The Security of the Birational Permutation Signature Schemes

Don Coppersmith
IBM Research. T. J. Watson Research Center. Yorktown Heights, NY 10598, U.S.A.
Jacques Stern and Serge Vaudenay
Ecole Normale Supérieure, Laboratoire d'Informatique. 45 rue d'Ulm, 75230 Paris, France
Communicated by Gilles Brassard
Received 11 October 1995 and revised 22 April 1996

Abstract

In recent years, researchers have invested a lot of effort in trying to design suitable alternatives to the RSA signature scheme, with lower computational requirements. The idea of using polynomial equations of low degree in several unknowns, with some hidden trap-door, has been particularly attractive. One of the most noticeable attempts to push this idea forward is the Ong-Schnorr-Shamir signature scheme, which has been broken by Pollard and Schnorr. At Crypto '93. Shamir proposed a family of cryptographic signature schemes based on a new method. His design made subtle use of birational permutations over the set of k-tuples of integers modulo a large number N of unknown factorization. However, the schemes presented in Shamir's paper are weak. In the present paper. we describe several attacks which can be applied to schemes in this general family.

Key words. Signature schemes, Cryptanalysis, Birational transformations.

Introduction

The celebrated RSA cryptosystem can be viewed as a permutation computed in both directions as a polynomial over the ring \mathbb{Z}_{N}, where N is a (large) integer with secret factorization. In the search for suitable alternatives to the RSA signature scheme, with lower computational requirements, several cryptographers have suggested using polynomials of low degree in several variables. In the context of signature, such polynomials were natural candidates for the design of very efficient schemes. both for signature generation and signature verification.

The first cryptographic protocol based on this principle is the Ong-Schnorr-Shamir signature scheme [5]. It has been broken by Pollard and Schnorr [7]. At Crypto '93, Shamir proposed a family of cryptographic signature schemes based on a new method.

His design made subtle use of birational permutations of the integers modulo N. Shamir actually introduced several techniques: the first technique uses as a trap-door a family of quadratic forms built in a very specific way and which he calls sequentially linearized. It is a kind of generalization of the Ong-Schnorr-Shamir scheme, with more unknowns and more equations to be solved for signature generation. Another technique uses the notion of an algebraic basis for the quadratic forms: this is a set of quadratic forms from which any other one can be computed by using only rational operations. This technique can be further divided according to the algebraic basis chosen and Shamir's paper includes two proposals, one using a symmetric basis and the other an asymmetric one. Of course, there is nothing specific to quadratic forms in Shamir's approach: it only turns out that use of cubic or quartic polynomials makes key management cumbersome and loses the computational advantages shown by the scheme.
In the present paper, we show that the schemes presented in Shamir's paper are weak, by exhibiting several attacks which can be applied to schemes in the general family. These results have been announced in [1], where we deal with the trap-door based on sequentially linearized equations and with the symmetric basis proposal. Since then, another attack has appeared in [10], which takes care of the asymmetric basis.

It is worth mentioning that another public key system scheme based on quadratic forms has been proposed by Matsumoto and Imai [4]. This scheme is based on completely different ideas and uses (small) fields of characteristic 2 . Let us add that the MatsumotoImai scheme has recently been broken by Patarin [6]. Thus, there seems to be some kind of intrinsic difficulty that prevents hiding trap-doors into families of quadratic forms.

We close this Introduction by thanking Adi Shamir both for sending us his Crypto '93 paper at an early stage and for many discussions on the subject of this paper.

1. The Methodology of the Attacks

1.1. The Overall Strategy

Basically, Shamir's idea is to start from a family of quadratic forms with some "visible" algebraic structure (e.g., low rank) and to hide the underlying structure by performing the following operations:

1. linear change of coordinates; and
2. linear combinations of the resulting forms.

We are thus faced with the problem of trying to recapture some of the hidden structure, from the public key only. This public key consists of several quadratic forms and we note that, as a consequence of Step 2 above, some linear combinations of the public forms may retain a part of the original algebraic structure. Unfortunately, we can only handle these objects indirectly, through the use of indeterminate coefficients, say $\delta, \varepsilon, \ldots$ At this point we note that many of the properties used in the design proposed by Shamir can be expressed by the vanishing of polynomials in $\delta, \varepsilon, \ldots$. We quote several examples:

- the fact that a quadratic form has not full rank is expressed by the vanishing of its determinant;
- the fact that a quadratic form has rank 2 is expressed by the vanishing of all 3×3 determinants; and
- the fact that a vector u belongs to the vector space spanned by the rows of the matrix M of a given quadratic form of rank k is expressed by the vanishing of all $(k+1) \times(k+1)$ determinants of the matrix M^{\prime} obtained by appending u as an extra row to M. These determinants are polynomials in $\delta, \varepsilon, \ldots$ and in the coordinates of u.

1.2. Galois Theory and Ideal Calculations

We are thus led to a set of polynomial equations in $\delta, \varepsilon, \ldots$. Such a set of equations generates an ideal in the ring of polynomials with several unknowns: in other words, if P_{1}, \ldots, P_{m} are m polynomials with unknowns $\delta, \varepsilon, \ldots$, the equations $P_{i}=0$ define an algebraic curve associated to the ideal of all polynomials which can be written

$$
P_{1} Q_{1}+\cdots+P_{m} Q_{m}
$$

where Q_{1}, \ldots, Q_{m} are arbitrary polynomials.
At this point, we have to return to the underlying structure. In case there is a lack of symmetry, as in Shamir's first scheme, we can try to solve for one of the unknowns: this simply means that the ideal should contain a polynomial of degree one with a single variable. In other cases, we observe a strong symmetry: for example, in the scheme based on the symmetric basis, we isolate a sequence of integers modulo N, say $\delta_{1}, \ldots, \delta_{k}$, coming from the hidden structure, which act as (say) first coordinates of points m_{1}, \ldots, m_{k} of the curve which cannot be distinguished from each other. In such a case, it is hopeless to try to solve for the first coordinate δ. On the other hand, we expect to find in the ideal a polynomial of degree k in the single variable $\delta, F(\delta)$, which we can treat symbolically and of which the values $\delta_{1}, \ldots, \delta_{k}$ are the unknown roots. This is a context close to Galois theory. Still, we do not really offer proofs of the various statements we make relying on Galois-like arguments. Although it might be possible to write up proofs in some cases, we feel that the technicalities would distract from the issues at hand. In place, we remain at an informal level and implicitly assume a large degree of "genericity." We think that this is perfectly acceptable in a paper concerned with cryptanalysis: furthermore, our attack has been implemented using a computer algebra package, and this is a kind of experimental verification of the correctness of our statements.

