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Abstract. In recent years, researchers have invested a lot of effort in trying to design 
suitable alternatives to the RSA signature scheme, with lower computational require- 
ments. The idea of using polynomial equations of low degree in several unknowns, 
with some hidden trap-door, has been particularly attractive. One of the most noticeable 
attempts to push this idea forward is the Ong-Schnorr-Shamir signature scheme, which 
has been broken by Pollard and Schnorr. At Crypto '93, Shamir proposed a family of 
cryptographic signature schemes based on a new method. His design made subtle use 
of birational permutations over the set of k-tuples of integers modulo a large numSer N 
of unknown factorization. However, the schemes presented in Shamir's paper are weak. 
In the present paper, we describe several attacks which can be applied to schemes in 
this general family. 

Key words. Signature schemes, Cryptanalysis, Birational transformations. 

Introduction 

The celebrated RSA cryptosystem can be viewed as a permutation computed in both 
directions as a polynomial over the ring ZN, where N is a (large) integer with secret fac- 
torization. In the search for suitable alternatives to the RSA signature scheme, with lower 
computational requirements, several cryptographers have suggested using polynomials 
of low degree in several variables. In the context of signature, such polynomials were 
natural candidates for the design of very efficient schemes, both for signature generation 
and signature verification. 

The first cryptographic protocol based on this principle is the Ong-Schnorr-Shamir 
signature scheme [5]. It has been broken by Pollard and Schnorr [7]. At Crypto '93, 
Shamir proposed a family of cryptographic signature schemes based on a new method. 
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His design made subtle use of birational permutations of the integers modulo N. Shamir 
actually introduced several techniques: the first technique uses as a trap-door a family of 
quadratic forms built in a very specific way and which he calls sequentially linearized. It 
is a kind of generalization of the Ong-Schnorr-Shamir scheme, with more unknowns and 
more equations to be solved for signature generation. Another technique uses the notion 
of an algebraic basis for the quadratic forms: this is a set of quadratic forms from which 
any other one can be computed by using only rational operations. This technique can 
be further divided according to the algebraic basis chosen and Shamir's paper includes 
two proposals, one using a symmetric basis and the other an asymmetric one. Of course, 
there is nothing specific to quadratic forms in Shamir's approach: it only turns out that 
use of cubic or quartic polynomials makes key management cumbersome and loses the 
computational advantages shown by the scheme. 

In the present paper, we show that the schemes presented in Shamir's paper are weak, 
by exhibiting several attacks which can be applied to schemes in the general family. 
These results have been announced in [1], where we deal with the trap-door based on 
sequentially linearized equations and with the symmetric basis proposal. Since then, 
another attack has appeared in [10], which takes care of the asymmetric basis. 

It is worth mentioning that another public key system scheme based on quadratic forms 
has been proposed by Matsumoto and Imai [4]. This scheme is based on completely 
different ideas and uses (small) fields of characteristic 2. Let us add that the Matsumoto- 
Imai scheme has recently been broken by Patarin [6]. Thus, there seems to be some kind 
of intrinsic difficulty that prevents hiding trap-doors into families of quadratic forms. 

We close this Introduction by thanking Adi Shamir both for sending us his Crypto '93 
paper at an early stage and for many discussions on the subject of this paper. 

1. The Methodology of the Attacks 

1.1. The Overall Strategy 

Basically, Shamir's idea is to start from a family of quadratic forms with some "visible" 
algebraic structure (e.g., low rank) and to hide the underlying structure by performing 
the following operations: 

1. linear change of coordinates; and 
2. linear combinations of the resulting forms. 

We are thus faced with the problem of trying to recapture some of the hidden structure, 
from the public key only. This public key consists of several quadratic forms and we note 
that, as a consequence of Step 2 above, some linear combinations of the public forms 
may retain a part of the original algebraic structure. Unfortunately, we can only handle 
these objects indirectly, through the use of indeterminate coefficients, say 6, e . . . . .  At 
this point we note that many of the properties used in the design proposed by Shamir can 
be expressed by the vanishing of polynomials in 6, e . . . . .  We quote several examples: 

�9 the fact that a quadratic form has not full rank is expressed by the vanishing of its 
determinant; 
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�9 the fact that a quadratic form has rank 2 is expressed by the vanishing of all 3 • 3 
determinants; and 

�9 the fact that a vector u belongs to the vector space spanned by the rows of the 
matrix M of  a given quadratic form of rank k is expressed by the vanishing of  all 
(k + 1) • (k + 1) determinants of the matrix M' obtained by appending u as an extra 
row to M. These determinants are polynomials in 3, e . . . .  and in the coordinates of  
U. 

