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I. Introduct ion 

1.1. Motivation 

In this section, we introduce the two main actors on the scene, fail-stop signatures (FSS) 
and statistically hiding bit commitments. 

Fail-stop signatures were introduced in [WP]. Further constructions appeared in 
[PWI],  [PW2], [HPJ, and [HPP]. A formal definition of the concept and a survey of 
the recent most efficient schemes will appear in [PP]. 

Before going into the properties of FSS schemes, let us discuss some aspects of  
ordinary digital signatures: In an application of such signatures, what should happen 
if someone shows up with a message and a valid-looking signature from user A, but 
A claims that she never signed the message? Suppose the signature scheme is based 
on a computational problem which everybody accepts cannot be solved in polynomial 
time. Based on this, one could claim that it is not reasonable to assume that the system 
was broken by an enemy. So either A is lying, or she must have stored her secret key 
insecurely, and should therefore be held responsible in either case. 

However, this argument sweeps under the rug a very important point: we always have 
to choose particular instances of the problem for each user, and the discussion should 
actually refer to how hard this particular instance is to break. If we are using RSA, for 
example, we have to decide on a size of  moduli to use. Even if we believe that factoring is 
not in polynomial time, this does not answer questions like: "Are 512-bit moduli secure 
enough?" This is a question about the state of the art of practical factoring, and does not 
have much to do with its complexity theoretic status. 

In a practical situation, it is often the case that individual users have only very limited 
computing power available. This limits the size of  problem instance they can use, but 
not the amount of  computing power that might be used to break those instances. In such 
a situation, depending on the practical circumstances, the possibility that A is not lying 
and someone broke her key is perhaps not so unreasonable after all. 

This raises a natural question: Is it possible at all to distinguish between: 

�9 on the one hand, the case where A is lying or has leaked the secret key; and 
�9 on the other hand, the case where someone with a large (unexpected) amount of 

computing power has broken the system? 

This is precisely what FSS schemes enable us to do. The crucial property that distin- 
guishes FSS from ordinary digital signatures is that there are several possible secret keys 
corresponding to a given public key. Even a computationally unbounded enemy cannot 
guess from publicly available information which of the possible secret keys is known to 
the signer. As usage of different secret keys in general leads to different signatures, it 
is impossible for the enemy to predict which signature the signer would produce on a 
given message, if it has not been signed yet. 

Furthermore, from two different signatures on the same message, A can produce 
what is known as a proof offorge~.. But if she has only the signature available that 
she would produce herself, it is not feasible for her to produce such a proof. Thus if a 
computationaUy unbounded enemy tries to frame A and submits a message seemingly 
signed by A, with overwhelming probability the signature will not be the one A would 
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produce herself, and A can therefore respond with a proof of forgery. On the other hand, 
A cannot falsely repudiate her own signature, if it has in fact not been forged, unless 
she herself breaks the computational assumption. (Thus even in this case, the proof of 
forgery correctly indicates that someone with unexpectedly large computing power has 
broken the scheme.) 

In this paper, we show that there is an intimate connection between statistically hiding 
bit commitment schemes and FSS schemes. A bit commitment scheme is a protocol that 
party A can conduct with B to commit herself to a bit b without revealing to B (or anyone 
else) the value of b. At a later time, A can open the commitment and convince B about 
the value that was chosen originally, i.e., it is not feasible for A to open a commitment 
to reveal both b : 0 and b = 1. A commitment scheme is said to be statistically 
hiding if B gets only negligible Shannon-information about b prior to the opening of 
the commitment. Such bit commitment schemes are extremely important, because their 
existence implies perfect or statistical zero-knowledge arguments for any problem in NP 
[BCC]. 

1.2. Overview of the Results 

Concretely, we show how to construct FSS schemes from any statistically hiding bit 
commitment scheme with noninteractive opening and public verifiability (see below 
for details). This result is also contained more or less implicitly in [PW1]; it was also 
discussed informally, prior to the work on this paper, by Moti Yung and Birgit Pfitzmann. 
Our contribution in this respect is to simplify somewhat the construction and to identify 
the properties needed from the bit commitment scheme. By [NOVY], this means that 
FSS schemes can be based on any one-way permutation. 

We also show that any collision-intractable hash function can be used to build a secure 
FSS scheme. If the hash function is efficient, such as an MD-variant (see, e.g., [DBP] 
and its references for possibilities and dangers), the resulting FSS scheme is practical. In 
particular, whereas the construction from bit commitments is only a one-time signature 
scheme, the construction from hash functions is not. This construction is also theoretically 
important because it is not known whether such hash functions are implied by or imply 
the existence of one-way permutations. Before, the weakest assumption known to imply 
FSS schemes was the existence of claw-free pairs of permutations. 

Conversely, we show that any FSS scheme with a property we call the almost unique 
secret key property can be transformed into a statistically hiding bit commitment scheme. 
This property means that it is infeasible for a signer to compute more than one signif- 
icantly different secret key corresponding to her public key; see below for details. All 
previously known FSS schemes have this property. Finally, we show that the existence 
of FSS schemes with this property is in fact equivalent to the existence of statistically 
hiding bit commitments with noninteractive opening and public verifiability. 

1.3. Organization of the Paper 

Section 2 describes the concepts that are used in this paper. Sections 3 and 4 contain 
the constructions of FSS and bit commitment schemes, respectively. Finally, Section 5 
contains open problems. 
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2. Definitions and Notation 

This section first introduces the model and recalls some information theory. Then the 
main concepts of this paper are described: fail-stop signatures, bit commitments plus 
universal and collision-intractable hash functions. Subsection 2.6 finally recalls some 
privacy amplification results. 

2.1. Model 

The basic model of computation used in this paper is based on Turing machines, mostly 
probabilistic. Thus saying that an algorithm can be executed in polynomial time means 
that there is a probabilistic Turing machine implementing this algorithm, which stops 
after polynomial time (in the length of the input or a security parameter given in unary). 

Each participant of a protocol is modeled by an interactive Turing machine as defined 
in [GMR2]. This is a "luring machine equipped with a read-only input tape, a work tape, 
a random tape, and two communication tapes. One communication tape is read-only and 
used for receiving messages, and the other is write-only and used for sending messages. 

An interactive protocol is a pair of interactive Turing machines sharing their commu- 
nication tapes. The view of a participant, A, in an execution of an interactive protocol 
with B is defined as all the random bits used by A plus all the messages sent and received 
in this execution. The distribution of the corresponding random variable is induced by 
the random bits used by A and B. We refer to [GMR2] for a detailed definition of these 
concepts. 

will denote any machine playing the role of X in a given protocol, but not necessarily 
following the prescribed methods. 

2.2. blformation- Theoretic Preliminaries 

We will sometimes need notation and simple formulas from information theory. We 
briefly sketch them here. Interested readers are referred to [G] for more details and 
proofs. 

Let X be a finite random variable taking values x with probabilities Prob[x]. The 
entropy of X is defined as 

H(X)  = - Z Problx] Iog2(Pmb[xl). 
X 

In particular, the entropy of a binary random variable that lakes one of its two values 
with probability p is the following function of p: 

H~,i,,(p) = - p  log2(p) - (1 - p)Iog2(l - p). 

This function has its maximum at tt/,i,,(�89 = 1 and the gradient 

H{i,,(p) = - Iog2(p )  + log2(l - p), 

which is monotonic decreasing. 
The conditional entropy of X given another random variable Y is defined as the 

average of the entropies of the conditional distribution of X given a particular value 
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Y = y, written as 

H(XIY)  = - Z Prob[y]H(XIY = y). 
Y 

The mutual information between X and Y is defined as 

I (X;  Y) = H ( X )  - H ( X I Y ) .  

The mutual information is symmetric, i.e., I(X; Y) = I(Y; X). Conditional mutual 
information I (X; Y IZ) is derived in the same way from conditional entropies: 

I (X;  YIZ) = H(XIZ)  - H(XIY,  Z). 

Entropies and information involving joint random variables, e.g., (X, Y), are related to 
simpler terms by 

and 

H(X,  YIZ) = H(XIZ)  + H(YIX,  Z) 

l (X ,  Y; WIZ) = l (X;  WIZ) + I(Y;  WIX, Z). 

Finally, for any function f ,  

n ( f ( S ) l S )  = O. 

Combined with the previous rules, this gives many other rules about functions of random 
variables. 

2.3. Fail-Stop Signatures 

We first give a brief overview of the definition and then present the details; we also 
mention results about the relation to definitions of ordinary digital signature schemes. 
Finally, we define the almost unique secret key property. 

2.3.1. Overview of the Definition 

An FSS scheme consists of five components, all polynomial-time: 

�9 a key generation protocol, 
�9 an algorithm sign for signing, 
�9 an algorithm test for verifying signatures; a signature passing this test is called 

acceptable, 
�9 an algorithm prove for constructing proofs of forgery, and 
�9 an algorithm verify, for verifying proofs of  forgery; a proof satisfying this predicate 

is called valid. 

The fact that key generation is a protocol, and not carried out by the signer alone, is 
necessary to ensure that the signer does not generate a key pair for which she can prove 
her own signatures to be forgeries. 

