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Abstract. Traditional secret sharing schemes involve the use of a mutually trusted
authority to assist in the generation and distribution of shares that will allow a secret to
be protected among a set of participants. In contrast, this paper addresses the problem
of establishing secret sharing schemes for a given access struittuoetthe use of a
mutually trusted authority. A general protocol is discussed and several implementations
of this protocol are presented. Several efficiency measures are proposed and we consider
how to refine the general protocol in order to improve the efficiency with respect to each

of the proposed measures. Special attention is given to mutually trusted authority-free
threshold schemes. Constructions are presented for such threshold schemes that are
shown to be optimal with respect to each of the proposed efficiency measures.
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1. Introduction

A secret sharing schenig a method by which aecretcan be protected among a group
of participants Each participant holds a privaghareof the secret. Only certain sets
of participants duthorized selsare desired to be able to reconstruct the secret from
their respective pooled shares. Further, certain sets of participarastborized sejs
are desired not to be able to reconstruct the secret from their respective pooled shares.
The collections of authorized and unauthorized sets, denot&damngd A, respectively,
are assumed to be disjoint and are calledhtteess structurd”, A) of the secret sharing
scheme. Further, if every subset of participants belongs to ditleerA, then(T", A) is
calledcompleteand is denoted by.

Itis natural to make the assumption that if a&eff participants contains an authorized
set, thenAis itself authorized, and that if a sBtis contained in an unauthorized set, then

* Apreliminary extended abstract of this paper was presented at EUROCRYPT '95. This work was supported
by the Australian Research Council.
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B is itself unauthorized. An access structure with these properties is catladtone
Throughout this paper we assume that every access structure is monotone.

Asecretsharing scheme nparticipants in which all subsets of size at ldadbr some
k € {1, ..., n})areauthorized and all subsets of size lesskteae unauthorized is known
as a(k, n)-threshold scheméwe also call the corresponding access structlra)-
threshold. Threshold schemes were the first types of secret sharing scheme proposed
3], [20].

We make a subtle distinction between two types of secret that can be protected by
a secret sharing scheme. A secret is said texdicit if it takes a fixed value that is
predetermined by factors outside the secret sharing scheme design. In other words, the
scheme is designed to protect a particular predetermined number within a given domain.
This might be a bank account number, the number of a security box, or an enabling
code. Thus, in the case of an explicit secret, the secret value comes first and the secret
sharing scheme is then designed to protect that secret value. On the other hand, a secret
is said to bamplicit if it does not take a predetermined value. In this case the secret
sharing scheme must protect a secret, but the value of the secret ey bember
within a specified domain. In other words, the secret sharing scheme is set up first, and
the secret value that the shares can be used to reconstsubisquentlgdopted as the
“secret” (perhaps a cryptographic key). For instance, an application was described in
[13] where the shares of an implicit secret were entered during the initialization of the
locking mechanism in a vault door. The secret value corresponding to these shares was
then calculated and adopted as the secret combination that, if reconstructed, would open
the vault door. A secret sharing scheme can also have an implicit secret when the scheme
is being used only to demonstrate that a particular concurrence has taken place during
an access control protocol. In such a situation, reconstruction of the correct secret value
shows that an authorized group of participants have pooled their shares, but the secret
value itself has no further significance. For example, suppose concurrence of certain
personnel at a bank is needed before large transactions are approved. A secret sharing
scheme could be set up with the pretext that approval will only be granted if the correct
secret value is reconstructed (and hence an authorized group of employees have pooled
their shares). In this case, the secret value has no significance other than as a means of
verifying that an authorized concurrence has taken place and hence an implicit secret is
sufficient for the application.

Traditional models for secret sharing schemes rely on the existencéotually
Trusted AuthorityfMTA) to initialize the scheme. This authority must be trusted by all
the participants and can be either human (perhaps an organization) or a device. If the
secret is explicit, then the MTA is trusted with the knowledge of the explicit secret and
with the generation and distribution of suitable shares that relate to the secretin question.
In the case of an implicit secret, the MTA is further responsible for the generation of the
implicit secret that is to be shared among the participants of the scheme.

We study here secret sharing schemes that@aequire the existence of an MTA
during their set-up protocols. In the proposed schemes a participant generates their own
share, and communicates information about this share to other participants. We will call
such schemelg TA-free We replace the reliance on an MTA by the assumption that the
participants can communicate securely among themselves. Thus the use of an MTA-free
scheme is restricted to situations where secure channels exist between the participants
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in the scheme. The MTA-free schemes that we consider all have implicit secrets. Unless
an access structure admits an authorized set comprising a singleton participant, we do
not believe it is possible to devise a protocol which allows a group of participants to
generate their own shares to protect an explicit secret with that access structure. If there is
an authorized set comprising a singleton participant then, since that participant effectively
knows the secret directly from their share, that participant could (in theory) play the role

of an MTA and generate shares of the (explicit) secret for the other participants. Indeed,
a traditional secret sharing scheme can be thought of as a secret sharing scheme of this
type where the MTA is an extra participant, authorized as a singleton set.

We note first that there does exist one family of complete access structures which can
be easily realized by MTA-free secret sharing schemesn&nimousn, n)-threshold
scheme can be constructed without an MTA, as follows.u.et 2 be a fixed positive
integer.

The Unanimous Threshold Scheme

e Each participant chooses a (random) share flgm
e The (implicit) secret is the sum of the participants’ shares modulo

The first paper to consider constructions of more general MTA-free schemes was by
Meadows [19]. In this novel paper(&, n)-threshold scheme is proposed which allows
the firstk participants to generate their own (random) shares. However, a “black box” is
then required to generate the shares of the remamindg participants. This black box
is trusted with the knowledge of all the shares and with the value of the (implicit) secret.
Thus by our definition the black box is playing the role of an MTA. The only possible
advantage of this protocol is that the value of the implicit secret is directly determined
from the shares chosen by the fiksparticipants. However, this does not appear to be
much different from a scheme set up by a (device-based) MTA that selects the implicit
secret using a random number generator.

In 1991 Ingemarsson and Simmons [13] reconsidered the design of MTA-free schemes
for complete access structures and suggested an elegant protocol. The basic idea is that
the n participants first generate shares of an (MTA-free) unanimious)-threshold
scheme. The implicit secret of this unanimous scheme becomes the secret of the final
scheme. Each participant then acts as their own MTA and sets up a private secret sharing
scheme to protect their share of the unanimous scheme among a number of the other
participants. Thus a participant’s share in the unanimous scheme becomes the explicit
secret of their private secret sharing scheme. In [13] it is suggested that this procedure
can be used to realize an MTA-free scheme for any complete access structure. We will
later prove this suggestion to be correct.

Ingemarsson and Simmons use their protocol to realize an MTA-free scheme for any
(k, n)-threshold access structure (with<lk < n) using either Maximum Distance Sep-
arable codes or finite geometric structures as the base and private schemes. Dawson and
Donovan [7] reinterpret one of these schemes in terms of Shamir polynomial schemes.

It is clear that if a set of participants performs the Ingemarsson—-Simmons protocol
described above, then the resulting access structure can be calculated from the particular
private access structures chosen. Suppose, however, that the participants wish to set up
an MTA-free scheme for a particular predetermined access structlrgemarsson and
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Simmons do not provide an algorithm for doing this, and further if an MTA-free scheme
for I' is constructed via the Ingemarsson—Simmons protocol there is no guarantee that it
is done in an efficient way.

Inthis paper we address these questions, in the more general setting of access structures
which are not necessarily complete. In particular, given an access strciukg we
determine initial MTA-free schemes and private secret sharing schemes which can be
used in order to realize an MTA-free scheme(@or A). There is not necessarily a unique
way of doing this and so we are particularly interested in finding efficient methods, in
terms of the amount of information that has to be communicated and/or stored by the
participants in the scheme and in terms of the number of separate communications that
have to take place in order to initiate the scheme.

In this paper we will consider schemes which provideonditional securitythat
is, the security is independent of the amount of computing time and resources that are
available in any attempt to obtain the secret by some unauthorized means. In contrast,
Laih and Harn [17] considered establishing MTA-free schemes with conditional security.

The paper is ordered as follows. In Section 2 we discuss the concept of access structure
domination, which is fundamental to the rest of the paper. Section 3 concerns MTA-free
schemes in general, and includes a construction protocol which provides an MTA-free
scheme for any access structure. Components of the construction protocol are analyzed
and three efficiency measures are proposed. In Sections 4, 5, and 6 we consider each of the
proposed efficiency measures in turn and discuss some implementations or refinements
of the MTA-free protocol that lead to efficient schemes with respect to the appropriate
measure. Finally, in Section 7 we prove some bounds on the efficiency measures of
MTA-free threshold schemes and describe optimal constructions.

2. Access Structure Domination

We now formalize definitions from Section 1 and investigate some properties of access
structures, including access structure domination. These are needed in the rest of the
paper.

We say thatT’, A) is anaccess structuren a finite sefP of participants ifl" and A
are disjoint collections of subsetsBfsuch that ifA € C € P andA € I', thenC € T,
andifC € B € PandB € A, thenC € A. We say that a set ifi is authorizedand that
a set inA is unauthorizedIf every subset of° belongs to eithef" or A, then we say
that(T", A) is completeand usually just writé for (", A), otherwise we say tha&t", A)
isincompleteWe remark that botki", I') and(A, A) are complete access structures on
P (where if X is a collection of subsets @?, then X is the collection of subsets 6¢
not in X).

