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Abstract. In this paper we provide a new cryptographic primitive that generalizes 
several existing zero-knowledge proofs and show that if a language L induces the 
primitive, then there exists a perfect zero-knowledge proof for L. In addition, we present 
several kinds of languages inducing the primitive, some of which are not known to have 
a perfect zero-knowledge proof. 
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1. In troduc t ion  

1.1. Background and Motivation 

A bit commitment is a two-party (interactive) protocol between a sender S and a receiver 
R in which after the sender S commits to a bit b E {0, I} at hand, (1) the sender S 
cannot change his mind; and (2) the receiver R learns nothing about the value of the 
bit b. Bit commitments have diverse applications to cryptographic protocols, especially 

to zero-knowledge proofs (see, e.g., l l0l,  [8], [191, [13], and 131). According to the 
computational power of  senders and receivers, bit commitments can be classified into 
the four possible types shown in Table 1. 

Feige and Shamir [10] used a bit commitment of  Type A to show that any language 
L 6 A/'79 has a two-round perfect zero-knowledge argument (or computationally sound 
proof) whose protocol is a proof of  knowledge. Brassard et al. I81 and Naor et al. [191 
showed that any language L E AfT' has a perfect zero-knowledge argument assuming 
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Table I. Classification of bit commitments. 

Computational power of sender S Computational power of receiver R 

Type A Polynomial-time bounded Polynomial-time bounded 
Type B Polynomial-time bounded Computationally unbounded 
Type C Computationally unbounded Polynomial-time bounded 
Type D Computationally unbounded Computationally unbounded 

the existence of a bit commitment of Type B and Bellare et al. [31 showed that any 
honest verifier statistical zero-knowledge proof for a language L can be transformed to 
a statistical zero-knowledge proof for the language L assuming the existence of  a bit 
commitment  of Type B. Indeed, Naor et al. [ 191 showed that a bit commitment  of  Type B 
with simulatable property can be constructed from any oneway permutation and Bellare 
et al. [3] showed that a bit commitment  of Type B with chameleon property can be 
constructed from the certified discrete logarithm. In addition, Goldreich et al. [ 13] used 
a bit commitment  of Type C to show that any language L E A/'79 has a computational 
zero-knowledge proof. 

For technical reasons, we assume that a bit commitment f is noninteractive, i.e., 
(1) to commit to a bit b E {0, 1}, the sender S randomly chooses r E {0, 1} ~ and sends 
C = f ( b ,  r) to the receiver R; and (2) to decommit to the bit b, S reveals b E {0, 1} 
and r E {0, 1} k such that C = f ( b , r )  and R checks that C = f ( b , r ) .  We use f ( b )  

to denote the distribution over r for each b. Now we look at the properties required to 
noninteractive bit commitments. 

Assume that the sender S is computationally unbounded. If there exist r, s E {0, I }k 
such that f ( 0 ,  r) = f ( l ,  s), then a cheating sender S* chooses r to compute C = f ( 0 ,  r) 
and reveals 1 and s to change his mind. Thus any r, s must satisfy that f ( 0 ,  r)  :fi f ( l ,  s). 
We refer to such a bit commitment f as transparent. Assume that the receiver R is 
computationally unbounded. If the distribution f ( 0 )  is not (almost) identical to the 
distribution f ( l ) ,  i.e., Y~,~10,11' IPr{f(0,  r) = or} - P r{ f ( l ,  s) = a}l is not small, then 
a cheating receiver R* might learn something about the value of the bit b only looking at 
C = f ( b ,  r). Thus the distributions f ( 0 )  and f ( l )  must be (almost) identical. Here we 
refer to such a bit commitment f as opaque. If both the sender S and the receiver R are 
computationally unbounded, then any bit commitment  f must be transparent and opaque, 
however, it is impossible to implement such a bit commitment  algorithmically [20]. This 
implies that there exists inherently no way of designing bit commitments of  Type D. 
Thus the only possible way of doing this is to implement such a (noninteractive) bit 
commitment physically. This is referred to as an envelope [ 13]. Assuming the existence 
of the envelope, Goldreich et al. [13] showed that any language L E A/'79 has a perfect 
zero-knowledge proof and then Ben-Or et al. [4] showed that any language L 6 2"79 has 
a perfect zero-knowledge proof. 