Obviously, an FSS scheme must satisfy that correct signatures are acceptable if the 
keys were generated correctly. Moreover, we require that correctly generated proofs of 
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forgery are valid. The more interesting parts of the definition are: 

Security for  the recipient: It is infeasible for a polynomial-time bounded signer to 
produce an acceptable signature and a valid proof that it is forged. 
SecurityJbr the signer: It is impossible even for a computationally unbounded forger 
to produce a signature which the signer cannot prove to be a forgery (except with 
an extremely small probability). 

2.3.2. Details o f  the Definition 

For the details Of the definition, we mostly follow [PP], with some details from [P2]. 
A fail-stop signature scheme has two security parameters: k for the security for the 

recipient and ~r for the security for the signer. Furthermore, as in [GMR1], there is a 
parameter N, called the message bound, that limits the number of signatures that can be 
made with a certain key pair; if no bound needs to be known a priori, we use N -- 
and define 1 ~ = ",  the empty string. 

Key generation is a two-party protocol executed by the signer A and a center B 
trusted by the recipients. Both parties have the three parameters (k, ~r, N) as inputs. We 
remark that one can always do without a center, at some expense of efficiency depending 
on the individual scheme, basically by letting all the recipients share the role of B (see 
[PP, Section 3.3], and [P2]). As the output of key generation, A obtains a secret key sk, 
and a corresponding public key pk is output on a common broadcast channel. Instead, 
A or B may reject. If both parties are honest, this should only happen with negligible 
probability. If neither A nor B rejects, we say that the keys are accepted. 

The algorithms sign and prove, which are carried out by the signer, may be proba- 
bilistic and use memory. The definition covers all cases by regarding all the random bits 
the signer uses as a part of the secret key (although algorithmically, they will often be 
generated much later), and signing as a deterministic function of the secret key and the se- 
quence m = (m I . . . . .  mi) of the messages signed so far. Thus, in general, sign(sk, i, m) 
denotes the signature on mi if the previously signed messages were m l . . . . .  mi-1. The 
signatures in our constructions, like in most previous ones, only depend on the number 
of previously signed messages; in this case, we will write sign(sk, i, mi). The proof of a 
forgery is denoted byprove(sk ,  m, s, hist), where m is a message, s a supposed signature 
on it, and hist the sequence of previously signed messages with their signatures. This 
result is either a bit string proof  or the value "not a forgery." 

The algorithms test and verify only depend on the public key and are deterministic and 
memoryless. Hence they can be carried out by anyone. We write test(pk, m, s) = ok or 
notok and verify(pk, m, s, proof) = accept or reject. We require that correctly generated 
proofs of forgery are valid, i.e., verify accepts any output different from "not a forgery" 
computed by an honest signer using prove. 

Security for the recipient considers the following scenario: First, the cheating signer 
carries out key generation with B using an algorithm A. Then, using the view view;~ 

of A from this protocol execution, the signer constructs a triple (m, s, proof),  using an 
algorithm A*. (Note that the center would carry out key generation with different signers 
completely independently and sequentially, and that no active attacks on recipients are 
possible.) 
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Definition 2.1. A fail-stop signature scheme is secure for the recipient iff for all 
o, N, c > 0 and all probabilistic polynomial-time algorithms, ,~, ,~*, as described above, 
the following holds for k sufficiently large: The probability that the keys are accepted 
and s is an acceptable signature on rn for the resulting pk and proof is a valid proof of 
forgery is at most k ' 

This probability is over the random bits used by B, ,~, and ,~*. 

Securi ty for the signer must hold even if the center cooperates with future recipients. 
Thus we consider a computationally unbounded cheating center,/~. First A and B execute 
the key generation protocol. /~'s view of this protocol is denoted by views. Next, the 
signer signs some arbitrary messages; this results in a history hist. Finally, the enemy, 
given viewt~ and hist, selects a pair (m, s) as a forgery. 

Definition 2.2. Let a fail-stop signature scheme and a cheating center/~ be given. 

1. A value hist = ((ml . . . . .  mi), (Sl . . . . .  si)) is called a possible histoo' for a given 
secret key sk if each sj equals sign(sk,j,  (ml . . . . .  mj)). 

2. The set of  possible secret keys (from the point of view of a computationally un- 
bounded forger), given his view view~ from key generation and a history hist, is 
denoted as SK (views, hist). It consists of  the secret keys sk' that are possible out- 
comes of key generation together with views, and where hist is a possible history 
for sk'. SK  (viewf~, hist) is equipped with a probability distribution induced by the 
random bits used by A. 

3. A successful forger), with respect to pk and hist = ( (ml . . . . .  m i ) ,  (sl . . . . . .  si)) is a 
pair (m, s) where s is an acceptable signature on m with respect to pk and m does 
not occur in the history hist. 

4. The set Good is delined as the set of  outcomes of key generation where the signer 
will be able to prove any forgery after any history with very high probability. (This 
is a very strong definition--in particular, the history may have been generated by 
any kind of active attack.) 
More precisely, Good is the set of triples (sk, pk, viewB) such that for all possible 
histories hist (for the given sk) and all successful forgeries (m, s) (for the given pk 
and hist), with probability at least 1 - 2  - "  the signer obtains a valid proof of  forgery 
by computing prove(pk, m, s, hist). The probability is over the possible secret keys 
sk' in SK(view~, hist). (The "real" secret key, sk, only had to be mentioned to 
define the possible histories given this outcome of the key generation. From then 
on, everything is seen from the point of view of the forger.) 

5. The scheme is secure for the signer if the probability that the keys are accepted 
and (sk, pk, view[~) ~ Good is at most 2 -" .  (The probability is over the random 
bits of A and B.) 

Note that we allow an exponentially small error probability in two properties where 
[PP] does not: the properties that, if both A and B are honest, key generation does not 
fail and its outcome lies in the set Good. This is covered by the general definition of 
fail-stop signatures in [PI] and [P21; the "'standard fail-stop signature schemes" in [P2] 
allow such an error in the second of these properties only. The only theorem from [PP] 
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that we cited so far, about several recipients playing the role of the center, also holds for 
this generalization; this can be seen even more easily from [P2]. 

2.3.3. SecuriO, Against Forge~ 

For interested readers, we mention here how the security of FSS schemes relates to that 
of ordinary digital signature schemes, as defined in [GMRI]. 

First, Theorem 3.1 in [PP] says that any secure FSS scheme is secure against existential 
forgery after an adaptive chosen-message attack by polynomial-time forgers who did not 
participate in key generation, i.e., whose input is only the globally known parameters 
and the public key resulting from a correct execution of key generation. This also holds 
for our slightly more general definition: the proof in [PP] generalizes, but it can also be 
seen even more easily from the similar proof in [P2]. Thus, given that the computational 
assumption is not broken, no proofs of forgery will be needed against such forgers. 

Secondly, if one worries that the center may be able to forge signatures (although such 
forgeries can be proved), one can exploit the methods to let several mutually distrusting 
recipients play the role of the center: We let the signer and the center play the former 
role of the center. Then not even the center will be able to forge unless it breaks the 
computational assumption. 

Finally, every FSS scheme can be used to construct an equally efficient and secure 
ordinary digital signature scheme by omitting the center and the proofs of forgery, setting 
~r = k, and letting the signer carry out both roles in key generation (similar to Theorem 3.2 
in [PP]). 

2.3.4. Almost Unique Secret Key Property 

Intuitively, the security definitions imply that a cheating signer cannot compute too many 
secret keys that are possible given the public key. Otherwise, she could prove her own 
signatures to be forgeries by using one secret key to sign and another key in the proof. 
All fail-stop signature schemes in the previous literature have an idealized version of this 
property: No matter how a polynomial-time bounded signer executes the key generation, 
she cannot compute two different secret keys that are both possible given the public key. 
We call this the unique secretkeyproper~.. In the following, we use a relaxed version of 
it, the almost unique secret key proper~/: Although the signer might be able to find more 
than one secret key fitting a public key, she cannot find significantly different ones. Keys 
are "not significantly different" if they lead to equal signatures. Moreover, we need a 
mapping x on the secret keys with the intuitive meaning that x(sk) is the part of sk that 
makes a difference in the signatures. 

Definition 2.3. A fail-stop signature scheme with security parameters (k, (7) has the 
almost unique secret key property if there are a polynomial-time computable predicate 
Fits and a polynomial-time computable mapping x with the following properties: 

�9 If the signer follows the key generation protocol, the resulting secret and public 
key, sk and pk, always fulfil Fits(sk, pk) = 1. 

�9 For all c > O, for all probabilistic polynomial-time algorithms A, A ~, and for k 
sufficiently large: The probability that the keys are accepted when A execute the 
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key generation protocol with B and then ,~*, given the view views, can compute 
ski, sk~_ such that x(skl) r K(sk2) and Fits(skl,pk) = kTts(skz,pk) = 1 is less 
than k - ' .  

This probability is over the random bits used by B, ,4, and A*. 
If ski and sk2 satisfy Fits(ski, pk) = Fits(sk2. pk) = 1 and K(skl ) = K(sk2), then 
for any message sequence, the signatures produced with ski equal those produced 
with sk2. 

For a concrete FSS scheme, there will typically exist a function that computes the 
public key from a secret key. Then Fits can be constructed from this function. Further- 
more, note that if x is the identity, the third property is no restriction, and one obtains 
the unique secret key property. 