Let (I, A) be an access structure defined on participanPsd&the monotonicity of
(I, A) ensures that we can find a collectibn = {C4, ..., C;} of minimalauthorized
setsinC andaseAt = {S,, ..., §} of maximalunauthorized sets in. We recall from
[2] thatT" can be considered as a logical expression with the participants being Boolean
variables. Let denote logical OR and let juxtaposition denote logical AND. Then the
disjunctive normal form (DNF) of thiogical equivalenof 'isI' = C; +--- + C;. It
follows that a subsef of participants is authorized if and only if the logical equivalent
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of I' is true when the variables ir are all true. For example, |& = {a, b, ¢, d} and
'™ = {{a, b, ¢}, {c, d}}. Then we writel’ = abc+ cd, or equivalenthyi” = (ab+ d)c.
For notational convenience we write= S, ¢ --- ¢ §.

We now recall from [18] a useful family of access structures that can be derived from
(T, A). Let A C P. We define theontraction(I" - A, A - A) of (I", A) at A to be the
access structure dA\ A such that, folB € P\ A,

Bel' A & BUAEeT,
BeA-A & BUAeA.

Conceptually(I" - A, A - A) is the access structure that results/A if the shares
belonging to the participants i are publicly revealed. For example, (', A) =
(abc+ bcd, ab¢ cd), then(T" - ¢, A - ¢) = (ab+ bd, d). It will often be convenient to
regard(I" - A, A - A) as an access structure gn

Now let(I"g, Ap) be an access structure defined®e= {p, ..., pn}. Associate with
eachp; € P anaccess structu(€;, A;) definedorP. ForA C P, letX(A) = {pi | A €
Ii,1<i<n}andlet¥(A) = {pi|A ¢ A;,1 <i < n}. Note that forA € P we
have thatY'(A) € X(A). We define(I"”’, A’) = ((T'o, Ag); (T'1, A1), ..., (Tn, Ap)) tO
be such that foA C P,

Acl’ & X(A) €Ty,
AcA & XA e Ao

It is straightforward to verify thatl™, A’) is an access structure ¢h

Example 1. LetP = {a, b, c,d}. Let (I'g, Ag) = (abcaoboc), (Ta, Ay) = @+
bc,boc), Ty, Ap) = (b+c,a) and(I'¢, Ac) = (@ab+ ¢, a ¢ b). Then, for example,
X({a, b)) ={a b,c} € I'y, so{a, b} € I''; X({a}) = {a} € Ao, so{a} € A’. In fact,
((T'o, Ag); (Ta, Aa), (Tp, Ap), (I'c, A¢)) = (ab+bc+ac,aob).

Note that ifCg andI'y, ..., Iy are all complete, theR” = (I'g; I'y, ..., I'y) is com-
plete and can be interpreted as the access structure defin®dtloat is formed by
replacingp; by Ij in the logical equivalent of .

Example 2. LetP ={a,b,c,d}. LetI'y =abcd 'y =c, 'y =c+d, I’ =d, and
I'q =d. ThenI” = (I'g; T'a, ', T'e, T'q) = c(c + d)dd = cd. Similarly, if 'y = abcd,
',=a+c¢,I'y=b+d, I ="“true” (in other words(I'c)~ = {@}) andl'q = “true”,
thenI” = (I'g; ', Ty, ¢, ['g) = (@+¢)(b+d) = ab+ ad + bc+ cd.

Let (Tg, Ag) and(I"’, A’) be distinct access structures definedre: {ps, ..., pn}-
Using terminology suggested by [21] and [22], we say thiat Ag) dominategT, A")
if there exist access structur@s;, A,), ..., (I'n, An) such that:

1. {p}elifori=1,...,n;and
2. (", A') = ((Tg, Ag); (T'y, Ag), ..., (T, Ap)).

See [21] and [22] for an alternative but equivalent definition of domination in the case
in whichT" andI"g are complete.
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From Example 2, we see thAy = abcddominated™” = ab + ad + bc+ cd. We
now classify all the access structures that are dominated by a given access structure.

Theorem 1. Let(I'g, Ag)and(I"’, A") be access structures defined@rirhen(I"g, Ag)
dominateqT”, A’) ifand only ifTy C " and Ag 2 A'.

Proof. Suppose(I'g, Ag) dominates(I'/, A"). Then there exist access structures
(I'1, A1), ..., (Tn, Ap) such that(I', A’) = (g, Ag); (I'1, A1), ..., (T, Ap)) and
{pi} e Tjforeachi =1,...,n.Let A= {ps,..., pa} € To. Foreach =1,..., 3,
{pi} € Ti, and henceéA € Tj. ThusA C X (A) and soX (A) e I'p. It follows by defini-
tionthatA € I and henc&o C I'". LetB = {py, ..., pp} &€ Ag. Foreachi =1,...,b

we have{pi} ¢ A, SOB € X(B). SinceB ¢ Ag, soX(B) & Ag, and hencdB ¢ A'.
ThusAg 2 A’ and theonly if part of the theorem is proved.

Now suppose thatlg, Ag) and (I, A’) are access structures such tiigt € T
andAg D A.Fori =1,...,n,letT; = p + " andA; = A'\I';. We show that
(I'", A") = ((To, Ag); (I'1, A1), ..., (Tn, Ap)).

Let A C P.ThenA e I'"implies thatA € T'; foreach (1 <i < n). ThusX¥(A) =P
andsoY (A) € I'p. Conversely, suppose(A) € I'o. By hypothesis¥ (A) € I'. Further,
note thatA € X'(A) = {pi | A € pi + I'"}. Suppose that ¢ T'. If pp € X(A), then
Aecp +T';butA ¢ I'"sop € Aand hencet'(A) C A. ThusA € I/, a contradiction.
It follows that A € T/, and we have shown th#t e I’ if and only if X (A) € TI'o.

Finally, we show thatA € A’ if and only if X(A) € Ag. SupposeA ¢ A’. Then
A ¢ A; (sinceA; € A)fori = 1,...,n and hence¥(A) = P. SinceP € I,
X (A) € Ag. Conversely, suppos&(A) ¢ Ao, SOX(A) & A’, by hypothesis. Further,
note thatA € X(A). Suppose, for contradiction, thét € A’. If p; € X(A), then
A ¢ Ai,butA e A'sop € A. ThusX(A) C A, implying thatA = X(A) ¢ A', a
contradiction. ThuA ¢ A'. O

It is worth noting the following related result for complete schemes which is an
interpretation of the main theorem in [21] and [22]. I&tand "y be complete access
structures. We say th& directlydominated™ if there doesiotexist a complete access
structurel’” (distinct fromI'g andI™’) such thaf"y dominated™” andI"” dominated™’

(in [22] it is said thatl"g coversI™).

Result 2[22, Theorem 3.4]. LetI'o andI” be complete access structures define@on
Thenrlp directly dominate$” if and only if there exists funique maximal unauthorized
set B ofl"g such thatl™”’ = I'y U {B}.

3. The Theory of MTA-Free Schemes

We first give a basic model for secret sharing (see, for example, [24]), based on the
entropyfunction H (see, for example, [12]). We introduce the following notation: for
finite setsA and B we write AB for AU B and we writex for the set{x}.
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If o is a probability mass function on a finite $et then theentropyof p is

H(p) =~ p@)logp()

weR

(where if p(w) = 0O there is no contribution to the sum). We remark that the base of
the logarithm is not specified here, but can be chosen to be any convenient value. As
is illustrated by the next examplél measures the uncertainty inherent in a probability
mass functiorp on €, that is, the uncertainty regarding which evenfamvill occur.

Example 3. LetQ = {1,...,n}. If p(1) = 1 andp(i) = 0fori = 2,...,n, then
H(p) = 0. In this case there is no uncertainty about which eveist will occur since
the event 1 certainly occurs. On the other hangy(iff = 1/nfori = 1,...,n, then
H(p) = logn. In this case all events if2 are equally likely; so the uncertainty is high.
In fact, it is true in general that @ H(p) < logn.

For A C Q, let pa be the marginal distribution o, that is,p 4 is the probability mass
function onA defined bypa(@) = > _,cq: =) £(@). The entropy ofo is therefore
H(pa) = =D capal@)logpa(a). Further,

_ pasle, B)
pas(a, B) = AT
Hpap=p) = — Y pas(e. B)logpas(e, B),
aclA]
H(paB) = Z pe(BYH (paB=p)-
BelB]

In the following, forH (pa) we write H,(A).

LetP = {ps, ..., pn} be a participant set, lstbe the secret variable, and Igt, A)
be an access structure 6h Let participantp; receive a share from a sgy] and let
the secret come from a sef| [A secret sharing scheme M (P, s, p) for (T', A) is a
probability distributiornp defined on a set afistribution rules C [p1] x - - - x[pn] % [$]
such that forA C P:

1. if Ae T, thenH,(s|A) = 0; and
2. if Ae A, thenH,(s|A) = H,(s).

Where no confusion arises we will writd for H,. It is important to notice that iV
is a scheme fo(T", A), thenM is also a scheme for every access structlirte A”)
satisfyingl’” € I and A” € A. We say thatM has access structurd™, A) if ' =
{AC P | H(s|A) =0tandA = {AC P | H(s|A) = H(s)}. Further, we calM trivial
if it has access structui@, A) wherel' = 27 andA = ¢.