We now turn to ideal calculations. As explained above, we need to disclose members of the ideal with prescribed degrees for the various unknowns. For this, we can use Gröbner basis algorithms (see [2]), which output another family of polynomials $P_{1}^{\prime}, \ldots, P_{r}^{\prime}$ spanning the same ideal and which is reduced in a suitable sense. The drawback of this algorithm is its high complexity. In case we are trying to eliminate all unknowns except one, we can repeatedly form resultants of two polynomials with respect to a given unknown. We can also apply the Euclidean algorithm to compute the g.c.d. of two polynomials with respect to a given unknown. This decreases the degree of an equation.

Finally, it is also possible to use a simpler ad hoc version of the Gröbner basis algorithm which is a kind of generalized Gaussian elimination. For instance, if M is a monomial in P_{1} which does not divide any other monomial of P_{1}, then every multiple monomial
of M can be eliminated in the other polynomials by replacing P_{i} by $P_{i}^{\prime}=P_{i}-Q_{i} P_{1}$ for a suitable polynomial Q_{1}. Then, we can continue the reduction with $P_{2}^{\prime} \ldots . P_{m}^{\prime}$. In most cases, if m is large enough and if there is a hidden trap-door in the set of equations, this reduction is likely to end rather quickly with very simple equations of the expected form. In the rest of the paper, we will not comment further on ideal calculations and will thus treat them as a kind of "programming technology," which we actually used in our experiments.

1.3. Working $\bmod N$ Versus Working $\bmod p$

Our analysis basically treats the ring of integers $\bmod N$ as a field. Actually, N is composite and we assume for simplicity that it has only two prime factors p and q. Our calculations make sense $\bmod p$ since we are actually working in a field but some justification is needed to go from calculations $\bmod p$ to calculations $\bmod N$. In Section 2, we will only use tools from linear algebra such as Gaussian elimination or determinants. Thus all computations go through regardless of the fact that N is composite. The situation is a bit more subtle in Section 3, where Galois theory comes into the picture. For instance. assume that we have discovered a polynomial $F(\delta)$ of degree k from a sequence of integers modulo N, say $\delta_{1}, \ldots, \delta_{k}$, coming from the hidden structure, as explained in Section 1.2. Such a polynomial has k solutions $\bmod p$ but k^{2} solutions $\bmod N$, each obtained by mixing some solution $\bmod p$ with some solution $\bmod q$. But if we consider only the image, $\bmod p$, of our calculations $\bmod N$, things are all right. As will be shown, our cryptanalysis provides a way to forge signatures by performing calculations which treat δ (and possibly other variables) symbolically. Galois-like arguments show that the result has the expected symmetry and thus, is expressible in terms of the coefficients of F and in terms of the coefficients of the public key. These calculations are valid mod p. They are also valid $\bmod q$. and the Chinese Remainder Theorem suffices to make them valid $\bmod N$. This is in spite of the fact that a solution δ of $F \bmod N$ might well mix different solutions $\delta_{i} \bmod p$ and $\delta_{j} \bmod q$. Since we never explicitly solve for δ, but only work with it symbolically and use the fact that $F(\delta)=0 \bmod N$, we never are in danger of factoring N.

2. The First Scheme

The first family of Shamir's signature schemes is based on sequentially linearized equations. The public information consists of a large integer N of unknown factorization (even the legitimate users need not know its factorization), and the coefficients of $k-1$ quadratic forms f_{2}, \ldots, f_{k} in k variables x_{1}, \ldots, x_{k} each. Each of these quadratic forms can be written as

$$
\begin{equation*}
f_{i}=\sum_{j . \ell} \alpha_{i j k} x_{j} x_{\ell} . \tag{1}
\end{equation*}
$$

where i ranges from 2 to k and the matrix $\alpha_{i j k}$ is symmetric. i.e., $\alpha_{i j k}=\alpha_{i \ell j}$.
The secret information is a pair of linear transformations. One linear transformation B relates the quadratic forms f_{2}, \ldots, f_{k} to another sequence of quadratic forms g_{2}, \ldots, g_{k}. The second linear transformation A is a change of coordinates that relates the variables
$\left(x_{1}, \ldots, x_{k}\right)$ to a set of "original" variables (y_{1}, \ldots, y_{k}). Denoting by Y the column vector of the original variables and by X the column vector of the new variables, we can simply write $Y=A X$.

Of course, the coefficients of A and B are known only to the legitimate user. The trap-door requirements are twofold: when expressed in terms of the original variables y_{1}, \ldots, v_{k}, the quadratic form g_{2} is computed as

$$
\begin{equation*}
g_{2}=y_{1} y_{2} \tag{2}
\end{equation*}
$$

and the subsequent g_{i} 's. $3 \leq i \leq k$, are sequentially linearized, i.e., can be written

$$
\begin{equation*}
g_{i}\left(y_{1}, \ldots, y_{k}\right)=\ell_{i}\left(y_{1} \ldots \ldots, y_{i-1}\right) \times y_{i}+q_{i}\left(y_{1}, \ldots, y_{i-1}\right) . \tag{3}
\end{equation*}
$$

where ℓ_{i} is a linear function of its inputs and q_{i} is a quadratic form.
To sign a message M. one hashes M to a ($k-1$)-tuple (f_{2}, \ldots, f_{k}) of integers modulo N. then finds a sequence (x_{1}, \ldots, x_{k}) of integers modulo N satisfying (1). This is easy from the trap-door.

It is straightforward that the particular case $k=2$ is equivalent to the Ong-SchnorrShamir scheme [5]. The Pollard-Schnorr algorithm [7] enables us to forge a valid signature of any message. In the following, we show how to break the other cases reducing them to the Ong-Schnorr-Shamir scheme too.

We let $M_{t}, 2 \leq i \leq k$, denote the $k \times k$ symmetric matrix of the quadratic form g_{i}. The kernel K_{i} of g_{i} is the kernel of the linear mapping whose matrix is M_{i}. It consists of vectors which are orthogonal to all vectors with respect to g_{i}. The rank of the quadratic form g_{i} is the rank of M_{i}. It is the codimension of K_{i} as well as the unique integer r such that g_{i} can be written as a linear combination of squares of r independent linear functionals. (For more details, see [3], for instance.) Actually, all this is not completely accurate as N is not a prime number and therefore \mathbb{Z}_{N} is not a field. This question has been addressed in Section 1.3 and we now ignore the problem.

