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Abstract. One of the purported advantages of the elliptic curve cryptosystem proposed 
by Demytko in 1993 is resistance to signature forgery under a chosen message attack. 
Based on a similar result by Bleichenbacher et al. on the LUC cryptosystem, this 
purported advantage is shown not to hold. 
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I. Introduction 

In response to concerns about the multiplicative structure of the RSA cryptosystem [8], 
elliptic curve cryptosystems with a composite modulus have been developed by Koyama 
et al. [4] and Demytko [2]. 

Demytko 's  cryptosystem has the property that only x-coordinates of  points on the 
curve are processed, and, as a result, it is difficult to compute the composition of two 
arbitrary points. This would be required in signature forgery under a straightforward 
adaptation of the multiplicative chosen message attack on RSA. 

2. The Attack 

While arbitrary composition indeed seems difficult, a well-known construction relating 
x-coordinates (see, for instance, [7]) does yield a successful attack: 

4b + 2(a + xixj)(xi + xj) 
Xi+ j : (Xi - -  X j ) 2  - -  Xi--  j .  ( l )  

The construction is also implicit in the derivation of Demytko 's  equation (34). 
Let Xl be a message whose signature is to be forged, and let u and v be chosen such 

that u + v -- 1. Define i = du and j = dr, where d is the private exponent for signing 
the message x~ and its elliptic curve multiples. Then xi is the signature of  x , ;  xj is the 
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signature ofx~; Xi-- j  is the signature ofxu_~; and Xi+ j = X d is the signature ofxu+v = xl. 
A chosen message attack follows directly: given xi the opponent obtains the signatures 

of its multiples x,,  xv, and x,_~, and computes the signature of xl by (1). 
The attack is basically just an adaptation of Bleichenbacher et  a l . ' s  attack on the LUC 

cryptosystem [ 1 ]; their variations of the attack apply here as well. 

3. Conclusions 

The Demytko cryptosystem, like RSA and the Koyama et  aI. cryptosystem [4], is vulner- 
able to signature forgery under a chosen message attack. The chosen message attack can 
also be viewed as a chosen ciphertext attack. It is worth noting, however, that these at- 
tacks are not as general as so-called homomorphism attacks on RSA where the opponent 
manipulates arbitrary combinations of messages. 

Another purported advantage of elliptic curve cryptosystems based on a composite 
modulus--resistance to "low exponent" attacks--has also been recently shown not to 
hold [5]. Thus, the present benefits of elliptic curve cryptosystems based on a composite 
modulus do not seem significiant. 

Elliptic curve cryptosystems based on the discrete logarithm problem [6], [3] are not 
affected by any of the attacks just described, and their benefits, especially the shorter key 
size, remain significant. Further research will establish more accurately the appropriate 
level of confidence in those systems. 
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