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Abstract. In this paper we provide a new cryptographic primitive that gencralizes
several existing zero-knowledge proofs and show that if a language L induces the
primitive, then there exists a perfect zero-knowledge proof for L. In addition, we present
several kinds of languages inducing the primitive, some of which are not known to have
a perfect zero-knowledge proof.
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1. Introduction

1.1. Background and Motivation

A bit commitment is a two-party (interactive) protocol between a sender S and a receiver
R in which after the sender S commits to a bit b € {0, 1} at hand, (1) the sender §
cannot change his mind; and (2) the receiver R learns nothing about the value of the
bit b. Bit commitments have diverse applications to cryptographic protocols, especially
to zero-knowledge proofs (see, e.g., [10], {8], [19], [13], and [3]). According to the
computational power of senders and receivers, bit commitments can be classified into
the four possible types shown in Table 1.

Feige and Shamir [10] used a bit commitment of Type A to show that any language
L € NP has a two-round perfect zero-knowledge argument (or computationally sound
proof) whose protocol is a proof of knowledge. Brassard et al. [8] and Naor et al. [19]
showed that any language L € NP has a perfect zero-knowledge argument assuming
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Table 1. Classification of bit commitments.

Computational power of sender § Computational power of receiver R
Type A Polynomial-time bounded Polynomial-time bounded
Type B Polynomial-time bounded Computationally unbounded
Type C Computationally unbounded Polynomial-time bounded
Type D Computationally unbounded Computationally unbounded

the existence of a bit commitment of Type B and Bellare et al. [3] showed that any
honest verifier statistical zero-knowledge proof for a language L can be transformed to
a statistical zero-knowledge proof for the language L assuming the existence of a bit
commitment of Type B. Indeed, Naor et al. [ 19] showed that a bit commitment of Type B
with simulatable property can be constructed from any oneway permutation and Bellare
et al. [3] showed that a bit commitment of Type B with chameleon property can be
constructed from the certified discrete logarithm. In addition, Goldreich et al. [13] used
a bit commitment of Type C to show that any language L € AP has a computational
zero-knowledge proof.

For technical reasons, we assume that a bit commitment f is noninteractive, i.e.,
(1) to commit to a bit b € {0, 1}, the sender S randomly chooses r € {0, 1}* and sends
C = f(b.r) to the receiver R; and (2) to decommit to the bit b, S reveals b € {0, 1}
and r € {0, 1)* such that C = f(b,r) and R checks that C = f(b,r). We use f(b)
to denote the distribution over r for each 6. Now we look at the properties required to
noninteractive bit commitments.

Assume that the sender S is computationally unbounded. If there exist r, s € {0, 1}*
such that £(0, r) = f(1, 5), then a cheating sender S* chooses r to compute C = f(0, r)
and reveals 1 and s to change his mind. Thus any r, s must satisfy that £ (0, r) # f(1,s).
We refer to such a bit commitment f as transparent. Assume that the receiver R is
computationally unbounded. If the distribution f(0) is not (almost) identical to the
distribution f(1), i.e., Zae[()‘”. {Pr{f(0,r) = a} — Pr{f(1.5) = a}| is not small, then
a cheating receiver R* might learn something about the value of the bit b only looking at
C = f(b,r). Thus the distributions f(0) and f(1) must be (almost) identical. Here we
refer to such a bit commitment f as opaque. If both the sender S and the receiver R are
computationally unbounded, then any bit commitment f must be transparent and opaque,
however, it is impossible to implement such a bit commitment algorithmically [20]. This
implies that there exists inherently no way of designing bit commitments of Type D.
Thus the only possible way of doing this is to implement such a (noninteractive) bit
commitment physically. This is referred to as an envelope [13]. Assuming the existence
of the envelope, Goldreich er al. [13] showed that any language L € N'P has a perfect
zero-knowledge proof and then Ben-Or et al. [4] showed that any language L € Z'P has
a perfect zero-knowledge proof.