An easy computation shows that K_{i} is the subspace defined in terms of the original variables by the equations

$$
\begin{equation*}
y_{1}=\cdots=y_{i}=0 . \tag{4}
\end{equation*}
$$

From this, it follows that:
(i) K_{i} is decreasing;
(ii) the dimension of K_{i} is $k-i$; and
(iii) any element of K_{t-1} not in K_{l} is an isotropic element with respect to g_{i}, which means that the value of g, is zero at this element.

We will construct a basis b_{i} of the k-dimensional space, such that the family $b_{i+1} \ldots, b_{k}$ spans K, for $i=2 \ldots \ldots k-1$. The main problem we face is the fact that the g 's and therefore the K_{l} 's are unknown. Instead. we know the f_{i} 's. We concentrate on the (unknown) coefficient δ_{i} of g_{k} in the expression of f_{i}, i.e., we write

$$
\begin{equation*}
f_{i}=\delta_{i} g_{k}+\sum_{j=2}^{k-1} \beta_{i j} g_{j} \tag{5}
\end{equation*}
$$

As coefficients have been chosen randomly, we may assume that δ_{k} is not zero. Let $i<k$. Consider the quadratic form (in all x_{i} 's) $Q_{i}(\lambda)=f_{i}-\lambda f_{k}$. When $\lambda=\delta_{i} / \delta_{k}$, this form has a nontrivial kernel and therefore δ_{i} / δ_{k} is a root of the polynomial $P_{i}(\lambda)=\operatorname{det}\left(Q_{i}(\lambda)\right)$. This is not enough to recover the correct value of λ. Computing the matrix of $Q_{i}(\lambda)$ for $\lambda_{i}=\delta_{i} / \delta_{k}$ in the basis corresponding to the original coordinates y_{1}, \ldots, y_{k} yields the following:

In the same basis, the matrix of $Q_{i}(\lambda)$ for any λ, can be written as

We observe that U_{λ} is affine in λ and vanishes at λ_{i} so that the determinant of the matrix is divisible by $\left(\lambda-\lambda_{i}\right)^{2}$. Since determinants can be computed up to a multiplicative constant in any basis, it follows that $\left(\lambda-\lambda_{i}\right)^{2}$ factors out in $P_{i}(\lambda)$. Thus the correct value of λ_{i} can be found by observing that it is a double root of the polynomial equation $P_{i}(\lambda)=0$. We now make use of the informal genericity principle explained in Section 1.2, which means that we ignore "exceptional" situations. As a consequence, we claim that the double root is disclosed by simply taking the g.c.d. in \mathbb{Z}_{N} of P_{i} and P_{i}^{\prime} with respect to λ. We find a linear equation in λ. from which we easily compute λ_{l}.

Once all coefficients λ_{i} have been recovered, we set for $i=2, \ldots, k-1$

$$
\begin{equation*}
\tilde{f}_{i}=f_{i}-\lambda_{i} f_{k} \tag{6}
\end{equation*}
$$

and $\tilde{f}_{k}=f_{k}$. We note that all quadratic forms \tilde{f}_{i} have kernel K_{k-1}. This allows to pick a nonzero vector b_{k} in K_{k-1}. The construction can then go on inductively in the quotient space of the k-dimensional space by the vector spanned by $\left\{b_{k}\right\}$ with $\tilde{f_{2}} \ldots, \tilde{f}_{k-1}$ in place of f_{2}, \ldots, f_{k}.

At the end of the recursive construction, we obtain a sequence $b_{i}, 3 \leq i \leq k$, such that b_{i+1}, \ldots, b_{k} spans K_{i} for $i=2, \ldots, k-1$ and a sequence of quadratic forms $\tilde{f}_{2}, \ldots, \tilde{f}_{k}$ such that:
(i) \tilde{f}_{i} has kernel K_{i}; and
(ii) b_{1} is an isotropic element with respect to \tilde{f}_{i}.

Choosing b_{1}, b_{2} at random, we get another set of coordinates z_{1}, \ldots, z_{k} defined by $X=\left(b_{1} \ldots b_{n}\right) Z$ such that:
(i) \tilde{f}_{2} is a quadratic form in the coordinates z_{1}, z_{2}; and
(ii) $\tilde{f}_{3}, \ldots, \tilde{f}_{k}$ is sequentially linearized

The rest is easy. From a sequence of prescribed values for f_{2}, \ldots, f_{k}, we can compute the corresponding values of $\tilde{f}_{2}, \ldots, \tilde{f}_{k}$. Next, we can find values of $\left\{z_{1}, z_{2}\right\}$ achieving a given value of $\tilde{f}_{2} \bmod N$ in exactly the same way as the Pollard solution of the

Ong-Schnorr-Shamir scheme [5]. Then, values for $z_{3} \ldots \ldots z_{k}$ achieving given values of $\bar{f}_{3}, \ldots, \bar{f}_{k}$ are found by successively solving $k-2$ linear equations. Finally, the values of z_{1}, \ldots, z_{k} can be translated into values of $x_{1} \ldots, x_{k}$.

Example. In Shamir's paper [9], an example is given with $N=101$ (the fact that 101 is prime is unfortunate but actually irrelevant).

$$
\begin{aligned}
& v_{2}=78 x_{1}^{2}+37 x_{2}^{2}+6 x_{3}^{2}+54 x_{1} x_{2}+19 x_{1} x_{3}+11 x_{2} x_{3}(\bmod 101) \\
& v_{3}=84 x_{1}^{2}+71 x_{2}^{2}+48 x_{3}^{2}+44 x_{1} x_{2}+33 x_{1} x_{3}+83 x_{2} x_{3}(\bmod 101)
\end{aligned}
$$

Matrices of f_{2}, f_{3} are as follows:

$$
\left(\begin{array}{ccc}
78 & 27 & 60 \\
27 & 37 & 56 \\
60 & 56 & 6
\end{array}\right), \quad\left(\begin{array}{ccc}
84 & 22 & 67 \\
22 & 71 & 92 \\
67 & 92 & 48
\end{array}\right) .
$$

We get

$$
\begin{align*}
P(\lambda) & =\operatorname{det}\left(f_{2}-\lambda f_{3}\right)=34\left(\lambda^{3}+75 \lambda^{2}+55 \lambda+71\right) . \tag{7}\\
P^{\prime}(\lambda) & =\lambda^{2}+50 \lambda+52 . \tag{8}\\
\text { g.c.d. }\left(P, P^{\prime}\right) & =\lambda-63 . \tag{9}
\end{align*}
$$

