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Abstract. We pre~nt a variant of the RSA algorithm called Batch RSA with two 
important properties: 

�9 The cost per private operation is exponentially smaller than other nu tuber-theoretic 
schemes [91, 1231. 122], I11], [131, [121. In practice, the new variant effectively 
performs several modular exponentiations at the cost of a single modular ex- 
ponentiation. This leads to a very fast RSA-like scheme whenever RSA is to 
be performed at some central site or when pure-RSA encryption (versus hybrid 
encryption) is to be performed. 

�9 An additional important feature of Batch RSA is the possibility of using a dis- 
tributed Batch RSA process that isolates the private key from the system, irre- 
spective of the size of the system, the number of sites, or the number of private 
operations that need to be performed. 

Key words. RSA. Amortization, Computational complexity, Assymetric crypto- 
graphy. 

1. I n t r o d u c t i o n  

Almos t  all number- theoret ic  cryptographic  schemes  in use today involve modular  mul- 

t iplication modulo  a compos i te  or  prime.  The private key used must be sufficiently long 

so as to ensure that an exhaust ive search through the key space is impractical .  As a 

consequence ,  the work per formed by such algor i thms during the private operat ion is 
large. 

In this paper we introduce a new concept  o f  amort ized  private operations.  This  leads 

to an exponent ia l  improvement  in performance.  The  number  o f  secret bits in the private 

key and the number  of  operat ions required for a private operat ion is amort ized  over  

many individual private operations.  Amort iza t ion  is c o m m o n  in other  areas o f  compute r  

science [4], [251. 

* A preliminary version of this paper appeared in Advances in Cr3'ptology: Proceedings of Crypto '89, 
pp. 175-185. This work was perlbrmed at U.C., Berkeley, and ARL, Israel. 
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The main result in this paper is to obtain fast public and fast amortized private op- 
erations. For a security parameter k (breaking the scheme should take time exp(k)) we 
achieve an amortized polylog(k) multiplications per private operation and use up an 
amortized polylog(k) secret bits of  the private key per private operation. Clearly, this is 
only possible in an amortized setting because a private key that had only polylog(k) secret 
bits would contradict the assumption that breaking the scheme requires time exp(k). 

In various modes of operation the scheme "seems" to be standard RSA from the point 
of  view of the end-user (thus allowing the use of standardized RSA packages), while 
processing at the center is different than standard RSA. 

To justify the practicality of our results, we note that the real problem with performance 
does not seem to lie in a distributed setting but rather with centralized applications. 
Today's  microprocessors can perform hundreds of modular multiplications in a few 
seconds. Special purpose hardware can improve this by one to two orders of  magnitude. 
Large central mainframes may be considerably faster, yet much less cost-effective with 
respect to processing power. 

Many applications require a centralized setting. Several suggested applications of 
digital signatures are almost irrelevant without a large central clearing house, and such 
a clearing house may be required to generate digitally signed receipts in response to 
transactions. Another typical application is a mainframe that has to decrypt many trans- 
actions (financial data, session initiation key exchange, etc.). The scheme presented here 
is particularly suitable for such centralized applications. 

The underlying idea behind our new scheme is to batch transactions. Rather than per- 
form one full-scale modular exponentiation per digital signature as with RSA, the scheme 
performs one full-size exponentiation and subsequently generates several independent 
digital signatures. 

Given an n-bit modulus, our scheme requires an amortized O(log 2 n) multiplications 
given a batch size of n / ( log  2 n) messages. We also require up to two modular divisions 
per signature/decryption--this is a low-order term and can be ignored, i Clearly one must 
optimize the batch size for a specific modulus size, and one can obtain better results for 
smaller batches if the modulus is (relatively) small. 

Generally, we have a tradeoff between the batch size b and the number of multiplica- 
tions per signature. Let cn denote the number of modular multiplications required for an 
n-bit exponentiation (c ~ 1.5). Given a batch of b messages, b < n, we can generate b 
digital signatures at a cost of cn/b  + O(log 2 b) multiplications per signature (plus two 
modular divisions). For a fixed batch size the work required to generate all signatures is 
asymptotically equal to the work required for one RSA signature. 