There have been attempts to provide general frameworks to capture known zero-
knowledge proofs of various kinds. The notion of random self-reducible [21] has been
one of the most successful primitives. The goal of this paper is to construct algorithmically
a bit commitment of Type D in a somewhat different setting and to provide an alternative
framework that generalizes several existing zero-knowledge proofs under a common
abstraction.
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1.2. Results

In this paper we consider the following framework: Let L < {0, 1}* be a language. The
function fj is allowed to have an additional input x € {0, 1}*, and we let f; (x, b) be
the distribution over r € {0, l]""-"" for each b € {0, 1}. Informally, the function f;, is
positively (resp. negatively) opaque if, for every x € L (resp. x € L), the distribution
fi(x.0) is identical to the distribution f; (x, 1) and the function f; is positively (resp.
necgatively) transparent if, for every x € L (resp. x ¢ L), the distribution f; (x, 0) is
disjoint from the distribution f; (x, 1).

We first present several examples of languages that induce positively opaque and neg-
atively transparent functions. It should be noted that every known random self-reducible
language, e.g., graph isomorphism, quadratic residuosity, multiplicative subgroup (g),
of Z7, etc., induces positively opaque and negatively transparent functions, but some
examples of languages given in this paper might not be random self-reducible.

We then show that languages inducing positively opaque and negatively transparent
functions have zero-knowledge proofs, i.e.,

Theorem 4.3. Ifa language L induces a positively opaque and negatively transparent
funtion, then there exists a prover-practical unbounded round perfect zero-knowledge

proof for L.

The prover-practical proof 7] is an interactive proof for a language L € NP in
which the honest prover P runs in probabilistic polynomial time provided some trapdoor
information on input x € L is initially written on the private auxiliary tape of P. It is
known that any random self-reducible language has a prover-practical bounded round
perfect zero-knowledge proof [21], [2]. The notion of prover-practical is useful for
applications. In particular, prover-practical zero-knowledge proofs for A'P-complete
languages are desirable for practical purposes, however, some unproven assumptions
are required to construct such proofs (computational zero-knowledge proofs) for NP-
complete languages (see, e.g., [5] and [13]). Thus Theorem 4.3 provides an alternative
framework (to random self-reducible languages) to construct prover-practical perfect
zero-knowledge proofs without any unproven assumption.

We finally show that languages inducing positively transparent and negatively opaque
functions have zero-knowledge proofs, i.e..

Theorem 4.5. [falanguage L induces a positively transparent and negatively opaque
function, then there exists a bounded round perfect zero-knowledge proof for L.

Every language whose complement is known to be random self-reducible induces
a positively transparent and negatively opaque function but the exmples of languages
inducing positively transparent and negatively opaque functions include ones that do not
scem to be random self-reducible. Thus Theorem 4.5 can be regarded as the generalization
of the zero-knowledge proof forquadratic nonresiduosity [16] or graph nonisomorphism
[13].
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2. Preliminaries

Let L C {0, 1}* be a language and let & be a polynomial. Assume that f; (x,b,r)is a
polynomial (in |x|) time computable function for any b € {0, 1} and any r € {0, 1}{*D,
We use f (x, b) to denote the distribution over r for each b.

Definition 2.1. Let L be a language. A function f; is positively (resp. negatively)
opaque if, for each x € L (resp. x € L), fi (x, 0) is identical to f; (x, 1).

Definition 2.2. Let L be a language. A function f; is positively (resp. negatively)
transparent if, foreach x € L (resp. x ¢ L), there do notexistr, s suchthat f; (x,0,r) =

fr(x,1,5).

Definition 2.3. A language L induces a positively opaque and negatively transparent
(resp. positively transparent and negatively opaque) function if there exists f; that is
positively opaque and negatively transparent (resp. positively transparcnt and negatively
opaque).

The positively opaque and negatively transparent property guarantees that, for every”
x € L, any all powerful cheating receiver R* cannot guess better than at random the value
of the bit b € {0, 1} after receiving a random point from the distribution f; (x, b) and, for
every x ¢ L, any all powerful cheating sender S* cannot change his mind after scnding
any point from the distribution f; (x, b). From Definitions 2.1 and 2.2, it follows that, for
any language L inducing a positively opaque and negatively transparent function, x € L
iff there exist r, s such that f; (x,0,r) = fi(x, 1,s). Thus any language L inducing a
positively opaque and negatively transparent function is in AP,

Contrary to the positively opaque and negatively transparent property, the positively
transparent and negatively opaque property guarantees that, for every x € L, any all
powerful cheating sender $* cannot change his mind after sending any point from the
distribution f; (x, b) and, for every x ¢ L, any all powerful cheating receiver R* cannot
guess better than at random the value of the bit b € {0, 1} after receiving a random
point from the distribution f; (x, ). From Definition 2.3, it is obvious that a language L
induces a positively transparent and negatively opaque function iff L (the complement
of L) induces a positively opaque and negatively transparent function. This implies that
L is in co-NP.