We let

$$
\begin{equation*}
\tilde{f}_{2}=f_{2}-63 f_{3}: \quad \tilde{f_{3}}=f_{3} \tag{10}
\end{equation*}
$$

The kernel of \tilde{f}_{2} is spanned by vector $b_{3}=(31,12,1)^{t}$. We pick $b_{2}=(0,1,0)^{t}$ and $b_{1}=(1.31 .0)^{t}$. We get, in the corresponding coordinates z_{1}, z_{2}, z_{3} :

$$
\begin{equation*}
\tilde{f}_{2}=26 z_{1}^{2}+8 z_{2}^{2}: \quad \tilde{f}_{3}=z_{3}\left(26 z_{1}+20 z_{2}\right)+90 z_{1}^{2}+2 z_{1} z_{2}+71 z_{2}^{2} . \tag{11}
\end{equation*}
$$

Then. for any tuple (f_{2}, f_{3}) of integers, we compute ($\tilde{f}_{2}, \tilde{f}_{3}$) using (10), we solve $\tilde{f}_{2}=$ $26 z_{1}^{2}+8 z_{2}^{2}$ by the Pollard-Schnorr algorithm and compute z_{3} such that equations (11) hold. This forges a signature.

3. The Second Scheme

We now treat Shamir's [9] second scheme. Throughout, we will pretend we are working in \mathbb{Z}_{p} rather than \mathbb{Z}_{N}. This has been explained in Section 1.3.

We briefly review the scheme. Shamir begins with k variables $y_{1}, y_{2}, \ldots, y_{k}$, with k odd. These are subjected to a secret linear change of variables which gives $u_{i}=$ $\sum_{j} a_{i j} y_{j}, i=1,2, \ldots, k$, with the matrix $A=\left(a_{i j}\right)$ secret. The products $u_{i} u_{i+1}$, including $u_{k} u_{1}$, are subjected to a second secret linear transformation $B=\left(b_{i j}\right)$, so that $v_{i}=\sum_{j} b_{i j} u_{j} u_{j+1}, i=1,2, \ldots, k-s$. The public key is the set of coefficients ($c_{i, k}$) expressing v_{i} in terms of pairwise products $y_{j} v_{k}$ for $1 \leq i \leq k-s$,

$$
\begin{equation*}
v_{i}=\sum_{j, \ell} c_{i, k} y_{j} y_{k}, \quad 1 \leq i \leq k-s, \quad c_{i j \ell}=c_{i t j} . \tag{12}
\end{equation*}
$$

In the above, $s \geq 1$ is a parameter and, for the sake of simplicity, we first treat the case $s=1$. Thus, i is ranging to $k-1$. meaning that we have discarded $s=1$ of the v_{i}. A valid signature of a $(k-1)$-tuple of integers $\left(v_{1} \ldots, v_{k-1}\right)$ is a set of values of $y_{1} y_{2} \ldots, y_{k} y_{1}$ such that (12) holds. Signature generation for the legitimate user is based on the fact that $y_{1} y_{2} \ldots, y_{k}, y_{1}$ form an algebraic basis for the ideal generated by quadratic forms: for example, if $k=3, y_{i}^{2}$ is recovered by the formula

$$
y_{1}^{2}=\frac{\left(y_{1} y_{2}\right)\left(y_{3} y_{1}\right)}{y_{2} y_{3}} .
$$

See [9] for more details.
The first step in our solution is as follows: linear combinations of the v_{1} are linear combinations of the $u_{i} u_{i+1}$. but they form only a subspace of dimension $k-1$. Some linear combinations of the v_{i},

$$
\begin{equation*}
v_{1}+\delta v_{2}+\sum_{3 \leq j \leq k-1} \varepsilon_{j} v_{j} \tag{13}
\end{equation*}
$$

will be quadratic forms in the y_{l} of rank 2. A computation shows that the only linear combinations of the products $u_{i} u_{i+1}$ of rank 2 are of the form

$$
\begin{equation*}
\alpha_{i} u_{i-1} u_{i}+\beta_{i} u_{i} u_{i+1}=u_{i}\left(\alpha_{i} u_{i-1}+\beta_{i} u_{i+1}\right) \tag{14}
\end{equation*}
$$

for any values of α_{i}, β_{1}, i. Because the v_{j} span a subspace of codimension 1 , and because we are further restricted to one lower dimension by the choice of the multiplier 1 for v_{1} in the linear combination, we find that for each i there will be one pair (α_{i}, β_{i}) and one set of coefficients ($\delta_{1}, \varepsilon_{i j}$) such that

$$
\begin{equation*}
\alpha_{i} u_{i-1} u_{i}+\beta_{1} u_{i} u_{i+1}=u_{i}\left(\alpha_{i} u_{i-1}+\beta_{1} u_{i+1}\right)=v_{1}+\delta_{i} u_{2}+\sum_{i \leq j \leq k-1} \varepsilon_{1,} v_{j} \tag{15}
\end{equation*}
$$

We now omit the i indices for the sake of clarity. The condition of being rank 2 is an algebraic condition: setting

$$
\begin{equation*}
v_{1}+\delta v_{2}+\sum_{3 \leq j \leq k-1} \varepsilon_{j} v_{j}=\sum_{j \varepsilon} \tau_{j k} y_{j} y_{k} \tag{16}
\end{equation*}
$$

with $\tau_{j \ell}=\tau_{\ell j}$, we find that each 3×3 submatrix of the matrix ($\tau_{j \ell}$) has vanishing determinant. Each of these determinants is a polynomial equation in δ, ε_{j}. Use resultants and Gaussian elimination to eliminate ε_{j} from this family of polynomial equations (in the ring \mathbb{Z}_{N}) and find a single polynomial F of degree k satisfied by δ. We also find ε, as polynomials in δ, by returning to the original equations and eliminating the variables $\varepsilon_{i}, i \neq j$.

Thus each solution δ to $F(\delta)=0$ gives rise to a linear combination of v_{j} which is of rank 2 . The root δ corresponds to that index i for which

$$
\begin{equation*}
v_{1}+\delta v_{2}+\sum_{3 \leq j \leq k-1} \varepsilon_{j} v_{j}=u_{i}\left(\alpha_{i} u_{i-1}+\beta_{i} u_{i+1}\right) . \tag{17}
\end{equation*}
$$

We will indicate this correspondence by writing $\delta=\delta_{i}$.