Secret sharing schemes for complete access structures are atfedt We call
H (pi) thesizeof the share associated wifh, andH (s) thesizeof the secret. It can be
seen (for example [24]) that in any perfect secret sharing scherpe &fA for some
minimal authorized sef, thenH (p;) > H(s). If H(p;) = H(s) for all suchp;, then
we say that the perfect secret sharing scheme and its access structdeakk®e note
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[3], [20] that ideal(k, n)-threshold schemes can be found for alk k < n (recall that
the (k, n)-threshold access structure ®p|P| =n, isT' = {AC P | |A|l = k}).

For incomplete schemes note that far¢ I" U A we do not specify a value for
H(s|A); all we can say is that & H(s|A) < H(s). We define theore of the scheme
M to be coreM = {p € P | there existsA € P with H(s|pA) < H(s|A)}. The
participants in cord are those which, possibly in cooperation with other participants,
can make some contribution toward determining the secret valb.i$f perfect, then
coreM = {p € P | there existsA € I'” with p € A}, which is dependent only oR,
hence we may denote this set by cbre

In a traditional secret sharing scheme, an MTA selects a distributiorrridem
with probability o (;r), then distributes the entry fronp{] as a share t@;. The element
from[s]is the secret. In an MTA-free scheme the participants indirectly select a (random)
distribution rule through the generation of their own (random) shares.

LetM = (P, s, p) be a secret sharing scheme®Bn= {ps, ..., pn} for (T, A). Let
A C sP.Forz € Q, letwa denote the tupléry)aca and et (A) = {a | 7 € Q}. The
probability distributionp induces a probability distributiopa on 2 (A) such that for
a € Q(A) we haveoa(a) = Z{rreﬂlmzoz} p(m). Let[A], = {a € Q(A) | pa(e) > O}.
Let B € P andr € Q2(AB) whererrg € [B],. Then define the conditional probability
paB(mA, TB) to bepap(m)/pe(mR).

Consider the following extension of the protocol in [13] for setting up an MTA-free
scheme. LeP = {py, ..., pn} be a set of participants.

The MTA-Free Protocol

Part (A). Each participant in a subsgg of P independently and randomly gener-
ates their share for a scherivg = (P, s, p°) for (I'g, Ag), whereP, = coreMo.
For p; € P, letx; denotep;’s share in the schemid,.

Part(B). Eachp; € P, constructs a private secret sharing schéfne= (P, s, p')
for some (T, A)), Wherep; = ,ogi, to protect the explicit secre¢. Note that
Xi € [s], = [pil,e and thatl'; necessarily has the property that € I'. For
pi € P\Po, let M; be the trivial scheme. Novp; securely communicates the
shares oiVj; to the participants included ill;.

We prove in Theorem 3 below that Parts (A) and (B) of this protocol together construct
a new secret sharing scherive = (P, s, p), and we calculate an access structure for
it. We therefore call a scheme constructed by this protocd@A-freesecret sharing
scheme, and writh = (Mg; My, ..., M;)) when we wish to indicate the construction
of M from its component schemes.

We now give the formal construction of an MTA-free scheme. SupposeMbat
(P, s, p°) is a scheme in which each participant’s share is independently generated. For
i =1....nletM = (P, s, p') wherep{ = p3 and wherep;'s share is the value of
s. Recall thatp® is defined on the set of tuple@{] 0 x --- x [pn],0 x [S],0 and for
i =1,...,n, p' is defined on the set of tuplepdl,; x -+ x [pnl,y x [S],. We define
M to be (P, s, psp), Wherep is defined on a se® of tuplesz = (x)xess..s,» With
7s € [S]0, 5 € [s]y (L<i <n)andmp = (mp,...,70) € [Pl x -+ x [P],n. We
introduce the extra variables, . .., s, for later notational convenience. F& C s P
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let ), denote(rr})xea. Definen® = (7))xesp € [SP],0 Wherenr) = nl andn is the
unique element ofg] 0 with p°(z%) # 0. Letr € Q with 7s = 70 and defineo () by

p(m) = p°@O) [ ] ppjs (el 73).
i=1

Sincep;’s share is the value of in M;, we havezr'p = ns = r(g If M = (P,s, psp)
is a secret sharing scheme fdr, A), then we say thatl is an MTA-free secret sharing
scheme fo(T", A).

Theorem 3. With p defined as in the previous paragraph

1. if M is a scheme fo(T", Aj) fori =0, ..., n, then M= (P, s, psp) iS a scheme
for (I, A’) = ((To, Ao); (', Ap), ..., (I'n, Ap)); and
2. for A< P we have H(A) = >, H,i (A).

Proof. Let A C P andletr € Q. FirstletA e A'. If p & X(A), thenA € A; so
H, (s|A) = H,i(s); thusH, (A) = H,i (Als). Hence

P (Ta 8) = p' (). 1
Note that
psamsn) = p°(rs) [ | s (tar @p) @)
wG[P]po i=1
(T e T sheehon)( T ) @
og[X(A)] 0 peX (A P X (A)

If A= 0, thenply (Th, wp) = 1 and so, by (2) we have(rs) = p2(7s) and therefore
Y oreqP(m) = ZUE[S]p ps(o) = ZGE[SIPO pg(a) = 1. Thusp is a probability measure.

AsAe A, X(A) € Ao, so,osX p (Ts) = pg(ns)pg(A) (w). Thuspsa(ms ) is equal
to ps(rs) multiplied by a functlon mdependent of, that is,H, (s|A) = H,(s).

Now let A € TV and letwr, t € Q with p(), p(t) > 0. Supposera = ma. Then
14 = mg for eachp, € X (A) (becauseA e I'; and thereforeH i (s |A) = 0), and so
%a = Tn- AS X(A) € To we havers = 10 = 70 = 7s. SOH,(s|A) = 0. This
proves the first part of the theorem.

For the second part we may assume tRate Fo, ) psp(nsp) P ().
Hence pp(p) = pp(np) - 1'07’\5 (np, n ). Now ”p. =7y = ”n and since
the participants choose shares lfy mdependently,,op(np) [, 'Ogi (ng), SO
pp(p) = [y Pp (). Hence forA € P, pa(ma) = [T, pa()) and soH,(A) =
Zin=1 Hp‘ (A). 0

Since a scheme fail™, A’) is also a scheme fdi”, A) whereI’ C I andA C A/,
we have the following corollary.
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Corollary 4. Let M = (Mg; My, ..., M) be an MTA-free scheme dn, where for
i =0,...,n, M is a scheme fo(T';, Aj). Then M is a scheme fal"’, A) if Ae T =
X(A) eTgand Ac A = X(A) € Ag.

Proof. By Theorem 3M = (P, s, p) is a scheme fofT"”’, A’) = ((T'p, Ag); (I'1, Ap),
., (Cn, Ap)). Lt ACP.NowWA e I' = X(A) € Io = Acl"andA e A =
X(A) € Ag = Ac A, soM is a scheme fofT", A). O

We refer to(I'g, Ag) as thebaseaccess structure andg as thebasescheme. We
referto(I'y, A1), ..., (I'n, An) as theprivateaccess structures amdy, . .., M, as the
privateschemes. An MTA-free scheme is essentially a special typeadmpositioras
previously discussed in, for example, [25]. These special decompositions are such that
the scheméMg is determined by the participants Hy independently selecting random
shares, and such that each access stru¢lure\;) hasp; € I'j, fori =1,...,n.

We end this section by considering a related problem raised by Simmons [21]. Suppose
we are given a schemd, for 'y (not necessarily arising by Part (A) of the MTA-free
protocol). Forp, € coreMg let x; denote the share gf in Mg. Now perform Part (B)
of the MTA-free protocol. Simmons asks which access structures can be realized in this
way. The following theorem considers the general case.

Theorem 5. Let My be any scheme f@fy, Ag) and let x denote the share of, jn M.
A scheme M= (Mg; M4, ..., M) for I, A") = ((To, Ag); (T'1, A1), ..., (Tn, Ap))
can arise by Par{B) of the MTA-free protocol if and only Ifo C I andAg 2 A’.

Proof. SupposeM = (Mg; My, ..., My) for (", A") = ((Tg, Ag); (T'1, A1), ...,
(T'n, Ap)) arises by Part (B) of the MTA-free protocol. Then, for= 1,...,n we
havep, € I and by definition(T'g, Ag) dominategT”, A’). By Theorem 1y C I/
andAg 2 A’. Conversely, supposgy C I'" andAp 2 A’. By Theorem 1(I'g, Ap)
dominateqI”, A), hence there exist schemig, ..., M, for (I'y, A1), ..., (Th, An)
suchthatI”, A") = ((Tg, Ag); (I'1, Ay), ..., (I'n, Ap)) . Suppose Part (B) of the MTA-
free protocol is performed olly, using the schemdsly, ..., M,,. The first part of the
proof of Theorem 3 shows th# is a scheme fo(I"’, A’), as required. O

Therefore, the answer to Simmons’ questionGsren a base schemegNbor I'g, a
scheme M fol" can arise by Par{B) of the MTA-free protocofusing only complete
schemesif and only ifT"g C T'.

3.1. The Base Access Structure

The first issue to be considered in the design of an MTA-free scheme is the selection of
the base access structf®, Ag). Recall that in Part (A) of the MTA-free protocol each
p € Po independently generates a random shargl@from a set p].

Theorem 6. Let My = (P, s, p°) be a secret sharing scheme such that for eachp
the share held by p in is independently and randomly chosen from the pgtThen
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Mg has access structur@y, Ag) such thatl’y has a unique minimal authorized set
Further, this unique minimal authorized setdsreMy.