There have been attempts to provide general frameworks to capture known zero- 
knowledge proofs of various kinds. The notion of random self-reducible [2 ! ] has been 
one of the most successful primitives. The goal of this paper is to construct algorithmically 
a bit commitment  of  Type D in a somewhat different setting and to provide an alternative 
framework that generalizes several existing zero-knowledge proofs under a common 
abstraction. 
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1.2. Resul~ 

In this paper we consider the following framework: Let L c {0, 1 }* be a language. The 
function ft. is allowed to have an additional input x 6 {0, 1 }*, and we let fL(x, b) be 
the distribution over r c {0, 1 }kll~l~ for each b c {0, 1 }. Informally, the function fL is 
positively (resp. negatively) opaque if, for every x E L (resp. x r L), the distribution 
fL (x, 0) is identical to the distribution fL (X, 1) and the function fL is positively (resp. 
negatively) transparent if, for every x 6 L (resp. x ~' L), the distribution fL(x, 0) is 
disjoint from the distribution f L (x, 1 ). 

We first present several examples of languages that induce positively opaque and neg- 
atively transparent functions. It should be noted that every known random self-reducible 
language, e.g., graph isomorphism, quadratic residuosity, multiplicative subgroup (g)p 
of Zp, etc., induces positively opaque and negatively transparent functions, but some 
examples of languages given in this paper might not be random self-reducible. 

We then show that languages inducing positively opaque and negatively transparent 
functions have zero-knowledge proofs, i.e., 

Theorem 4.3. If a language L induces a positively opaque and negatively transparent 
funtion, then there exists a prover-practical unbounded round perfect zero-knowledge 
proof for L. 

The prover-practical proof [7] is an interactive proof for a language L 6 .AfT ~ in 
which the honest prover P runs in probabilistic polynomial time provided some trapdoor 
information on input x 6 L is initially written on the private auxiliary tape of P. It is 
known that any random self-reducible language has a prover-practical bounded round 
perfect zero-knowledge proof [21], [2]. The notion of prover-practical is useful for 
applications. In particular, prover-practical zero-knowledge proofs for A/79-complete 
languages are desirable for practical purposes, however, some unproven assumptions 
are required to construct such proofs (computational zero-knowledge proofs) for iV'7 ~- 
complete languages (see, e.g., [5] and [13]). Thus Theorem 4.3 provides an alternative 
framework (to random self-reducible languages) to construct prover-practical perfect 
zero-knowledge proofs without any unproven assumption. 

We finally show that languages inducing positively transparent and negatively opaque 
functions have zero-knowledge proofs, i.e., 

Theorem 4.5. If a language L induces a positively transparent and negatively opaque 
function, then there exists a bounded round perfect zero-knowledge proof for L. 

Every language whose complement is known to be random self-reducible induces 
a positively transparent and negatively opaque function but the exmples of languages 
inducing positively transparent and negatively opaque functions include ones that do not 
seem to be random self-reducible. Thus Theorem 4.5 can be regarded as the generalization 
of the zero-knowledge proof for'quadratic nonresiduosity [16] or graph nonisomorphism 
[13l. 
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2. Preliminaries 

Let L c {0, 1}* be a language and let k be a polynomial. Assume that fL(x, b, r) is a 
polynomial (in Ixl) time computable function for any b ~ {0, 1} and any r ~ {0, 1 }k~t~l~. 
We use ft. (x, b) to denote the distribution over r for each b. 

Definition 2.1. Let L be a language. A function ft. is positively (resp. negatively) 
opaque if, for each x ~ L (resp. x f/L),  fL(x, 0) is identical to fL(x, 1). 

Definition 2.2. Let L be a language. A function fL is positively (resp. negatively) 
transparent if, for each x ~ L (resp. x ~ L), there do not exist r, s such that ft. (x, 0, r) = 
ft.(x, t, s). 

Definition 2.3. A language L induces a positively opaque and negatively transparent 
(resp. positively transparent and negatively opaque) function if there exists fL that is 
positively opaque and negatively transparent (resp. positively transparent and negatively 
opaque). 