Definition 2.4 [16].  An interactive protocol (P, V) is an interactive proof for a lan-
guage L if there exists a verifier V (called the honest verifier) that satisfies the following:

e Completeness: there exists a prover P (called the honest prover) such that, for every
k > 0 and all but finitely many x € L, {P, V) halts and accepts x with probability
atleast 1 — |x |"‘ , where the probabilities are taken over the coin tosses of P and V.

o Soundness: forevery k > 0, all but finitely many x ¢ L, and any prover P*, (P*, V)
halts and accepts x with probability at most |x| =%, where the probabilities are taken
over the coin tosses of P* and V (the prover when x € L is usually called a cheating
prover).
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Note that P is computationally unbounded while V' is probabilistic polynomial (in {x|)
time.

For an interactive proof (P, V) on common input x, we use (P, V)(x) to denote the
distribution over the coin tosses of P and V. For a probabilistic Turing machine M on
input.x, we use M (x) to denote the distribution over the coin tosses of M. Now we present
a formal definition of blackbox simulation zero-knowledge. In the rest of this paper we
assume that a term “zero-knowledge” implies “blackbox simulation” zero-knowledge.

Definition 2.5 [14]. An interactive proof (P, V) for a language L is (blackbox sim-
ulation) perfect zero-knowledge if there exists a probabilistic polynomial-time Turing
machine M such that, for any (cheating) verifier V* and all but finitely many x € L, the
distribution M (x; V*) is identical to the distribution (P, V*)(x), where M (-; A) denotes
a Turing machine with blackbox access to a Turing machine A.

For practical purposes, Boyar et al. |7] defined a notion of prover-practical (zero-
knowledge) interactive proof.

Definition 2.6 [7]. An interactive proof (P, V) for a language L € NP is prover-
practical if the honest prover P runs in probabilistic polynomial time provided some
trapdoor information on input x € L is initially written on the private auxiliary tape
of P.

For each language L € NP, we use p, to denote a polynomial-time computable
predicate that witnesses L € AP, i.c., x € L iff therc exists w such that p; (x, w) = 1.
Let A, B € N'P and let g be a reduction from A to B, i.e., g is a polynomial-time
computable function such that x € A iff g(x) € B. Then the following is essential to
show Theorems 4.3 and 4.5.

Definition 2.7. Let A. B € AP and let p4, pg be the defining predicates of A, B,
respectively. A reduction g from A to B is witness-preserving (with respect to p4,
pg) if there exists a polynomial-time computable function 4 that given w such that
palx, w) = 1 foreach x € A, h(x, w) satisfies that pg(g(x). A(x, w)) = 1.

Definition 2.8. Let A, B € AP and let p4, pg be the defining predicates of A, B,
respectively. A reduction g from A to B is polynomial-time invertible (with respect 10
pa. pg) if there exists a polynomial-time computable function y that given w’ such that
pp(g(x),w’) = 1foreach x € A, y(g(x), w’) satisfies that p, (x, y(g(x). w')) = I.

3. Examples

It is obvious from Definition 2.3 that L induces a positively transparent and negatively
opaque function iff L (the complement of L) induces a positively opaque and negatively
transparent function. Thus we only exemplify several languages that induce positively
opaque and negatively transparent functions.
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Let G = (V,Eg) and H = (V, Ey) be graphs. We use G ~ H to imply that G
is isomorphic to H, i.e., there exists a permutation 7 on V such that (u, v) € Eg iff

(m(u). m(v)) € Ey.

Definition 3.1.  Universal Graph Isomorphism Tuple (UGIT) is the language of graph
tuples.

UGIT = {(h, (GY. G}, (GY,GY), ..., (G, G}))

h
/\[G?:G,!]],

i=1

where 4 is a positive integer.

Definition 3.2. Existential Graph Isomorphism Tuple (EGIT) is the language of graph
tuples.

EGIT = [<h, (G}, G1),(G3, Gy). ..., (G}, G)}))

h
\/lG?:GH],

i=1

where # is a positive integer.

It is obvious that UGIT and EGIT are graph isomorphism when i = 1.