Remark. All schemes previously proposed in the literature (see [PWI ], [PW2], [HP], 
and [HPP]) have the almost unique secret key property, although one can easily construct 
artificial schemes without it. For instance, start with any secure FSS scheme, extend each 
secret key by a randomly chosen bit at the end, and append this bit to all signatures made 
with that key: In the sense of the above definition, two secret keys that differ only in the 
last bit are significantly different, but the signer can easily construct one from the other. 

2.4. Bit Commitments 

We define a bit commitment scheme as a pair of two-party protocols, namely the commit 
and the opening protocol. They take place between parties A and B, where A is the party 
committing herself. 

�9 For the commit protocol, A gets as input a bit h, and both parties get a security 
parameter k. The concatenation of all the messages sent in the commit protocol 
is called the commitment. In some concrete schemes, it makes sense to detine 
the commitment as a subset or a function of the messages; we have chosen our 
detinition for simplicity. A or B may reject in the commit protocol, but if both 
parties are honest, this should only happen wilh negligible probability. 

�9 For the opening protocol, A gets as input her view of the commit protocol, while B 
gets the commitmenl as input. At the end of the opening protocol, B outputs reject. 
accept 0, or accept I. The intuitive meaning is that either B has detected chealing 
by A, or he accepts that A has opened the commitment to reveal either 0 or I. 

We will only consider commitment schemes with noninteractive opening, i.e., where the 
opening protocol consisls of A sending one message to B, and where B's subsequent 
veritication is deterministic. 

Without loss of generality, we assume that no string can be accepled by B as both 
revealing 0 or 1. not even with exponentially small probability. For instance, this can be 
achieved if A sends the bit she wants to reveal as the tirst bit of her siring. 

We have also built into the model a second property, which we call public ver(fiability: 
B can verify the opening based on the commitment only. This means that anyone who 
trusts that a given commitment is the result ofa  conversalion with B can verify the opening 
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without knowing B's  random bits. This property is necessary in the construction of an 
FSS scheme to ensure that everybody can verify signatures. 

Obviously, a BC scheme must satisfy that if both parties are honest and do not reject 
the commit  protocol, B will accept the bit that A committed to. The more interesting 
parts of  the definition are the binding and the security property. 

Definition 2.4. A pair of protocols as described above is called a bit commitment  
scheme with noninteractive opening (BC scheme) if it has the following binding property. 

Let fi~ be any polynomial-time bounded machine that executes the commit protocol 
with B and then outputs two strings So and s~. (With these strings, the cheating committer 
hopes to have the choice between opening the commitment to reveal 0 by using so, or to 
reveal 1 by using sl.) Let p(,4, k) be the success probability of  A, i.e., the probability 
that B did not reject the commit protocol, and that for both b -- 0 and b = 1, B outputs 
accept  b on input sb in the opening protocol. The probability is taken over the random 
bits of  ,4 and B. Then p(,~, k) < k -"  for all c > 0 and k sufficiently large. 

We now give two definitions of the property that a BC scheme is statistically hiding. We 
show below that they are equivalent except for parameter transformations. The different 
formulations will be useful in different proofs. The two definitions, and their equivalence, 
can be extended to multibit commitments, see [DPP]. 

Definition 2.5. A BC scheme is called statistically hiding if it has the following bias- 
based security property: Let any/~ be given, and let b~ denote the random variable of 
the bit committed to if b = 0 with probability 8. Let bias~(v) denote/~ 's  advantage in 
guessing b given/3 's  view v of the commit protocol, i.e., 

bias~(v) = 18 - Prob[b~ =- 0l  v]l. 

Then the expected value Bias~ of bias~ (v) is at most 2 -k for all 8. The probabilities are 
taken over the choice of b~ and the random bits of  A and/~. 

Note that the definition means that 8 is known to /~; in other words, /~ can have 
arbitrary a priori information about the bit committed to. 

Definition 2.6. A BC scheme is said to have the capacity-based security property if 
the following holds: Let any/~  be given. Then the commit  protocol defines transition 
probabilities from the bits b to the views v of /3.  If  it is considered as a channel with b 
as an input and v as an output, its channel capacity Ck is 

C k = m ax(l(V~; b~)), 

where V~ denotes the random variable of /~'s view in the case where b = 0 with 
probability 8. Then C h is at most 2 -k. 

This is a natural information-theoretic definition of "hiding," because it means that 
for any a priori information,/~ 's  view from the commit protocol only gives negligible 
additional information about b. 
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L e m m a  2.7. Let any BC scheme and any [3 be given. Then for  all ~: 

Bias~ <_ Bias 1~2. 

I Thus ~ = ~ is the worst case on average. 

The proof of  this lemma is in the Appendix. Note that for individual views the best 
we can show is bias6(v) <_ 2biasl/2(v). 

[ ,emma 2,8. The bias-based security property and the capacity-based security prop- 
erty o f  BC schemes are equivalent, except .for small transformations o f  the security 
parameters. More precisely: 

1. If  a BC scheme has the bias-based securi~, proper~.', it has a channel capaci~' o f  
at most k2 -k/2.for any [! and k > 4. 

Thus, a capacity o f  at most 2 -k can be achieved by using a security parameter k' 
with k' > 4 and k ' /2  - log 2 k' > k. 

2. If  a BC scheme has the capaci~. -based security property it has an average bias o f  
at most 2-k/2 for  any B. 

Thus, an average bias o f  at most 2 -k can be achieved by using the security param- 
eter k' = 2k. 

The proof of  this lemma is in the Appendix. 

Corol lary 2.9. In order to prove the capacity-based security property o f  a BC scheme, 
it is sufficient to show that I(VI/2: bl/2) < 2 -k', where k' is such that k' >_ 8 and 
k ' / 4 + 1 - log,, k ' > k (i.e., to consider the case 6 = �89 

The proof is in the Appendix. 

Remark. We have required an exponential decrease of  the bias in the bias-based security 
property. This makes our construction of bit commitments from FSS schemes stronger. 
For the converse construction, it is not a significant restriction, because standard " X O R -  
ing" techniques can be used to improve weaker schemes so that they satisfy the definition: 
In order to commit to one bit b, choose a random string of bits (of length n = c �9 k for 
some constant c) with b = b~ ~ . . .  @ b,,, and commit to each bit bi with the weaker 
scheme./~'s advantage in guessing b decreases exponentially in k (see, e.g., Scheme (ii), 
Section I, of [W]). Moreover, most practical examples known have a bias of 0, and in 
particular the construction from one-way permutations that we will use below. 

2.5. Hash Functions 

Two very different types of  hash functions will be used in the following: Collision- 
intractable (collision-free) hash functions and universal hash functions. 

Collision-intractable hash functions were formally defined in [D l]. This definition is 
sketched first. 
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Definit ion2.10. L e t o ( m ) b e a f u n c t i o n N - - ~  Nsuch tha to (m)  < m. Let H be a family 
of  finite sets { Hm }m~r~ such that each member of H,, is a function {0, 1 }m ~ {0, i }o~,,). 
H is called a family of  collision-intractable hash functions if the following holds: 

1. Given m, a function in H,,, can be chosen at random in polynomial time in m. 
2. Given h ~ tt,, and x 6 {0, 1}' ,  the value h(x) can be computed in polynomial 

time in m. 
3. For all c > 0: If h ~ Hm is selected as in 1, no probabilistic polynomial-time 

algorithm can find x, y 6 {0, 1 }" such that x :fi y and h (x) = h (y) with probability 
greater than m-"  for m sufficiently large. The probability is over the selection of h 
and the random choices of  the collision-searching algorithm. 

We can build a similar family with any desired input length from any collision- 
intractable family by fixing some input bits if the input length is too large, and using the 
iterative construction of [D2] if inputs are too short. 

Universal hash functions were defined in [CW]. 

Definition 2.11. A class F of functions A ~ B, where A and B are finite sets, is 
called universal2 (or simply universal) if for any distinct al ,  a2 ~ A the probability that 
f ( a l )  = f (a2)  is at most 1/I B I, when f is chosen uniformly at random in F. 

In practice we shall need not only a single class of functions, but a family F = {Fn }, 
of classes of  functions {0, 1 }" --~ B,, such that: 

1. Given n, a function in F~ can be selected uniformly at random in polynomial time 
inn.  

2. Given f 6 F~ and a 6 {0, 1} ", the value f ( a )  can be computed in polynomial 
time in n. 

3. Every class F,, is universal. 

In order to follow previous definitions, we have required that universal hash func- 
tions be chosen uniformly at random. However, the definition can be extended to other 
distributions by requiring the same distribution in Parts 1 and 3 of  the definition. 

These functions are interesting because they emulate some properties of  random func- 
tions, although they have much shorter descriptions, and can therefore be efficiently used 
in protocols. The standard example of a family of  universal hash functions from n-bit 
strings to / -b i t  strings with i < n are the functions given by 

x w-~ (ax q- b)li, 

where li means that we take only the most significant i bits, and where a, b ~ GF(2" ) .  
Thus each member of the family is characterized by a choice of  a and b, which requires 
2n bits. 