Rather than perform one full-size exponentiation to decrypt an RSA-encrypted block, 
the new scheme performs one such exponentiation and subsequently decrypts several 
RSA-encrypted blocks. This is relevant in the context of mainframe decryption (hybrid 
scheme or pure) and in the context of pure-RSA decryption generally. With respect to 
a pure-RSA encryption scheme, this simply means that the block size is some multiple 

I Modular division is equivalent to multiplication for quadratic algorithms (O(n 2) bit operations-- 
e.g., [17, Section 4.5.2, Problem 35]) and equivalent to O(Iogn) multiplications asymptotically (i.e., 
O(n log" n log log n) bit operations--[2, Section 8.10]). 
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of  the RSA modulus size. We have a tradeoff between block size and time, for larger 
blocks we spend less time overall. 

Another application of  the methods presented here is to generate Shamir's crypto- 
graphically secure pseudorandom sequence [241 with the same gain in performance. In 
this context, the block size penalty mentioned above does not occur. It is noteworthy 
that Shamir himself considered his scheme in 124] impractical due to the great number 
of multiplications required. 

Even if we completely ignore the issue of performance and use full-sized encryption 
exponents, one important point concerning Batch RSA is that only one root need be 
extracted, irrespective of the batch size. 

Many private operations can be performed by perIbrming one private operation. The 
preliminary work to merge the batch into one problem involves no secret data, neither 
does the split-up phase after the root extraction. 

Imagine a scenario where many link encryptors are to decrypt RSA encrypted data. 
Rather than store the private key at each and every such encryptor, the private key can be 
stored at one secure site. This could be a relatively weak processor, such as a smartcard 
on the CEOs desk, irrespective of the number of private operations to be performed. 

The merge and split-up phases can be performed in a distributed setting, and an im- 
portant feature of the scheme is that the communications required to transmit a "merged" 
subbatch to the next merge phase is equal to tz bits, the length of the modulus, irrespective 
of the number of  private operations in the batch. Similarly, the communications required 
to transmit a "merged" response to the next split phase is only n bits, irrespective of the 
number of responses this value represents. This makes it very efficient to perform such 
a process in a large distributed setting. 

Now. the merge phase and the break-up phase involve no secret keys, but if an eaves- 
dropper is listening to the communications he can obtain the decrypted data from the 
split-up phase. One way to ensure that this does not happen is for the encryptor to mul- 
tiply a random factor of the form r ~ to the real value to be decrypted c, the value c �9 r" is 
then input to the distributed batch RSA process, and the result c I/" �9 r is obtained. The 
encryptor may now divide out by r and obtains the cleartext c I/''. 

2. Background and Central Observation 

An RSA digital signature to a message M is simply the eth root of M modulo N. The 
public key is the pair ( N ,  e) whereas the private key is the prime factorization of  N. e is 
chosen to be relatively prime to Euler's totient function (,o of the public key modulus N. 

To generate a digital signature on M one first computes d = e -I (modq3(N)) and 
then computes 

M '/ (mod N) = M I/'" (mod N). 

Thus, every digital signature consists of one full-sized modular exponentiation. (Quis- 
quater and Couvreur 121 ] suggest the use of  the Chinese Remainder Theorem so digital 
signature generation is slightly faster.) 

Fundamental to getting polylog(n) multiplications per private operation is the use of  
(relatively) small encryption exponents for RSA. Using a small encryption exponent 
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means choosing e to be some small constant (say 3), and generating the public key N 
so that ~0(N) is relatively prime to e. However, choosing a small encryption exponent 
says nothing about the decryption exponent d. Generally, d will be f2(~0(N)). In fact, 
if d were too small (less than exponential in the security parameter), it would allow the 
cryptanalyst to attack the scheme. In some sense, we attain the effect of a very small d 
(length polylog in the security parameter), without compromising security. Weiner [26] 
gives attacks on short secret RSA exponents. 

