
J. Cryptology (I 997) 10:75-88 Journol of

CRYPTOLOGY
�9 1997 International Association for
Cryptologic Research

Batch RSA*

Amos Fiat

Department of Computer Science, Tel-Aviv University,
TeI-Aviv, Israel

Communicated by Gilles Brassard

Received 5 March 1995 and revised 15 April 1996

Abstract. We pre~nt a variant of the RSA algorithm called Batch RSA with two
important properties:

�9 The cost per private operation is exponentially smaller than other nu tuber-theoretic
schemes [91, 1231. 122], I11], [131, [121. In practice, the new variant effectively
performs several modular exponentiations at the cost of a single modular ex-
ponentiation. This leads to a very fast RSA-like scheme whenever RSA is to
be performed at some central site or when pure-RSA encryption (versus hybrid
encryption) is to be performed.

�9 An additional important feature of Batch RSA is the possibility of using a dis-
tributed Batch RSA process that isolates the private key from the system, irre-
spective of the size of the system, the number of sites, or the number of private
operations that need to be performed.

Key words. RSA. Amortization, Computational complexity, Assymetric crypto-
graphy.

1. I n t r o d u c t i o n

Almos t all number- theoret ic cryptographic schemes in use today involve modular mul-

t iplication modulo a compos i te or prime. The private key used must be sufficiently long

so as to ensure that an exhaust ive search through the key space is impractical . As a

consequence , the work per formed by such algor i thms during the private operat ion is
large.

In this paper we introduce a new concept o f amort ized private operations. This leads

to an exponent ia l improvement in performance. The number o f secret bits in the private

key and the number of operat ions required for a private operat ion is amort ized over

many individual private operations. Amort iza t ion is c o m m o n in other areas o f compute r

science [4], [251.

* A preliminary version of this paper appeared in Advances in Cr3'ptology: Proceedings of Crypto '89,
pp. 175-185. This work was perlbrmed at U.C., Berkeley, and ARL, Israel.

75

76 A. Fiat

The main result in this paper is to obtain fast public and fast amortized private op-
erations. For a security parameter k (breaking the scheme should take time exp(k)) we
achieve an amortized polylog(k) multiplications per private operation and use up an
amortized polylog(k) secret bits of the private key per private operation. Clearly, this is
only possible in an amortized setting because a private key that had only polylog(k) secret
bits would contradict the assumption that breaking the scheme requires time exp(k).

In various modes of operation the scheme "seems" to be standard RSA from the point
of view of the end-user (thus allowing the use of standardized RSA packages), while
processing at the center is different than standard RSA.

To justify the practicality of our results, we note that the real problem with performance
does not seem to lie in a distributed setting but rather with centralized applications.
Today's microprocessors can perform hundreds of modular multiplications in a few
seconds. Special purpose hardware can improve this by one to two orders of magnitude.
Large central mainframes may be considerably faster, yet much less cost-effective with
respect to processing power.

Many applications require a centralized setting. Several suggested applications of
digital signatures are almost irrelevant without a large central clearing house, and such
a clearing house may be required to generate digitally signed receipts in response to
transactions. Another typical application is a mainframe that has to decrypt many trans-
actions (financial data, session initiation key exchange, etc.). The scheme presented here
is particularly suitable for such centralized applications.

The underlying idea behind our new scheme is to batch transactions. Rather than per-
form one full-scale modular exponentiation per digital signature as with RSA, the scheme
performs one full-size exponentiation and subsequently generates several independent
digital signatures.

Given an n-bit modulus, our scheme requires an amortized O(log 2 n) multiplications
given a batch size of n / (log 2 n) messages. We also require up to two modular divisions
per signature/decryption--this is a low-order term and can be ignored, i Clearly one must
optimize the batch size for a specific modulus size, and one can obtain better results for
smaller batches if the modulus is (relatively) small.

Generally, we have a tradeoff between the batch size b and the number of multiplica-
tions per signature. Let cn denote the number of modular multiplications required for an
n-bit exponentiation (c ~ 1.5). Given a batch of b messages, b < n, we can generate b
digital signatures at a cost of cn/b + O(log 2 b) multiplications per signature (plus two
modular divisions). For a fixed batch size the work required to generate all signatures is
asymptotically equal to the work required for one RSA signature.