Definition 3.3. ¢MODJ is the language of integers N having the following property. If
N = p‘;‘pg2 cee pf;" is the factorization of N, then p; = ¢(mod d) foreachi (1 <i < h).

In the following we show that the languages UGIT, EGIT, and IMOD4 induce posi-
tively opaque and negatively transparent functions fucit, fecit and fimops, respectively.

Proposition 3.4. UGIT induces a positively opaque and negatively transparent func-
tion.

Proof. Forx = (h, (G%, G}), (G, G)),...,(GY,G})),letV; (1 <i < h) be asetof
vertices for G and G, and let b € {0, 1}. Here we define a function fygr for UGIT as
follows:

fUGIT(X, b (my,.... ) = (n‘(G?)’ o X};(Gz)),

where 7; is a random permutation on V; (1 < i < h).

Assume that x € UGIT. It follows from Definition 3.1 that G ~ G! for each i
(1 < i < h). Then the distribution fugir(x,0) over my, ..., my is identical to the
distribution fugrr(x, 1) over m. ..., ;. Thus fygt is positively opaque. Assume that
x ¢ UGIT. It foliows from Definition 3.1 that there exists an ig such that G?ﬂ % G,.'“.
This implies that 7r,-0(G?”) # ¢i, (G ,-'0) for any permutations m;,, ¢;, on V;,. Then

Sfuart(x, 0, (o, oo o)) # fuorr (X, L@, -y @n)),

for any permutations 7;, ¢; on V;. Thus fugt is negatively transparent. O
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For A = 1, the idea of Proposition 3.4 is inspired by existing protocols. This traces
back to the protocol for graph isomorphism [13] to some extent but is more apparently
influenced by the protocol for graph isomorphism [2] in which the bit commitment
based on the graph isomorphism is fairly explicitly used. For every known random
self-reducible language, ¢.g., quadratic residuosity, multiplicative subgroup (g), of Z;,
etc., we can define a language similar to UGIT and thus we can show in a way similar
to Proposition 3.4 that such a language induces a positively opaque and negatively
transparent function.

Proposition 3.5. EGIT induces a positively opaque and negative transparent function.

Proof. Letx = (h, (G, G!).(GY,Gl),.... (G2, G})), let Vi (1 <i < h)beasetof
vertices for G? and G ,' and let b € {0, 1}. Here we define a function fggr for EGIT as
follows:

h
fearr(x, b, ((en, .y en). (T my)) = (bea (@e;) m(Gi'),...,nh(G;")),
i=!

where ¢; € {0, 1} is a random bit and x; is a random permutationon V; (1 <i < h).

Assume that x € EGIT. It follows from Definition 3.2 that there exists an iy such
that G} ~ G| . Then the distribution of random isomorphic copies of G{ is iden-
tical to that of random isomorphic copies of G}O. This implies that the distribution
SJearr(x,0) over ey, ..., ey, my, ..., 7, is identical to the distribution fggir(x, 1) over
€1 ..., [ 4 TR 7. Thus fegir is positively opaque. Assume that x ¢ EGIT. It fol-
lows from Definition 3.2 that, for each i (1 < i < h), G? # G!. Then, for any e;,
d; € {0, 1} and any permutations x;, ¢; on V;,

Jearr(x. 0, {er. . yen), (s ) # fearx 1 ({diy ..o dy) o (@r, ooy o))

Thus fugit is negatively transparent. 0

Again, for every known random self-reducible language, we can define a language
similar to EGIT and thus we can show in a way similar to Proposition 3.5 that such a
language induces a positively opaque and negatively transparent function.

Proposition 3.6. 1MOD4 induces a positively opaque and negatively transparent
Sfunction.

Proof. Let.x = p}'p3*--- p;" be the prime factorization and let b € {0, 1}. Here we
define a function fivops for IMOD4 as follows: fimopa(x, b, r) = (—1)®r%(mod x),
where r is randomly chosen from Z7. Note that —1 is a quadratic residue modulo x iff
x € IMOD4,