Our RSA variant grants some leeway in the value of e. For example, choose two 
parameters S and R so that S and R - S are small (e.g., S = n '~, R = S + n). A 
public key N is chosen so that ~0(N) is indivisible by all primes in the range S . . . . .  R. A 
valid digital signature is of  the form (s, M I/~ mod n), where s is any prime in the range 
S . . . . .  R. 

To motivate this variant consider the following example: 

Example  2.1. Given two messages 0 < Mi, M2 < N, we wish to compute the two 
~1/5 (rood N). digital signatures MI/3 (mod N) and - '2  

Let 

M = M~. M~ (modN) ,  

I = M Ill5 (modN) .  

Now, we can solve for Mi 1/3, M~/5 as follows: 

16 
- -  M~/5  (mod N); 

M~. M2 

I 
-- Mi I/3 (modN) .  

M~/5 

Note that we require one full-sized exponentiauon to compute I = M 1/15 (mod N) 
and a constant number of modular multiplications/divisions for preprocessing and to 
extract the two digital signatures. The rest of this paper is devoted to the generalization 
of  Example 2.1. The reason that we were able to perform this "magic" trick is because 
the greatest common divisor of 3 and 5 is 1. 

3. Batch RSA 

As above, let N be the RSA modulus, n = log2(N), and let b be the batch size. 
Let el, e2 . . . . .  eh be b different encryption exponents, relatively prime to ~p(N) and to 

each other. Choosing encryption exponents polynomial in n implies that their product, 
E = 1"-I~=1 ei, is O(b logn) bits long. Choosing the encryption exponents as the first b 
odd primes gives us log(E) = O(b logb). 

Given messages ml, m2 . . . . .  mh, our goal is to generate the b roots (digital signa- 
tures/decryptions): 

i/e~ (mod N), ,n~/~" (mod N) . . . . .  roll/'~ (mod N). ml 
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Let T be a binary tree with leaves labeled el, e2 . . . . .  eb. Let di denote the depth of 
the leaf labeled ei ,  T should be constructed so that W = )-~= 1 di log ei is minimized--  
similar to the Huffman code tree construction. For our main result of  O(log 2 n) mul- 
tiplications per RSA operation we could simply assume that T is a full binary tree, 
asymptotically it makes no difference. In practice, there is some advantage in using a 
tree that minimizes the sum of weight times path length because the work performed is 
proportional to the sum W above. 

Note that W = O ( l o g b l o g E ) .  We will show that the number of multiplications 
required to compute the b roots above is O ( W  § log N). 

Our first goal is to generate the product 

M = m~ "/e' . m  E/e2 . . . m  E/eb (mod N). 

We now show that this requires O ( W )  multiplications. 
Use the binary tree T as a guide, working from the leaves to the root. At every internal 

node, take the recursive result from the left branch (L), raise it to the power ER where 
ER is the product of  the labels associated with leaves on the right branch. Similarly, take 
the result from the right branch (R) and raise it to the power Et. which is the product of 
the labels on the left branch. Save the intermediate results L E~ and R E~ (required later). 
The result associated with this node is L ER �9 R EL. The product M is simply the result 
associated with the root. (See Fig. 1, the ith leaf is labeled with the ith odd prime.) 

We now extract the Eth root of the product M: 

Ilel 1/e, Ileh 
M t/E = m  I . m  2 . . . m  b (modN) .  

This involves O (log N) modular multiplications - -  equivalent to one RSA decryption. 
The factors of  M ~/E are the roots we require. Our next goal is to break the product 

M j/E into two subproducts, the break-up is implied by the structure of the binary tree T 
used to generate the product M. We repeat this recursively to break up the product into 
its b factors. (See Fig. 2.) 

Let el, e2 . . . . .  ek be the labels associated with the left branch of the root of the binary 
tree T. We define an exponent X by means of  the Chinese Remainder Theorem: 

X = 0 (model) ,  

X = 0 (mode2), 

X = 0(modek) ,  

X = 1 (modek+j), 

X = I (modek+2), 

: 

X = 1 (modeb). 