Rather than perform one full-size exponentiation to decrypt an RSA-encrypted block,
the new scheme performs one such exponentiation and subsequently decrypts several
RSA-encrypted blocks. This is relevant in the context of mainframe decryption (hybrid
scheme or pure) and in the context of pure-RSA decryption generally. With respect to
a pure-RSA encryption scheme, this simply means that the block size is some multiple

I Modular division is equivalent to multiplication for quadratic algorithms (O(n 2) bit operations--
e.g., [17, Section 4.5.2, Problem 35]) and equivalent to O(Iogn) multiplications asymptotically (i.e.,
O(n log" n log log n) bit operations--[2, Section 8.10]).

Batch RSA 77

of the RSA modulus size. We have a tradeoff between block size and time, for larger
blocks we spend less time overall.

Another application of the methods presented here is to generate Shamir's crypto-
graphically secure pseudorandom sequence [241 with the same gain in performance. In
this context, the block size penalty mentioned above does not occur. It is noteworthy
that Shamir himself considered his scheme in 124] impractical due to the great number
of multiplications required.

Even if we completely ignore the issue of performance and use full-sized encryption
exponents, one important point concerning Batch RSA is that only one root need be
extracted, irrespective of the batch size.

Many private operations can be performed by perIbrming one private operation. The
preliminary work to merge the batch into one problem involves no secret data, neither
does the split-up phase after the root extraction.

Imagine a scenario where many link encryptors are to decrypt RSA encrypted data.
Rather than store the private key at each and every such encryptor, the private key can be
stored at one secure site. This could be a relatively weak processor, such as a smartcard
on the CEOs desk, irrespective of the number of private operations to be performed.

The merge and split-up phases can be performed in a distributed setting, and an im-
portant feature of the scheme is that the communications required to transmit a "merged"
subbatch to the next merge phase is equal to tz bits, the length of the modulus, irrespective
of the number of private operations in the batch. Similarly, the communications required
to transmit a "merged" response to the next split phase is only n bits, irrespective of the
number of responses this value represents. This makes it very efficient to perform such
a process in a large distributed setting.

Now. the merge phase and the break-up phase involve no secret keys, but if an eaves-
dropper is listening to the communications he can obtain the decrypted data from the
split-up phase. One way to ensure that this does not happen is for the encryptor to mul-
tiply a random factor of the form r ~ to the real value to be decrypted c, the value c �9 r" is
then input to the distributed batch RSA process, and the result c I/" �9 r is obtained. The
encryptor may now divide out by r and obtains the cleartext c I/''.

2. Background and Central Observation

An RSA digital signature to a message M is simply the eth root of M modulo N. The
public key is the pair (N , e) whereas the private key is the prime factorization of N. e is
chosen to be relatively prime to Euler's totient function (,o of the public key modulus N.

To generate a digital signature on M one first computes d = e -I (modq3(N)) and
then computes

M '/ (mod N) = M I/'" (mod N).

Thus, every digital signature consists of one full-sized modular exponentiation. (Quis-
quater and Couvreur 121] suggest the use of the Chinese Remainder Theorem so digital
signature generation is slightly faster.)

Fundamental to getting polylog(n) multiplications per private operation is the use of
(relatively) small encryption exponents for RSA. Using a small encryption exponent

78 A. Fiat

means choosing e to be some small constant (say 3), and generating the public key N
so that ~0(N) is relatively prime to e. However, choosing a small encryption exponent
says nothing about the decryption exponent d. Generally, d will be f2(~0(N)). In fact,
if d were too small (less than exponential in the security parameter), it would allow the
cryptanalyst to attack the scheme. In some sense, we attain the effect of a very small d
(length polylog in the security parameter), without compromising security. Weiner [26]
gives attacks on short secret RSA exponents.

Our RSA variant grants some leeway in the value of e. For example, choose two
parameters S and R so that S and R - S are small (e.g., S = n '~, R = S + n). A
public key N is chosen so that ~0(N) is indivisible by all primes in the range S R. A
valid digital signature is of the form (s, M I/~ mod n), where s is any prime in the range
S R.