The positively opaque and negatively transparent property guarantees that, for every  
x ~ L, any all powerful cheating receiver R* cannot guess better than at random the value 
of the bit b c {0, 1 } after receiving a random point from the distribution fL (x, b) and, for 
every x ~' L, any all powerful cheating sender S* cannot change his mind after sending 
any point from the distribution fL (x, b). From Definitions 2. i and 2.2, it follows that, for 
any language L inducing a positively opaque and negatively transparent function, x ~ L 
iff there exist r, s such that fL(x, 0, r) --- fL(x, 1, s). Thus any language L inducing a 
positively opaque and negatively transparent function is in AfT ~. 

Contrary to the positively opaque and negatively transparent property, the positively 
transparent and negatively opaque property guarantees that, for every x e L, any all 
powerful cheating sender S* cannot change his mind after sending any point from the 
distribution fL(x, b) and, for every x ~' L, any all powerful cheating receiver R* cannot 
guess better than at random the value of the bit b ~ {0, 1 } after receiving a random 
point from the distribution fL(x, b). From Definition 2.3, it is obvious that a language L 
induces a positively transparent and negatively opaque function iff/_, (the complement 
of L) induces a positively opaque and negatively transparent function. This implies that 
L is in co-.N'7 ~. 

Definition 2.4 [16]. An interactive protocol (P, V) is an interactive proof for a lan- 
guage L if there exists a verifier V (called the honest verifier) that satisfies the following: 

�9 Completeness: there exists a prover P (called the honest prover) such that, for every 
k > 0 and all but finitely many x ~ L, (P, V) halts and accepts x with probability 
at least 1 - Ix I -k, where the probabilities are taken over the coin tosses of P and V. 

�9 Soundness: for every k > 0, all but finitely many x ~ L, and any prover P*, (P*, V) 
halts and accepts x with probability at most Ix l -k, where the probabilities are taken 
over the coin tosses of P* and V (the prover when x r L is usually called a cheating 
prover). 
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Note that P is computationally unbounded while V is probabilistic polynomial (in Ix I) 
time. 

For an interactive proof (P, V) on common input x, we use (P, V)(x) to denote the 
distribution over the coin tosses of  P and V. For a probabilistic Turing machine M on 
input x, we use M (x) to denote the distribution over the coin tosses of M. Now we present 
a formal definition of  blackbox simulation zero-knowledge. In the rest of this paper we 
assume that a term "'zero-knowledge" implies "blackbox simulation" zero-knowledge. 

Definition 2.5 [141. An interactive proof (P, V) for a language L is (blackbox sim- 
ulation) perfect zero-knowledge if there exists a probabilistic polynomial-time Turing 
machine M such that, for any (cheating) verifier V* and all but finitely many x E L, the 
distribution M(x; V*) is identical to the distribution (P, V*)(x), where M(.; A) denotes 
a Turing machine with blackbox access to a Turing machine A. 

For practical purposes, Boyar et al. 17] defined a notion of prover-practical (zero- 
knowledge) interactive proof. 

Definition 2.6 [7]. An interactive proof (P, V) for a language L E A/'7 9 is prover- 
practical if the honest prover P runs in probabilistic polynomial time provided some 
trapdoor information on input x E L is initially written on the private auxiliary tape 
of  P. 

For each language L E .AfT ~, we use pt, to denote a polynomial-time computable 
predicate that witnesses L E AFT', i.e., x E L iff there exists w such that pL(x, w) = 1. 
Let A, B E A/'7 9 and let g be a reduction from A to B, i.e., g is a polynomial-time 
computable function such that x c A iff g(x) E B. Then the following is essential to 
show Theorems 4.3 and 4.5. 

Definition 2.7. Let A, B E AfT' and let pa, pn be the defining predicates of  A, B, 
respectively. A reduction g from A to B is witness-prese~wing (with respect to PA, 
PS) if there exists a polynomial-time computable function h that given w such that 
pA(X, W) = 1 for each x E A, h(x, w) satisfies that pu(g(x),  h(x, w)) = 1. 

Definition 2.8. Let A, B E A/79 and let PA, PB be the defining predicates of A, B, 
respectively. A reduction g from A to B is polynomial-time invertible (with respect to 
PA, Pt~) if there exists a polynomial-time computable function y that given w' such that 
pB(g(x), w') = 1 for each x E A, y(g(x) ,  w') satisfies that pA(X, y(g(x) .  W')) = 1. 