Proof. Aseachp € P independently generates a share, we twE) = Zpep H(p)
andsoforX, Y C P with XNY = @, we haveH (XY) = H(X)+ H(Y). Using this fact,
suppose there exist two minimal authorized get8 of I'g. Let X = ANB, A’ = A\ X,
andB’ = B\ X. Then

H(X) = H(A'X) + H(B'X) — H(A'B'X)
= H(SAX)+ H(sBX) - H(SAB' X), as A,Berl
= H(sXA) — H(A|sBX)
= H(sX) + H(AIsX) — H(A|sB'X)

> H(sX).

HenceH (s| X) = 0 and thus by minimality oA andB, X = A = B.

Let Py be the unique minimal authorized set and fete Py. ThenPo\p ¢ o
and it follows that 0= H(s|Py) < H(S|Po\p), implying that p € coreMg. Thus
Po C coreMo.

Now let p € coreMg and letA € P be such thaH (s|pA) < H(s|A); so that
H(pA < H(SA+H(p), thusH (p|sA < H(p). Suppose ¢ Py, hence there exists
B € P with pAB, AB € I'. Thus 0= H(s|pAB) = H(s|AB), and soH (psAB —
H(p) — H(AB) = H(sAB) — H(AB). HenceH(p) = H(p|sAB) < H(p|sA <
H(p) (from above), a contradiction. O

Suppose we wish to apply the MTA-free protocol to construct a scheme for an access
structure(I, A’) = ((T'g, Aog); (T'1, A1), ..., (Tn, Ap)). By Theorems 5 and 6, the
base access structuiigy, Ag) satisfied’ys C I'', Ag 2 A’, andl'g has a unique minimal
authorized sePy, which is equal to corié,.

Note that ifMg is a perfect secret sharing scheme, thgnis a unanimous threshold
scheme defined oRy.

3.2. The Private Access Structures

We note the following constraint on the choice of private access structures.

Lemma7. Let M = (Mg; M4, ..., M) be an MTA-free scheme such that M has
access structurd’, A). Suppose thatfor& 0, ..., n, M; has access structu&, Aj)
and let (I'", A’) = ((Tg, Ag); 1, A1), ..., (Th, Ap). ThenT' = I and fori =
1,...,nwe havd” C TIj.

Proof. We use the notation introduced earlier in Section 3. We first showthat™'.
By Theorem 3(1), we havE’ € I'. Conversely, suppos& € I'. For everyr, 7 € Q
with p(), p(t) > 0 andta = 7a, thents = ns. However, if XY (A) € Iy, then we
can findz, t € Q with p(), p(r) > 0 andtp = 7a, Tgc(A) = n%(A) andz? # =0.
As 75 = 10 andrs = n0, it follows thatzs # s, a contradiction. SA € I''; hence
r=r.
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We now show thatfor = 1,...,n, IV C I. Let A e I". ThenX(A) € I'y, SO by
Theorem 6 we hav@®, € X (A). Thus forp € Py we haveA € Tj. If p; € Po, then
I = {#} (see Part (B) of the MTA-free protocol) so & € I'/, thenA € T'j; hence
I’ CTIj. O

While we will primarily be interested in constructing MTA-free schemes for complete
access structures, we will show that efficient schemes often arise by using base or private
schemes with incomplete access structures.

3.3. The Basic Construction

Suppose we wish to construct an MTA-free scheme for an access striciuke. It
suffices to construct schemisl, . .., M, for suitable(I'g, Ag), (I'1, A1), ..., (T'n, Ap)
to be used in the MTA-free protocol. The results of Sections 3.1 and 3.2 imply that
Iy ={Po}, Po=coreMg e T, and fori =1,...,nwe havel’ C T'; andp; € T';.

The following construction, called thgasic Constructioypwas previewed in the proof
of Theorem 1 and is an easy way to satisfy these requirements.

The Basic Construction for (T", A)

o (n, n)-threshold orP (soPy = P)

T pi + T (for eachp; € P)

A A\T (for eachp; € P)

Mo ideal unanimous threshold scheme7n
Mi scheme fo(T, A;) (for eachp; € P)

Proof (Basic Construction). We use Corollary 4. LeA € T'. Fori = 1,...,n we
havel’ C T, sOA € T'j. ThusX(A) = P € TI'p. Let A € A. For p; € P\ A, we have
A ¢ T and thereforéd € A;. ThusX'(A) # P; soX (A) ¢ I'o. The proof follows since
o is complete. O

An immediate but important observation to make is that since the Basic Construction
can be used for any access structiiteA), we have the following theorem.

Theorem 8. There exists an MTA-free scheme for any access strudurm).

3.4. Measures of Efficiency

There are a number of different parameters that may be considered as measures of effi-
ciency of an MTA-free scheme. Recall that we allow any two participants to communicate
with one another using a secure channel. We propose three different efficiency measures,
each based on a different assumption. It follows that the significance of each measureina
particular situation depends on the relevance of each assumption. The three assumptions
are:

1. that it is costly to initiate a communication using a secure channel;
2. that it is costly to transmit information over a secure channel; and
3. thatitis costly to store information.
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First, suppose we wish to minimize the number of separate communications that have
to take place between pairs of participants in order for the MTA-free scheme to be
initiated. This measure does not take into account the amount of information transmitted
in each communication, but it is an important parameter if the cost of establishing
a communication between two participants is regarded as significant. This=f
(Mg; My, ..., Mp) is an MTA-free scheme an; has coreP;, then we define the
linkageof M to be

(M) = > (Rl - D).

pi€Po

Second, assuming that it is expensive to transmit information, an obvious parameter to
aim to minimize is the total amount of information that has to be transmitted over all
the secure channels in order to initiate the MTA-free scheme. To compute this value
we use thecontribution vector(or conveg of a secret sharing scheme. For a scheme
M = (P, s, p), this is the vectoKcy, ..., ¢y) = (H(p1), ..., H(pn))/H(S). LetM =
(Mg; My, ..., My) be an MTA-free scheme. lp has convecd,, ..., d,) andM; has

convec(ey, ..., &) (1 <i < n)then we define thpotential storagef M to be
n n
VM) = > "diey.
i=1j=1
From Theorem 3, we see thEtM) = Zi":l ¢, whereM has convecdcy, .. ., ¢,) with

G = Z;‘:l dieg; (1 <i < n). Thus the potential storage is a measure of the total
information generated by all the participants when setting up their private schemes,
which in turn is the total information transmitted between all the participants plus the
information that each participant generates as a share in their own private scheme.

Note that ifM is an MTA-free scheme arising from perfect schems M4, ..., M,
for I'g, 'y, ..., ['n, respectively, then the potential storageMfis dependent oM,

My, ..., Mywhereasthelinkage is only dependentonthe access strucgies . . ., I'n.

Thus it does not necessarily follow that a schevhevith a low linkage will have a low
potential storage, and vice versa. Neither does it follow that we can determine the po-
tential storage directly from the linkage. However, in the eventtMhatM,, ..., M, are

ideal, then it follows thab’(M) = ¢(M) + |Po|.

Notice that if the participants in the scheme store all the information that is transmitted
to them as their share in the final scheme, then the potential storage also measures
the amount of information stored by participants. However, we call this quantity the
potentialstorage because we will show that in many cases a participant only needs to
store a smaller amount of information. For each participant, this reduced share can be
computed from the total information transmitted to them. Mgt denote the scheme
M = (Mg; My, ..., M) after any reduction of share information has taken place and
let the convec oM* be(cj, .. ., c;). To provide a measure of the actual storage of the
reduced schem®l* we use the conventional measures of information rate and average
information rate that are normally applied to traditional (perfect) secret sharing schemes
(for example, [5], [6], [18], and [25]). Thmformation rateand theaverage information
rate of M* are thus, respectively, given by

1 . n
p(M) = min —,  H(M") = ——.
l<i=n G cl+--+C
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If no share reduction takes place, thdn= M* and so minimizing the potential storage
is equivalent to maximizing the average information rate.

Given an access structuie, A), we will be interested in the minimum possible values
of linkage and potential storage. We therefore denot&g By A) (respectively) (", A))
the minimum over all MTA-free scheméé$ for (I", A) of the value€ (M) (respectively,
V(M)). SincedPy| < nandP;| < nfor p; € P, itfollowsthaté (T, A) < Z{‘zl(n—l) =
n(n—1). Likewise, we will be intererested in the maximum possible values of information
rate and average information rate over all MTA-free schelésor (", A). We denote
these bypomta(T, A) and out (T, A), respectively. We reserve the notatip(r", A)
and (", A) for the maximum information rate and average information rate aller
schemes fo(T", A).

Example 4. Let P = Py = {a,b,c,d} andT" = ab + ac + bcd. Applying the
Basic Construction giveFyg = abcd I'y = a+bed, I'h = b+ ac, I'c = c+ ab
andl'y = d + ab+ ac. Sincel'y, I'y, I'¢, ['q are all ideal (see [23]) we can find ideal
Ma, My, M¢, Mg and thus a schemid for I with convec(c,, Cp, Ce, Cg) = (4,4, 4, 2)

(for example, participard generates one unit share, and receives one unit share from
each ofb,c,d). In this case&’(M) = 14 and¢(M) = 10.

4. Reducing the Linkage

We have already seen that the Basic Construction provides an MTA-free scheme for
', however we can make a considerable improvement on the linkage achieved by the
Basic Construction by applying suitable contractions. We call this modified construction
method theContraction Constructiorand remark that it works for any complete access
structurel.