2.6. Privacy Amplification with Universal Hash Functions 

In [BBR] and [BBCM] it is shown how universal hash functions can be used to hide 
information about a string. These papers use the notion of collision (or Renyi) informa- 
tion. We note that collision information has some counterintuitive properties, but this 
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x:. partially private 

�9 " . .  {(public) 

~ t _ ~ _ s . . ~ l  ~.  r f l 
f(x): highly 
private 

Fig. 1. Privacy amplification. The enemy has t = n -  R(X) bits of collision information aboutx, s = R ( X ) - r  
is a security margin. 

is no problem in our case because we only use it in technical lemmas, and not in our 
security definitions. 

Let X be a finite random variable taking the value xi with probability pi > 0 for 
i = 1,2 . . . . .  2". The collision entropy of  X is defined as 

R(X)  = - log 2 Pi 

and the collision information of  X as 

I (X)  = n - R(X) .  

Using Jensen's inequality (see, e.g., [F]) it can be shown that H(X)  >_ R(X).  We need 
the following privacy amplification theorem from [BBCM]; it shows how, given a string 
about which an enemy has partial information, one can extract a shorter string that is 
almost completely unknown to the enemy (see Fig. 1). 

Theorem 2.12. Let a random variable, X, with Renyi entropy R IX), on the set of  n-bit 
strings be given. Let 0 < r < n and let F be a universal class of  hash functions.from 
{0, I} n to {0, 1 }r. I f  ,f is chosen uniformly at random in F, the expected amount of  collision 
information (over the choice o f f )  about f (X) given f is at most log2(1 + 2 r -R(X) )  < 
2r-mX)/ln 2 bits. 

This is a restatement of  [BBCM, Theorem 3] restricted to Renyi information and with 
a notation fitting our needs. We derive the following lemma, which is an application of 
privacy amplification to a random variable where an upper bound on the probability of 
each single outcome is known. 

L e m m a  2,13. Let a random variable, X, on the set of  n-bit strings and et > 0 be given, 
such that Pi < ot for the probability Pi of each string xi. Let F be a universal class of  
hash functions from {0, 1 }n to 1 bit. I f  f is chosen uniformly at random in F, the expected 
amount of collision information (over the choice of f )  about f (X) given f is at most 
ot(2/ln 2). 

Proof. Let N --- 2". Then 

N N 

Z P 2 < E p i  o t = o t . i  -- 
i=1 i~l 
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Hence the collision entropy R(X)  of the given distribution is 

R ( X )  > - Iog2(ot ). 

Using Theorem 2.12 with r = 1 implies that the enemy's  expected collision information 
E about f ( x )  is 

2 l+l~ 2 
E < - - = u . - -  [] 

In 2 In(2)" 

3. Constructions of Fail-Stop Signatures 

In this section, we present constructions of FSS schemes. The first one is based on a 
statistically hiding BC scheme as defined above. The basic idea is very similar to Lamport 
and Diffie's one-time signatures (see [L] and [DH]). Next, this construction is extended 
so that an FSS scheme with the almost unique secret key property is obtained. Finally, 
an FSS scheme is constructed given collision-intractable hash functions. This scheme 
has several efficient variants to sign many long messages. 

3.1. Fail-Stop Signatures from Bit Commitments 

Informally, our idea is as follows: the signer A makes a one-time key by making two 
commitments C0, Ct to bits b0, bl. To sign a message bit m, he opens C,,,. By the binding 
property, he can sign a bit in only one way, and by statistical hiding, no adversary can 
guess bo, bR. With probability 50%,  a forgery will therefore provide A with another way 
of opening Co or Ci. This probability can be boosted to almost 1 by having many pairs 
of  commitments.  

The formal description: Recall that an FSS scheme has two security parameters, k and 
or, and a message bound N. We will assume for simplicity that an upper bound, L, is 
known on the length of each message to be signed. In this case we can, without loss of 
generality, assume that every message has length precisely L (shorter messages can be 
padded to length L using a method that allows reconstruction of the original message). 
For our construction, we will let U = N L ,  such that U is the total number of bits to be 
signed. 

We remark that it is easy to modify our scheme to deal with the case where no upper 
bound on the length of the individual messages is known a priori. As our scheme works 
by signing messages bit by bit, this only requires that messages are coded such that the 
start and end of a message can be identified. 

In contrast to the construction from hash functions in Section 3.3 and all the previous 
constructions in the literature, we have no way of shortening long messages before 
signing. No such method is known under the sole assumption of the existence of a 
BC scheme. Similarly, this scheme is a pure one-time scheme, whereas in all the other 
constructions, e.g., the length of the public key is independent of  N. In particular if the 
given BC scheme needs interaction for every new commitment,  as that in [NOVY] does, 
it seems hard to find a way around this. 
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Protocol 1 
KEY GENERATION 

The center B and the signer A execute 4Ucr instances of  the commit  protocol with 
security parameter k' = max (k, ~r + log 2 (or) + log 2 ( U ) + 5 ). For each in stance. A chooses 
randomly and uniformly the bit to commit to. The resulting commitments are organized 
in U pairs of lists (C,,,0.1 . . . . .  C,,.0.2~,) and (C,,.j.i . . . . .  C,,.i.2~) for 1 < n < U. The 
public key pk  consists of all these commitments,  while the secret key sk  consists of the 
4Ucr strings known to A that will open the commitments.  These strings are denoted by 
&.o.i and s,,. i.i, respectively. Either party stops and rejects the keys if they reject during 
any of the commit  protocols. 

SIGNING 

The signature on the j t h  message, m = bL{ j_ I 1 + ]  " ' '  bLj, is defined as 

Sign(sk , j ,  m) :=  (sign(sk,  n, b,,)),=t.O-j)+l.....Lj (1 < j < N), 

where the l-bit  signature sign(sk,  n, b) is defined as 

sign(sk,  n, b) :=  (n, s,,,h, j . . . . .  s,,.h.2, ), 

i.e.. A opens one of the two lists of  commitments prepared for the nth bit. 

VERIFICATION 

To verify a signature S = ( S i ) i =  1 ..... L on m = bl . ."  bL, one verifies that the sequence of 
bit numbers in the Si's is of  the form ( L ( j  - 1) + 1 . . . . .  L j )  for some j and each Si is the 
correct 1 -bit signature on bi. To verify a 1 -bit signature, (n, s,,.b. 1 . . . . .  sn.b.2, ), on a bit b, 
one verifies that the 2~r strings in the signature open the commitments C,,.b. ~ . . . . .  C,,.h.2, 
from the public key correctly. (Note that the bits revealed in this process are irrelevant; 
in particular, they have no relation with b.) 

PROOF OF FORGERY 

Given an acceptable signature on a message, m, the signer tries to generate a proof that 
one of the l-bit  signatures is a forgery and outputs the first proof that is generated. Such 
a proof is generated as follows: Given an acceptable signature s on a bit b, A generates 
her own signature s '  = sign(sk,  n, b) on b, where n is the same bit number as in s. She 
searches for an i (1 < i < 2or) for which the ith bit revealed in s is different from the 
ith bit revealed in s'. If such an i is found, she outputs n, b, i and the two strings used to 
open this commitment,  i.e., 

p r o o f : =  (n, b, i, s,,.b.i, s,',.b.i ). 

If not, she outputs "not a forger).'." 

VALIDATING PROOF OF FORGERY 

A tuple, (n, b, i, s,.h.i, s{,.b.i) is a valid proof of forgery for a signature S on a message 
m if: 

�9 S is acceptable; 
�9 n is the index of  some bit, b, signed in S; 
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�9 1 < i  < 2 a ;  

�9 s,,.b.i is the ith string in the I-bit signature on b; and 
, ! �9 s,,.b.i and Sn.b. i open  Cn.b.i to reveal different bits. 

Theo rem 3.1. If  the underlying statistically hiding BC scheme (with public verifiability 
and noninteractive opening) is secure, Protocol I is a secure fail-stop signature scheme. 

Proof.  Correct signatures are obviously acceptable, and correctly generated proofs of 
forgery are valid. 

Securi~for  the recipient. Assume, in contradiction to Definition 2.2, that there are 
values 0", N > 0 and probabilistic polynomial-time algorithms A, ,~* where A carries 
out the key generation protocol with the correct center B and A* then produces values 
m, s, and proo f  such that, with nonnegligible probability, the keys are accepted, s is an 
acceptable signature on m, and proof is a valid proof of  forgery. 

By the definition of key generation and the validation of proofs of  forgery, this yields an 
algorithm .A' that succeeds, with nonnegligible probability, in carrying out 4 U ~  instances 
of the commit protocol and then opening at least one of the commitments,  say Cn,b,i, tO 

reveal two different bits. 
This rather obviously contradicts the binding property of the commitment scheme. 

However, for completeness we show that the choice among 4Uo" commitments does not 
make the cheater's task too easy. We construct an algorithm ,4" contradicting Defini- 
tion 2.4 as follows: On input k, where k > 0" + Iog2(cr) + Iog2(U) + 5 without loss of 
generality, .4" randomly chooses a triple (n, b, i) ( 1 <_ n < U, b E {0, 1 }, I < i < 20"). 
It then calls ,~' with parameters (k, 0", N). In the 4Ucr executions of the commitment  
protocol that A' now wants to carry out, A" itself plays the role of  B, to whom the 
commitment is made, except for the execution with index (n, b, i), which is carried out 
with the real B. Now, if /~ '  succeeds in computing a valid proof of forgery, A" finds at 
least one index (n', b', i') such that ,4' has output two strings s,,,i,,.i, and s~c.b,,, that open 

the commitment C,,,h..c in two ways. If (n', b', i') = (n, b. i), the algorithm/~" outputs 
(s,,,.i,,.c, s~,,.b,.i,). This happens with probability l/4Ucr because of the random choice 

of (n, b, i). Thus the success probability of ,4" is I /4Ua times that of A'. This is still 
nonnegligible, because U = NL and 0" are constant with respect to k (recall the order 
of the quantifiers in Definition 2.1). 