1.2. Galois Theory and Ideal Calculations 

We are thus led to a set of  polynomial equations in 3, e . . . . .  Such a set of equations 
generates an ideal in the ring of polynomials with several unknowns: in other words, if 
Pl . . . . .  Pm are m polynomials with unknowns 3, e . . . . .  the equations Pi = 0 define an 
algebraic curve associated to the ideal of all polynomials which can be written 

PIQI + . . . +  PmQm, 

where Q~ . . . . .  Qm are arbitrary polynomials. 
At this point, we have to return to the underlying structure. In case there is a lack of 

symmetry, as in Shamir's first scheme, we can try to solve for one of  the unknowns: this 
simply means that the ideal should contain a polynomial of  degree one with a single vari- 
able. In other cases, we observe a strong symmetry: for example, in the scheme based on 
the symmetric basis, we isolate a sequence of  integers modulo N, say 31 . . . . .  3k, coming 
from the hidden structure, which act as (say) first coordinates of  points ml . . . . .  mk of 
the curve which cannot be distinguished from each other. In such a case, it is hopeless 
to try to solve for the first coordinate 3. On the other hand, we expect to find in the ideal 
a polynomial of  degree k in the single variable 3, F(3), which we can treat symbolically 
and of which the values 31 . . . . .  3k are the unknown roots. This is a context close to Galois 
theory. Still, we do not really offer proofs of  the various statements we make relying on 
Galois-like arguments. Although it might be possible to write up proofs in some cases, 
we feel that the technicalities would distract from the issues at hand. In place, we remain 
at an informal level and implicitly assume a large degree of  "genericity." We think that 
this is perfectly acceptable in a paper concerned with cryptanalysis: furthermore, our 
attack has been implemented using a computer algebra package, and this is a kind of  
experimental verification of  the correctness of our statements. 

We now turn to ideal calculations. As explained above, we need to disclose mem- 
bers of the ideal with prescribed degrees for the various unknowns. For this, we can 
use Grrbner basis algorithms (see [2]), which output another family of  polynomials 
P~ . . . . .  P~' spanning the same ideal and which is reduced in a suitable sense. The draw- 
back of  this algorithm is its high complexity. In case we are trying to eliminate all 
unknowns except one, we can repeatedly form resultants of  two polynomials with re- 
spect to a given unknown. We can also apply the Euclidean algorithm to compute the 
g.c.d, of two polynomials with respect to a given unknown. This decreases the degree of 
an equation. 

Finally, it is also possible to use a simpler ad hoc version of  the Gr6bner basis algorithm 
which is a kind of  generalized Gaussian elimination. For instance, if M is a monomial 
in PI which does not divide any other monomial of Pl, then every multiple monomial 
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of  M can be eliminated in the other polynomials by replacing P, by P,' = P, - Q, Pi 
for a suitable polynomial Q,. Then, we can continue the reduction with P~ . . . . .  P,~,. In 
most cases, if m is large enough and if there is a hidden trap-door in the set of equations, 
this reduction is likely to end rather quickly with very simple equations of the expected 
form. In the rest of the paper, we will not comment further on ideal calculations and will 
thus treat them as a kind of  "programming technology," which we actually used in our 
experiments. 

1.3. Working mod N Versus Working modp 

Our analysis basically treats the ring of  integers rood N as a field. Actually, N is composite 
and we assume for simplicity that it has only two prime factors p and q. Our calculations 
make sense rood p since we are actually working in a field but some justification is 
needed to go from calculations rood p to calculations rood N. In Section 2, we will 
only use tools from linear algebra such as Gaussian elimination or determinants. Thus 
all computations go through regardless of the fact that N is composite. The situation is 
a bit more subtle in Section 3, where Galois theory comes into the picture. For instance, 
assume that we have discovered a polynomial F(3) of  degree k from a sequence of  
integers modulo N, say 5̀1 . . . . .  ,~k, coming from the hidden structure, as explained in 
Section 1.2. Such a polynomial has k solutions rood p but k 2 solutions mod N, each 
obtained by mixing some solution mod p with some solution mod q. But if we consider 
only the image, rood p, of our calculations rood N, things are all right. As will be shown, 
our cryptanalysis provides a way to forge signatures by performing calculations which 
treat 5̀ (and possibly other variables) symbolically. Galois-like arguments show that the 
result has the expected symmetry and thus, is expressible in terms of the coefficients of 
F and in terms of the coefficients of  the public key. These calculations are valid rood p, 
They are also valid rood q. and the Chinese Remainder Theorem suffices to make them 
valid rood N. This is in spite of the fact that a solution ,5 of F rood N might well mix 
different solutions ,~, rood p and `sj rood q. Since we never explicitly solve for 3, but 
only work with it symbolically and use the tact that F(cS) = 0 mod N, we never are in 
danger of  factoring N. 