The Contraction Construction for I

I'o (a, a)-threshold orPy, for somePy = {p1,..., pa} €T
I't p1+T
I, p2+T - {p1)

1_‘a pa‘f‘r'{pl’ p27--~»pa—l}

T “true,” for p; ¢ Po

Mo ideal unanimous threshold scheme7en
M; (perfect) scheme far; (fori =1,...,a)

Note that a scheme produced by applying the Contraction Construction depends on
both the base sé%, chosen and the order placed upon the participant of

Proof (Contraction Construction). We use Corollary 4. LeA € I'. ThenAeT - X
(foranyX € Pp),andsoA e TN fori = 1,...,a. ThusX (A) = Ppand saY' (A) € I'o.
LetAe A,sothatA ¢ T. Leti € {1,...,a} betheinteger suchthg, ..., p_1 € A
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butp; ¢ A (i exists for otherwisé®s C A, sOA € T'). ThenA ¢ T, soPy & X(A);
henceX (A) ¢ I'y. The proof follows sincd’g is complete. O

Example 5. LetP andI be as in Example 4. Applying the Contraction Construction
with Py = {a, b} andl'g = abgivesI'y = a + bcd, I'y = b + ¢. Sincel'y, I'y are ideal
(see [23]) we can find idedll;, My, and thus a schemd’ for I with convec(l, 2, 2, 1).
Alternatively, applying the Contraction Construction witg = {b, ¢, d} andI', = bcd
givesT, = b+ac, I'c = c+a, I'y = d + a. Sincel'y, I'¢, Iy are ideal (see [23])
we can find ideaMy, M, Mg and thus a schemi” for I with convec(3, 1, 2, 1).
SoV(M') = 6, V(M”) = 7, and¢(M’) = ¢£(M”) = 4. Thus schem@/’ is slightly
more efficient tharM” and bothM’ andM” are considerably more efficient in terms of
potential storage and linkage than the schéfheonstructed in Example 4.

In particular, we will be interested in the Contraction Construction appli€#,to)-
threshold schemes.

The Contraction Construction for (k, n)-Threshold I"

o (k, k)-threshold orPy, for somePy = {p1,..., p} € T

I pi + I wherel} is (k —i,n —i + 1)-threshold or{p;, ..., pn} for pi € Po
I “true” for p; ¢ Po

Mo ideal unanimous threshold scheme7n

M; scheme fofj, fori =1,...,k

We can calculate the convécy, ..., c,) for the resulting schembl. Eachp; (1 <
i < k) stores their share d¥l, and receives one share from eactpef. .., pi_:. Each
pi (k+1 <i < n)receives one share fromeachmf ..., px. Thusgi =i (1 <i <Kk)
andc =k(k+1<i<n).So

L(M) = s(M) —k=nk— k(k;l). (5)

Theorem 9. LetT be a complete access structure Brwhere|P| = n and let a=
Minacr|Al. Thent(I') < na—a@+ 1)/2.

Proof. LetM be an MTA-free scheme fdr constructed by the Contraction Construc-
tion using a sefPy € T' of cardinalitya. Since|P1| < n, [Pzl <n—1,...,|Py| <
n—(a—1), wehavet(M) < Y2 J(n—i —1) =na—a@+1)/2 O

Note that the bound of Theorem 9 is an improvement on the bagmd- 1) given
in the last section. We now show that fbrcomplete, the Contraction Construction
is just a special case of a more general construction process. Recall from Theorem 6
that the base access structilixeis an(a, a)-threshold structure defined on sofg =
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{P1, ..., pa} € T. It follows thatI'y dominated" if and only if the logical equivalent of
I can be expressed in the form

F=(P1+T)(P2+T2) - (Pat+Ta). (6)

The Contraction Construction is simply a method of finding a set of access structures
1, ..., T such that (6) holds. In order to find MTA-free schemes with low linkage it is
desirable to find private access structures. . ., 'y that have small cores.

Example 6. LetI’ = ac+ad+bc+ bd. By exhausting the possibilities fé and the
orderings ofP, we see that the minimum linkage possible by applying the Contraction
Constructionis 4 (for exampl®, = {a, c}, ', = a+bc+bd, I'c = c+d). However, by
observing thaf” = (a+ b)(c+d) we can choos®, = {a,c},'a =a+b, I =c+d,

to achieve a linkage of 2.

We therefore generalize the Contraction Construction. The main improvement with
respect to linkage is that it may be possible to choose schéfpes ., M, with cores
smaller than the cores of the schemes arising under the Contraction Construction. With
respect to potential storage, the shares may be smaller. This generalization also extends
to incomplete access structures. Note that as in the Contraction Construction, a scheme
produced by applying this Generalized Contraction Construction (GCC) depends on both
the base se®P, chosen and the order placed upon the participantof

The Generalized Contraction Construction for (T, A)

o (a, a)-threshold orPy, for somePy = {p1,..., pa} €T
Iy pr+T
I'> P2+ T -{p1}

Fa pa+r'{pl» p2s~-~s pafl}

A defined byA” = AT\ U AT U---UA fori=1,...,a
T “true” for p; ¢ Po
Mo ideal unanimous threshold scheme7n

M; scheme forTj, Aj) fori =1,...,a

Proof (Generalized Contraction Construction). We use Corollary 4. As in the proof
of the Contraction Construction, & € T, thenX (A) € I'o. Now SupposeéA € A, and
let B € P be suchthatA € B € A'. Leti € {1,..., a} be the smallest value with
B¢TIi.SoBeTly,...,I_1and henceB ¢ Af,..., A" ;. HenceB € A}, and so
p ¢ X(B). ThusPy, ¢ X(B) and since¥(A) € X(B), we havePy ¢ X(A) and
thereforeX' (A) € Ao. O

Note that using the GCC, the collectiart of maximal unauthorized sets is partitioned
by the collectionsA;" (1 <i < a). We also note that the GCC gives the same result as
the Contraction Construction fgk, n)-threshold schemes.
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Example 7. LetI’ = ac+ ad + bc+ bd as in Example 6. Saa*™ = {ab, cd}. Let
Po = {a, ¢}, SOAL = {cd}, A} = {ab}. Letting M, be a scheme fon, and M, be a
scheme forA results in a linkage of 2. The reasons for this choicklgfand M, follow
from the next lemma.

Lemma 10. Let M be a scheme fofTi, Aj), as in the GCC fol". ThencoreM; 2
coreA;.

Proof. Suppose thaW; is a scheme fo(I';, A;), as in the GCC. Lep € coreA;. So
there exist8 € A" with p ¢ B. AsB € A" we havepB € A =T" and thuspB € T.
HenceH (s|B) = H(s) andH (s|pB) = 0 in M;. So, by definitionp € coreM;. Thus
coreM; D coreA,. O

Now for the case when is complete, we discuss a procedure for selection of a suitable
base set and an order of contraction which aim to minimize the linkage.

We will use the GCC withPy = {p1,..., pa} to produce a scheme fdr. By
Lemma 10, in order to minimize the linkage of the resultant schéméet M; be a
scheme forA; (1 <i < a). In this case, the linkage ofl is " (|coreA;| — 1).

We now address the question as to which7agand which ordering of the elements
in Py should be used with the GCC. Intuition and experimental evidence suggest that
Po should be a minimal set of minimal size, however a formal proof of this remains
an open problem. The following algorithm reflects this choice, and further suggests an
appropriate ordering of the elements of the sele@®gd

First we define the following sets. Lél = {A € I'" | |A] = a}, wherea =
Minacr-|Al. Let Q@) = {p € P | there existA € IT with p € A}. Forp € P, let
U(p)={Be AT | p¢B}.Fori >1andp;,...,p €P,let

Q(p1, ..., Pi-1)
={peP\{p1,.--, Ppi—1} | there existA € TT with py, ..., pi_1, p € A},

U(ps, ..., Pi—1, p) ={Be A" | pr,.... p_1€ B, pi ¢ B}

The Linkage Algorithm for T’

1. We use the notation defined above. We will define a sequpnce., p, as
follows. Atstage =1, ..., 4, letp, € P be such thap, € Q(py, ..., pi—1)
and|U (p, ..., pi)| is maximal. If there is more than one suph choosep;
where| gy (p,....p) Bl IS minimal.

2. Apply the GCC withPy = {p1,..., Pa}, @and fori = 1,...,a, let M; be a
scheme forA;.

The significance dfl (py, ..., pi) becomes clearwhenwe show that, inthe application
ofthe GCC to{py, ..., pi}, we haveAiJr =U(ps,-.-., Pi). Leti € {1,...,a}. Suppose
BeU(p:,...,p); sS0B e AT, p1,...,pi_1 € Bandp; ¢ B. It follows thatB ¢
Iy,...,Ti_1andB ¢ I'; SOB ¢ Ay, ..., Aj_jandB € A.SoU(py, ..., pi) € A}
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AseachoflU(ps,....pp 1 Jj=1...,a} and{Aj+ | j =1,...,a)} partitionsA™, we
haveU (py, ..., pi) = A"

Example 8. LetI" = ab+bc+bdetcdebe complete. Then™ = {ade acd, bd, ace
be}, a = 2, andIT = {ab, bc}. We start by noting thaQ (@) = {a,b,c}, U(@) =
{bd, be}, U(b) = {ade acd,acg, U(c) = {ade bd, be}, U(d) = {ace be}, and
U (e) = {acd, bd}. So we can choosp; to be eitheib or c. However,( gy, B = a
and (gey B = ¥, so we choosé?, = {c, b}. Now applying the GCC we get
' = c+ab+ bdeandI'; = b+ de ThusA] = {ade bd,be} = U(c) and
AJ = {acd,acg = U(c,b). ThenA; = ¢+ ab+ bdeandA, = b + de and
the resulting linkage is 6. An exhaustive search througiPgle T" shows that 6 is the
optimal linkage using the GCC.