Security for the signer. Let a cheating center/~ be given. Let Ace denote the event 
that the keys are accepted, and let G denote the good event that the bias of all the bits 
committed to, given the view of/~,  is less than 1/8. 

First, we show that the probability that A accepts the keys and G does not occur is very 
small: For a single commitment, by the bias-based security property and Markov's  rule, 
the probability that the bias is larger than 1/8 is at most 8- 2 -~' = 2 -k'+3. Moreover, the 
4 U o  executions of the commitment protocol are carried out with independent random 
choices by A (including the bits committed to). We therefore obtain that 

Prob[Acc,-~G] _< I - (1 - 2 - k ' + 3 )  4~j" < 4Ucr2 -k'§ < 2 -" .  
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Second, we show that G implies that (sk, pk, views) c Good. Let a possible history 
hist for sk and a successful forgery (m, S) be given. By the definition of  a successful 
forgery, m was not signed by the real signer. Thus, although the enemy has seen many 
of the commitments opened, there is at least one index n and a bit b in m for which S 
contains a l-bit signature on b with index n and hist does not contain any information 
about the contents of the commitments (C,,.b, ~ . . . . .  C,,.h,2, ) (by the independent random 
choices of the signer). Hence, by the definition of G, the enemy still cannot guess any of  
their contents with probability better than 5/8,  and if he has to guess all these contents, 
he will succeed with probability at most (5/8) 2~' < 2-" .  To predict A's correct signature 
on b as the nth bit, this is exactly what the enemy has to do: If he guesses any of  these 
contents wrong, the algorithm prove succeeds. Thus A can in fact prove any forgery with 
probability at least 1 - 2 -~. 

The probability that the keys are accepted and (sk, pk, views) q~ Good is therefore at 
most 2 -~, i.e., Definition 2.2 is fulfilled. [] 

Corol lary 3.2. If" one-way permutations exist, then there exists a secure FSS 
scheme. 

Proof. In Section 3.1 of [NOVY], a statistically (in fact, perfectly) hiding bit commit- 
ment scheme is constructed from any one-way permutation. One sees immediately from 
the construction that it has public verifiability and noninteractive opening. Hence it can 
be used in Theorem 3.1. [] 

3.2. Schemes with the Almost Unique Secret Key Property 

The FSS scheme constructed from bit commitments in Section 3.1 does not necessarily 
have the unique secret key property. For example, more than one bit string may be 
acceptable as opening a commitment as a 1, and the definition of bit commitments 
does not exclude that a committer knows more than one such string. In the following, 
we modify the scheme so that it has at least the almost unique secret key property. 
Together with Theorem 4.1, this will yield an equivalence between FSS schemes with the 
almost unique secret key property and statistically hiding BC schemes with noninteractive 
opening and public verifiability. 

As a first step, we use any commitment scheme satisfying our definition to build a 
new commitment scheme where the committer is committed to both a bit and, to some 
extent, to the way in which he will open the commitment. The idea is very simple: First 
commit to a bit b0 using a commitment C0, and then make additional commitments to 
the bits in the string you will use to open Co. What has to be proved is that the additional 
commitments do not help the receiver to guess b0. 

Thus, in the following protocol, we assume that we are given a secure BC scheme 
with public verifiability and noninteractive opening. Without loss of generality, we may 
assume that a commitment made in this scheme with security parameter value k can bc 
opened with a string of  length precisely p(k), where p is a polynomial. We now describe 
the new commitment scheme with security parameter k. 
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Protocol  2 
COMMIT 

Let b0 be the bit A wants to commit to. A first makes a primal '  commitment Co to 
bo. This is done with security parameter k' chosen as the smallest integer for which 
k' - log2(l + p(k')) >__ k. Let so = bl .. . . .  bmk,~ be the string that A can use to open 
Co correctly. Now A makes p(k') secondary commitments Ci . . . . .  Cl,~k, ~ with security 
parameter k', where Ci is a commitment to bi. 

OPENING 

A opens the commitment by sending so to B, who verifies that so opens Co correctly. If 
this is the case, he outputs accept b0, otherwise reject. 

It may seem strange that the secondary commitments are never opened in the protocol 
above, but they are only present for the purpose of the construction of an FSS scheme to 
follow. 

L e m m a  3.3. The commitment scheme described in Protocol 2 is a BC scheme with 
public verifiability and noninteractive opening, and it has the capaciO'-based securi~. 
property if the underlying scheme has it. 

By Lemma 2.8, we obtain a similar result for bias-based security by first increasing the 
security parameter of the underlying scheme, and then that of  the new scheme bias-based. 

Proof.  Public verifiability and noninteractive opening follow trivially from the corre- 
sponding properties of  the underlying commitment scheme. This is also the case for the 
binding property, because the construction forces A to make the primary commitment  
with a security parameter k' > k. 

For the capacity-based security property, we estimate the amount of information that 
/~'s views of the p(k') + ! commit protocols give about bo. Let Vi be the random variable 
representing/~'s view of the ith commit protocol. By the rules mentioned in Section 2.2, 
and because we required b0 to be a function of so: 

I (Vo . . . Vp~k,); bo) --- 
< 

1(I/0; b0) + l(Vl" b0lV0) + " -  + l(Vp(,,); bol V0 . . . . .  Vj,(k')-i) 

I(Vo; bo) + l(Vl" s0l V0) + . - .  + l(Vp(~:,)" s0lV0 . . . . .  Vp(k,)_l). 

We next show that each term I ( Vi; s01Vo . . . . .  Vi- i ) equals I (Vi; bi I Vo . . . . .  Vi_ t ), i.e., 
that the only new information one gets in the ith commitment protocol is about the ith 
bit. This is intuitively clear, because A executes this protocol with random choices, say 
ri, that are independent of everything else so far. 

More precisely, we assume without loss of generality that all the random bits used by 
/~ are included in his original view V0. We fix i and let V' = Vo . . . . .  Vi-i.  Hence Vi is 
a function of ri, bi, V'. We have 

l(Vi: s0lV') - / ( V i ;  bilV') = -H(V~ls0,  V') + n ( V ,  lb~, V') 

= l(Vi" solbi, V') (note that bi is a part of s0) 

< I(Vi,  ri, bi, V'; solbi, V') 
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= t ( r i .b i ,  V';solbi,  V') 

(because V~ is a function of ri, bi, V') 

= l(ri; solbi, V') 

= H(ri[bi, V') - H(ri[so, hi, V') 

= H(ri)  - H(ri)  

(by the independent choice of ri) 

0. 

The third and fifth line follow easily from the formulas in Section 2.2. Substituting the 
result into the first inequality gives 

l (Vo . . . Vplk'~; bo) < l(V0; b0) + l(Vi; bllV0) + . . - +  l(Vt,<k,); bp~k'llVo ..... Vp~k'~-t) 

< (l + p(k'))2 ~' 

< 2 -k. 

This establishes the required security property. [] 

Theorem 3.4. I f  there exists a statistically hiding bit commitment scheme with public 
verifiability and noninteractive opening, there exists a secure fail-stop signature scheme 
with the almost unique secret key property. 

Proof. Consider the FSS scheme resulting from using the BC scheme in Protocol 2 as 
the basis of Protocol I. This is secure by Lemma 3.3 and Theorem 3.1. To obtain the 
almost unique secret key property, we expand the secret key sk so that it also contains the 
strings that open all the secondary commitments made in the key generation. Nothing 
else in the scheme is changed, so that the extra information is never used in signing, 
verifying, or proofs of forgery. Hence the expansion does not affect the security of the 
FSS scheme. 

We define Fits(sk, pk) to be true if and only if the strings in the secret key sk open 
all the commitments in the public key pk correctly--primary as well as secondary ones. 
The significant part, K (sk), of sk, is defined to be the list of strings that open the primary 
commilments. Clearly, finding two secret keys fitting the same public key, but with 
different x-images, would mean opening at least one secondary commitment to reveal 
two different bits. Details of the proof that opening one out of (polynomially) many 
commitments in two ways is infeasible with a secure commitment scheme can be seen 
in the proof of Theorem 3.1. Moreover, two secret keys ski ,  sk2 with x ( sk l )  = K(sk2) 
obviously lead to the same signatures--recall that the signature only contains strings 
that open primary commitments. [] 

3.3. Fail-Stop Signatures from Hash Functions 

Now we construct far more efficient FSS schemes under the assumption that collision- 
intractable hash functions exist. 

Assume we have a family, H, of collision-intractable hash functions mapping (k + 
2o- + I )-bit inputs to k-bit outputs. We make the following observation: 



182 I.B. Damg~rd, T. P. Pedersen, and B. Pfitzmann 

Lemma 3.5. Let h be any function from k + 2~ + 1 bits to k bits. If x is uniformly 
chosen, the probability that the preimage set of h (x) has at least 2 ~ elements is at least 
1 - 2 - ~ - 1 .  