There is a unique solution for X modulo 1-I~=1 ei = E.  
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Step 1: Build up product 
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Step 2: ExLract P ' th  root of product 

Fig.  1. Build up product  and extract  r o o t .  

By definition 

X = 

X - I  - -  

(i=l~l ei) �9 XI, 

,/7 
Let PI = FI~=I ei and P2 = Fli=k-J el, then X = PI �9 XI and X - 1 = P2 �9 X2. 
Note that log X < log E, log Xi + log Pi = log X, log X2 + log P2 = log X, log E = 
log Pl + log P2, and thus log Xi + log Xz < log X. 
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Step 3: Break up product of roots 
1/3 1/15 1/29~ 

7~ 1 "17;, 2 �9 - "?Tt 9 ) 

,,./ 

/ 

43533/.. / 

/ . - . ,7~// /"  
"! 8295 

/ x.  

data 79 /  \'\58 
flow / \ 

//' \ , \  

' x 

;15 , )66 
\_ j -  k.j" 

1 / \ \2 6/' \',5 

()6, . ,; 
;~ ( ,,.J k. 

'i 
i \, 1/13 

2/ "\ I ~r ~I/H m5 

ff -'\\ f 
t.._.j \ .: 

rn~/s 

" ~ "  "~-~034 

 20,2 

/ /  \ ' \  

254 . /  '\123 /"  

/ 
/ / 

P f ~  

\_~i! 153 
9 \,, 8 

i , ,  

i 1/19 
T~'I 7 

Y 
m~117 

"\ 
\ 

(._)552 
24 9 

/ 
/ 

/ -Z  
t.._./ \ j 

t 

m1123 

I' 1/3 
m l  

T o t a l  length of  all numerator  e x p o n e n t s  is 93 

Build up product  s tage  Break up product  s tage  ( S a m e  vert ices)  
//- ....\ ! x - ,.\ 

d / "\ e / .\ 

-,- .% .>-.. 
f i " " 

z, _ M/.~ R : ~,P/(vf..o~) 

Note: denominator exponentiation (v~, 
v~), should be performed during the 

product build up phase to save muhiphcations 

Fig. 2. Break up product of roots. 

Denote 

M i  = m ~  'le~ . m~ >'le2 . . . m ~  'le~, 

and 

P2/e~+ t . m &/ek.: P,/eb 
M 2  = m k + l  k+2 " " " r o b  �9 

Note that MI and M2 have already been computed,  as the left and right branch values of  
the root, during the tree-based computation of  M. 
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1. Build up product  

J= 

5 / ma 

/ 

m l  wl~ 

Total length of exponents = 

1,,t7,135. 21 15 m,= . ?'P-'3 

r 

data  flow 

log(S) + log(3) + log(7) + log(15) = 11 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2. Extract  105th root of product  (105 = 3 . 5  �9 7) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

l / S  l / r  3. Split up roots [ ~ m~ 13 .m 3 .ms 

F Z  

1/-~2, # ' / ( t , . ~ )  = ,~/' 
/ \ . . . . . . . . . .  

J 
~-'~, ,f-~, " J"ICrnl 2. ms) data  flow 

rrL~ 

m~'ll a 
Total length of numerator exponents = log(15) + log(6) = 7 

Denumerator cxponentiution (rnl, rn~) can be done in 

build up stage while computing (ml,s rn~ts) 

Fig .  3.  A smal l  example �9  

Raise M l / e  to the Xth power modulo N: 

X 

(MI/E)X = ( bi~=lm~/e' ) 

: (ki~_lml/ei)Pl'XI. (i=kI-'I+lml/e') P2"Xz . 

b 
MIX' " MX2 [I l/ei ~ �9 rHi . 

i - k + l  

b 
1-I ml 'e' 

i = k + l  
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To solve for PI = I-I~=k+i " I/e, m i we raise Mt to the power X~, raise M2 to the power 

X2, and divide out. To solve for P2 I-I~=, ml/~' we divide M 1/~ by l'-I~=k+l l/,i m i . 