For each solution $\delta=\delta_{i}$, the rows of the resulting matrix ($\tau_{i j}$) span a subspace $Y\left(\delta_{i}\right)=$ Y_{i} of $\mathbb{Z}_{p}{ }^{k}$ of rank 2; namely, Y_{i} is spanned by u_{i} and $\alpha_{i} u_{i-1}+\beta_{i} u_{i+1}$. This observation is rather straightforward if the quadratic form is expressed in the basis corresponding to the u_{i} variables. Going to the y_{i} coordinates involves a right multiplication by A and a left multiplication by its transpose A^{\prime}. The first operation replaces row vectors by their expressions in terms of the "new" variables y_{i} and the latter does not affect the vector space spanned by the rows. This is enough to conclude.

Observe that u_{i}, u_{i+2}, and $\left(\alpha_{i+1} u_{i}+\beta_{i+1} u_{i+2}\right)$ are linearly related, as are u_{i}, u_{i-2}. and $\left(\alpha_{i-1} u_{i-2}+\beta_{i \ldots 1} u_{i}\right)$. So

$$
\begin{equation*}
u_{i} \in Y_{1} \cap\left(Y_{i+1}+Y_{i+2}\right) \cap\left(Y_{i-1}+Y_{i-2}\right) \tag{18}
\end{equation*}
$$

This is an algebraic relation among $\delta_{i-2}, \delta_{i-1}, \delta_{i}, \delta_{i+1}$, and δ_{i+2}. More accurately, for $k>5,(i+1, i+2)$ and $(i-1, i-2)$ are the only instances of pairs $(a, b),(c, d)$ consisting of four different indices, all distinct from i, such that

$$
\begin{equation*}
Y_{i} \cap\left(Y_{u}+Y_{b}\right) \cap\left(Y_{i}+Y_{d}\right) \neq\{0\} . \tag{19}
\end{equation*}
$$

We thus introduce five different variables $\delta, \delta^{\prime}, \delta^{\prime \prime}$, etc., representing $\delta_{1}, \delta_{i+1}, \delta_{i+2}$. δ_{i-1}, and δ_{i-2}, and we formulate the relation as the vanishing of several determinants, as explained in Section 1.1. We then reduce the resulting ideal by factoring out any occurrences of $\left(\delta-\delta^{\prime}\right),\left(\delta-\delta^{\prime \prime}\right)$, etc., to assure that δ, δ^{\prime} etc.. are really different solutions. That is. we consider the ideal formed by $F(\delta), F\left(\delta^{\prime}\right)$, etc., $\left(F(\delta)-F\left(\delta^{\prime}\right)\right) /\left(\delta-\delta^{\prime}\right)$, etc., and the various determinants derived from (19), and we apply the Gröbner basis reduction or the Euclidean algorithm to this ideal to find a basis.

Only multiples of some u_{i} satisfy such a relation (18) over \mathbb{Z}_{p}. We fix a multiple of each u, by normalizing u, to have first coordinate 1 . The relations finally serve to define u_{i} in terms of δ.

By a similar argument. there is a quadratic equation $G\left(\delta_{t}, \delta_{t+1}\right)$ expressing δ_{i+1} in terms of δ_{i}. whose two solutions are δ_{t+1} and δ_{i-1}. For $k>5$. the algebraic condition is that the corresponding spaces $Y_{1}, Y_{1,1}$ are in two different triples of subspaces enjoying linear relations:

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}+Y_{i+1}+Y_{t+2}\right)=\operatorname{rank}\left(Y_{i}+Y_{i+1}+Y_{t-1}\right)=5 . \tag{20}
\end{equation*}
$$

Special Considerations for Small k

For $k=5$, the above arguments do not apply since there are more instances of the relation

$$
Y_{i} \cap\left(Y_{a}+Y_{b}\right) \cap\left(Y_{i}+Y_{d}\right) \neq\{0\}
$$

with distinct (a, b, c, d, i). For example.

$$
Y_{1} \cap\left(Y_{2}+Y_{5}\right) \cap\left(Y_{3}+Y_{4}\right)
$$

is a one-dimensional space spanned by a vector of the form $u_{5}+\mu u_{2}$ for some constant μ. It turns out that a pair of adjacent spaces such as $\left(Y_{3}+Y_{4}\right)$ appear in three such relations whereas a pair of nonadjacent spaces such as ($Y_{2}+Y_{5}$) appears only in one.

This gives an algebraic condition to identify pairs of adjacent $\delta_{i}{ }^{\circ}$ s. Once this is done, we can use two pairs of adjacent indices $(a, b),(c, d)$, with a, b, c, d distinct and different from i and the relation

$$
u_{i} \in Y_{i} \cap\left(Y_{a}+Y_{b}\right) \cap\left(Y_{c}+Y_{d}\right)
$$

in order to express u_{i} as a function of δ_{i} of degree 4.
The particular case $k=3$ deserves independent discussions and is postponed until Section 4.

Returning to the general case $k \geq 5$, we represent the solution of the quadratic equation by τ, and say that (δ, τ) generates a pair of "adjacent" elements (u_{i}, u_{i+1}) (elements which are multiplied together in the original signature). We think of δ as generating an extension of degree k over \mathbb{Z}_{N}, and of τ as generating an extension of degree 2 over $\mathbb{Z}_{N}(\delta] / F(\delta)$. The ability to distinguish the unordered pairs of "adjacent" roots $\left(\delta_{i}, \delta_{i+1}\right)$ makes the system similar, in spirit, to a Galois extension of \mathbb{Q} whose Galois group is the dihedral group on k elements. We will call on this analogy later. (Remark. It is only an analogy, because δ and τ really are elements of the ground field.)

We can get the missing k th equation

$$
\begin{equation*}
v_{k}^{\prime}=\sum_{i} u_{1} u_{i+1} \tag{21}
\end{equation*}
$$

The coefficients of v_{k}^{\prime} in terms of $y_{j} y_{\ell}$ ostensibly depend on δ_{i} and on the pairings (δ_{i}, δ_{i+1}). or equivalently on (δ, τ). But the coefficients would come out the same no matter which solution (δ, τ) were chosen, that is, no matter whether we assigned the ordering ($1,2,3, \ldots, k$) or $(3,2,1, k, k-1, \ldots, 4)$ to the solutions u_{i}. This means that the coefficients will be in fact independent of (δ, τ). They will be expressible in terms of only the coefficients of the original $v_{1}, 1 \leq i \leq k$. This is because they are symmetric (up to dihedral symmetry) in the solutions δ_{1}.

