family adrtified trapdoor permutations to the
existence of a general family of trapdoor permutations. The cost is at most a constant
multiplicative factor in the length of the shared random tape.

IA

Prob[|b — E[b]| > 2 Iogg}

=

8. Open Questions

The result in this paper follows earlier work on making noninteractive zero-knowledge
protocols more efficient. However, there is no known lower bound on the complexity
of a noninteractive proof for NP-Hard languages. It is a most intriguing open question
whether nontrivial lower bounds can be proven in this case.

Acknowledgments

We thank Oded Goldreich and the anonymous referees for many useful remarks on earlier
versions of this manuscript, which greatly improved its readability.

References

[1] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with Low Communication Overhead.
In A. J. Menezes and S. A. Vanstone, editokslvances in Cryptology—CRYPTO0' Proceedings
pages 62-76. Lecture Notes in Computer Science, volume 537. Springer-Verlag, Berlin, 1990.

Noninteractive Zero-Knowledge Proof System for NP with General Assumptions 27

[2] M. Bellare and S. Goldwasser. New Paradigms for Digital Signatures and Message Authentication Based
on Non-Interactive Zero-Knowledge Proofs. In J. Feigenbaum, e@idlmances in Cryptology—CRYPTO
"89ProceedingLecture Notes in Computer Scieneelume 435, pages 194-211. Springer-Verlag, Berlin,
1989.

M. Bellare and M. Yung. Certifying Cryptographic Tools: The Case of Trapdoor PermutatioAsl-In

vances in Cryptology—CRYPTO2 Proceeding Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1992.

[4] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive Zero KnowlegtfeM J Comput,

20(6), 1991.

[5] M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero Knowledge and Its ApplicationBrda
20th ACM Sympon Theory of Computingages 103-112, 1988.

[6] J. Boyar and R. Peralta. Efficient Zero-Knowledge Proofs of Circuit Satisfiability. Technical Report 1,
ISSN No. 09033920, Institut for Matematik og Datalogi, Odense Universitet, 1994.

[7] 1. Damgard. Non-Interactive Circuit-Based Proofs and Non-Interactive Perfect Zero Knowledge with Pre-
processing. Idvances in Cryptology—Eurocry@®2 ProceedingLecture Notes in Computer Science.
Springer-Verlag, Berlin, 1992.

[8] A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On Monotone Formula Closure of SZK. In
Proc. 35th Sympon Foundations of Computer Scienpages 454—-465, 1994.

[9] A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge with Preprocessing. In
S. Goldwasser, editoAdvances in Cryptology—CRYPT88'Proceeding pages 27-35. Lecture Notes
in Computer Science, volume 403. Springer-Verlag, Berlin, 1988.

[10] U. Feige. Personal communication.

[11] U.Feige, D.Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Based on a Single
Random String. IfProc. 31st Ann Sympon Foundations of Computer Scienpages 308—-317, 1990.

[12] A. Fiatand A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Prob-
lems. InAdvances in Cryptology—CRYPT&8b'Proceedingpages 186—189. Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1986.

[13] O. Goldreich. Foundation of Cryptography—Fragments of a Book. Available frofal#gwronic Collo-
quium on Computational Complex{iizCCQ http://www.eccc.uni-trier.de/eccc/ , February
1995. See Addendum, February 1996.

[14] O. Goldreich and L.A. Levin. A Hard Core Predicate for All One Way Function®rc. 21st ACM
Sympon Theory of Computingages 25-32, 1989.

[15] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.
SIAM J Comput, 18(1):186-208, 1989.

[16] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments (extended absfant).24th
Ann ACM Sympon Theory of Computingages 723-732, 1992.

[17] J. Kilian. On the Complexity of Bounded-Interaction and Non-Interactive Zero-Knowledge Proofs. In
Proc. 35th Ann Sympon Foundations of Computer Sciend®94.

[18] J. Kilian, S. Micali, and R. Ostrovsky. Minimum Resource Zero-Knowledge Proof8rdn 30th Ann
Sympon Foundations of Computer Scienpages 474-479, 1989.

[19] A. Lubotsky, R. Phillips, and P. Sarnak. Ramanujan Gra@lsabinatorica8(3):261-277, 1988.

[20] M. Naor and M. Yung. Public Key Cryptosystems Provably Secure Against Chosen Ciphertext Attacks.
In Proc. 22nd Ann ACM Sympon Theory of Computingages 427-437, 1990.

[3