Assume that x € IMOD4. From Definition 3.3 and the fact that —1 is a quadratic
residue modulo x, it follows that, for any b and r, fimons(x, b. r) is a quadratic residue
modulo x. This implies that the distribution fimopa(x, O) over r € Z% is identical to the
distribution fimopa(x. 1) over r € Z%. Thus fimopa 18 positively opaque. Assume that
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x ¢ IMOD4, From Definition 3.3 and the fact that —1 is a quadratic nonresidue modulo
x, it follows that, for any r € Z*, fimopa(x.b,r) = (—1)’r%(mod x) is a quadratic
residue modulo x iff 5 = 0. Then, for any r, s € Z7, fimopa(x, 0, 1) # fimopa(x, 1, 5).
Thus fimop4 is negatively transparent. ’ O

It is not difficult to show that (1) 2 € Z3 is a quadratic residue modulo N if and
only if N € £IMODS; (2) 3 € Zj} is a quadratic residue modulo N if and only if
N € £IMODI2; and (3) 5 € Z} is a quadratic residue modulo N if and only if
N € £1MODS. Then in a way similar to Proposition 3.6, we can show the following:

Proposition 3.7. +IMODS, £1MODI12, and £ 1MODS induce positively opaque and
negatively transparent functions fiimops, frimopi2, and f+iMops, respectively.

4. Main Results

4.1. Positively Opaque and Negatively Transparent Functions

Assume that alanguage L induces a positively opaque and negatively transparent function
fr. Now we consider the following interactive protocol (A, B) for L: Let x € {0, 1}*
be a common input to (A, B). (A1) A randomly chooses b € {0, 1}, r € {0, 1}*(<],
and sends a = f;{(x,b,r) to B; (B1) B randomly chooses ¢ € {0, 1} and sends e to
A; (A2) A sends Bo € {0, 1}*"*D such that @ = fi(x, e, 5); and (B2) B checks that
a = f;(x,e, o). After n = |x| independent invocations from step Al to step B2, B
accepts x iff every check in step B2 is successful.

From the fact that f; is positively opaque and negatively transparent, ww can show
the following in almost the same way as the case of random self-reducible languages
[21].

Theorem 4.1. [fa language L induces a positively opaque and negatively transparent
function, then there exists an unbounded round perfect zero-knowledge proof for L.

As an immediate corollary to Theorem 4.1, we can show the following:

Corollary 4.2 (to Theorem 4.1). Any N'P-complete language does not induce a
positively opaque and negatively transparent function unless the polynomial hierarchy
collapses.

Proof. Fortnow [11] showed that if a language L has a statistical zero-knowledge
proof, then L € co-AM! and Boppana et al. [6] showed that if co-NP C AM,
then the polynomial-time hierarchy collapses. The corollary follows from these and
Theorem 4.1. a

! Goldreich et al. [15] pointed out that the proof of the result by Fortnow |11] has a fiaw. Aiello and Hastad
[1] contains a proof of that claim.
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In the protocol (A, B), however, A needs to evaluate o € {0, 1}**D such that
a = fi.(x, e, o) foreachiteration. Thus, in general, (A, B) could not be prover-practical.
In this subsection we show a stronger result, i.e., L has a prover-practical perfect zero-
knowledge proof. The protocol given below generalizes the protocol for graph isomor-
phism [13] and indeed coincides with it in the case of L being UGIT with h = 1.

Theorem 4.3. Ifalanguage L induces a positively opaque and negatively transparent
function, then there exists a prover-practical unbounded round perfect zero-knowledge

proof for L.

Proof. Since the language L induces a positively opaque and negatively transparent
function f;, L € NP (see Definition 2.3). Let x € {0, 1}* be a common input to
(P, V). Fix a polynomial-time computable function g, that reduces L to the directed
Hamiltonian cycle (DHAM), i.e., x € L iff g/ (x) € DHAM. Here we overview the
outline of the interactive protocol (P, V) for L. P and V first reduce L to DHAM via
the function g; and then execute the zero-knowledge proof for DHAM [5] using (as a bit
commitment) the positively opaque and negatively transparent function f;. Recall that
the prover uses a transparent bit commitment in the zero-knowledge proof for DHAM
[5]. Then the transparent property of the bit commitment guarantees the soundness of
the protocol, but the protocol is only computational (not perfect) zero-knowledge. For
specificity, here we choose the zero-knowledge proof for DHAM but the ones for any
other N"P-complete language would work.

Interactive Protocol (P, V) for L

common input: x € {0, [}*.