3. Examples 

It is obvious from Definition 2.3 that L induces a positively transparent and negatively 
opaque function iff / ,  (the complement of L) induces a positively opaque and negatively 
transparent function. Thus we only exemplify several languages that induce positively 
opaque and negatively transparent functions. 
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Let G = (V, Ec,) and H = (V, EH) be graphs. We use G -~ H to imply that G 
is isomorphic to H, i.e., there exists a permutation rr on V such that (u, v) �9 Ec, iff 
(Jr(u), zr(v)) �9 EH. 

Definition 3.1. Universal Graph Isomorphism Tuple (UGIT) is the language of graph 
tuples. 

U G I T =  { (h, (G~ G'l), (G~ G~) . . . . .  (G~ G~)) ] ~ [ G ~  ' i =  

where h is a positive integer. 

Definition 3.2. Existential Graph Isomorphism Tuple (EGIT) is the language of graph 
tuples. 

E G I T =  { (h, (G~ GI), (G~ G{) . . . . .  (GO'G]')) i=~/ [G~ ~- G]]} ' 

where h is a positive integer. 

It is obvious that UGIT and EGIT are graph isomorphism when h = I. 

Definition 3.3. cMODd is the language of integers N having the following property. If 
et e2 eh N = Pl Pz " ' ' P h  isthe factorization of N, then Pi =-- c(mod d) for each i (1 < i < h). 

In the following we show that the languages UGIT, EGIT, and IMOD4 induce posi- 
tively opaque and negatively transparent functions fuo ' r ,  fE61V, and f l  MOD4, respectively. 

Proposi t ion 3.4. UGIT induces a positively opaque and negatively transparent func- 
tion. 

Proof.  Fo rx  = (h, (G ~ Gil), (G ~ G~) . . . . .  (G ~ G~)), let Vi (1 < i < h) be a set of  
vertices for G O and G) and let b �9 {0, 1}. Here we define a function fu~rr  for UGIT as 
follows: 

fUGXT(X, b. (~l, rrh)) (rtl (G~) . . . .  l, . . . .  = , Zrh (Gh)), 

where 7ri is a random permutation on Vi (1 < i < h). 
Assume that x �9 UGIT. It follows from Definition 3.1 that G O _~ G~ for each i 

(I < i 5 h). Then the distribution fUoT(X,0)  over rrl . . . . .  7rh is identical to the 
distribution ft;OT(X, 1) over Jrl . . . . .  rrh. Thus fUGIT is positively opaque. Assume that 
x ~' UGIT. It follows from Definition 3.1 that there exists an i0 such that G O ~ GI, ,. 10 
This implies that rrio(G~) ~ ~pi,,(GI, ,) for any permutations r%, ~oio on Vi,r Then 

fUGIT(X, 0, (~l . . . . .  ~h))  =~= fUG[T( X, 1, (~1 . . . . .  ~0h)), 

for any permutations 7fi, ~i o n  W i. Thus fUGIT is negatively transparent. [] 
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For h = 1, the idea of Proposition 3.4 is inspired by existing protocols. This traces 
back to the protocol for graph isomorphism [ 13] to some extent but is more apparently 
influenced by the protocol for graph isomorphism [2] in which the bit commitment 
based on the graph isomorphism is fairly explicitly used. For every known random 
self-reducible language, e.g., quadratic residuosity, multiplicative subgroup (g)p of Z~,, 
etc., we can define a language similar to UGIT and thus we can show in a way similar 
to Proposition 3.4 that such a language induces a positively opaque and negatively 
transparent function. 

Proposit ion 3.5. EGIT induces a positively opaque and negative transparent function. 