We now recursively break up the two products PI and P2. 
Every leaf labeled l contributes log l bits to the appropriate exponents (X and Xl or 

X and X2) for every, level between the leaf and the root. Thus, the overall number of 
multiplications is O(W). The number of modular divisions required is O(b). 

To summarize: 

Lemma 1. Let el, e2 . . . . .  e b be b different enc~. ption exponents, relatively prime to 
~o(N) and to each other. Given messages ml, m2,. . . ,  mb, we can generate the b roots 

m',/'' (modN), m~/e: (modN) . . . . .  m~/e~ (modN) 

in O(log b ( y~qb=l log el) + log N) modular multiplications and O ( b ) modular divisions. 

By choosing the ei exponents to be polynomial in n and choosing the batch size 
b = n/log2n we get O(n) multiplications overall and O(log2n) multiplications per 
root. 

Remark. Even if the encryption exponents were exponential in polylog(n), say 2 I~ 
for some r > 1, we would still get polylog(n), (log c+~ n), multiplications for both 
encryption and decryption operations. 

4. Comparison with Other Schemes 

Various schemes for key-exchange, public-key cryptosystems, and digital signature have 
been proposed ([9], [23], [22], [11], [131, [12] . . . .  ). In several schemes the secret is 
used as an exponent during the private operation and therefore the number of modular 
multiplications required is at least the security parameter. 

The security of any computationally secure scheme is parameterized by a security 
parameter k, where the assumption is that the work required to break the scheme is 
proportional to 2 k. For number-theoretic schemes, the security parameter k determines 
the size of the composite or prime modulus to be used. The modulus size is determined by 
appropriate complexity assumptions on the the best factoring or discrete log algorithms. 
(As the case may be.) 

The heuristic expected running times for some of the problems of interest in cryptog- 
raphy are: 

1. Factoring an n-bit integer using the general number field sieve [18]: 

e(C+o( I ))n ~/~ (In 2/3 n) ,  

where c ~ 2 [7]. 
2. Discrete logarithms in GF(p), for an n-bit prime p, using the number field sieve: 

e(C+O( I ))n I/~ (In 2/~ n) ,  

where e ~ 2. 
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It follows that for number-theoretic schemes, to obtain a security parameter of k, 
the modulus length n must be proportional to n(k) = k3/log ~ k. (If factoring 
algorithms advance further, the function describing the dependence of n on k will grow 
further too). 

The private operation of the RSA scheme is simply a root extraction, this is performed 
by taking the inverse of the encryption exponent modulo Euler's totient function of the 
modulus and computing a root by exponentiation with this inverse. Because this inverse 
will in general be as long as the modulus (and cannot be too short see [26]) it follows 
that the number of multiplications required for RSA with a security parameter of k is 
n (k). Using the Chinese Remainder Theorem, these multiplications can be done modulo 
each of the prime factors of the public modulus independently, but the total number of 
multiplications remains at least n (k). 

For a security parameter k, both the Diffie-Hellman key exchange and the E1-Gamal 
signature scheme [11] require exponentiation modulo a prime of length n (k), where the 
exponent is n(k) bits long. At least for Diffie-Hellman it has been suggested that the 
exponent be shorter but it certainly cannot be shorter than k for a security parameter 
of k. Other attempts to improve efficiency are to use GF(p n) where the multiplication 
operation is more efficient but then the key sizes are much longer. Using elliptic curves 
over GF(p ~) has also been studied, leading to shorter key sizes [16], [19], but some 
problems arise as well [20]. 

The Fiat-Shamir signature scheme [12] is much more efficient than RSA for sig- 
natures simply because it requires only k multiplications of n(k) bit numbers rather 
than n(k) multiplications of n (k) bit numbers. Variants of this scheme include Guillou 
and Quisquater [14] which require approximately 3k multiplications of n(k) bit num- 
bers, and the Digital Signature Algorithm (DSA) which uses exponents of fixed length 
160 (> k) modulo primes of length n(k) for generating signatures and exponents of 
length 160 modulo primes of length n(k) for verification. The DSA signature process 
can be split into a precomputation stage that requires most of the work, and a very fast 
message-dependant stage, 

Excluding the schemes based on operations in GF(p n) or elliptic curves over GF(p~), 
all of the schemes described above require at least k multiplications of n(k) bit integers 
for performing the private operation. Batch RSA requires an amortized O (log 2 k) multi- 
plications of n(k) bit integers, i.e., an exponential improvement over all other schemes, 
albeit only amortized performance. 