Initial: P and V reduces L to DHAM via the function g, i.e., G = g;(x). Let
Ag = (a;;) be the adjacency matrix of G = (V, E) and let n = |V/|.
P1-1: P randomly chooses s;; € {0, 1}*(1 and a permutation w on V (1 < i, j <
n).
Pi-2: P computes Cij = j}‘(x,a,”,-,,,(j). S,‘j).
P—->V: C=(C,'j)(1 51,]§n)
V1: V randomly chooses e € {0, 1}.

V> P:e.
P2-1: Fore =0, P assigns (w, $11, $12, .- ., Spn) tO w.
P2-2: Fore = 1, P assigns ({i1, i), (i2. j2)s ooy (Gny Juds Siyjis Sinjas - - o o8 Sinjn) tO
w such that (i|, ji), {i2, j2), ..., {in, Ju) is a single cycle.
P—V:w.
V2-1. Fore =0, V checks that¢;; = fi (x, @z, 5i;) foreachi, j (1 <i,j <
n).

V2-2: For e = 1, V checks that (i}, j;), {i2, j2), ..., {in, Ju) 1s indeed a single
cycleand thatc;, ; = fi(x, 1,s;,;,) foreachm (1 <m < n).

After n independent invocations from step P1-1 to step V2-2, V accepts x iff every check
in step V2-1 and step V2-2 is successful.
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In a way similar to the zero-knowledge proof for DHAM [5], we can show that the
protocol (P, V) is a prover-practical perfect zero-knowledge proof for L. The complete-
ness and prover-practicality are obvious. The soundness follows from the fact that f; is
negatively transparent. The perfect zero-knowledgeness follows from the fact that f; is
positively opaque. O

For a language L € NP, let p; be the defining predicate of L. Define relation R; to
be (x, y} € R iff p(x, y) = 1. Then we can show the following:

Corollary 4.4 (to Theorem 4.3). If a language L induces a positively opaque and
negatively transparent function, then there exists a perfect zero-knowledge proof of
knowledge for R, .

Proof. This follows from the fact that the reduction from any L € NP to DHAM is
witness-preserving and polynomial-time invertible. O

4.2, Positively Transparent and Negatively Opaque Functions

Here we consider the case contrary to Theorem 4.3, i.e., the case that L induces a
positively transparent and negatively opaque function (see Definition 2.3), and show
that if a language L induces a positively transparent and negatively opaque function,
then there exists a bounded round perfect zero-knowledge proof for L. The protocol
given below generalizes a constant round perfect zero-knowledge proof for quadratic
nonresiduosity [16], graph nonisomorphism [13], and the complement of random self-
reducible languages [21].

Theorem 4.5. [falanguage L induces a positively transparent and negatively opaque
function, then there exists a two-round perfect zero-knowledge proof for L.

Proof. Let L be a language that induces a positively transparent and negatively opaque
function f;. Let x € {0, 1}* be a common input to (P, V). Here we overview the
outline of the interactive protocol (P, V) for L. Foreachi (1 <i < |x|), V randomly
chooses ¢; € {0, 1}, r; € {0, 1}*'*D and computes o; = f;(x, e;, ;). Then V defines
the following A'P-statement,

|

ey, ez, ... e 3Ari ra, o Fig s.t. /\a,- = fr(x.e.r). (N
i=1

Fix a polynomial-time computable function g that reduces the N'P-statement of (1) to
DHAM G = (V,E),ie., G = g(ay, ..., ). Let H be a Hamiltonian cycle of G.
From the witness-preserving property of the reduction from any L € A'P to DHAM,
there exists a polynomial-time computable function # that satisfies

H=h({a1, ....0). (€1, .o ey Moo g )-

Then V generates polynomially many random copies isomorphic to G and commits
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to them with the positively transparent and negatively opaque function f;. After these
preliminary steps, V shows P that V knows the Hamiltonian cycle H of G.If V succeeds
in convincing P, then P shows V that P knows e;, €3, ..., €.

The idea behind the protocol is almost the same as that of the perfect zero-knowledge
proof for graph nonisomorphism [13]. Recall that the verifier uses a positively transparent
and negatively opaque bit commitment in the perfect zero-knowledge proof for graph
nonisomorphism [13].' Then the positively transparent and negatively opaque properties
of the bit commitment guarantee the completeness and the soundness of the protocol,
respectively. The perfect zero-knoweldgeness follows from the positively transparent
property of the bit commitment.

Interactive Protocol (P, V) for L

common input: x € {0, 1}*."