2. The First Scheme 

The first family of  Shamir's signature schemes is based on sequentially linearized equa- 
tions. The public information consists of a large integer N of unknown factorization 
(even the legitimate users need not know its factorization), and the coefficients o fk  - 1 
quadratic forms f2 . . . . .  fk in k variables xl . . . . .  xk each. Each of  these quadratic forms 
can be written as 

f i  = Z ~ ( 1 ) 
j.e 

where i ranges from 2 to k and the matrix c%~ is symmetric, i.e., ~ij~ --- ot,~j. 
The secret information is a pair of  linear transformations. One linear transformation B 

relates the quadratic forms f2 . . . . . .  fk to another sequence of quadratic forms g2 . . . . .  gk. 
The second linear transformation A is a change of coordinates that relates the variables 
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(xj . . . . . .  rk) to a set of "original" variables (y~ . . . . .  yk). Denoting by Y the column 
vector of  the original variables and by X the column vector of the new variables, we can 
simply write Y = A X .  

Of course, the coefficients of  A and B are known only to the legitimate user. The 
trap-door requirements are twofold: when expressed in terms of  the original variables 
y~ . . . . .  y~,, the quadratic form g2 is computed as 

g2 = YlY2 ,  (2) 

and the subsequent g, 's, 3 < i < k, are sequentially linearized, i.e., can be written 

g i (Y l  . . . . .  Y*) = f i ( Y l  . . . . .  Y i - I )  X Yi + q i ( Y l  . . . . .  Y , - I ) .  (37 

where ~f, is a linear function of its inputs and q, is a quadratic form. 
To sign a message M, one hashes M to a (k - 1 )-tuple (j'~. . . . . .  fk) of  integers modulo 

N, then finds a sequence (.r~ . . . . . .  ~k) of  integers modulo N satisfying (I). This is easy 
from the trap-door. 

It is straightforward that the particular case k = 2 is equivalent to the Ong-Schnorr-  
Shamir scheme [5]. The Pollard-Schnorr algorithm [71 enables us to forge a valid sig- 
nature of  any message. In the following, we show how to break the other cases reducing 
them to the Ong-Schnorr-Shamir  scheme too. 

We let M,, 2 < i < k, denote the k x k symmetric matrix of the quadratic form g,. 
The kernel K, of g, is the kernel of the linear mapping whose matrix is M,. It consists of  
vectors which are orthogonal to all vectors with respect to g,. The rank of  the quadratic 
Ibrm g, is the rank of  M,. It is the codimension of K, as well as the unique integer r 
such that gi can be written as a linear combination of squares of  r independent linear 
functionals. (For more details, see [31, for instance.) Actually, all this is not completely 
accurate as N is not a prime number and therefore Z,v is not a field. This question has 
been addressed in Section 1.3 and we now ignore the problem. 

An easy computation shows that K i is the subspace defined in terms of the original 
variables by the equations 

yl . . . . .  3', = O. (4) 

From this. it follows that: 

(i) K, is decreasing; 
0i) the dimension o|" K, is k - i; and 

(iii) any element of K,_~ not in K, is an isotropic element with respect to g,, which 
means that the value of  g, is zero at this element. 

We will construct a basis b, of the k-dimensional space, such that the family bi ~-j . . . . .  b~ 
spans K, ["or/ = 2 . . . . .  k - 1. The main problem we face is the fact that the g, 's and there- 
fore the K, 's are unknown. Instead. we know the .~ 's. We concentrate on thc (unknown) 
coefficient 3, of g~ in the expression of (,, i.e., we write 

k-I  

f '  = 5'g~ + Z / ~ ' J g J "  
J=2 

(5) 
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As coefficients have been chosen randomly, we may assume that ~k is not zero. Let i < k. 
Consider the quadratic form (in all xi 's) Qi (~.) = fi - ~.fk. When ~. = Si/tSk, this form has 
a nontrivial kernel and therefore ~,/~k is a root of  the polynomial Pi()~) = det(Qi(k)).  
This is not enough to recover the correct value of  ~.. Computing the matrix of  Q, (~.) for 
z, -- 8,/8k in the basis corresponding to the original coordinates yl . . . . .  yk yields the 
following: 

0 

In the same basis, the matrix of Q, ().) for any ~., can be written as 

We observe that Ux is affine in X and vanishes at ~.~ so that the determinant of  the 
matrix is divisible by (~.-)~,)2. Since determinants can be computed up to a multiplicative 
constant in any basis, it follows that ()~- ~.~)2 factors out in P, (~.). Thus the correct value of 
~.~ can be found by observing that it is a double root of the polynomial equation P, (~.) = 0. 
We now make use of the informal genericity principle explained in Section 1.2, which 
means that we ignore "exceptional" situations. As a consequence, we claim that the 
double root is disclosed by simply taking the g.c.d, in ZN of P, and P/wi th  respect to 
~.. We find a linear equation in ~., from which we easily compute ~.,. 