Proof. L e t x = ( h , ( G ~ 1 7 6  . . . . .  (G~  < i  < h )  b e a s e t o f  
vertices for G O and G~, and let b E {0, 1 }. Here we define a function fEC, lr for EGIT as 
follows: 

el h ) fEGIT(X,b, ((el . . . . .  eh), (zrl . . . . .  Zrh))) = b ~ ei , r r l (G I ) . . . . .  :rrh(G~ , 

where ei E {0, 1 } is a random bit and zri is a random permutation on Vi (1 < i < h). 
Assume that x 6 EGIT. It follows from Definition 3.2 that there exists an io such 

that G~ ~_ G~,. Then the distribution of random isomorphic copies of G O is iden- 
10 l0 

tical to that of random isomorphic copies of  G~,. This implies that the distribution 
fEo+(x ,  0) over el . . . . .  eh, zrl . . . . .  rrh is identical to the distribution fECI+(X, 1) over 
el . . . . .  eh, rq . . . . .  nh. ThUS fEc, rr is positively opaque. Assume that x ~' EGIT. It fol- 
lows from Definition 3.2 that, for each i (1 < i < h), G O ;~ G]. Then, for any el, 

di c {0, 1 } and any permutations zri, ~0i on Vi, 

fEOT(X, O, ((el . . . . .  eh), (7rl . . . . .  7rh) ) ) ~ fEoT(X,  I, ( (dl . . . . .  dh), (qol . . . . .  ~Oh) ) ). 

Thus fEGIT is negatively transparent. [] 

Again, for every known random self-reducible language, we can define a language 
similar to EGIT and thus we can show in a way similar to Proposition 3.5 that such a 
language induces a positively opaque and negatively transparent function. 

Proposit ion 3.6. I MOD4 induces a positively opaque and negatively transparent 
function. 

el pC2 eh Proof. Le tx  = Pl  2 " ' ' P h  be the prime factorization and let b ~ {0,1]. Here we 
define a function flMOD4 for IMOD4 as follows: f lMO~(X, b, r )  ---- (--1)brZ(modx), 
where r is randomly chosen from Z*. Note that - 1 is a quadratic residue modulo x i f f  
x E IMOD4. 

Assume that x E IMOD4. From Definition 3.3 and the fact that -1  is a quadratic 
residue modulo x, it follows that, for any b and r, fJMOD4(x, b, r) is a quadratic residue 
modulo x. This implies that the distribution flMOO4(X, 0) over r C Z~ is identical to the 
distribution fIMOD4(X, I) over r a Z*. Thus f~MOD4 is positively opaque. Assume that 
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x r 1MOD4. From Definition 3.3 and the fact that - 1 is a quadratic nonresidue modulo 
x, it follows that, for any r ~ Z*, flMOIM(X, b, r) =- (--I)br2(modx) is a quadratic 
residue modulo x • = 0. Then, for any r, s ~ Z*, fIMODa(x, 0, r) :# fIMOD4(X, 1, S). 
Thus f ,  MOD4 is negatively transparent. [] 

It is not difficult to show that (I) 2 ~ Z~v is a quadratic residue modulo N if and 
only if N E •  (2) 3 ~ Z~v is a quadratic residue modulo N if and only if 
N ~ •  and (3) 5 6 Z~v is a quadratic residue modulo N if and only if 
N 6 + 1MOD5. Then in a way similar to Proposition 3.6, we can show the following: 

Proposition 3.7. + 1MOD8, • 1MOD 12, and • 1MOD5 induce positively opaque and 
negatively transparent functions f+IMODS, f+e~OD12, and f+lMOnS, respectively. 

4. Main Results 

4.1. Positively Opaque and Negatively Transparent Functions 

Assume that a language L induces a positively opaque and negatively transparent function 
fL. Now we consider the following interactive protocol (A, B) for L: Let x ~ {0, 1 }* 
be a common input to (A, B). (AI)  A randomly chooses b 6 {0, 1}, r 6 {0, l} k(l~l~, 
and sends a = fL (x ,b , r )  to B; (BI)  B randomly chooses e 6 {0, 1} and sends e to 
A; (A2) A sends B a  ~ {0, 1} k(txt) such that a = fL(x, e, ~r); and (B2) B checks that 
a = fL(x, e, e). After n = Ixl independent invocations from step A1 to step B2, B 
accepts x iff every check in step B2 is successful. 

From the fact that fL is positively opaque and negatively transparent, ww can show 
the following in almost the same way as the case of  random self-reducible languages 
[21]. 

Theorem 4.1. l f  a language L induces a positively opaque and negatively transparent 
function, then there exists an unbounded round perfect zero-knowledge proof for L. 