To motivate this variant consider the following example:

Example 2.1. Given two messages 0 < Mi, M2 < N, we wish to compute the two
~1/5 (rood N). digital signatures MI/3 (mod N) and - '2

Let

M = M~. M~ (modN) ,

I = M Ill5 (modN) .

Now, we can solve for Mi 1/3, M~/5 as follows:

16
- - M~/5 (mod N);

M~. M2

I
-- Mi I/3 (modN) .

M~/5

Note that we require one full-sized exponentiauon to compute I = M 1/15 (mod N)
and a constant number of modular multiplications/divisions for preprocessing and to
extract the two digital signatures. The rest of this paper is devoted to the generalization
of Example 2.1. The reason that we were able to perform this "magic" trick is because
the greatest common divisor of 3 and 5 is 1.

3. Batch RSA

As above, let N be the RSA modulus, n = log2(N), and let b be the batch size.
Let el, e2 eh be b different encryption exponents, relatively prime to ~p(N) and to

each other. Choosing encryption exponents polynomial in n implies that their product,
E = 1"-I~=1 ei, is O(b logn) bits long. Choosing the encryption exponents as the first b
odd primes gives us log(E) = O(b logb).

Given messages ml, m2 mh, our goal is to generate the b roots (digital signa-
tures/decryptions):

i/e~ (mod N), ,n~/~" (mod N) roll/'~ (mod N). ml

Batch RSA 79

Let T be a binary tree with leaves labeled el, e2 eb. Let di denote the depth of
the leaf labeled ei , T should be constructed so that W =)-~= 1 di log ei is minimized--
similar to the Huffman code tree construction. For our main result of O(log 2 n) mul-
tiplications per RSA operation we could simply assume that T is a full binary tree,
asymptotically it makes no difference. In practice, there is some advantage in using a
tree that minimizes the sum of weight times path length because the work performed is
proportional to the sum W above.

Note that W = O (l o g b l o g E) . We will show that the number of multiplications
required to compute the b roots above is O (W § log N).

Our first goal is to generate the product

M = m~ "/e' . m E/e2 . . . m E/eb (mod N).

We now show that this requires O (W) multiplications.
Use the binary tree T as a guide, working from the leaves to the root. At every internal

node, take the recursive result from the left branch (L), raise it to the power ER where
ER is the product of the labels associated with leaves on the right branch. Similarly, take
the result from the right branch (R) and raise it to the power Et. which is the product of
the labels on the left branch. Save the intermediate results L E~ and R E~ (required later).
The result associated with this node is L ER �9 R EL. The product M is simply the result
associated with the root. (See Fig. 1, the ith leaf is labeled with the ith odd prime.)

We now extract the Eth root of the product M:

Ilel 1/e, Ileh
M t/E = m I . m 2 . . . m b (modN) .

This involves O (log N) modular multiplications - - equivalent to one RSA decryption.
The factors of M ~/E are the roots we require. Our next goal is to break the product

M j/E into two subproducts, the break-up is implied by the structure of the binary tree T
used to generate the product M. We repeat this recursively to break up the product into
its b factors. (See Fig. 2.)

Let el, e2 ek be the labels associated with the left branch of the root of the binary
tree T. We define an exponent X by means of the Chinese Remainder Theorem:

X = 0 (model) ,

X = 0 (mode2),

X = 0(modek) ,

X = 1 (modek+j),

X = I (modek+2),

:

X = 1 (modeb).

There is a unique solution for X modulo 1-I~=1 ei = E.

80 A. Fiat

Step 1: Build up product

P - 3 . 5 - 7 . . - 2 9

/ / \ ,

data

flow

15015

j . . J "

/ �9

143/" ",,105
/'

/

' /

~;" ",r-~"
7 ' \15 13 / \11

/
i \ /

/ ' \ r - "; /~ \~ !f ~ ',
-, j (' ~ "3, ~ 'i"

5 / \3

rn~ m~ Total length of all exponents is 106

Value associated with ith leaf is message/ciphertext i

P / 3 P/S P / 2 9
m I .m 2 . . . m 9

j>'---Z~ ?a~441

', i

667/ / "\\323
:/ -\

/ \ .
/ \

/ x.
f - N ;~-,

, /

19 ; ',17 29 / ~ 2 3
/

/ / \

\ . \ ,'

rrt's

(," --~)<

~?_(~. v~
�9 / ' , y

\
/ '

' ~ \ . j ' ~r . v 2

Step 2: ExLract P ' th root of product

Fig. 1. Build up product and extract r o o t .