Once all coefficients ~.t have been recovered, we set for i = 2 . . . . .  k - I 

.~ = f, - ~-i fk (6) 

and fk = fk. We note that all quadratic forms ~ have kernel Kk-t.  This allows to pick a 
nonzero vector bk in Kk- ~. The construction can then go on inductively in the quotient 
space of the k-dimensional space by the vector spanned by {bk } with ./~ . . . . .  fk-L in 

place of f2 . . . . .  f•. 
At the end of the recursive construction, we obtain a sequence b,, 3 < i < k, such that 

b,+l . . . . .  bk spans Ki for/  = 2 . . . . .  k - 1 and a sequence of quadratic forms f2 . . . . . .  /~ 
such that: 

(i) ./~ has kernel Ki; and 
(ii) b, is an isotropic element with respect to J]. 

Choosing bt, b2 at random, we get another set of coordinates z~ . . . . .  zk defined by 
X = ( b l . . . b , , ) Z  such that: 

(i) f2 is a quadratic form in the coordinates zj, z2; and 
(ii) f~ . . . . .  ~ is sequentially linearized 

The rest is easy. From a sequence of prescribed values for f2 . . . . .  f~., we can compute 
the corresponding values of  f_, . . . . . .  A. Next, we can find values of {zl, z2} achiev- 
ing a given value of f2 mod N in exactly the same way as the Pollard solution of the 
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Ong-Schnorr-Shamir  scheme [5]. Then, values for z3 . . . . .  zk achieving given values of 
f3 . . . . .  .~ are found by successively solving k - 2 linear equations. Finally, the values 
ofz t  . . . . .  z~ can be translated into values ofx~ . . . . .  xk. 

Example.  In Shamir's paper [9], an example is given with N = 101 (the fact that 101 
is prime is unfortunate but actually irrelevant). 

v2 = 78x~ + 37x~ + 6x 3 + 54x,x2 + 19x,x3 + I Ix2x3 (mod 101), 

v3 = 84x~ + 71x~ + 48x~ + 44xlx2 + 33xlx3 + 83x2x3 (mod 101). 

Matrices of  f2, fa are as follows: 

We get 

66 )( 4 27 37 , 22 71 92 . 
60 56 67 92 48 

P ( k )  

P'O.)  

g.c.d. ( P,  P ' )  

= det(f2 - ~-f3) = 34( ~3 + 75~.2 + 55k + 71), (7) 

= k 2 + 50k + 52, (8) 

= ~. - 63. (9) 

We let 

f2 = f2 - 63f3: f3 = f3. (10) 

The kernel of  f2 is spanned by vector b3 = (31, 12.1) ' .  We pick b2 = (0, I, 0) t and 
bt = (I, 31, O) t. We get, in the corresponding coordinates z l ,  z2, z3: 

2 ' 8 -2' 9 " f2 = 6 z i +  , - 2 ,  A = z 3 ( 2 6 z j + 2 0 z 2 ) +  O z i + 2 Z l Z 2 + 7 1 z ' ~ .  (11) 

Then, for any tuple ( f2,  f3)  of integers, we compute ( f2,  f3) using (10), we solve .[2 = 
26z~ + 8z~ by the Pollard-Schnorr algorithm and compute z3 such that equations ( 11 ) 
hold. This forges a signature. 

3. The Second Scheme 

We now treat Shamir's [9] second scheme. Throughout, we will pretend we are working 
in Zp rather than ZN. This has been explained in Section i.3. 

We briefly review the scheme. Shamir begins with k variables Yl, y2 . . . . .  Yk, with 
k odd. These are subjected to a secret linear change of variables which gives u, = 

~ , j a U Y j , i  = 1,2 . . . . .  k, with the matrix A = (aij) secret. The products u,u ,+l ,  
including UkUl, are subjected to a second secret linear transformation B = (b,j), so that 
vi = Y~j b i ju lu j+t ,  i = 1,2  . . . . .  k - s. The  public key is the set of coefticients (cut) 
expressing vi in terms of pairwise products ))  Yt for I < i < k - s ,  

vi = 2 _ , c u t ) ) y ~ ,  I < i < k - s ,  ci# = cit j .  (12) 
./,t' 



214 D. Coppersmith. J. Stern. and S. Vaudenay 

In the above, s > I is a parameter and, for the sake of  simplicity, we first treat the case 
s = 1. Thus, i is ranging to k - I, meaning that we have discarded s = I of the v,. A valid 
signature o fa  (k - I )-tuple of integers (vj . . . . .  vk-i) is a set of values of  yly2 . . . . . .  x'O'l 
such that (12) holds. Signature generation for the legitimate user is based on the fact that 
yly2 . . . . .  .vO, I form an algebraic basis for the ideal generated by quadratic forms: for 
example, if k = 3, .v~ is recovered by the formula 

(YlY2)(YD'J) y~--  
Y2.V3 

See [9] for more details. 
The first step in our solution is as follows: linear combinations of the v, are linear 

combinations of  the u,u,+j, but they form only a subspace of  dimension k - I. Some 
linear combinations of  the v,, 