As an immediate corollary to Theorem 4.1, we can show the following: 

Corol lary  4.2 (to Theorem 4.1). Any .A/'79-complete language does not induce a 
positively opaque and negatively transparent function unless the polynomial hierarchy 
collapses. 

Proof. Fortnow [1 1] showed that if a language L has a statistical zero-knowledge 
proof, then L ~ co-.A.M 1 and Boppana et al. [6] showed that if co-A/'79 _ .AM, 
then the polynomial-time hierarchy collapses. The corollary follows from these and 

Theorem 4. i. [] 

i Goldreich et al. [ 151 pointed out that the proof of the result by Fortnow [ 11 ] has a flaw. Aiello and Hhstad 
[1] contains a proof of that claim. 
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In the protocol (A, B), however, A needs to evaluate cr E {0, I} k(Ixl) such that 
a = ft. (x, e, or) for each iteration. Thus, in general, (A, B) could not be prover-practical. 
In this subsection we show a stronger result, i.e., L has a prover-practical perfect zero- 
knowledge proof. The protocol given below generalizes the protocol for graph isomor- 
phism 113] and indeed coincides with it in the case of L being UGIT with h = I. 

T h e o r e m  4.3. I f  a language L induces a positively opaque and negatively transparent 
function, then there exists a prover-practical unbounded round perfect zero-knowledge 
proof for  L. 

Proof.  Since the language L induces a positively opaque and negatively transparent 
function ft., L E A/'7 9 (see Definition 2.3). Let x e {0, 1}* be a common input to 
(P,  V). Fix a polynomial-time computable function gL that reduces L to the directed 
Hamiltonian cycle (DHAM), i.e., x e L iff gt.(x) ~ DHAM. Here we overview the 
outline of the interactive protocol (P, V) for L. P and V first reduce L to DHAM via 
the function gL and then execute the zero-knowledge proof for DHAM [5] using (as a bit 
commitment) the positively opaque and negatively transparent function fL. Recall that 
the prover uses a transparent bit commitment  in the zero-knowledge proof for DHAM 
[5]. Then the transparent property of the bit commitment guarantees the soundness of 
the protocol, but the protocol is only computational (not perfect) zero-knowledge. For 
specificity, here we choose the zero-knowledge proof for DHAM but the ones for any 
other .A/'T~-complete language would work. 

Interactive Protocol (P, V) for L 

common input: x E {0, 1}*. 

Initial: 

PI - I :  

PI-2: 
P---~ V: 

VI:  
V - + P :  

P2-1: 
P2-2: 

P--~ V: 
V2-1: 

V2-2: 

P and V reduces L to DHAM via the function gL, i.e., G = gL(x). Let 
AG = (aij) be the adjacency matrix of  G = (V, E) and let n --- IVI. 
P randomly chooses sij E {0, 1 }k~rxl) and a permutation Jr on V (1 < i, j < 
n). 
P computes Cij = f L ( X ,  ajroIJr(j) ,  S i j ) .  

C =  (cij) (l < i , j  < n ) .  
V randomly chooses e E {0, 1 }. 
e. 

For e = 0, P assigns (rr, sll ,  S~2 . . . . .  S,,n) to W. 
For e = !, P assigns ((il, j l ) ,  (iz. j2) . . . . .  (in, jn), si,j,, si:j. . . . . .  si, j,,) to 
w such that (il, j l ) ,  (i2, j2) . . . . .  (i,,, jn) is a single cycle. 
/13. 

Fore  = 0, V checks thatcij = fL(x ,  aTr(i)~r(j), sij) for each i, j (1 < i, j < 
n). 
For e = 1, V checks that (ij, j l ) ,  (i2, j2) . . . . .  (in, jn) is indeed a single 
cycle and that ci,,j,, = fL(x ,  I,si,,j,,) for each m (1 < m < n). 

After n independent invocations from step P 1-1 to step V2-2, V accepts x iff every check 
in step V2-1 and step V2-2 is successful. 