The arguments here are analogous to those of Galois theory. Each coefficient c of v_{k}^{\prime} is expressed as

$$
\begin{equation*}
c=\sum_{0 \leq i<k, 0 \leq J \leq 1} u_{i j} \delta^{i} \tau^{J} \tag{22}
\end{equation*}
$$

For each of $2 k$ different choices of (δ, τ) the value of c comes out the same. Treating (22) as $2 k$ linear equations in the $2 k$ unknowns $w_{i j}$, with coefficients given by $\delta^{\prime} \tau^{j}$ for various choices of (δ, τ), we must find (if the matrix has full rank) that $w_{\mathrm{f0}}=c$, and $w_{1}=0$ for $(i, j) \neq(0,0)$.

Now we wish to solve a particular signature. We are given the integer values $v_{1} \ldots \ldots$ v_{k-1}, and we assign an arbitrary value to v_{k}^{\prime}. We have the equations relating v_{1} to $u_{j} u_{j+1}$:

$$
\begin{equation*}
v_{i}=\sum_{j} b_{i j}^{\prime} u_{j} u_{j+1} \tag{23}
\end{equation*}
$$

where $b_{1,}^{\prime}$ depends on δ, Select (symbolically) one pair (δ, τ) to fix the first two solutions $\left(u_{1}, u_{2}\right)$, and compute the others in terms of ($\left.\delta, \tau\right)$. Then we have $b_{i j}^{\prime} u_{j} u_{j+1}$ depending only on (δ, τ).

At this point we have v_{k}^{\prime} (which is a v_{k}-like quadratic form), and A-like and B like matrices, respectively, denoted by A^{\prime} and B^{\prime} (expressing linear transformations);
the entries of all of these live in the pseudo-Galois extension $\mathbb{Z}_{N}[\delta, \tau] / F(\delta) / G(\delta, \tau)$ expressing linear transformations. All rational operations can be done in this domain so this enables us to sign in it. Since the resulting signature does not depend on the ordering of the δ_{i}, its coefficients will always be in \mathbb{Z}_{N}. Thus it is possible to forge any signature working in a more complicated domain and getting results which always end up in \mathbb{Z}_{N}.

The attack has been implemented on a Sparc Workstation using the computer algebra system MAPLE. It computes a secret key-like ($v_{k}^{\prime}, A^{\prime}, B^{\prime}$) within few hours and then forges any signature in a negligible time.

Example. As for the first scheme, we give a toy example with $N=97, k=5$ and $s=1$. The public key is as follows:

$$
\begin{aligned}
v_{1}= & 11 y_{1}^{2}+31 y_{2}^{2}+15 y_{3}^{2}+8 y_{4}^{2}+5 y_{5}^{2}+23 y_{1} y_{2}+89 y_{1} y_{3}+60 y_{1} y_{4} \\
& +47 y_{1} y_{5}+43 y_{2} y_{3}+24 y_{2} y_{4}+93 y_{2} y_{5}+9 y_{3} y_{4}+78 y_{3} y_{5}+32 y_{4} y_{5}, \\
v_{2}= & 83 y_{1}^{2}+32 y_{2}^{2}+16 y_{3}^{2}+13 y_{4}^{2}+92 y_{5}^{2}+28 y_{1} y_{2}+83 y_{1} y_{3}+58 y_{1} y_{4} \\
& +84 y_{1} y_{5}+58 y_{2} y_{3}+64 y_{2} y_{4}+84 y_{2} y_{5}+38 y_{3} y_{4}+69 y_{3} y_{5}+36 y_{4} y_{5}, \\
v_{3}= & 45 y_{1}^{2}+33 y_{2}^{2}+96 y_{3}^{2}+75 y_{4}^{2}+90 y_{5}^{2}+34 y_{1} y_{2}+51 y_{1} y_{3}+89 y_{1} y_{4} \\
& +26 y_{1} y_{5}+16 y_{2} y_{3}+90 y_{2} y_{4}+42 y_{2} y_{5}+9 y_{3} y_{4}+8 y_{3} y_{5}+47 y_{4} y_{5}, \\
v_{4}= & 65 y_{1}^{2}+54 y_{2}^{2}+96 y_{3}^{2}+33 y_{4}^{2}+26 y_{5}^{2}+46 y_{1} y_{2}+25 y_{1} y_{3}+75 y_{1} y_{4} \\
& +76 y_{1} y_{5}+59 y_{2} y_{3}+66 y_{2} y_{4}+95 y_{2} y_{5}+69 y_{3} y_{4}+48 y_{3} y_{5}+56 y_{4} y_{5} .
\end{aligned}
$$

For the sake of brevity, we did not include the secret key, since we will show how to sign, given the public key only. As far as signature verification is concerned, we propose, as an example, a valid signature of the message which hashes onto ($1,2,3,4$), namely,

$$
y_{1} y_{2}=7, \quad y_{2} y_{3}=92, \quad y_{3} y_{4}=69, \quad y_{4} y_{5}=54, \quad y_{5} y_{1}=70
$$

From these values, one can compute all corresponding values of $y_{i} y_{j}$ and check that $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=(1,2,3,4)$.

As explained above, we consider the quadratic form

$$
v_{1}+\delta v_{2}+\varepsilon_{3} v_{3}+\varepsilon_{4} v_{4}
$$

and we express the vanishing of all its (3×3) minors. As an example, one of the determinants provides the following equation:

$$
\begin{aligned}
7 \delta & +15 \varepsilon_{4}+83+18 \delta^{2}+31 \delta \varepsilon_{3}+69 \delta \varepsilon_{4}+17 \varepsilon_{3}^{2}+71 \varepsilon_{4}^{2}+32 \varepsilon_{3} \varepsilon_{4} \\
& +49 \delta^{2} \varepsilon_{3}+40 \delta^{2} \varepsilon_{4}+47 \delta \varepsilon_{3}^{2}+54 \delta \varepsilon_{4}^{2}+78 \varepsilon_{3}^{2} \varepsilon_{4}+\varepsilon_{3} \varepsilon_{4}^{2}+24 \varepsilon_{4}^{3}+50 \varepsilon_{3}^{3}+38 \delta^{3} \\
& +67 \delta \varepsilon_{3} \varepsilon_{4}+5 \varepsilon_{3}=0 .
\end{aligned}
$$

Using reduction, we get

$$
\begin{aligned}
F(\delta) & =92+58 \delta+51 \delta^{2}+43 \delta^{3}+72 \delta^{4}+\delta^{5} \\
\varepsilon_{3} & =44+29 \delta+83 \delta^{2}+95 \delta^{3}+56 \delta^{4} \\
\varepsilon_{4} & =87+14 \delta+94 \delta^{2}+33 \delta^{3}+38 \delta^{4}
\end{aligned}
$$