V1-1: V randomly choosese; € {0, 1}andr; € {0, 1}¥*D foreachi (1 <i < |x]).

V1-2: V computes «; = fi(x,e;, ;).

V1-3: V computes G = gy, &g, . . ., @)y)), i.€., V reduces the A'P-statement of
()to DHAM G = (V, E). Letn = |V|.

V1-4: V defines an adjacency matrix Ag = (a;) of G.

V1-5: V computes H = h({og, a2, ..., &), (€1, €0, .., €3 FLa 720 -0 Fixg)),s
where H is one of the Hamiltonian cycles of G.

V1-6: V randomly chooses a permutation 7, on V (1 < £ < n?) and sfj €
{0, ¥ (1 <4, j < n).

VI1-7: V computes cf; = fL(X, G (ym (), 51))-

V> P, ) () (€2, (@) (L <, j < n).
P1: P randomly chooses b, € {0, 1} foreach £ (1 < £ < n?).
P—-V: (bl,bz,...,bnz). .
V2-1: If by =0 (1 < £ < n?), V assigns (mg, sf}, 50, ..., 55,) to wy.
V2-2: If b, =1 (1 < ¢ < n?), V assigns

((if» ]f} (12, J2> "<n’ ]n) slljivsf(]h” S'fj:'> to wg such that
(s, ih, Gs, jf, ..., (@€, jb) is a single cycle:
Vo P (w,wy,...,w ).
P2-1: P computes G = g(ay, a2, ..., o)) and an adjacency matrix Ag = (a;;)
of G.

P2-2: Foreach by = 0 (1 < £ < n?), if ¢f; = fL.(x, Gn,im () 55) for each i, j
(1 <i, j < n), then P continues; otherwise P halts and rejectsx e {0, 1}*.

P2-3: Foreach b, = 1 (1 < ¢ < n?),if (i I,Jl) (i, i5, ..., G, jby is indeed a
single cycle and c(j( = fr(x, 1, s[ ,) for each m (1 < m < n), then P
continues; otherwise P halts and rejects x.

P2-4: If there exist 8; € {0, 1} and #; € {0, 1)**D such that o; = fi (x, Bi, t;) for
every i (1 <i < |x|), then P continues; otherwise P halts and rejects x.

P—V: (Bi, B2, Bal)-
V3: If B; = ¢; forevery i (1 <i < |x|), then V halts and accepts x; otherwise

V halts and rejects x.
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In a way similar to the perfect zero-knowledge proof for graph nonisomorphism [13],
we can show that the protocol (P, V) is a two round perfect zero-knowledge proof
for L. The completeness follows from the fact that f;, is positively transparent and the
soundness follows from the fact that f; is negatively opaque and the fact that Vs proof of
knowledge on the Hamiltonian cycle H of G is perfectly witness indistinguishable [10].
The perfect zero-knowledgeness follows from the fact that f; is positively transparent
and that fact that the reduction g from the A'P-statement of (1) to DHAM is polynomial-
time invertible. a

5. Concluding Remarks

From Theorem 4.3, it follows that any language inducing a positively opaque and neg-
atively transparent function has an unbounded round perfect zero-knowledge Arthur—
Maerlin proof. This could be improved, however, because, from Definition 2.3, any
language inducing a positively opaque and negatively transparent function is in NP,
i.e., any language inducing a positively opaque and negatively transparent function has
an N'P-proof [ 16]. Indeed, UGIT and EGIT are polynomial-time many—one reducible to
graph isomorphism [9], [17], [18], and graph isomorphism has a bounded round perfect
zero-knowledge proof [2]. Then:

1. If a language L induces a positively opaque and negatively transparent function,
then does there exist a bounded round perfect zero-knowledge proof for L?

To affirmatively solve this question, a verifier will have to flip private coins, because
Goldreich and Krawczyk [ 12] showed that there exists a bounded round zero-knowledge
Arthur-Merlin proof for a language L, then L € BPP.

Every known random self-reducible language. e.g., graph isomorphism, quadratic
residuosity, multiplicative subgroup (g), of Z7, etc.. induces a positively opaque and
negatively transparent function, however, it is not known whether every random self-
reducible language induces a positively opaque and negatively transparent function.
Then:

2. Does every random self-reducible language induce a positively opaque and nega-
tively transparent function?
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