46 Toshiya hoh, Yuji Ohta. and Hiroki Shizuya 

In a way similar to the zero-knowledge proof for DHAM [5], we can show that the 
protocol (P, V) is a prover-practical perfect zero-knowledge proof for L. The complete- 
ness and prover-practicality are obvious. The soundness follows from the fact that fL is 
negatively transparent. The perfect zero-knowledgeness follows from the fact that fL is 
positively opaque. [] 

For a language L E A/P, let Pt, be the defining predicate of L. Define relation RL to 
be (x, y) ~ RL iff pL(x, y) = i. Then we can show the following: 

Corollary 4,4 (to Theorem 4.3). If  a language L induces a positively opaque and 
negatively transparent function, then there exists a perfect zero-knowledge proof of  
knowledge for RL. 

Proof. This follows from the fact that the reduction from any L E A/7 9 to DHAM is 
witness-preserving and polynomial-time invertible. [] 

4.2. Positively Transparent and Negatively Opaque Functions 

Here we consider the case contrary to Theorem 4.3, i.e., the case that L induces a 
positively transparent and negatively opaque function (see Definition 2.3), and show 
that if a language L induces a positively transparent and negatively opaque function, 
then there exists a bounded round perfect zero-knowledge proof for L. The protocol 
given below generalizes a constant round perfect zero-knowledge proof for quadratic 
nonresiduosity [ 16], graph nonisomorphism [ i 3], and the complement of random self- 
reducible languages [211. 

Theorem 4.5. l f  a language L induces a positively transparent and negatively opaque 
function, then there exists a two-round perfect zero-knowledge proof for L. 

Proof. Let L be a language that induces a positively transparent and negatively opaque 
function fL. Let x 6 {0, 1}* be a common input to (P, V). Here we overview the 
outline of the interactive protocol (P, V) for L. For each i (1 _< i _< Ixl), V randomly 
choose s  ei E {0, !}, ri E {0, l} kllxl), and computes o~i = fL(x,  el, ri). Then V defines 
the following A/P-statement, 

3 e l ,  e2 . . . .  , e l x l 3 r l , r 2 , . . . , r l x  I s.t. 

]-rl 

A ~ti = fL (X, ei, ri). 
i=1 

(1) 

Fix a polynomial-time computable function g that reduces the A/T~-statement of (1) to 
DHAM G = (V, E), i.e., G = g(al . . . . .  ~lxl)' Let H be a Hamiltonian cycle of G. 
From the witness-preserving property of the reduction from any L c A/'T' to DHAM, 
there exists a polynomial-time computable function h that satisfies 

H = h((cq . . . . .  ulxl), (el . . . . .  elxl; rl . . . . .  rlxl)). 

Then V generates polynomially many random copies isomorphic to G and commits 
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to them with the positively transparent and negatively opaque function fL. After these 
preliminary steps, V shows P that V knows the Hamiltonian cycle H of G. If V succeeds 
in convincing P,  then P shows V that P knows el, e2 . . . . .  elx I. 

The idea behind the protocol is almost the same as that of the perfect zero-knowledge 
proof for graph nonisomorphism [ 13]. Recall that the verifier uses a positively transparent 
and negatively opaque bit commitment  in the perfect zero-knowledge proof for graph 
nonisomorphism [13].'Then the positively transparent and negatively opaque properties 
of  the bit commitment  guarantee the completeness and the soundness of  the protocol, 
respectively. The perfect zero-knoweldgeness follows from the positively transparent 
property of  the bit commitment.  

V I - I :  
V1-2: 
V1-3: 

V1-4: 
V1-5: 

V1-6: 

V1-7: 

V ---> P: 

PI: 
P---> V: 

V2-1: 
V2-2: 

V---~ P: 
P2-1: 

P2-2: 

P2-3: 

P2-4: 

P---> V: 
V3: 

Interactive Protocol (P, V) for L 

common input: x c {0, !}*. '  

V randomly chooses ei E {0, 1} andri  ~ {0, 1} k(Ixl) fo reach i  (1 < i < Ixl). 
V computes 0"i = fL(X, ei,  ri) .  
V computes G = g ( 0 " l ,  0 '2 . . . . .  0"lxl) ,  i.e., V reduces the N'79-statement o f  
(1) to DHAM G = (V, E). Le tn  = IV]. 
V defines an adjacency matrix Aa = (ai j )  of G. 
V computes H = h( (a l ,  a2 . . . . .  0"lxl),  (el, e2 . . . . .  elxl; rl ,  r2 . . . . .  r l x l ) ) ,  

where H is one of the Hamiltonian cycles of  G. 
V randomly chooses a permutation Jre on V (1 < ~ _< n:)  and s~j c 
{0, 1} k(Ixl) (1 < i, j < n). 