Next, we make use of the ideal generated by all $F(\delta), F\left(\delta^{\prime}\right),\left(F(\delta)-F\left(\delta^{\prime}\right)\right) /\left(\delta-\delta^{\prime}\right)$, etc., and by the polynomials expressing that two roots are adjacent. Using τ to denote a root adjacent to δ and reducing the ideal, we get, as expected, an equation of degree two with respect to τ, say $G(\delta, \tau)$, and we compute the other roots in terms of δ and τ. This yields:

$$
\begin{aligned}
G(\delta, \tau)= & 67 \delta^{4} \tau+20 \delta^{4}+89 \delta^{3} \tau+26 \delta^{3}+68 \delta^{2} \tau+85 \delta^{2}+6 \delta \tau \\
& +3 \delta+\tau^{2}+43 \tau+57 \\
\delta_{3}= & 68 \delta^{4} \tau+23 \delta^{4}+90 \delta^{3} \tau+86 \delta^{3}+85 \delta^{2} \tau+18 \delta^{2}+93 \delta \tau \\
& +35 \delta+42 \tau+93 \\
\delta_{4}= & 29 \delta^{4} \tau+44 \delta^{4}+7 \delta^{3} \tau+3 \delta^{3}+12 \delta^{2} \tau+50 \delta^{2}+4 \delta \tau+67 \delta \\
& +55 \tau+72 \\
\delta_{5}= & 30 \delta^{4}+8 \delta^{3}+29 \delta^{2}+91 \delta+96 \tau+54
\end{aligned}
$$

We also compute the values of all normalized u_{i} 's in terms of δ and τ from equations (18). As an example, here is the output for u_{2} :

$$
\begin{aligned}
u_{2}= & y_{1}+y_{2}\left(85 \delta^{4} \tau+89 \delta^{4}+15 \delta^{3} \tau+87 \delta^{3}+38 \delta^{2} \tau+88 \delta^{2}+69 \tau \delta+6 \delta+35 \tau+12\right) \\
& +y_{3}\left(86 \delta^{4} \tau+31 \delta^{4}+41 \delta^{3} \tau+13 \delta^{3}+24 \delta^{2} \tau+18 \delta^{2}+52 \delta \tau+62 \delta+15 \tau+17\right) \\
& +y_{4}\left(43 \delta^{4} \tau+45 \delta^{4}+52 \delta^{3} \tau+38 \delta^{3}+68 \delta^{2} \tau+58 \delta^{2}+2 \delta \tau+88 \delta+27 \tau+87\right) \\
& +y_{5}\left(28 \delta^{4} \tau+4 \delta^{4}+8 \delta^{3} \tau+75 \delta^{3}+74 \delta^{2} \tau+73 \delta^{2}+45 \delta+29 \delta \tau+58 \tau+75\right)
\end{aligned}
$$

All computations now take place in the pseudo-Galois extension $\mathbb{Z}_{N}[\delta, \tau] / F(\delta) / G(\delta, \tau)$. We choose v_{5} as the sum of all $u_{i} u_{i+1}$. As expected, this value turns out to be "independent" of δ and τ :

$$
\begin{aligned}
v_{5}= & 5 y_{1}^{2}+30 y_{2}^{2}+89 y_{3}^{2}+67 y_{4}^{2}+5 y_{5}^{2}+35 y_{1} y_{2}+4 y_{1} y_{3}+62 y_{1} y_{4}+61 y_{1} y_{5} \\
& +32 y_{2} y_{3}+6 y_{2} y_{4}+14 y_{2} y_{5}+13 y_{3} y_{4}+63 y_{3} y_{5}+87 y_{4} y_{5} .
\end{aligned}
$$

Using elementary linear algebra, we finally compute a B^{-1}-like matrix, which takes the v_{i} to $u_{i} u_{i+1}$, and an A^{-1}-like matrix which computes the y_{i} 's from the u_{i} 's. Both matrices appear in terms of δ and τ.

Once this precomputation has been done, we can forge any signature. For instance, in order to sign the hashed value ($1,2,3,4$), we randomly choose $v_{5}=44$, and we get, using our equations, the valid signature:

$$
y_{1} y_{2}=59, \quad y_{2} y_{3}=60, \quad y_{3} y_{4}=38, \quad y_{4} y_{5}=26, \quad y_{5} y_{1}=56
$$

We note that it is perfectly possible to implement the last step "formally" and to sign a formal message ($V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$), thus recovering a substitute to the original signing function.

4. Extensions

4.1. Extension to the Case $s>1$

The case $s>1$ is more complicated and we only sketch a possible attack. This part has not been implemented. Suppose again that we have k variables $y_{1}, y_{2}, \ldots, y_{k}$, with k
odd, whose pairwise products generate the signature, and that the hashed message has $k-s$ quantities $v_{1}, v_{2}, \ldots, v_{k-s}$, together with coefficients $c_{i j \ell}$ expressing v_{i} in terms of $y_{j} y_{\ell}$. Suppose for simplicity that $s>1$ is odd, so that $k-s$ is even.

Some linear combinations of the $k-s$ quadratic forms v_{i} will have rank $s+1$. Namely, for each index set $I \subseteq\{1,2, \ldots, k\}$ of size $(s+1) / 2$ such that $\forall i, j \in I:|i-j| \geq 2$ and $\{1, k\} \nsubseteq I$, there is such a linear combination of the form

$$
\begin{equation*}
\sum_{i \in I} u_{i}\left(\alpha_{i I} u_{i-1}+\beta_{i I} u_{i+1}\right) . \tag{24}
\end{equation*}
$$

The number of such index sets I is

$$
\begin{equation*}
\frac{k}{(s+1) / 2}\binom{k-(s+3) / 2}{(s-1) / 2} . \tag{25}
\end{equation*}
$$

There are more than k linear combinations, leading to increased complication. The space Y_{I}, spanned by rows of the corresponding quadratic form, contains u_{i} for each index $i \in I$. So each u_{i} is in the intersection of a large number of subspaces Y_{I}, and hopefully only multiples of u_{i} will be in such an intersection. This algebraic condition should distinguish the u_{i}, hopefully indexing them by the roots δ of some polynomial $F(\delta)$ of degree k. Pairs $\left\{u_{i}, u_{i+2}\right\}$ of solutions with index differing by 2 should be distinguished by appearing together in many different subspaces Y_{l}. From this we would be able to distinguish pairs $\left\{u_{i}, u_{i+1}\right\}$. We would fabricate the missing equations as follows: for $j=k-s+1, \ldots, k$, let $u_{i(j)}^{\prime}$ be a multiple of u_{i}, normalized to have a 1 in position j, and set $v_{j}^{\prime}=\sum_{i} u_{i(j)}^{\prime} u_{i+1(j)}^{\prime}$.