For some applications, the DSA can be viewed as competitive with Batch RSA because 
the precomputation can be performed at off-peak times and can be considered as free. 
However, then the DSA public operation (verification) is much more expensive than 
RSA with (relatively) short exponents, see the discussion below. 

5. Notes on Security 

Use of small encryption exponents for RSA was first suggested by Knuth [17]. A prob- 
lem arises in the use of small exponents for standard RSA encryption if the message is 
numerically small or messages related via some known polynomials are encrypted to 
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several different recipients. (Blum [3] for identical messages, and H~stad [15] for fixed 
polynomials.) 

We have a more serious problem with encryption in that if the same message is en- 
crypted with different (relatively prime) encryption exponents modulo the same modulus, 
then the message can be reconstructed. 

In both cases, if RSA is used for key exchange, then there is no problem, all the 
cryptanalyst can learn are random values modulo N. Otherwise, it seems that standard 
cryptographic practices of randomizing cleartext and appropriate feedback mechanisms 
effectively overcome these attacks. 

Shamir'has shown that knowing m l / p l ,  m I/p2 . . . . .  m I/p~ cannot give u s  m 1/p~ for 
pairwise relatively prime Pi [24] (as we could extract m l/p~ using this procedure as a 
black box). 

The fact that Batch RSA makes use of different encryption exponents may be advan- 
tageous relative to standard RSA in that the multiplicative relationship between different 
roots no longer holds. 

6. Security of Batch RSA Versus RSA 

As far as we know today, the security assumption for RSA can be stated as follows. 
There exists some constant c such that for any sufficiently large k and appropriately 
chosen moduli N, where log N = n = n(k)  ~ k3, and for arbitrarily chosen encryption 
exponents e, relatively prime to ~p(N), and random inputs m, computing m l/e mod N 
cannot be done with probability p and time T where T / p  < exp(c �9 k). 

If this is so, then the Batch RSA process is as secure as RSA. Imagine that there were 
a constant c' < c - o(1), a black box that gets inputs, N = exp(k3), m, and a set S of 
exponents, ISL = polylog(N). Assume that in time T, with probability p, taken over 
the inputs m and the internal coin tosses of the box, the black box outputs the value 
m 1/e mod N for some e 6 S. Imagine too that T / p  < exp(c'k). 

The assumptions above imply that at least for one specific element x c S, the value 
m l/x mod N can be computed with probability p/LS[ in time T. However, for sufficiently 
large k, 

TLSl 
P 

< exp(c'k + log(ISI)) 

= exp(c'k + logk + O(1)) 

< exp((c' + o(l))k) < exp(ck). 

Thus, taking a set of I S I exponents for whom the security assumption of RSA holds, 
and using the Batch RSA black box, we can disprove the RSA security assumption for 
at least one of these exponents. 

If the RSA security assumption is that RSA is secure only for randomly chosen 
encryption exponents (not the assumption today), then any specific range of exponents 
will not be secure, but a random set of exponents, or even a polylog(N) random sequence 
of successive exponents relatively prime to ~0(N) will be secure. 
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7. Constants and Practical Considerations 

We assume that modular exponentiation requires c - k modular multiplications for an 
exponent of  length k, c = 1.5. This is true for the standard exponentiation algorithm if 
the exponent is chosen at random. None of our exponents are really random but this is a 
reasonable upper bound on the work required. 

Generating M as described in the preceding section requires c �9 W multiplications. 
Taking the Eth root requires c - log (N)  multiplications, extracting the factors from M ~/E 
requires 2c �9 W multiplications. 

In fact, we can do better---extracting the factors of M ~/E can be done in c - W multi- 
plications provided that about W/4  additional multiplications are done when computing 
M. Overall ,  the number of  multiplications required to extract the b roots is therefore 
2c.  W + W/4  + c . logN.  