V computes c~j = fL(x ,  a~,(i)~,(j), siej). 

(0"t, 0"2, ,0"Ixl>, <(c:j), (c2), : . . . . . . .  ( C i j ) )  (1 < i, j < n). 
P randomly chooses be ~ {0, 1} for each ~ (1 < ~ < n2). 
(bl, b2 . . . . .  bn2). 
If be = 0 (1 < ~ < n2), V assigns (zre, sfl, sf2 . . . . .  s~n) to we. 
If be = 1 (1 < ~ < n2), V assigns 
((if, je) ,  (if, ~e), (in e, j,~), s.ee .~, s~e .~ , . . . ,  s~ : )  to we such that 

J 2  " " " ~ l l J  I 1 2 J  2 g n J n  

(if, ' Jl ), (i2 e, Jz;e), . . . ,  (ie, je) is a single cycle: 
( W l ,  W2 . . . . .  Wn2 ) • 

P computes G = g(oq, a2 . . . . .  0"1~1) and an adjacency matrix Aa  = (ai j)  
of G. 
For each be '-- 0 (1 < e < n2), if c~j = fL(x ,  a~,(i)~dj>, s:j) for each i, j 
(1 < i, j < n), then P continues; otherwise P halts and rejects x c {0, 1}*. 
For each be 1 (1 < e < n2), if (if, jig), (if, j~), .e .e = . . . .  (t~, j~) is indeed a 
single cycle and c. e, .e = fL (x, 1, s:; m m ~,.:~ j~) for each (1 < < n), then P 

continues; otherwise P halts and rejects x. 
If  there exist/~i E {0 ,  1} and ti E {0; 1} k(Ixl) such that 0"i = fL(x ,  fli, t i) for 
every i (1 < i < Ixl), then P continues; otherwise P halts and rejects x. 

(/~,/~2 . . . . .  /~I~I). 
If  t~i = ei for every i (1 < i < Ixl), then V halts and accepts x; otherwise 
V halts and rejects x. 
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In a way similar to the perfect zero-knowledge proof for graph nonisomorphism [ 1 3], 
we can show that the protocol (P, V) is a two round perfect zero-knowledge proof 
for L. The completeness follows from the fact that f~. is positively transparent and the 
soundness follows from the fact that ft. is negatively opaque and the fact that V's proof of 
knowledge on the Hamiltonian cycle H of G is perfectly witness indistinguishable [10]. 
The perfect zero-knowledgeness follows from the fact that fL is positively transparent 
and that fact that the reduction g from the A/'79-statement of ( 1 ) to DHAM is polynomial- 
time invertible. [] 

5. Concluding Remarks 

From Theorem 4.3, it follows that any language inducing a positively opaque and neg- 
atively transparent function has an unbounded round perfect zero-knowledge Arthur-  
Merlin proof. This could be improved, however, because, from Definition 2.3, any 
language inducing a positively opaque and negatively transparent function is in AFT', 
i.e., any language inducing a positively opaque and negatively transparent function has 
an A/'79-proof [ 1 6]. Indeed, UGIT and EGIT are polynomial-time many-one reducible to 
graph isomorphism [9], [ 1 7], [ 1 8], and graph isomorphism has a bounded round perfect 
zero-knowledge proof [2]. Then: 

1. If a language L induces a positively opaque and negatively transparent function, 
then does there exist a bounded round perfect zero-knowledge proof for L? 

To affirmatively solve this question, a verifier will have to flip private coins, because 
Goldreich and Krawczyk [ 1 2] showed that there exists a bounded round zero-knowledge 
Arthur-Merlin proof for a language L, then L c/3797 9. 

Every known random self-reducible language, e.g., graph isomorphism, quadratic 
residuosity, multiplicative subgroup (g)p o f  Zp, etc., induces a positively opaque and 
negatively transparent function, however, it is not known whether every random self- 
reducible language induces a positively opaque and negatively transparent function. 
Then: 

2. Does every random self-reducible language induce a positively opaque and nega- 
tively transparent function? 
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