Our testing of the Linkage Algorithm has suggested that the algorithm finds either an
optimal or close to optimal solution.

5. Reducing the Potential Storage

We now show that incomplete schemes can be used to establish an MTA-free scheme
with lower potential storage than that given by the Contraction Construction. The next
constructions will use a special type of secret sharing scheme defined as follows. Let
0 < c < k. A (c, k, n)-ramp schemen ann-setP is a secret sharing scheme such that
forAC P:

1. if |A] > k, thenH (s|A) = 0; and
2. if |A] < c,thenH(s|A) = H(s).

Ramp schemes such thd{(p) = H(s)/(k —c) (for all p € P) can be constructed from
ideal (k, n)-threshold schemes [16].

The Base Ramp Constructiarean be used to construct an MTA-free secret sharing
scheme for any access structife A). In fact, it differs from the Basic Construction
for a (k, n)-threshold scheme only in the scheivig.

Letc = maXaca|Al.

The Base Ramp Construction for(T", A)

(To, Ap) (c, n, n)-ramp onP

Ip p+T, forpeP
Mg (c, n, n)-ramp scheme o®
M, scheme fol",, for pe P

Proof (Base Ramp Construction). We use Corollary 4. LeA € I'. ThenA € T',, for
eachp € P and soX(A) = P € I'o. We remark that foA € P, sincel', = p+ T is
complete, we havA € X (A) = X(A). SupposeéA € A.AsA ¢ I' we haveY (A) = A,
and|A| < cimpliesX(A) = X(A) = A € A,. O
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Example 9. LetI be(2, 3)-threshold defined o = {a, b, c}. Using the Base Ramp
Construction give§'a, = a+ bc, I'y = b+ ac, I'c = ¢+ ab, and a schem#” for I
with conved(3, 2, 2). ThusM” has a potential storage fwhich is an improvement on
the potential storage 5 &’ using the Contraction Construction. However, the linkage
¢(M”") = 6 which is higher thad(M’) = 3.

Each participanp € P generates a share of sizg — k+ 1) and then receivas— 1
other shares, each of sizg¢(h — k + 1), from the other participants. So the Base Ramp
Construction for gk, n)-threshold scheme gives,

Y(M) =n d = n’ 7
(M) = (n—k+1)_n—k+1’ @
L(M) = n(n—1). (8)

Thus, with respect to potential storage, the Base Ramp scheme is an improvement on
the Contraction Construction fgk, n)-threshold schemes (see (4) and (7)).

6. Reducing the Information Rate

The information rate and average information rate of an MTA-free secret sharing scheme
are measures of the amount of information that has to be stored by participants in the
scheme. We note first that the optimal potential storage can be used to compute an initial
lower bound on the optimal average information rate. More precisely,if\) is a
monotone access structure oparticipants, thepyt a(l', A) > n/V(T, A). We will

show that in some cases it is possible to reduce the amount of information that each
participant stores at the end of Stage (B) of the MTA-free protocol and thus increase the
information rates. To do this we first discussmomorphicsecret sharing schemes.

6.1. Homomorphic Secret Sharing

Homomorphic secret sharing schemes were introduced in [1]. Since then a number of
papers have provided examples and discussed applications, for example, [2], [8], [10],
and [11]. The definition we present here is slightly more general and rigorous than those
appearing in previous papers.

LetM = (P, s, p)andN = (P, s, u) be secret sharing schemes(fbr A) and let, >
2 be an integer. We say thit is A-homomorphido N if there exist functions fy)xesp,
with fx:[x]% — [x], (where K]} is[x], x- - -x[x],, Atimes), suchthatfor?®, ..., 7" ¢
[sP], we haver! x --- % 7% € [SP],, wherex! x - x n* = (fy(n}, ..., 7}))xesp-
In other wordsM is A-homomaorphic toN if there exist combining function&fy)xesp
such that, for any. distribution rulest?, ..., =* of M, applying the share combining
functions( fy)xep to the shares of 1, . .., 7* results in a distribution rule dfl which has
as its secrefs(rd, ..., 7). Informally, the combined shares can be used to determine
the combined secret.

Benaloh [1] discussed 2-homomaorphisms flrn)-threshold schemes. Precisely, in
[1] it was required that for an)K < P with |K| = k ande € [sK],, there exists
7 € [sP], with sk = o (for example, this property holds M=N).
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While previous definitions of secret sharing homomorphism ensure that the combined
shares of authorized sets can be used to determine the combined secret, they do not
guarantee that the combined shares of unauthorized sets do not give any information
about the combined secret. As we will need this property, we now introduce the idea of
aperfecthomomorphism.

Let M = (P, s, p) be a scheme fofl", A). Define a collection of tupleHl indexed
by (X |[x € SP, 1 <i < A}U({X*|x € sP}. Forz?,..., n* € [sP], define a tuple
7 € I by concatenating the componentsidf, . .., 7* andx® x - - -« *. Further, we
define a probability measuteon the tuples of1 such that fotr € IT formed as above,

v(r) =[] p(@'). ForACsPandY C{1,..., 4 %} let A = {x |x € Ai € Y}.

We say thaiM is perfectlyr-homomorphic taN = (P, s, w) if:

(1) M is A-homomorphic toN;
(2) foreachr* € [sP],, lettingC(x*) = {(z%,..., 7" |7, ..., 7" € [SP],, nlx
%t = *}, we have

A
pey= > J[ea):

(ml,...,m)eC(r*) i=1

H, (s%).

Property (2) says that the probability of a distribution ral€& of N is equal to the
probability thatz* is formed by applying: to A distribution rules oM. In other words,
the schemd\ is the result of applying to all sets ofs distribution rules oM. Property
(3) ensures that knowledge of— 1 distribution rules used to form a distribution rule
of N and the shares of an unauthorized set give no information about the secret of the
combined distribution rule.

The following theoremiillustrates the significance of perfect homomorphisms to MTA-
free secret sharing.

Theorem 11. LetM = (P, s, p) be perfectiy.-homomorphicto N= (P, s, i), where
M is a scheme fo(I', A) and there exists A I" with |A] = A. Then there exists an
MTA-free scheme fail”", A) with information rates the same as. N

Proof. Suppose thaM = (P, s, p) is perfectlyA-homomorphic toN = (P, s, ),
with corresponding combining functioridy)xesp and probability measure as in the
definitions immediately above.

Let A = {ps,..., p.} € . We first note that the Basic Construction can be easily
modified so that the base access structuie,is)-threshold omA and the base schemeisa
perfect(i, A)-threshold scheme of. Foreach = 1, ..., A, let p; choose a distribution
ruler’ from M. Equivalently, the private schenid; is the scheme obtained froM
whenp;’s share inM is replaced by the secret value. Ngpdistributes shareg (x € P)
inthe schema;. Let M’ be the MTA-free scheme fd@f", A) arising from this choice of
base and private schemes. Each particigantP then computes (1, ..., r}) (e [x],.)
and stores this as their share. As these computed shares form a distributionNdaf
N is a scheme foT", A), it follows that anyB € I" can reconstruct the secitin N.
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Let B € A and letp; € A\B. Note that ifp; € A, thenp, knowsr! whereas
if p ¢ A thenp; only knowsr,‘jj (k = 1,...,1). Thus H,(s*|BA\B(sP)A"B) >
H, (s*|B' (sP)A\P) = H,(s*), by definition of perfectlyx--homomorphic. Thus all the
information available to an unauthorized set does not give them any information about
the secres* of N.

ThusM’ is an MTA-free scheme fail”, A) which can be reduced t8 and hence has
the same information rates &k |

The MTA-free schem#’ for (I', A) onn participants, constructed using Theorem 11,
has¢(M’) = A(n — 1), V(M) = L), Cx (WhereM has convedc;, .. ., ¢,) ) and
information rates as iN. Thus in order to use Theorem 11 profitably we seek a scheme
M with convec(cy, .. ., C,) that is perfectiy.-homomaorphic to a schems with convec
(dq, ..., dn), whereforeach =1, ..., nwe haved; < Ac;. One class of such schemes
M are the schemes that are perfeatihromomorphic to themselves. We now discuss a
family of such schemes.

6.2. Geometric Secret Sharing Schemes

Recall the definition of geometric secret sharing scheme (see also the related vector space
construction [4] and linear scheme construction [9]). d.&te a prime power, lad be a

positive integer and 1€ = P G(d, q) denote the projective space of dimensibaver

the field GF(q). Let [X] denote the collection of subspaces of ([@(]). A geometric

secret sharing scheme f@r, A) is a functions: sSP — [Z], such that forA C P:

1. if AeT,thenA° D s°; and
2. if Ae A, thenA” Ns? = ¢,

whereA? is the subspace spanned by the subsp&tés € A). Geometric schemes can
be found for all monotone access structures [23].