By definition

X =

X - I - -

(i=l~l ei) �9 XI,

,/7
Let PI = FI~=I ei and P2 = Fli=k-J el, then X = PI �9 XI and X - 1 = P2 �9 X2.
Note that log X < log E, log Xi + log Pi = log X, log X2 + log P2 = log X, log E =
log Pl + log P2, and thus log Xi + log Xz < log X.

Batch RSA 81

Step 3: Break up product of roots
1/3 1/15 1/29~

7~ 1 "17;, 2 �9 - "?Tt 9)

,,./

/

43533/.. /

/ . - . ,7~// /"
"! 8295

/ x.

data 79 / \'\58
flow / \

//' \ , \

' x

;15 ,)66
_ j - k.j"

1 / \ \2 6/' \',5

()6, . ,;
;~ (,,.J k.

'i
i \, 1/13

2/ "\ I ~r ~I/H m5

ff -'\\ f
t.._.j \ .:

rn~/s

" ~ " "~-~034

 20,2

/ / \ ' \

254 . / '\123 /"

/
/ /

P f ~

_~i! 153
9 \,, 8

i , ,

i 1/19
T~'I 7

Y
m~117

"\
\

(._)552
24 9

/
/

/ -Z
t.._./ \ j

t

m1123

I' 1/3
m l

T o t a l length of all numerator e x p o n e n t s is 93

Build up product s tage Break up product s tage (S a m e vert ices)
//-\ ! x - ,.\

d / "\ e / .\

-,- .% .>-..
f i " "

z, _ M/.~ R : ~,P/(vf..o~)

Note: denominator exponentiation (v~,
v~), should be performed during the

product build up phase to save muhiphcations

Fig. 2. Break up product of roots.

Denote

M i = m ~ 'le~ . m~ >'le2 . . . m ~ 'le~,

and

P2/e~+ t . m &/ek.: P,/eb
M 2 = m k + l k+2 " " " r o b �9

Note that MI and M2 have already been computed, as the left and right branch values of
the root, during the tree-based computation of M.

82 A. F ia t

1. Build up product

J=

5 / ma

/

m l wl~

Total length of exponents =

1,,t7,135. 21 15 m,= . ?'P-'3

r

data flow

log(S) + log(3) + log(7) + log(15) = 11
.

2. Extract 105th root of product (105 = 3 . 5 �9 7)
.

l / S l / r 3. Split up roots [~ m~ 13 .m 3 .ms

F Z

1/-~2, # ' / (t , . ~) = ,~/'
/ \

J
~-'~, ,f-~, " J"ICrnl 2. ms) data flow

rrL~

m~'ll a
Total length of numerator exponents = log(15) + log(6) = 7

Denumerator cxponentiution (rnl, rn~) can be done in

build up stage while computing (ml,s rn~ts)

Fig . 3. A smal l example �9

Raise M l / e to the Xth power modulo N:

X

(MI/E)X = (bi~=lm~/e')

: (ki~_lml/ei)Pl'XI. (i=kI-'I+lml/e') P2"Xz .

b
MIX' " MX2 [I l/ei ~ �9 rHi .

i - k + l

b
1-I ml 'e'

i = k + l

Batch RSA 83

To solve for PI = I-I~=k+i " I/e, m i we raise Mt to the power X~, raise M2 to the power

X2, and divide out. To solve for P2 I-I~=, ml/~' we divide M 1/~ by l'-I~=k+l l/,i m i .

We now recursively break up the two products PI and P2.
Every leaf labeled l contributes log l bits to the appropriate exponents (X and Xl or

X and X2) for every, level between the leaf and the root. Thus, the overall number of
multiplications is O(W). The number of modular divisions required is O(b).

To summarize:

Lemma 1. Let el, e2 e b be b different enc~. ption exponents, relatively prime to
~o(N) and to each other. Given messages ml, m2,. . . , mb, we can generate the b roots

m',/'' (modN), m~/e: (modN) m~/e~ (modN)

in O(log b (y~qb=l log el) + log N) modular multiplications and O (b) modular divisions.