-~- 8U2 + Z tejUj" (13) PI 
3<j_<k-I 

will be quadratic lbrms in the y, of rank 2. A computation shows that the only linear 
combinations of the products u i u i . j  of rank 2 are of the form 

ot, U,_lUi +/3iuiu ,+t  = ui(otiUi_l + fliui+l) (14) 

for any values of  or,./3,, i. Because the t,j span a subspace of codimension 1, and because 
we are further restricted to one lower dimension by the choice of the multiplier 1 for tq 
in the linear combination, we find that for each i there will be one pair (or,,/3, ) and one 
set of coefficients (8,. e# ) such that 

ctiui-lu~ +['J,t++t4i+l = u,(otiui-I +fliUi+l) = Vl +8,  t'2 + ~ ~'+jVj. (15) 

We now omit the i indices for the sake of clarity. The condition of being rank 2 is an 
algebraic condition: setting 

(16) 
3<j<k-I j~ 

with rs+ = rt j .  we find that each 3 x 3 submatrix of  the matrix (rjt) has vanishing 
determinant. Each of these determinants is a polynomial equation in 8, e s . Use resultants 
and Gaussian elimination to eliminate ej from this family of polynomial equations (in 
the ring ZN) and find a single polynomial F of  degree k satisfied by 8. We also find t'j 
as polynomials in 8, by returning to the original equations and eliminating the variables 
c i , i ~ j .  

Thus each solution 3 to F(8) = 0 gives rise to a linear combination of  t) which is of 
rank 2. The root 8 corresponds to that index i for which 

Vl +6v2 + Z EjUj =ui(ct iUi_ I +/3iUi+l). (17) 
3<_j<k-i 

We will indicate this correspondence by writing 8 = 8,. 
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For each solution 6 = 6,, the rows of the resulting matrix (r u ) span a subspace Y (6i) = 
Y, o f Z e  k of  rank 2; namely, Y, is spanned by ui and ~iui- i  + r This observation 
is rather straightforward if the quadratic form is expressed in the basis corresponding to 
the u, variables. Going to the y, coordinates involves a right multiplication by A and a 
left multiplication by its transpose A'. The first operation replaces row vectors by their 
expressions in terms of the "new" variables y, and the latter does not affect the vector 
space spanned by the rows. This is enough to conclude. 

Observe that u,. lLi+ 2. and (~,+~ui + [~i+llLi+2) are  linearly related, as are ui, lLi-2, 
and (~ i - lu i -2  + fl i lui). So 

u; ~ Y, n (~',,~ + Y,+2)n (Y,-i + Y,-2). 18) 

This is an algebraic relation among 8,-2, 6~-i, 6i, 6i+j. and 6,+2. More accurately, for 
k > 5, (i + I , i  + 2) and (i - l , i  - 2) are the only instances of pairs (a ,b ) ,  ( c . d )  
consisting of  four different indices, all distinct from i, such that 

Y, n lY, ,  + Y~,)nlY, + v,~) ~ {o]. (19) 

We thus introduce live different variables 6, 8', 3", etc., representing 6,, 6,+z, 6,--2, 
6,_ ~, and 6,-2, and we formulate the relation as the vanishing of  several determinants, 
as explained in Section 1.1. We then reduce the resulting ideal by factoring out any 
occurrences of(6 - 6 ' ) ,  (6 - 8 " ) ,  etc.. to assure that 8, 8' etc., are really different solutions. 
That is, we consider the ideal formed by/: ' (6),  F(6') ,  etc.. (F(,5) - F(6 ' ) ) / (6  - 8'), etc., 
and the various determinants derived from (19), and we apply the Gr6bner basis reduction 
or the Euclidean algorithm to this ideal to lind a basis. 

Only multiples of some u, satisfy such a relation (18) over Zp. We fix a multiple of 
each u, by normalizing u, to have first coordinate I. The relations finally serve to define 
u, in terms of 8,. 

By a similar argument, there is a quadratic equation G(6,,  6,+t) expressing 6,+1 in 
terms o f 6 i .  whose two solutions are 6,+1 and 6,-i.  For k > 5. the algebraic condition is 
that the corresponding spaces Y,, Y,, I are in two different triples of subspaces enjoying 
linear relations: 

rank(Y, + Yl+l -{- Y1+2) = rank(Y, + Y,+l + Y,-J) = 5. (20) 

Special Considerations ~ r  Small  k 

For k = 5, the above arguments do not apply since there are more instances of the 
relation 

)I, (3 (Y,, + Yj,) n (Y, + Yj) :~ {0I, 

with distinct (a, h, c, d, i ). For example. 