Proof. Let the degree of a point in the image of h be the size of its preimage set under 
h. As h maps into the set of k-bit strings, at most 2 k �9 2" elements can be preimages of 
points of degree < 2". Hence a uniformly chosen x is such a preimage with probability 
at most 2k+~/2 k+2~+l. [] 

We use this result to build a simple FSS scheme. Informally, we observe that a collision- 
intractable hash function h is also one-way and can therefore be used as the basis of a 
classical one-time signature scheme where one signs a bit by revealing one out of two 
possible preimages under h. But this scheme is also an FSS scheme since, first, collision 
intractability means that the signer can sign each bit in only one way and, second, the 
above lemma implies that guessing x given h (x) is hard even for an unbounded adversary 
if the length of x is chosen properly. 

As we have collision-intractable hash functions available, several known constructions 
for signing many long messages, given a one-time signature scheme, can be applied. The 
only difference is again that with a small probability, a key may not be good even if no 
party cheats in key generation. For completeness, we present and prove the simplest of 
these constructions entirely. This is bottom-up tree authentication, following [M 1 ] and 
[M2], and for fail-stop signatures [PW2]; see Fig. 2. Other constructions are mentioned 
at the end of this section. 

"public" 
message keys 

one-time 
"public" keys 

f 

Public key: pk 

Pkl Pk2 �9 �9 �9 

h '  

~k3,1,0 Pk3,1,1 �9 �9 ~ Pk3,k,O Pk3,k,l~ 

x3,1,0 �9 X3,k, 1 

m * =  1 ... 0 

he,. 

m 

PkN 

Fig. 2. Bottom-up tree authentication. The nodes in circles are the signature on the third message; the values 

of the nodes in squares are computed during verification. 
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Protocol 3 
KEY GENERATION 

�9 From the given parameters (k, or, N), both parties compute ~r' :=  ~r § log2(N ) + 
logz(k). 

�9 B chooses a hash function h from the given family H for the parameters (k, ~r') 
and sends it to A. A verifies that h is a function from k + 2~r' § 1 bits to k bits. 

�9 A chooses Nk pairs of  preimages (x,,l,o, x,,l,l) as her secret key (1 < n < N, 1 < 
1 < k). (Each such pair will later serve to sign one bit.) She computes the values 
pkn,l,b :=  h(x,,t,b), which will be called one-time "public" keys. (They would be 
the public key if we only presented the one-time signature scheme; now, however, 
they are not published for reasons of  efficiency.) 

�9 As a special bottom layer of a hash tree, A hashes the one-time "public" keys that be- 
long to the same message number as pk,  :=  h ' ( pkn, 1,0, pk,, 1,1 . . . . .  pk,,k,o, pk~,k. 1 ) .  

Here, h' is a hash function from 2k 2 bits to k bits. (Recall that such functions can 
be constructed iteratively from the given h, see Section 2.5 and [D2].) We call each 
pk~ a "public" message key. 

�9 A constructs a binary hash tree over the "public" message keys, i.e., these keys 
are the values of the leaves of  the tree. Then, bottom-up, the value of  each node is 
computed by hashing the concatenation of  the values of its two children. This time 
we need a hash function, h", from 2k to k bits. 

�9 A publishes the value of  the root as her public key pk. 

SIGNING 
We define sign(sk, n, m), where m is the nth message to be signed. First, m is hashed 
down to k bits with a function h*, once again using the iterative construction from [D2]. 
The result and its bits are denoted by m* = (bl . . . . .  bk). 

Next, a one-time signature is constructed as s* :=  (xn, l,b . . . . . .  Xn,k,b~ ), i.e., the preim- 
ages corresponding to the individual bits of m*. 

Finally, the one-time signature is authenticated with respect to pk: A collects all the 
one-time "public" keys corresponding to n, and all the immediate neighbours of the 
nodes in the path from pk,, to the root. The tuple of n, s*, and these values is called the 
complete signature, s. 

VERIFICATION 
The recipient first also hashes m to obtain m*. Moreover, he verifies the authentication 
path for the one-time "public" keys by recomputing all the hash values on the path to the 
root. The hash value in the root must equal pk. Finally, he verifies the one-time signature 
s* = (xj . . . . .  xk) with respect to the one-time "public" keys: For each bit of  m*, he 
verifies that h (xl) = pkn,t.b,. (Recall that n is given as a part of  the signature.) 

PROOF OF FORGERY 

Given a successful forgery (m, s), where the message number given in s is n, the signer 
first retrieves her own nth message m', if she has already signed n messages. If m'* :=  
h*(m') = h*(m) -- m*, she has found a collision of h*, because m :# m', and outputs it 
as her proof of forgery. 
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Otherwise, she compares the one-time "public" keys in both signatures. If they are 
different, she follows the authentication paths from these keys to pk, and she finds a 
collision of h' or h" with probability 1. 

In the remaining case, the forged signature contains an acceptable one-time signature 
s* = (xl . . . . .  xk) with respect to the correct one-time "public" keys pk, j,h,. If any of 
these values xl is different from her own x,,l.b,, she outputs the pair of them (a collision 
of h, because both have the image pk,,,l,b~), as a proof of forgery. Otherwise, she outputs 
"not a forgery." 

VALIDATING PROOF OF FORGERY 
Any collision of the given hash function h or the hash functions with different preimage 
lengths constructed from h counts as a proof of forgery. 

Theorem 3.6. If the underlying family H of hash functions is collision-intractable, 
Protocol 3 is a secure fail-stop signature scheme. The length of the public key is the 
security parameter k, independent of the message bound, N. 

Proof. Correct signatures are obviously acceptable, and correctly generated proofs of 
forgery are valid. 

The security for the recipient follows immediately from the collision-intractability 
of H, because any proof of forgery includes a collision. (In case of doubt that this is 
true although several hash functions are derived from H, note that, by the proofs of 
the collision-intractability of those constructions, every collision of them can easily be 
transformed into a collision of the original H.) 

Security for the Signer. Let the good event G be that all the one-time "public" keys 
have preimage sets of size at least 2 ~''. By Lemma 3.5, and as all the preimages xn,l,b are 
chosen independently, the probability that the keys are accepted, but G does not occur, 
is 

Prob[Acc, --,G] < 1 - (1 - 2-cr'-l) 2Nk < 2Nk2 -~'-1 < 2 -~. 

We now showthat G implies that the outcome of the key generation lies in Good. Let 
any possible history and any successful forgery (m, s) be given. If the hash value m* of 
m equals m'*, the hash value of the message the signer signed with the same message 
number n, or if the one-time "public" keys in s are not correct, the construction of a 
proof of forgery finds a collision with probability 1. In the remaining case, s contains 
an acceptable one-time signature s* = (x~, . . . ,  xk) with respect to the correct one-time 
"public" keys for the message number n, and there is at least one index 1 (1 < l < k) 
such that the Ith bits of m* and m'*, say bl and b~, are different. Thus the signer has 
not yet shown her preimage xn,t,b, of pkn,l,b~, and the forgery is provable unless the 
enemy has guessed correctly which of the at least 2 ~' preimages of pkn,t,b~ the signer 
has. Moreover, the signer has not given any information about xn,t,b~ apart from pk~,l,b~. 
(The remaining keys are statistically independent, and the hash tree and the history are 
deterministic functions of those values.) Hence the signer can in fact prove this forgery 
with probability at least 1 - 2 -~' > 1 - 2 - ' .  
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Length of the Public Key. The length of pk is obviously k. Only note that the function 
h can be the same for all signers, and thus it makes sense not to count its description as 
a part of the public key. (Such values are usually called prekeys, e.g., in [PP].) [] 

As extremely efficient hash functions exist in practical applications (e.g., MD-variants 
and constructions from block-ciphers, but see [DBP] again), this shows that really prac- 
tical FSS schemes can be constructed based on conventional cryptography only. 

Instead of bottom-up tree authentication, as just described, we can also use top-down 
tree authentication, see [PP] (or [HPP]). This means that each node signature is used to 
sign two new "public" message keys, similar, e.g., to [GMRI ]. More precisely, Construc- 
tion 5.1 in [PP] shows that any one-time FSS scheme with prekey where an arbitrarily 
long message can be signed yields an FSS scheme for any number of messages. In prov- 
ing the same construction secure in our case, we only have to increase a logarithmically 
to compensate the probability that any of the about 2N one-time key pairs is not good, 
just as in the bottom-up construction above. The public key is only as long as in the 
one-time scheme, and the signature length grows logarithmically in N, similar to the 
bottom-up construction. Variants of the construction are also sketched where no mes- 
sage bound needs not be known in advance. One can also use bottom-up trees within a 
top-down construction to combine the shorter signatures of the former with the greater 
flexibility of the latter. 

Finally we note that the fact that the scheme is with prekey, i.e., the center only has to 
select a hash function noninteractively once, makes management of public keys for this 
scheme almost identical to that of ordinary digital signature schemes. 

4. Bit Commitments from Fail-Stop Signatures 

The main idea in our construction of bit commitments from FSS schemes is to use the 
key generation protocol between signer A and center B as the commit protocol, and to 
think of the resulting public key as the main part of the commitment and the secret key, 
sk, as the string that can open the commitment. 