Fromo we can obtain a se&® of tuples as in [14]. For eack € sP, letkl, ..., k&
be the homogeneous coordinatés ¢ 1)-tuples overG F(q)) of a point basis fox°.
Let hy, ..., hqer denote theg®+? (d + 1)-tuples overGF(q). Fori = 1,...,q%,
leto o hi = (Tx)xesp, Whereny = (ko hi, ..., k% o h)) (x € sP), andky o h; is
the dot product of the twed + 1)-tuples. LetQ = {o o h; |1 < i < q%*'} and letp
be the uniform probability measure @b As in [14] we can show thatP, s, p) is a
secret sharing scheme fdr, A). We also call a schem@P, s, p) resulting in this way
ageometricsecret sharing scheme.

Theorem 12. Let M = (P, s, p) be a geometric secret sharing scheme Br A).
Then for any integek > 2, M is perfectlyr-homomorphic to itself

Proof. LetM = (P, s, p) be a geometric secret sharing schem&iforA). We use the
notation defined above. Fare sP andr € [sP],, 7k is adx-tuple overG F(q). Hence
we can defindy: [x]f) — [x], to be vector addition (denoted). Leto ohy, ..., o oh;
bei rules ofM. Then(c ohy) %---x(cohy) =oo(hy+---+hy). Sincehy +---+h;y
is a(d + 1)-tuple we haver o (hy + - -- + h;) € [SP],. ThusM is A-homomaorphic to
itself, proving Part 1.



282 W.-A. Jackson, K. M. Martin, and C. M. O’Keefe

Now note that for anyd + 1)-tupleshy, ..., h;_1,h, we have(c o hy) % --- % (0 o
h,_1)*x(co(h—-hy—---—h;_1)) =0 oh.Henceforr* =0 oh €I,

C(ﬂ’*)Z{(UOhl, ey (IOh)L_]_, O'O(h—h]_—~ . ~—hA_1) | h]_, e h;‘_l are(d+1)-tup|es}.
Now
Yo peh.pGh) = @A/ = 1/ = p(rY),

(nl,...,m*)eC(n*)
proving Part 2.

ForPart 3, fixs ohy,...,00h;_1 € [SP], and letB € A. We show that ifs € [B],,
thenp(wrs- = a|mspi = oohi (1 <i < A—1), B* = B)isindependentaf € [s],. First
note that ad3 € A, for eachx € [s], andp € [B],, [{h|(c o h)s = a, (6 o h)g = B}
is independent oft € [s], andg € [B],. Let A(a, B) = {h|((c ohy) x--- % (o 0
hi_1) % (0 oh))s = a, (6 oh)g = B}. We have((c ohy) % - - - % (0 o hy_1) % (6 o h))s =
(0 o(hy+---+h;_1))s+ (o o h)s. From our note and properties GfF (q) we see that

Example 10. Let (I, A) = {abc ab¢ ac¢ ad}. Defineo:sP — [PG(2,2)] by

s = (1,1,1),a° = (1,0,0), b° = (0,1,0), c© = (0,0,1). We obtain the tu-
ples indexed by, a, b, c: (0,0,0,0), (1,0,0,1), (1,0,1,0), (0,0,1,1), (1,1,0,0),

(0,1,0,1), (0,1,1,0), (1,1,1,1). Let abc € I'. Suppose? = (1,0,0,1), r® =

(0,0,1,1),r¢ = (1,1,1,1). Thena, b, ¢ calculate their shares to bet00+ 1 = 1,

0+1+1=0,14+1+1=1,corresponding to ruled, 1,0, 1) =r&4rP4r°c,

Thus from Theorems 11 and 12 we have the following.

Corollary 13. Let M = (P, s, p) be a geometric scheme fdr, A). Then there exists
an MTA-free scheme f@f", A) with information rates the same as.M

Let (I, A) be an access structure defined/nClearly we have thgbyt (T, A) <
o, A) and gyt (T, A) < p(T', A). However, for complete access structures, thus
far the best-known information rates and average information rates can be achieved by
geometric schemes (for example, [14] and [15]). Thus at the time of writing, for any
access structurf wherep(I') and o(I') are known, we haveyta(I’) = p(I') and

pmt Al = p(I).

7. MTA-Free Threshold Schemes

In this section we determine the optimal linkage, potential storage and information rates
for an MTA-free (k, n)-threshold scheme. In each case, a scheme discussed earlier in
this paper achieves the optimal value.

7.1. Optimal Linkage for MTA-Free Threshold Schemes

We show here that the Contraction Construction gives an optimal construction for thresh-
old schemes with respect to the linkage.
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Lemma 14. Let M be an MTA-fred€k, n)-threshold scheme with < k < n. For
a e Po, letry = [P\coreM,| and let Wa) = {p € Po\ala € coreM,}. Then
IW(@)| = ra.

Proof. LetM = (Mg; My, ..., Mp) and suppose thal; is a scheme fo(T;, A;) for

i =0,...,n. Leta € Py. Let R = P\coreM, and letr, = |R|. LetW(a) = {p €
Po\a|a e coreMp}. It follows from Lemma 7 thai'y © I' and thus, sincR ¢ Ty, it
follows that 0< r, < k — 1. Consequently, sinde < n we have|P\a| > k, so there
exists a(k — 1)-setC; such thatR £ C; € P\a. Now C; ¢ I', so it follows that there
existsb; € Py with C; ¢ T'y,,. Further,|aCy| = k, soaC; € T and hence by Lemma 7,
aC; € I'p,. Soa € coreMy,.

SupposeC; ¢ I'y. By definition of R, we haveCiR ¢ I'y. AsT'y 2 T it follows that
|IC1R| < k—1andasC;| = k— 1 we haveR C C,, contradicting the definition of;.
So0C; € I'y; henceb; £ aandb; € W(a).

Repeating the above process we generate a set of distinct eldmémts. .., b, €
W(a) as follows. Fori = 2,3,...,r,, at Stage take a(k — 1)-setC; containing
by, ..., b_1 such thatR £ C; € P\a (this is possible since— 1 <r, — 1 < |R)).
Then there existsla € Py with C; ¢ I'y, . It follows thata € coreMy, and thaty # a.
Further,by # by, ..., b_1 sinceby,...,bi_; € C; and soC; € Ty, ..., I, ,. Thus
b1, by, ..., b, € W(a) and sqW(a)| > r. O

In order to prove our bound on linkage, we use the following definition and results on
the contraction of an MTA-free scheme.

Let M = (Mg; My, ..., Mp), M = (P, s, p), be an MTA-free scheme fai", A).
Leta € P and letx € [a],. Thecontraction M- (a = «) of M ata = « is the scheme
M. (a=oa) = (P\as,p’) where forr € [sP\a], we havep'(7) = psp\aja(m, @).
In particular,M - (a = «) is a scheme fof" - a (see [15]). Supposa ¢ P,. Since
o= (o, ..., a") wherea' € [a],, it follows thatM - (a = «) is an MTA-free scheme
for I' - a arising from the component schemdg, M; - (a = a'),..., M, - (a = a").
On the other hand, supposee Py. In this case, ifa = p;, thenM; - (a = o') is
equivalent toMl; - (s = «'). ThusM - (a = «) is an MTA-free scheme fdF - a arising
from the component schemé4 - (a = «°), M1 - (@ = oY) ... M, - (a = "), where
a=@%al,...,a" anda' € [a], fori =0,...,n.

Theorem 15. LetT be a(k, n)-threshold access structyré < k < n. Then¢(I') >
nk —k(k +1)/2.

Proof. Let M be an MTA-free scheme fdr. Let T(k, m) = mk— k(k + 1)/2. We
proceed by induction ok. Letk = 1. Forp € Py it follows from Lemma 7 thal', 2 T’
and so eitheﬂ“g ={florTy =T = pr+---+ pn, WhereP = {py,..., pn}. If
'y = {#} for eachp € Py, theny € I', a contradiction, and so there exists same P
WithTyg = p1+--- 4 pn. Thus¢(M) > n—1=T(,n).

Suppose that(M’) > T(k — 1, n — 1) for any MTA-free (k — 1, n — 1)-threshold
schemeM’. Let M be an MTA-free(k, n)-threshold schem& < k < n); so|Pg| > k.
Leta € Py anda € [a],. As above, the contractioll - (a = @) of M ata = « is an
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MTA-free (k — 1, n — 1)-threshold scheme, and by the inductive hypothesis we have
{(M-(@a=a)) > T(k—1,n—1). Tocompute(M) we must add té(M - (a = «)) the
number of connections involvirgy Participant transmitted shares fooreM,| —1 other
participants. Further, the number of participants who transmitted shares to participant
ais |W(a)|, whereW(a) = {p € Po\ala € coreMp}. So by Lemma 14, letting

ra = |P\coreM,|, we have that

M) > Tk—L,n—1D4+MN—-rag—1)+r,

= N-Dk-1) — (k_l)k+n—1
_ k(k+1)
= nk— 5 .
Thus¢(M) > T(k, n) as required. O

Corollary 16. LetT be a(k, n)-threshold access structuréghe optimal linkage of
£(I") = nk— k(k + 1)/2is achieved by the Contraction Construction

Proof. Equation (5) and Theorem 15. O

7.2. Optimal Potential Storage for MTA-Free Threshold Schemes

In this section we show that the Base Ramp Construction gives an optimal construction
for threshold schemes with respect to the potential storage. We need the following
construction, which is a generalization of constructions in, for example, [5] and [18].