By choosing the ei exponents to be polynomial in n and choosing the batch size
b = n/log2n we get O(n) multiplications overall and O(log2n) multiplications per
root.

Remark. Even if the encryption exponents were exponential in polylog(n), say 2 I~
for some r > 1, we would still get polylog(n), (log c+~ n), multiplications for both
encryption and decryption operations.

4. Comparison with Other Schemes

Various schemes for key-exchange, public-key cryptosystems, and digital signature have
been proposed ([9], [23], [22], [11], [131, [12]). In several schemes the secret is
used as an exponent during the private operation and therefore the number of modular
multiplications required is at least the security parameter.

The security of any computationally secure scheme is parameterized by a security
parameter k, where the assumption is that the work required to break the scheme is
proportional to 2 k. For number-theoretic schemes, the security parameter k determines
the size of the composite or prime modulus to be used. The modulus size is determined by
appropriate complexity assumptions on the the best factoring or discrete log algorithms.
(As the case may be.)

The heuristic expected running times for some of the problems of interest in cryptog-
raphy are:

1. Factoring an n-bit integer using the general number field sieve [18]:

e(C+o(I))n ~/~ (In 2/3 n) ,

where c ~ 2 [7].
2. Discrete logarithms in GF(p), for an n-bit prime p, using the number field sieve:

e(C+O(I))n I/~ (In 2/~ n) ,

where e ~ 2.

84 A. Fiat

It follows that for number-theoretic schemes, to obtain a security parameter of k,
the modulus length n must be proportional to n(k) = k3/log ~ k. (If factoring
algorithms advance further, the function describing the dependence of n on k will grow
further too).

The private operation of the RSA scheme is simply a root extraction, this is performed
by taking the inverse of the encryption exponent modulo Euler's totient function of the
modulus and computing a root by exponentiation with this inverse. Because this inverse
will in general be as long as the modulus (and cannot be too short see [26]) it follows
that the number of multiplications required for RSA with a security parameter of k is
n (k). Using the Chinese Remainder Theorem, these multiplications can be done modulo
each of the prime factors of the public modulus independently, but the total number of
multiplications remains at least n (k).

For a security parameter k, both the Diffie-Hellman key exchange and the E1-Gamal
signature scheme [11] require exponentiation modulo a prime of length n (k), where the
exponent is n(k) bits long. At least for Diffie-Hellman it has been suggested that the
exponent be shorter but it certainly cannot be shorter than k for a security parameter
of k. Other attempts to improve efficiency are to use GF(p n) where the multiplication
operation is more efficient but then the key sizes are much longer. Using elliptic curves
over GF(p ~) has also been studied, leading to shorter key sizes [16], [19], but some
problems arise as well [20].

The Fiat-Shamir signature scheme [12] is much more efficient than RSA for sig-
natures simply because it requires only k multiplications of n(k) bit numbers rather
than n(k) multiplications of n (k) bit numbers. Variants of this scheme include Guillou
and Quisquater [14] which require approximately 3k multiplications of n(k) bit num-
bers, and the Digital Signature Algorithm (DSA) which uses exponents of fixed length
160 (> k) modulo primes of length n(k) for generating signatures and exponents of
length 160 modulo primes of length n(k) for verification. The DSA signature process
can be split into a precomputation stage that requires most of the work, and a very fast
message-dependant stage,

Excluding the schemes based on operations in GF(p n) or elliptic curves over GF(p~),
all of the schemes described above require at least k multiplications of n(k) bit integers
for performing the private operation. Batch RSA requires an amortized O (log 2 k) multi-
plications of n(k) bit integers, i.e., an exponential improvement over all other schemes,
albeit only amortized performance.

For some applications, the DSA can be viewed as competitive with Batch RSA because
the precomputation can be performed at off-peak times and can be considered as free.
However, then the DSA public operation (verification) is much more expensive than
RSA with (relatively) short exponents, see the discussion below.

5. Notes on Security

Use of small encryption exponents for RSA was first suggested by Knuth [17]. A prob-
lem arises in the use of small exponents for standard RSA encryption if the message is
numerically small or messages related via some known polynomials are encrypted to

Batch RSA 85

several different recipients. (Blum [3] for identical messages, and H~stad [15] for fixed
polynomials.)