If the FSS scheme has the almost unique secret key property, A is obviously committed 
to any value that can be deterministically computed from x(sk). There are two major 
difficulties, however: First, the distribution of the secret key, given the public key, is not 
necessarily uniform. So we need a way for A to compute a value from the secret key such 
that B has essentially no information about it. Here we use the universal hash functions 
and the extended privacy amplification result of [BBCM], cited in Theorem 2.12. Sec- 
ondly, the definition of FSS schemes does not exclude that a cheating center can carry 
out key generation so that it can guess the secret key afterward. This does not contradict 
the security for the signer if in these cases, the signer can prove signatures made with her 
own key to be forgeries. (This, in its turn, would contradict the security for the recipient, 
but that property is not guaranteed if the center is cheating.) Hence, in the commitment 
scheme, where we want to exploit the fact that the secret key cannot be guessed, we must 
provide a way for the signer (now the committer) to exclude these keys. 

We now describe the construction in detail. We only need an FSS scheme where one 
bit can be signed. Obviously, such a scheme is a special case of any more general scheme. 
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Protocol4 
COMMIT 

I. A and B execute the key generation protocol of the FSS scheme with security 
parameters (k, o ), where ~" -- 4k + 4 and k equals the security parameter for the 
BC scheme we are building. Here B plays the role of  the center. If A or B reject 
in the key generation, the commit protocol stops. Otherwise let sk be the resulting 
secret key and pk the public key. 

2. A signs the message "'0"" (consisting of  one 0-bitl using sk. She runs the algorithm 
for generating proofs of forgery on the resulting signature. If this results in a valid 
proof of forgery, she stops. Otherwise she continues. 

3. A chooses and sends to B a random function .f from a given universal, family /-' 
of  hash functions with I -bit images. The input size of f is a polynomial p(k ) that 
is an upper bound on the length of the values of ~'(sk) for the parameters k and 
o. Without loss of generality, we assume that all values ~c (sk) are of precisely this 
length. 

4. Let b be the bit A wants to commit to. Then A sends ~' = f (~ ( sk ) l  ~ h to B, i.e., 
b encrypted with the privacy-amplitied significant part of.~k. 

OPENING 

1. A sends b and sk to B. 
2. B verifies that Fitslsk. pk) = 1. He then compares h with c �9 

equal, he outputs accept b, if not, he outputs reject. 
"U,(sk)). If they are 

Theorem 4.1. If the underlying FSS scheme (with the almost unique secret key lmq~ - 
erty) is secure, Pnm~col 4 is a statistically hiding BC.~cheme with mminteractive opening 
and public verifiability. 

Proof. First note that the possibility of stopping in Step 2 of the commit protocol does 
not prevent two honest parties A and B from completing this protocol: the security for 
the recipient implies that the scheme almost never stops in Step 2 in this case. Public 
verifiability and noninteractive opening are clear from the construction. The fact that 
B will accept A's bit if both are honest follows immediately from the fact that the 
results of a correct key generation always satisfy the predicate/:it,s, and that .f and x are 
deterministic. 

The hmding property is clear from the almost unique secret key property of the 
FSS scheme: if a committer ,J, could open a commitment in two different ways, 
she would know two secret keys satisfying the predicate /++'t.s and with different 

-images. 
Hence only the .securityproperO" remains to be shown. We need the following notation: 

Let Ace be the event that A accepts the key generation, i.e., does not stop in Step I of the 
commit protocol, and let U be the e~ent that A does not stop in Step I or 2. Finally, let 
G be the event that the outcome of key generation, (.sk, pk, t,ieu,i< I, is in the set Good 
<see Delinition 2.21. 

Recall that the collision entropy of a binary distribution, like that of .l <~ (.sk I), with 
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probabilities p and I - p, is defined as 

Rip)  = - l og2 (  W" + (1 - p)2) 

and the collision information as 1 -- 1 - R .  

Let It~ denote the collision information obtained by /~' about f ( x ( s k ) )  during the 
commit protocol, and let E8 be its expected value, taken over the random choices of  A 

and/~. For an event X, E k ( X )  denotes the expected collision information given that X 
occurs. Then we have 

Ek = Prob[~U]EA(",U) + Prob[U, G]Ei~(U, G) + Prob[U, --,G]Ek(U, ~G)  

< 0 + Pn~h[U, G]Ei~(U, G) + Prob[Acc, -~G] 

<_ Prob[U, G]Ek(U,  G) + 2 -~ 

because A does not reveal anything if the commit protocol is aborted in Step I or 2, and 
by the security for the signer (Definition 2.2). 

The rest of the proof proceeds in three parts: We first show that in most cases, the best 
guess at the significant part of  the secret key from the point of view of/~ still has a rather 
small probability of being correct. Secondly, we use the extended privacy amplification 
theorem to derive that in most cases, an enemy has very little collision information about 
./(x(sk)). Finally, we derive an upper bound on the average bias of  the content of the 
commitment. 

Part 1. Let S K  be the random variable denoting A's secret key, and let sk,,,,,~ denote 
a secret key such that x(sk,,,.,, ) has maximal probability given v :=  (pk,  viewi~), U, 
and G. (Thus x(sk,,,,~) is the enemy's best guess.) We now show that on average over 
the possible t"s and given U and G, this maximal probability is upper bounded, i.e., on 
average, the best guess is not very good: 

Prob[x(SK) .= x(sk ....... ) [ U. G] < 2 ~ Prob[U. G] -I. ( , )  

For this. it is sulticient to show that 

Prob[x(SK) = x(sk ..... ), U, GJ <_ 2 -~. 

To do this, we consider the following attack by a cheating center B* on the FSS scheme. 

1. B* executes the key generation protocol with A in the same way as / )  did. 
2. B* computes sk ...... and uses it to make a signature on the message "'0." 

Let F denote the event that A fails to prove this forgery. Note that the distribution of  
the keys after Step I of this attack and of  the commit protocol are equal. Furthermore, 
U C Ace, and whenever Ace and ~,(SK) = x(skm~) occur, U implies F by definition 
of the almost unique secret key property. This gives us 

Prob[k (SK) = K (sk ....... ), U, G] = Proh[x(SK) = x(sk ....... ), U, G, Ac~'] 

<_ Prob[F. x(SK)  = x(sk ...... ), G, Acc] 

-- Pn)b[F, Ace, x (SK)  = x(sk ...... ) [ G]Pmb[G] 

< Pn)h[F[ G] 
< . ) -cT  
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The final inequality follows from the security for the signer of the FSS scheme. This 
finishes the proof of (.). 

Now let V be a random variable denoting v = (pk, views) and M the set of cases 
where the probability that the best guess is correct is much larger than on average, and 
also the event that such a case occurs: 

M := {v I Prob[x(SK) = tr(skmax) I G, U, V = v] > Prob[U, G]-12-cr/2}. 

By Markov's rule, the average inequality ( .)  implies that 

Prob[M I U, G] < 2 -"/2. 

We split the expected information according to whether M occurs or not. 

E~(U, G) < Prob[M I U, G] + Prob[-,M I U, G]E~(U, G, --,M) 

_< 2 -`,/2 + y ~  Prob[V = v I U, G]E~(U, G, V = v). 
v~m 

Part 2. Whenever v r M, the extended privacy amplification lemma, Lemma 2.13, 
immediately implies that the information Eb (U, G, V = v) is small: 

2 
Ek(U, G, V = v) <_ Prob[U, G]-12-~'/Zin 2 < Prob[U, G]-I2 2-rr/2. 

Substituting this into the above inequality gives 

Ek(U, G) < 2 -cr/2 + Z Prob[V = v l U, G]Prob[U, G]-I2 2-~r/2 
v~M 

< 2 -'r/2 4- Prob[U, G]-I2 2-c~/2 

and thus 

Ek < Prob[U, G]2 -~ 4- 2 2-~/2 4- 2 -~ < 2 3-cr/2. 

1 Part 3. We now derive the bias-based security for the case 3 = 7" In the following 

fl = biasl/2(v) denotes/~'s advantage in guessing h(x(sk)).  From the definition of the 
collision entropy for binary distributions, one sees 

R( l + / ~ ) = - l o g 2 (  �89 2 ) =  1 -1og2(1+4r  2 ) <  1 - 4 / ~  2 

1 i.e., 4fl 2 < 1. This implies for Ifil < ~, 

Thus we have shown the following pointwise inequality between the random variables 
Biasl/2 and the collision information 14 : 

Bias,~2 < �89 
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Applying the general formula E(X) <_ x/E(X 2) to X = x / ~  yields 

1 21 -o-/4 E(Bias,/2) 5 � 8 9  < 1E, f ~ ) :  ~-E~R < . 

In the last inequality, the result of Part 2 was used. 
As the security parameter of the FSS scheme, ~, equals 4k + 4, this shows that 

J and thus, by the commitment scheme has the bias-based security property for 6 -- ~, 
Lemma 2.7, for all 6. [] 

Remark. From the proof of the security property, it is clear that we do not need to hash 
all the way down to a 1-bit value to wipe out the enemy's information. Therefore we can 
commit to more than one bit in one commitment. 