4.2. The Case $k=3, s=1$

In the special case $k=3, s=1$, where we must satisfy two quadratic equations in three variables, we can employ an ad hoc method, since the methods outlined in Section 3 do not work. We take a linear transformation of the two quadratic equations so that the right-hand side of one equation vanishes; that is, if the given values are v_{1} and v_{2}, we take v_{2} times the first equation minus v_{1} times the second. This gives a homogeneous quadratic equation in three variables y_{1}, y_{2}, y_{3} :

$$
\begin{equation*}
\sum_{i j} c_{i j} y_{i} y_{j}=0 . \tag{26}
\end{equation*}
$$

The second equation is inhomogeneous:

$$
\begin{equation*}
\sum_{i j} d_{i j} y_{i} y_{j}=d_{0} \tag{27}
\end{equation*}
$$

By setting $z_{1}=y_{1} / y_{3}, z_{2}=y_{2} / y_{3}$ in (26), we obtain an inhomogeneous quadratic equation in two variables z_{1}, z_{2}. We can easily find an affine change of basis from z_{1}, z_{2} to $z_{1}^{\prime}, z_{2}^{\prime}$ which transforms the equation to the form

$$
\begin{equation*}
c_{11}^{\prime} z_{1}^{\prime 2}+c_{12}^{\prime} z_{1}^{\prime} z_{2}^{\prime}+c_{22}^{\prime} z_{2}^{\prime 2}=c_{0}^{\prime} \bmod N \tag{28}
\end{equation*}
$$

and a further linear change of variables to $z_{1}^{\prime \prime}, z_{2}^{\prime \prime}$ yielding

$$
\begin{equation*}
c_{11}^{\prime \prime} z_{1}^{\prime \prime 2}+c_{22}^{\prime \prime} z_{2}^{\prime \prime 2}=c_{0}^{\prime \prime} \bmod N, \tag{29}
\end{equation*}
$$

which can be solved by the Pollard [7] attack on the Ong-Schnorr-Shamir [5] scheme. We find from this a set of ratios y_{j} / y_{3}, and, by extension, a set of ratios $y_{i} y_{j} / y_{3}^{2}$, satisfying (26). Setting $y_{3}^{2}=\lambda$, the second equation (27) becomes a linear equation in λ. Thus we find a consistent set of pairwise products $y_{i} y_{j}$ satisfying the desired equations (26) and (27).

4.3. Open Questions

The birational permutation signature scheme has many instances, of which we have attacked only the first few examples. For a more complex instance of the scheme, the ideas of the present paper will still apply: the trap-door conditions lead to algebraic equations on the coefficients of the transformations, and we hope to gather enough such equations to make it possible to solve them by g.c.d. or Gröbner basis methods. But, for any specific instance, it remains to see whether the ideas of the present paper would be sufficient to mount an attack.

One general theme is that when solutions of the algebraic equations enjoy a symmetry, it makes the equations harder to solve, but we do not need to solve them, since the final solution will enjoy the same symmetry, and quantities symmetric in the roots of the equation can be expressed in terms of the coefficients of the equation alone, not in terms of the roots. When the roots fail to enjoy a symmetry, they can be distinguished by algebraic conditions, which yield further algebraic equations, and the Gröbner basis methods have more to work with. This gives us hope that the methods outlined in this paper will apply with some generality to many instances of the birational permutation signature scheme.

Conclusion

We have shown how to use algorithmic tools to break many of the cryptographic schemes based on birational permutations with hidden trap-doors. Though not all the cases proposed by Shamir have been studied, we demonstrated that use of Galois-like theory may break them. This enlightens cryptanalysis with a new approach. We would like to comment briefly on the mathematics of our attacks. We used pseudoextensions of pseudofields to break the most significant proposals. In a way, this is very similar to the security analysis of RSA-like cryptosystems: stated in a provocative way, this security corresponds to the freedom of treating (at least algorithmically) \mathbb{Z}_{N} as a field since we do not know a nontrivial factor of N. In a similar vein, we took the freedom to consider $\mathbb{Z}_{N}[\delta] / F(\delta)$ as a Galois extension since we did not know how to get a root of F. This is a way to use formally incorrect statements of mathematics in order to achieve actual results.

References

[^0][3] S. Lang. Algebra, 2nd edn. Addison-Wesley, Reading, MA, 1984.
[4] T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Advances in Cryptology-EUROCRYPT '88, Davos. Lecture Notes in Computer Science. vol. 330, pp. 419-453, Springer-Verlag, Berlin, 1988.
[5] H. Ong, C. P. Schnorr, and A. Shamir. A fast signature scheme based on quadratic equations. Proc. 16th ACM Symp. Theory of Computing, pp. 208-216. 1984.
[6] J. Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt '88. In: Advances in Cryptology-CRYPTO '95, Santa Barbara, CA. Lecture Notes in Computer Science, vol. 963, pp. 248261, Springer-Verlag, Berlin, 1995.
[7] J. M. Pollard and C. P. Schnorr. An efficient solution of the congruence $x^{2}+k y^{2}=m(\bmod n)$. IEEE Trans. Inform. Theory, vol. IT-33, no. 5. pp. 702-709. 1987.
[8] R. L. Rivest. A. Shamir and L. M. Adleman. A method for obtaining sigital signatures and public-key cryptosystem. Comm. ACM, vol. 21, pp. 120-126, 1978.
[9] A. Shamir. Efficient signature schemes based on birational permutations. In: Advances in Cryptolog.:CRYPTO '93. Santa Barbara, CA. Lecture Notes in Computer Science, vol. 773. pp. 1-12, SpringerVerlag, Berlin, 1994.
[10] T. Theobald. How to break Shamir's asymmetric basis. In: Advances in Cryptolog:-CRYPTO '95, Santa Barbara, CA. Lecture Notes in Computer Science, vol. 963, pp. 136-147, Springer-Verlag, Berlin, 1995.

[^0]: [I] D. Coppersmith. J. Stern, and S. Vaudenay. Attacks on the birational permutation signature schemes. In: Advances in Cnptolog.-CRYPTO '93, Santa Barbara, CA. Lecture Notes in Computer Science. vol. 773, pp. 587-593. Springer-Verlag. Berlin, 1994.
 $12 \mid$ S. R. Czapor, K. O. Geddes, and G. Labahn. Algorithms for Computer Algebra, Kluwer Academic. Amsterdam, 1992.