We have a more serious problem with encryption in that if the same message is en-
crypted with different (relatively prime) encryption exponents modulo the same modulus,
then the message can be reconstructed.

In both cases, if RSA is used for key exchange, then there is no problem, all the
cryptanalyst can learn are random values modulo N. Otherwise, it seems that standard
cryptographic practices of randomizing cleartext and appropriate feedback mechanisms
effectively overcome these attacks.

Shamir'has shown that knowing m l / p l , m I/p2 m I/p~ cannot give u s m 1/p~ for
pairwise relatively prime Pi [24] (as we could extract m l/p~ using this procedure as a
black box).

The fact that Batch RSA makes use of different encryption exponents may be advan-
tageous relative to standard RSA in that the multiplicative relationship between different
roots no longer holds.

6. Security of Batch RSA Versus RSA

As far as we know today, the security assumption for RSA can be stated as follows.
There exists some constant c such that for any sufficiently large k and appropriately
chosen moduli N, where log N = n = n(k) ~ k3, and for arbitrarily chosen encryption
exponents e, relatively prime to ~p(N), and random inputs m, computing m l/e mod N
cannot be done with probability p and time T where T / p < exp(c �9 k).

If this is so, then the Batch RSA process is as secure as RSA. Imagine that there were
a constant c' < c - o(1), a black box that gets inputs, N = exp(k3), m, and a set S of
exponents, ISL = polylog(N). Assume that in time T, with probability p, taken over
the inputs m and the internal coin tosses of the box, the black box outputs the value
m 1/e mod N for some e 6 S. Imagine too that T / p < exp(c'k).

The assumptions above imply that at least for one specific element x c S, the value
m l/x mod N can be computed with probability p/LS[in time T. However, for sufficiently
large k,

TLSl
P

< exp(c'k + log(ISI))

= exp(c'k + logk + O(1))

< exp((c' + o(l))k) < exp(ck).

Thus, taking a set of I S I exponents for whom the security assumption of RSA holds,
and using the Batch RSA black box, we can disprove the RSA security assumption for
at least one of these exponents.

If the RSA security assumption is that RSA is secure only for randomly chosen
encryption exponents (not the assumption today), then any specific range of exponents
will not be secure, but a random set of exponents, or even a polylog(N) random sequence
of successive exponents relatively prime to ~0(N) will be secure.

86 A. Fiat

7. Constants and Practical Considerations

We assume that modular exponentiation requires c - k modular multiplications for an
exponent of length k, c = 1.5. This is true for the standard exponentiation algorithm if
the exponent is chosen at random. None of our exponents are really random but this is a
reasonable upper bound on the work required.

Generating M as described in the preceding section requires c �9 W multiplications.
Taking the Eth root requires c - log (N) multiplications, extracting the factors from M ~/E
requires 2c �9 W multiplications.

In fact, we can do better---extracting the factors of M ~/E can be done in c - W multi-
plications provided that about W/4 additional multiplications are done when computing
M. Overall , the number of multiplications required to extract the b roots is therefore
2c. W + W/4 + c . logN.

Reducing the number of multiplications to extract the factors of M j/E involves a
slight digression. Our goal is to compute yZ, (mod N) and yZ2 (mod N). If ZI and Z2
are random, then it seems that this requires c- (log Zt 4- log Z2) modular multiplications.
In fact, we can compute yZ, nz2 (mod N) where Z~ 71 Z2 denotes the bitwise and operation
between Z~ and Z2, compute yZ,~22 and yZ2,'32, and multiply the appropriate results to
get yZ, and yZ,.. It is not hard to see that computing the three intermediate products can

3. log N multiplications given that Zi and Z2 are chosen at random be done in log N +
in the range 1 �9 �9 �9 N. In addition, this can be done without any significant cost in storage
other than the area required to hold the three intermediate results.

We can use the trick described in the last paragraph so as to compute the values M x' and

M x'- as a byproduct of computing M, at a cost of 1/4(log Xl + log X2) multiplications.
Recall that the final stage in computing M involves raising M~ to some exponent R and
M2 to some exponent L. The same holds for all levels of the recursion.

8. Modes of Operation

Another practical concern in the context of Batch RSA is what exponents should be
used? We consider the following variants.