Reducing the number of multiplications to extract the factors of M j/E involves a 
slight digression. Our goal is to compute yZ, (mod N) and yZ2 (mod N). If ZI and Z2 
are random, then it seems that this requires c- (log Zt 4- log Z2) modular multiplications. 
In fact, we can compute yZ, nz2 (mod N) where Z~ 71 Z2 denotes the bitwise and operation 
between Z~ and Z2, compute yZ,~22 and yZ2,'32, and multiply the appropriate results to 
get yZ, and yZ,.. It is not hard to see that computing the three intermediate products can 

3. log N multiplications given that Zi and Z2 are chosen at random be done in log N + 
in the range 1 �9 �9 �9 N. In addition, this can be done without any significant cost in storage 
other than the area required to hold the three intermediate results. 

We can use the trick described in the last paragraph so as to compute the values M x' and 

M x'- as a byproduct of  computing M, at a cost of  1/4(log Xl + log X2) multiplications. 
Recall that the final stage in computing M involves raising M~ to some exponent R and 
M2 to some exponent L. The same holds for all levels of the recursion. 

8. Modes of Operation 

Another practical concern in the context of  Batch RSA is what exponents should be 
used? We consider the following variants. 

1. When two-way communication is possible, one possibility is to enter into a ne- 
gotiation process where unique small exponents are assigned to remote sites for 
public encryption operations. This has a disadvantage in that there is a preliminary 
negotiation phase. 

2. For public encryption operations, the remote station could choose an exponent at 
random from a small preset domain. Because there may be duplicate exponents, this 
means that several batches may have to be solved. If our domain is the set of the k 
smallest primes greater than some initial value (2 t6 q- 1 ?), then a batch of k private 
operations, with randomly chosen exponents, will require up to log k/ log log k 
Batch RSA operations. Choosing a domain of size k 2 means that the expected 
number of batches required is only O(1). 

3. As one may assume that the number of users is polynomial in n, it follows that 
unique exponents can be assigned to each and every remote station, while still 
requiring only polylog(n) multiplications per private operation. This has the addi- 
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tional advantage that the users are completely unaware of the Batch RSA process 
and view the process as though it were standard RSA. A variant of this scheme is 
to map several users (based on account number?) to the same public exponent. 

4. One variant of our scheme would be to use different encryption exponents for every 
encryption or digital signature. For example, the ith prime for the ith operation. 
As long as there are no more than a polynomial number of transactions (in n) then 
both private and public operations would require polylog(n) multiplications. 

8.1. Distributed Batch RSA 

As the Batch RSA merger and split-up phases involve no secret information, this lets us 
use Batch RSA to isolate the private key from the system, irrespective of its size. All 
private transactions can be reduced to one root extraction that can be solved on a weak 
and isolated processor. Every link-encryptor, mainframe, etc., requests one root, these 
roots can be merged again so the entire system is driven by one root extraction. 

Distributed Batch RSA never requires more than n bits transmitted to and from a site, 
thus distributed Batch RSA is very efficient in communications. 

In the context of using RSA for secrecy, it is desirable to ensure security in transit. 
For example, from the link encryptors to the smartcard and back (especially back). To 
do this, we can use the standard Zero-Knowledge trick of multiplying the real value with 
a random value raised to an appropriate power. For example, to extract the seventeenth 
root of a ciphertext C the link encryptor chooses a random value R and computes R 17. C, 
this is then used as input to the distributed Batch RSA process. Within the link encryptor, 
the result R - C 1/17 is divided by R to obtain C 1/17. 

9. Subsequent Related Work 

Batch Diffie-Hellman [5], makes use of the Batch RSA process in a centralized setting. 
This is a version of Diffie-Hellman with a composite modulus, and where the different 
secret exponents used by the central site are equivalent to the root extractions of Batch 
RSA. 

The use of Batch RSA was also suggested in [10] in the context of existentially 
unforgeable signature schemes where they use multiple different roots in the signature 
scheme, suitable for the Batch RSA process. 
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