is a one-dimensional space spanned by a vector of the form u5 +/~u2 for some constant 
~t. It turns out that a pair of  adjacent spaces such as (Y3 + )I4) appear in three such 
relations whereas a pair of nonadjacent spaces such as (Y2 + )~) appears only in one. 
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This gives an algebraic condition to identify pairs of  adjacent 6, 's. Once this is done, we 
can use two pairs of  adjacent indices (a, b), (c, d), with a,  b, c, d distinct and different 
from i and the relation 

u, c Y, n ( Y .  ~- Yp n (Y, + Yd) 

in order to express u, as a function of 6i of degree 4. 
The particular case k = 3 deserves independent discussions and is postponed until 

Section 4. 
Returning to the general case k _> 5, we represent the solution of the quadratic equation 

by r, and say that (6, z) generates a pair of  "adjacent" elements (u,, u,+l) (elements 
which are multiplied together in the original signature). We think of 6 as generating an 
extension of degree k over ZN, and of r as generating an extension of degree 2 over 
ZN[6I/F(6). The ability to distinguish the unordered pairs of"adjacent"  roots {6,, 6,+1} 
makes the ~ystem similar, in spirit, to a Galois extension of Q whose Galois group is the 
dihedral group on k elements. We will call on this analogy later. (Remark. It is only an 
analogy, because 6 and r really are elements of the ground field.) 

We can get the missing kth equation 

' )_.2 t, k = u , u t + t .  (21) 
t 

The coefficients of t)~ in terms of yjyt ostensibly depend on 6i and on the pairings 
(6i, 6i+l), or equivalently on (tL r) .  But the coefficients would come out the same no 
matter which solution (6, r )  were chosen, that is, no matter whether we assigned the 
ordering ( I, 2, 3 . . . . .  k) or (3, 2, 1, k, k - I . . . . .  4) to the solutions u,. This means that 
the coefficients will be in fact independent of  (6, z). They will be expressible in terms 
of only the coefficients of the original v,. I < i < k. This is because they are symmetric 
(up to dihedral symmetry) in the solutions 8,. 

The arguments here are analogous to those of Galois theory, Each coefficient c of v'~ 
is expressed as 

c = ~ wij~ir J. (22~ 
0 < / < / ( , 0 < y  < 1 

For each of 2k different choices of (6, r)  the value of c comes out the same. Treating 
(22) as 2k linear equations in the 2k unknowns w,j, with coefficients given by 6' r j for 
various choices of  (6, r),  we must find (if the matrix has full rank) that woo = c, and 
w,j : 0 tbr (i, j )  ~ (0, 0). 

Now we wish to solve a particular signature. We are given the integer values v~ . . . . .  
vk- i ,  and we assign an arbitrary value to v' k. We have the equations relating v, to ujuj . l :  

t', = ~ bljujuj+l, (23) 
J 

where blj depends on 6j. Select (symbolically) one pair (6. r ) to fix the first two solutions 
(ul, u2), and compute the others in terms of (6. r) .  Then we have b~jujul§ depending 

only on (6. r) .  
At this point we have v~ (which is a t,k-like quadratic form), and A-like and B- 

like matrices, respectively, denoted by A' and B' (expressing linear transformations); 



The Security of the Birational Permutation Signature Schemes 217 

the entries of all of these live in the pseudo-Galois extension ZN[6,  r ] /F (6 ) /G(& r) 
expressing linear transformations. All rational operations can be done in this domain so 
this enables us to sign in it. Since the resulting signature does not depend on the ordering 
of the 6i, its coefficients will always be in ZN. Thus it is possible to forge any signature 
working in a more complicated domain and getting results which always end up in ZN. 

The attack has been implemented on a Sparc Workstation using the computer algebra 
system MAPLE. It computes a secret key-like (v~, A', B') within few hours and then 
forges any signature in a negligible time. 

Example. 
s = 1. The 

V2 

V3 

1) 4 

As for the first scheme, we give a toy example with N = 97, k = 5 and 
public key is as follows: 

l ly~ + 31y 2 + 15y 2 + 8y42 + 5y 2 + 23yly2 + 89yty3 + 60yly4 

+47yly5 + 43y2Y3 + 24y2Y4 + 93y2y5 4- 9y3y4 + 78y3Y5 + 32y4Ys, 

83y~ + 32y 2 4- 16Y32 + 13Y42 + 92y 2 + 28yly2 4- 83y,y3 4- 58ylY4 

4- 84yjy5 4- 58y2Y3 4- 64y2y4 4- 84yzy5 4- 38y3Y4 4- 69y3y5 4- 36y4ys, 

45y~ + 33y~ 4- 96y~ 4- 75y 2 + 90y 2 + 34ylY2 4- 51ylY3 + 89ylY4 

4- 26yly5 + 16yzy3 4- 90y2y4 4- 42yzy5 4- 9y3Y4 4- 8y3y5 4- 47y4Y5, 

65y~ 4- 54y 2 4- 96y 2 4- 33y 2 4- 26y 2 4- 46y,y2 4- 25y, y3 4- 75y, y4 

4- 76yj Y5 4- 59yzy3 + 66yzy4 + 95yzy5 4- 69y3Y4 + 48y3Y5 4- 56y4ys. 