1. When two-way communication is possible, one possibility is to enter into a ne-
gotiation process where unique small exponents are assigned to remote sites for
public encryption operations. This has a disadvantage in that there is a preliminary
negotiation phase.

2. For public encryption operations, the remote station could choose an exponent at
random from a small preset domain. Because there may be duplicate exponents, this
means that several batches may have to be solved. If our domain is the set of the k
smallest primes greater than some initial value (2 t6 q- 1 ?), then a batch of k private
operations, with randomly chosen exponents, will require up to log k/ log log k
Batch RSA operations. Choosing a domain of size k 2 means that the expected
number of batches required is only O(1).

3. As one may assume that the number of users is polynomial in n, it follows that
unique exponents can be assigned to each and every remote station, while still
requiring only polylog(n) multiplications per private operation. This has the addi-

Batch RSA 87

tional advantage that the users are completely unaware of the Batch RSA process
and view the process as though it were standard RSA. A variant of this scheme is
to map several users (based on account number?) to the same public exponent.

4. One variant of our scheme would be to use different encryption exponents for every
encryption or digital signature. For example, the ith prime for the ith operation.
As long as there are no more than a polynomial number of transactions (in n) then
both private and public operations would require polylog(n) multiplications.

8.1. Distributed Batch RSA

As the Batch RSA merger and split-up phases involve no secret information, this lets us
use Batch RSA to isolate the private key from the system, irrespective of its size. All
private transactions can be reduced to one root extraction that can be solved on a weak
and isolated processor. Every link-encryptor, mainframe, etc., requests one root, these
roots can be merged again so the entire system is driven by one root extraction.

Distributed Batch RSA never requires more than n bits transmitted to and from a site,
thus distributed Batch RSA is very efficient in communications.

In the context of using RSA for secrecy, it is desirable to ensure security in transit.
For example, from the link encryptors to the smartcard and back (especially back). To
do this, we can use the standard Zero-Knowledge trick of multiplying the real value with
a random value raised to an appropriate power. For example, to extract the seventeenth
root of a ciphertext C the link encryptor chooses a random value R and computes R 17. C,
this is then used as input to the distributed Batch RSA process. Within the link encryptor,
the result R - C 1/17 is divided by R to obtain C 1/17.

9. Subsequent Related Work

Batch Diffie-Hellman [5], makes use of the Batch RSA process in a centralized setting.
This is a version of Diffie-Hellman with a composite modulus, and where the different
secret exponents used by the central site are equivalent to the root extractions of Batch
RSA.

The use of Batch RSA was also suggested in [10] in the context of existentially
unforgeable signature schemes where they use multiple different roots in the signature
scheme, suitable for the Batch RSA process.

Acknowledgments

Fhis work has its origins in Shamir's cryptographically secure pseudorandom sequence
124] and in David Chaum's observation that multiples of different relatively-prime roots
are problematic in the context of untraceable electronic cash [8] as the roots can be split
apart.

I with to thank Noga Alon, Miki Ben-Or, Manuel Blum, Benny Chor, Shaffi Gold-
wasser, Dick Karp, Silvio Micali, Moni Naor, Ron Rivest, Claus Schnorr, Adi Shamir,
Ron Shamir, and Yossi Tulpan for hearing me out on this work.

Very special thanks to the Journal of Co,ptology editor, Gilles Brassard, and to the
anonymous referees of this paper.

88 A. Fiat

R e f e r e n c e s

[1] Abadi, M.. Feigenbaum, J.. and Kilian, J., On hiding inforrnation from an oracle, Proceedings of the 19th
Annual ACM Symposiunz on Theoo'o f Computing. pp. 195-203. New York City, May 25-27, 1987.

121 Ah~. A. V.~ H~pcr~ft J. E.. and U~man~ J. D.~ The Design and Ana~vsis ~f C~n1~mter A ~g~rithms' Addis~n-
Wesley, Reading, MA, 1974.

[3] Blum, M.. Personal communication.
[41 Blum, M., Floyd. R. W.. Pratt, V., Lewis, R. I,., and Tarjan, R. E.. Time bounds for selection, J. Comput.