5. Conclusion and Open Problems 

In this paper, we have shown that FSS schemes can be constructed assuming that either 
one-way permutations or collision-intractable hash functions exist. Both these assump- 
tions imply the existence of (not necessarily one-to-one) one-way functions, but there is 
no implication known in either direction between them. 

It is also unknown if FSS schemes can be constructed assuming only the existence of 
one-way functions, although this assumption is certainly necessary. This is an important 
open problem, as the existence of one-way functions is known to be sufficient for ordinary 
digital signatures [R], [NY]. 

Second, our construction from bit commitments and thus from one-way permutations 
is a one-time scheme. Papers about FSS schemes have often concentrated on one-time 
schemes, because it was known that one-time schemes and collision-intractable hash 
functions yield efficient schemes for many messages. Now we have the first construction 
from a primitive that is not known to imply such hash functions, and thus these con- 
structions cannot be applied. It is an open problem if FSS schemes whose complexity 
is less than linear in the message bound N exist under these assumptions. For ordinary 
digital signature schemes, such constructions exist, using weaker types of hash functions, 
see JR1. 

Note, however, that our construction from hash functions does not have such problems. 
Finally, it is not known if the existence of arbitrary FSS schemes is equivalent to that of 

FSS schemes with the almost unique secret key property, and therefore to the existence 
of statistically hiding BC schemes. 
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Appendix. Proofs from Section 2.4 

Lemma 2 .7 .  Let any BC scheme and any B he given. Then h,r all ~: 

Bias,~ <_ Biasl,2. 

I T/lllS ~ = -; is the w o r s t  c a s e  on  average. 

Proof. it will be shown that 

Bias,~ = 6(1 - 6) ~ IPn,blvl h,s = 0l  - Pmblv l  b~ = 111. 
L 

The lemma follows immediately from this. because the terms in the sum only depend on 
the commit protocol. 

Bia.~ = Z Prob[ v ] bi a.% ( t, ) 

= Z I~ Pr.hlvl  - Pn~b[v] Pnd~lba = 0 ] vii 
t 

= Z I~ PnJhlvl - Pn~blh~ = O ] P m b [ v l  h~ = 0]1 
t 

= Z 3  IPn,hlv] - Pn~b[vlha = 011. 

Here 

Pn,hlv] - Prohlv l h,s = O] = ~ Pmblv  l b.~ = OI + (I - 6) Pmhlv  l h,~ = 11 

-Proh[ l ,  Ib,,, -- O] 

= (6 - I ) ( P n , b l v  I h~ = O] - Prohlvl b,~ = l l).  

which completes the proof. [] 

l , e m m a  2 .8 .  The bias.based securi~." pn~perty and the capacity-ha.~ed security prop. 

ertv t~f BC schemes are equivalent, except .[or small tran~Jrmations q f  the security 

parameters. More prer 

I. ![a BC .~cheme has the bias-based securi(v im~perty, it ha.~ a ,hannel capacity ~!f 
at most k2 -~ 2.fi,r any [3 and k >_ 4. 
Thu.~. a capacity o /a t  most 2 ~ ,an he achieved hv using a se,'uritv parameter k' 

with k' > 4 and k' /2 - log_, k '  _> k. 

2. Ira BC scheme has the capaci~.'-hased securit.v property, it ha.~ an average hias q[ 
at most 2 -~ 2 fi~r at(v [3. 
f a l l s .  gill t l v e ro~e  ]Ji~ls 1!]s m o s t  2 - t  ({lit  he ~lcJlit'v~'d ]~y lt.gitlt~ I]IU ser param- 

eter k' --- 2k. 
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Proof. 
Part l. Wef ix  B. W e h a v e t o s h o w  l(V~:b~) < k2-~/2 forall`5. Wenowfix`5,  too. For 

We distinguish two symmetry reasons, we assume without loss of generality that 5̀ < -~. 
cases. 

Case 1:,5 < 2 -~/2. Forsuchsmal l&s .  weprovethat  l (Va:b~)issmalldirect ly:  

I(V~: b~) < H(ba) = Hh,,,(`5). 

As H~,,,, is monotonic increasing for 5̀ 
maximum value of`5 in this Case 1' 

< -,~ we can bound it by evaluating it at the 

l ( V , s : b a ) < - 2 - ~ / 2  ( - ~ ) +  ( 1 -  2 - ~ ' 2 ) ( - I o g 2 ( I -  2-~/2)). 

Ask  > 4, we can use the inequality 1/(1 - 2  -~'2) <_ I +  2 -~/2+~ to obtain 

k k ~,~ 
l(Va:ba) <_ ~2 -~/2 + Iog2(I + 2  -~/'~+1) < ~2-  /" + 2  -~-+1 <_ k2 -~'2. 

I Case 2 :2  -~/2 < 5̀ _< ~. Now we use the precondition that Bias~ _< 2 -~. Let Big be 

the event that the individual bias is much larger, bias~(v) > 2- ~,'2 -~. By Markov's rule. 
Pn)b[Big] <_ 2 -~/2+1. We have 

I(V~: b~) = Z Pmb[v](H(b,s) - H(b~lv)) 

<_ PnJb[Big] + Z PnJb[v](H(b~) - H(b~lv)). 

because the entropy of a binary variable is at most I. 
Now we consider" one fixed v 8 Big. Note that HIb~Jv) = Hh,,,(`5 + hias~(v)), where 
stands for + or - .  because it is the entropy of the conditional distribution of b~ given 

v. Thus we want to bound the difference of the values of Hh,,, at two closely neighboring 
point,~. We can do this it" we know the maximum gradient of this function. As HI,, is 
monotonic decreasing (see Section 2.2). its maximum is achieved at the minimum 5̀ 
minus the maximum possible bias. i.e., the maximum is 

k 
H/"'(2-~/2 - 2-~"2-11 = -I~ + I~ - 2-~"2-1) < 2 + I. 

For v ~ Big this implies 

and fnally 

L C B ~ '  
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< 2 - k / 2 + ' + ( ~ + l ) E P r o b [ v ] b i a s , ( v )  

: , ,  

< k2-~/2. 

This is the desired result. 

Part 2. Let a BC scheme be given which satisfies the capacity-based security property. 
It will be shown that this scheme satisfies the bias-based security property with expected 
value Bias~ <_ 2 -k/2. 

Let / )  be given. By Lemma 2.7 it is sufficient to show that Biasl/2 _< 2 -k/2 (this will 
shown under the assumption that 1 (Vl/2, b 1~2) <_ 2-k). The technical Lemma A. l below 
shows that 

Hbin(�89 - biasl/2(v)) < ! - 2c. biasl/2(v) 2, 

where c = (In2) -I.  By rewriting this and inserting H(bl/2) = l we get 

"H b biasl/2(v) _< ~ / T ~ /  ( I / z )  - H(bl/2 I v) < ~/H(bl/2) - H(bl/2 I v). 

Now using the formula E(X)  < ~ for X = ~/H(bl/2) - H(bl/2 I v) gives 

Bias1/2 = ~ Prob[v]biast/2(v) 
V 

< EProb[v l~ /H(bl /2)  - n(bl/2 Iv) 
Y 

= ~ l ( V I / 2 ;  bl /2)  

< 2-k/2. [] 

1 LemmaA.1.  Letc  -I = ln2. Then H b i . ( � 8 9  <_ I - 2 c x  2 iflxl < ~. 

Proof. The natural logarithm is given by 

ln(l + x )  = - E  ( -x ) i  
! 

i--I 

for - I < x < l .  

Furthermore, 

log(�89 + x) = iog(I + 2x) - 1 = d-l(in(1 + 2 x ) -  d) 
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where d --- In 2 and 

to prove the lemma 

dHbi.( 1 - x)  = 

Inserting the Taylor 

dHbin(�89 -- x)  = d - 

= d -  

= d +  

= d +  

= d +  

193 

_ ~ < x < 3 . J  l As Hbin (p) is symmetric around p = 3,~ it is sufficient 

1 We get forO_< x < 3' 

- d [ ( � 8 9  - x) log( �89 - x)  + (�89 + x) log( �89 + x)]  

d -  (�89 - x ) l n ( l  - 2 x )  - (�89 + x ) l n ( 1  + 2 x )  

d - l ( ln(1 - 2x) + ln(1 + 2x))  + x ( ln ( l  - 2x) - ln(1 + 2x)).  

expansion above (and remembering that x is positive) gives 

~ (i~l (--(2x)i 7 (--2x)i)) "~-X (i~=l (--(2x)i ~l (--2x)i)) 
~ ( i e v e ~ ( 2 - - ( 2 i x ) i ) ) + X ( i ~ d ( 2 - - ( 2 i x ) i ) )  

i even 

--(2X) i 

i even 

(2x) 2 

2 

Dividing by d gives the desired result. [] 

Corol lary  2.9. In order to prove the capacity-based security property o f  a BC scheme, 
it is sufficient to show that I(Vl/2; bl/2) < 2 -k', where k' is such that k' > 8 and 
k ' /4  + 1 - log 2 k' > k (i.e., to consider the case 8 = 1). 

Proof.  In Part 2 of  the proof  of  Lemma 2.8, we proved the bias-based security property 
from the preconditi on 1 (VI/2; b i/2) < 2 -k alone. Thu s, by applying Part 1 of this lemma, 
we obtain the full capacity-based security property. [] 
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