For the sake of brevity, we did not include the secret key, since we will show how to sign, 
given the public key only. As far as signature verification is concerned, we propose, as 
an example, a valid signature of the message which hashes onto (1,2, 3, 4), namely, 

YlY2 = 7, Y2Y3 = 92, Y3Y4 = 69, Y4Y5 = 54, YSYl = 70. 

From these values, one can compute all corresponding values of yiyj and check that 
(vl, v2, v3, v4) = (1, 2, 3, 4). 

As explained above, we consider the quadratic form 

UI 4- 6132 4- ,~3U3 4- s 

and we express the vanishing of all its (3 x 3) minors. As an example, one of the 
determinants provides the following equation: 

73 + 15e4 4- 83 + 1862 4- 316e3 + 696e4 4- 17e32 + 71e 2 + 32e364 
+ 4962e3 + 4062e4 4- 476e 2 + 546e 2 + 78e2e4 + 6362 4- 24e43 + 50e33 + 3863 
+ 676e3e4 + 5e3 = 0. 

Using reduction, we get 

F(6) = 92 + 586 + 5162 + 4363 + 7264 + 65, 

e3 = 4 4 +  296 + 8362 + 9563 + 5664, 

E 4 = 87 + 146 + 9462 + 3333 + 3864. 
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Next, we make use of the ideal generated by all F(6), F(6'), (F(6) - F ( 6 ' ) ) / ( 6  - 6'), 

etc., and by the polynomials expressing that two roots are adjacent. Using r to denote a 
root adjacent to 6 and reducing the ideal, we get, as expected, an equation of degree two 
with respect to r, say G(6, r),  and we compute the other roots in terms of 6 and r. This 
yields: 

G(6, r) = 6764r + 2064 + 8963r + 2663 + 6862r + 8562 @ 66r 

+36  + r 2 + 4 3 r  + 57, 

63 = 6864r + 2364 + 9063r + 8663 + 8562r + 1862 + 936r 

+ 356 + 42r + 93, 

6 4 : 2964r + 4464 + 763r + 363 + 1262r + 5062 + 46r + 676 

+ 55r + 72, 

65 : 3064 -k- 863 q- 2962 + 916 + 96r + 54. 

We also compute the values of all normalized ui ' s  in terms of 6 and r from equations 
(18). As an example, here is the output for u2: 

u2 = Yt + Y2( 8564r + 8964 + 1563r + 8763 + 3862r + 8832 + 69r6 + 66 + 35r + 12) 

+ y3(8664z + 3164 + 4163r + 1363 + 2462r + 1862 + 526r + 626 + 15r + 17) 

+y4(4364r + 4564 + 5263r + 3863 + 6862r + 5862 + 26r + 886 + 27r + 87) 

+ys(2864r + 464 + 863r + 7533 + 7462r + 7332 +456  + 296r + 58r + 75). 

All computations now take place in the pseudo-Galois extension ZN [6, r ]/F(3)/G (3, r).  
We choose v5 as the sum of all uiu i+ 1 . As expected, this value turns out to be "indepen- 
dent" of 3 and r: 

v5 = 5y 2 + 30y~ + 89y 2 + 67y 2 + 5y 2 + 35yly2 + 4ylY3 + 62ylY4 + 61yly5 

+ 32yZy3 + 6yzy4 + 14yzy5 + 13y3Y4 + 63y3y5 + 87y4ys. 

Using elementary linear algebra, we finally compute a B-l-l ike matrix, which takes 
the vi to blibli+l, and an A-l-l ike matrix which computes the yi ' s  from the u i ' s .  Both 
matrices appear in terms of 3 and r. 

Once this precomputation has been done, we can forge any signature. For instance, 
in order to sign the hashed value (1, 2, 3, 4), we randomly choose v5 = 44, and we get, 
using our equations, the valid signature: 

YlY2 = 59, YzY3 = 60, Y3Y4 = 38, Y4Y5 = 26, YSYl = 56. 

We note that it is perfectly possible to implement the last step "formally" and to sign a 
formal message (Vl, V2, V3, V4, Vs), thus recovering a substitute to the original signing 
function. 

4. Extensions 

4.1. Ex t ens ion  to the Case  s > 1 

The case s > 1 is more complicated and we only sketch a possible attack. This part has 
not been implemented. Suppose again that we have k variables Yl, Y2 . . . . .  Yk, with k 
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odd, whose pairwise products generate the signature, and that the hashed message has 
k - s quantities vl, v2 . . . . .  Vk-s, together with coefficients Cijg expressing vi in terms of  
YjYe. Suppose for simplicity that s > 1 is odd, so that k - s is even. 