System Sci. vol. 7 pp. 448-461. 1973.
151 Yacobi. Y., and Belier. M. J., Batch Diffic-Hellman key agreement systems, Proceedings of Eurocrypt

'92, pp. 208-217.
[61 Coppersmith. D., Fast evaluation of logarithms in fields of characteristic two, IEEE Trans. Infi~rm. Theot3'.

vol. IT-30, no. 4. pp. 587-592, July 1984.
[71 Coppersmith. D., Modifications to the number field sieve, IBM Research Report #RC 16264.
181 Chaum, D., Fiat, A,. and Naor, M., Untraceable electronic cash, Proceedings of Cr3"pto '88, pp. 319-227,

1976.
19] Diffie, W. and Helhnan, M. E., New Directions in Cryptography. IEFE Trans. Inform. Theory. w)l. IT-22,

1976.
110] l)work, C. and Naor, M., An efficient existentially unforgeable signature scheme and its applications,

Advances in Cryptology- Proceedings ~1" Ctypto '94, l,ecture Notes in Computer Science, Vol. 839,
Springer-Verlag, Berlin, 1994, pp. 234--346.

[11] El Gamal. T.. A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE
Trans. Inform. Theory, vol. IT-31, no. 4, pp. 459-472, July 1985.

[12] Fiat, A. and Shamir, A., How to prove yourself: Practical solutions to identification and signature prob-
lelns, Advances in Cryptography-Proceedings of Crypto '86. pp. 186-194, Spinger-Verlag, Berlin.
1987.

[131 Goldwasser. S.. Micali, S., and Rivest, R. L.. A digital signature scheme secure against adaptive chosen
message attacks, SIAMJ. Comput., w)l. 17. no. 2, pp. 281-308, April 1988.

[14] Guillou. L. C. and Quisquater, J. J., A practical zero-knowledge protocol fitted to security microprocessor
minimizing both transmission and memory, In: Advances in Ct3'l~tology: Proceedings of Eurocrpyt '88
(C.G. Gunther. ed.), Davos, Switzerland, May 25-27, pp. 123-128, 1988.

[15] Hfistad, J., On using RSA with low exponent in a public key network. Proceedings c~f Co'pro '85,
pp. 403-408.

[161 Koblitz, N., Elliptic curve cryptosystems, Math. Comput.. vol. 48, pp. 203-209. 1987.
[17] Knuth, D., The Art of Computer Progratnming. vol. 2: Seminumerieal Algorithms, 2nd edn., Addison-

Wesley, Reading, MA, 1981.
[18] Lenstra, A. K., I,enstra, Jr., H. W., Manasse, M. S., and Pollard, J. M., The number field sieve. Proceedings

of the 22rid ACM Symposium on the Theory of Comlmting, pp. 464-572, 1990.
[19] Menezes. A. and Vanstone. S.. The implementation of elliptic curve cryptosystems. In: Advances in

CO'l~tology--Au,scrypt '90 (J. Seberry. and J. Pieprzyk, eds.), Sydney, Jan. 1990. pp. 2-13.
[20] Menezes, A.. Okamoto, T., and Vanstone, S., Reducing elliptic curve logarithms to logarithms in a finite

field, Proceedings of the 22nd Ammal ACM Symposium on the Theory of Computing, pp. 80-89, 1991.
[21] Quisquater, J. J. and Couvreur, C., Fast decipherment algorithm for RSA public-key cryptosystem,

Electronic Letters, vol. 18. no. 21, 1982, pp. 905-907.
[22] Rabin. M. O., Digitalized signatures, In: Foundations of Secure Computation. Academic Press, New

York, 1978.
[231 Rivest, R. L., Shamir. A.. and Adleman, L., A method for obtaining digital signatures and public key

cryptosystems. Comm. ACM, vol. 21, no. 2, 1978.
[24] Sham Jr, A.. On the generation ofcryptographically strong pseudorandom sequences, ACM Trans. Comput.

Systems vol. I, no. 1, 1983.
[25] Tarjan, R. E.. Amortized computational complexity, SIAM J. Algebraic Discrete Methods, vol. 2, no. 6,

pp. 306-318, 1985.
[26] Wiener, M. J., Cryptoanalysis of Short RSA exponents, IEEE Trans. h!(orm. Theoo', vol. 36. no. 3, May

1990, pp. 553-558.