7.2.1. A Construction

LetM = (P, sm, om) be a secret sharing scheme {b%,;, Ay ) with distribution rules
from setQm C [pilm x -+ x [pnlm X [S]m- Let N = (P, sy, pon) be a secret sharing
scheme fofT'y, Ay) with distribution rules from se2y € [p1]n X -+ - X [Pnln X [S]N-
We define a new schemd & N = (P, s, p). Each participanty; receives a share
from set [pi] = [pilm % [pi]ln @and the secret comes from sef E [s]m x [S]n. FoOr
eacha = (a1,...,an,0) € Qy andB = (B1,..., Bn, Bo) € Qn, define a tuple

a®p = ((a1, B1), ..., (an, Bn), (@0, Po)). Definep(a @ B) to bepy (o) on (B). We see
that

pa @ B)log; pla & B) = pn(B)(pm (@) 10g; pm (@) + pm(e) (on (B) 10, pn (B))-
Using this it follows that for anyA, B € sP we have
H,(AIB) = H,, (AIB) + H, (AIB). 9

SoM@ N is asecret sharing scheme oy, A), wherel' = 'y NI’y andA = Ay NAN.
Informally, M @ N is the scheme that results by distributing shares independently from
schemesvl andN and defining the secret to be the ordered g&ir, Sn)-

Now let (I, A) be an access structure. List = (Mg; My, ..., M) be an MTA-
free scheme fofI", A), where fori = 1,...,n M; has access structut€;, A;). Let
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N = (No; N1, ..., Np) be another MTA-free scheme far, A), wherefori =1,...,n

N; has access structu(g;, A/). SinceM @ N is the independent “product” d¥l and
N, the scheméM @ N is also an MTA-free scheme fa@f", A). Further, it follows that
M®N = (My® Nog; M1 ® Ny, ..., My @ Np).

7.2.2. The Lower Bound

Let(T", A) be an access structure defined®e- {py, ..., pn} (1 < k < n). Let Sym(n)
denote the symmetric group ¢ . . ., n} (the set of all permutations ¢1, .. ., n}). For
A C Pando € Symn) let A° = {pi, | pi € A}, whereio is the image of under
the permutatiow . Let (I'°, A%) be the access structure defined as follows.Aet P.
ThenA” e I'? ifand only if A € T and A” € A’ if and only if A € A. Note that if
(T, A) is the(k, n)-threshold access structure, th@tt, A°) = (T, A).

Now letM = (P, s, p) be a secret sharing scheme and defife = (P, so, po)
as follows. Ifa = (a1, ..., an, o) is a distribution rule ofM whereqa; € [p;] for
i =1,...,nandug € [9], then definex’ = (ay,, ..., ans, @o) to be a distribution rule
of M7, with po () = p(a). If M is a scheme fo(T", A), then it follows thatM? is a
scheme foI'?, A%).

Lemmal7. Let M = (P,s, p) be an MTA-fregk, n)-threshold schemd.et M =
(Mo: My, ..., Mp), where My = (P, s, p% and M = (P, s, p') with o, = p} (1 <

i < n). Then M = @gesymnM? is an MTA-free(k, n)-threshold scheme with the
following properties

1. M* = (Mg; M7, ..., M), where fori = 1,...,n ando € Symn), M =
(P,so, p'o) (wWith so = s,) and fori = 1,...,n, M = (P,s",p'*) =
GaneSym(n) .Mi(:rl; . .

. the potential storage of Mis the same as the potential storage of M

3. forall pi € P, H(pi) in M" is independent of i and t) in M;" is independent

ofi, j,i # J;

4. for all p; € P and all (k — 1)-subsets B oP\ p;, H(s|B) in M/ is independent

ofi and B, and

5. forall p; € P, H(p)) in M* is independent of.i

N

Proof. Observe that for each € Sym(n), M? = (P,so, po) = (M§: M7 ., ...,

M? _,) is an MTA-free(k, n)-threshold scheme. Then by repeated applications of the
construction® we have thatM* = (M§; M, ..., M) is also an MTA-free(k, n)-
threshold scheme. Suppose thétt = (P, s*, p*). By (9) the potential storage is given

by

ZUNEDY :Zg’; = <Z > Hpq(pn)/( > H,w(s>>

i=1 i=1 o€ Sym(n) o€ Sym(n)

> (Zmam)/( > Hp(s))
oeSymn) \i=1 o€ Sym(n)



286 W.-A. Jackson, K. M. Martin, and C. M. O’Keefe

> <ZHp(pi)>/< Y H,,(s))
oeSymn) \i=1 o€ Sym(n)

Zn H,(pi)
= H, e

Thus both Parts 1 and 2 hold. Further,

Hpe(p) = > Hyon, ()= Y Hua(pen)=0-D> Hue(po,

o€ Sym(n) o€ Sym(n) =1

which is independent of Fori # j,

Hie(p) = Y. Hyen, ()= Y Hi1(pjo)

o€ Sym(n) o€ Sym(n)
n n
=M=2!Y" Y Hyu(pm),
£=1 m=1,m#¢

which is independent df and j. Hence Part 3 holds. Also, fd a (k — 1)-subset of
P\ pi, by definition we havés,-1)c = 5 and so

Hyie(81B) = D Hyo1),(SIB) = > H o a(s01(B7 )
o€ Sym(n) o€ Sym(n)
n

= Kk-Dl—k!)" > H,, (s¢[C),

£=1 CCP\py.|C|=k—1

which is independent afand B. Hence Part 4 holds. Lastly, by (9),

n

Hye(p) =Y Hpe(p) = Hae(p) + Y Hye(pi),
(=1

(=1 0#i

which is independent of; by Part 3. O
Theorem 18. LetI be a(k, n)-threshold access structuifghenV(I") > n?/(n—k+1).

Proof. Let M = (Mg; My, ..., M) be an MTA-free scheme foF, whereM =
(P, s, psp) and p is as defined preceding Theoremldg = (P, s, po) iS a secret
sharing scheme fail"y, Ag) andM; = (P, s, p') is a secret sharing scheme o, A;)
with pg = p3. We may assume thail has Properties 1-5 of Lemma 17. Thus, in
particular, there exist constarsisndb such thatH, (p;) = aandH,i (s|B) = bforall
i =1,...,nandall(k — 1)-subsets8 of P\ p;. Note thaia > b. Forp; ¢ Bp we have
Hyi (pilBp) = H,i(s|Bp) = 0 and henceH ;i (pj) > H,i (pj|B) = H,i (s pj|B) > b.
Thus
n
ZHp.(p,-)za+(n—1)b=nb+(a—b). (10)
j=1
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By Theorem 3,H,(B) = Zi":l H, (B). Now H,(sB) < H,(ss...s,B). For each
7 e, ”Si =y =mp (fori =1,...,n)andH,(s|P) = 0, soH,(sls; ... s) = 0.
SOoH,(SS...5B) = H,(s1...5,B). This is equal toz{‘zl H, (s B) as forr € Q

n

pp ) [ | pbis (- 73)
i=1

n
= [ ristrse):
i=1

Ps1..5:B(7Ts..5,B)

as,ngi = 7. . Therefore

Hy(s) = H,(sB) = H,(B) < ) (H,i(sB) = H,i(B)) = > H,i(s|B)
i=1 i=1
= (k-1.0+(n—k+Db.

Combining this with (10) allows us to bound the potential storage:

= Hy(p) _ ninb+@—h) n a-b
V(M)_; H,(s) = (n—k+ Db _n—k+1<n+ b > 1D

The expression (11) is minimized when= b. ThusV(M) > n?/(n — k + 1), as
required. O

Note that if the bound (11) is to be minimized thanr= b and thus for anyp; and
any (k — 1)-subsetB, p; ¢ B, we haveH,i (s|B) = H,i (p;). Hence if the hypotheses
of Lemma 17 hold, then the minimum potential storage case occurs when &l;the
are perfectk, n)-threshold schemes. Furthir,(s) = (n — k + 1)a and it follows that
Mo is a modified(k — 1, n, n) ramp scheme. This is exactly the case of the Base Ramp
Construction.

Corollary 19. LetI" be a(k, n)-threshold access structur€he optimal potential stor-
age ofV(I") = n?/(n — k + 1) is achieved by the Base Ramp Construction

Proof. Equation (7) and Theorem 18. O

7.3. Optimal Information Rates for MTA-Free Threshold Schemes

First we recall that ifl" is a complete access structure, thei) < 5(I') < 1 (when
these bounds are met we call the schedeal). From [3] we see that if" is a (k, n)-
threshold access structure, the@™) = o(I') = 1 and that these optimal values can
both be met by geometric schemes. Hence we have:

Theorem 20. LetT be a(k, n)-threshold access structuréhe optimal information
rate and optimal average information ratesyta(I'") = pmta(l') = 1 are achieved
simultaneously by applying Corollafy3to an ideal geometri¢k, n)-threshold scheme
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8. Conclusions and Further Work

We have discussed the idea of an MTA-free secret sharing scheme and have given some
construction methods. We have presented three efficiency measures and then constructed
MTA-free schemes designed to be efficient with respect to each of these measures.
Finally, we have presented bounds on the efficiencykoh)-threshold schemes and
given optimal constructions.

Three topics immediately beg further attention. First, bounds on the linkage and po-
tential storage have not been given for general access structures. It is hoped that some
results will be forthcoming that provide bounds on these measures, particularly for gen-
eral complete access structures. Secondly we have not considered constructing MTA-free
schemes that perform well with respect to more than one of the efficiency measures. In
particular, it would be good to try and adapt the reduction technique to produce schemes
that had good linkage (or potential storageid had good information rates. Finally,
much work is needed to produce constructions and efficiency bounds for incomplete ac-
cess structures. Since many of our constructions hold for incomplete access structures,
such bounds would be of considerable interest.
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