Some linear combinations of  the k - s quadratic forms vi will have rank s + 1. Namely, 
for each index set I c {1,2 . . . . .  k} of size (s + 1)/2 such that 'r j ~ I :  li - Jl > 2 
and {1, k} ~ I,  there is such a linear combination of the form 

Z Ui(OlilUi-I -~- t~ilUi+l)" ( 2 4 )  

iEl 

The number of  such index sets I is 

k ( k - ( s  + 3)/2 ) 
(s + 1)/2 (s - 1)/2 " (25) 

There are more than k linear combinations, leading to increased complication. The space 
YI, spanned by rows of  the corresponding quadratic form, contains ui for each index 
i 6 I. So each ui is in the intersection of a large number of  subspaces YI, and hopefully 
only multiples of  ui will be in such an intersection. This algebraic condition should 
distinguish the ui, hopefully indexing them by the roots 3 of some polynomial F(S) of  
degree k. Pairs {ui, ui+2} of  solutions with index differing by 2 should be distinguished 
by appearing together in many different subspaces Yz. From this we would be able to 
distinguish pairs {u~, ui+ 1 }. We would fabricate the missing equations as follows: for 
j = k - s + 1 . . . . .  k, let ui~j) be a multiple of ui, normalized to have a 1 in position j ,  

t S- '  U / tt / . and set vj = z...,i i(j) i+l(j) 

4.2. The Case k = 3, s = 1 

In the special case k -- 3, s -- 1, where we must satisfy two quadratic equations in three 
variables, we can employ an ad hoc method, since the methods outlined in Section 3 
do not work. We take a linear transformation of the two quadratic equations so that the 
right-hand side of  one equation vanishes; that is, if the given values are vl and v2, we 
take v2 times the first equation minus Vl times the second. This gives a homogeneous 
quadratic equation in three variables Yl, Y2, Y3: 

Z cijYiYj = O. (26) 
ij 

The second equation is inhomogeneous: 

Z dijYiYj = do. (27) 
ij 

By setting zl = Yl/Y3, z2 = Y2/Y3 in (26), we obtain an inhomogeneous quadratic 
equation in two variables z~, z2. We can easily find an affine change of  basis from z~, z2 
to zlj, z~ which transforms the equation to the form 

1 / / / 
CIIIZll 2 q-CI2ZlZ 2 -~ C22Zl22 = C O m o O  N ,  (28) 

and a further linear change of variables to z'l', z~' yielding 

fl 112 ii cjlz I + c~z'2 I2 = c o mod N, (29) 
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which can be solved by the Pollard [7] attack on the Ong-Schnorr-Shamir  [5] scheme. 
We find from this a set of  ratios Yj/Y3, and, by extension, a set of ratios y,~)/y2 satisfying 
(26). Setting y~ = 3., the second equation (27) becomes a linear equation in ~.. Thus we 
find a consistent set of pairwise products y,3) satisfying the desired equations (26) and 
(27). 

4.3. Open Questions 

The birational permutation signature scheme has many instances, of which we have 
attacked only the first few examples. For a more complex instance of the scheme, the 
ideas of the present paper will still apply: the trap-door conditions lead to algebraic 
equations on the coefficients of the transformations, and we hope to gather enough such 
equations to make it possible to solve them by g.c.d, or GrObner basis methods. But, for 
any specific instance, it remains to see whether the ideas of  the present paper would be 
sufficient to mount an attack. 

One general theme is that when solutions of the algebraic equations enjoy a symmetry, 
it makes the equations harder to solve, but we do not need to solve them, since the final 
solution will enjoy the same symmetry, and quantities symmetric in the roots of the 
equation can be expressed in terms of  the coefficients of the equation alone, not in 
terms of the roots. When the roots fail to enjoy a symmetry, they can be distinguished 
by algebraic conditions, which yield further algebraic equations, and the Grrbner basis 
methods have more to work with. This gives us hope that the methods outlined in this 
paper will apply with some generality to many instances of the birational permutation 
signature scheme. 

Conclusion 

We have shown how to use algorithmic tools to break many of  the cryptographic schemes 
based on birational permutations with hidden trap-doors. Though not all the cases pro- 
posed by Shamir have been studied, we demonstrated that use of Galois-like theory 
may break them. This enlightens cryptanalysis with a new approach. We would like 
to comment briefly on the mathematics of our attacks. We used pseudoextensions of  
pseudofields to break the most significant proposals. In a way, this is very similar to the 
security analysis of  RSA-like cryptosystems: stated in a provocative way, this security 
corresponds to the freedom of treating (at least algorithmically) ZN as a field since we 
do not know a nontrivial factor of  N. In a similar vein, we took the freedom to consider 
ZNI~]/F(~)  as a Galois extension since we did not know how to get a root of F. This 
is a way to use formally incorrect statements of mathematics in order to achieve actual 

results. 
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